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Dual Tessellations/Legendre Transform

Given a finite P and a map f : P → R, we define two piecewise
linear convex functions:

u(x) = f ∗(x) = sup
ρ∈P

(x · ρ− f (ρ))

u∗(ρ) = f ∗∗(ρ) = sup
x

(x · ρ− u(x)) = f o(ρ) = convex hull of f.

Domains of the linearity of u yield a Laguerre tessellation:

X(f ) := {X (ρ) : ρ ∈ Rd}, X (ρ) = ∂u∗(ρ).

Domains of the linearity of u∗ yield a weighted Delaunay
tessellation:

P(f ) := {P(x) : x ∈ Rd}, P(x) = ∂u(x).
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Legendre Transform
For generic f :

(Courtesy of N. Lei, W. Chen, Z. Luo, X. Gu 2019)



Alexandrov Map I
Recall that P is fixed and we only vary f . Fix a domain Ω and
define ν : P → [0,∞), by

ν(ρ) = |X (ρ) ∩ Ω|.
X (ρ) is the set of slopes of subgradients (generized tangents)
to the graph of u∗ at ρ.
If ν is known, then we can recover f (and hence u) from it in Ω.
Alexandrov Map I The inverse map ν 7→ u.
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Discrete Gauss Curvature

Let x ∈ X (ρ), then

N(x) = (1 + |x |2)−1/2(x ,−1),

is normal to a face of the graph.
Define

X̂ (ρ) = {N(x) : x ∈ X (ρ) ∩ Ω} ⊂ Sd
−.

Think of ρ 7→ X̂ (ρ) as a discrete Gauss map. Define

α(ρ) = σ(X̂ (ρ)),

where σ is the d-dimensional (surface) area on the sphere.
When Ω = Rd , then α(ρ) is our candidate for the Gauss
curvature at ρ.
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Alexandrov Map II
If α is known, then we can recover f (and hence u) from it in Ω.
Alexandrov Map II The inverse map α 7→ u.

Write λ1 for the Lebesgue measure on Ω.
Write λ2 for the pull back of σ with respect to x 7→ N(x).
Important Observation
1. The locally constant ρ = ∇u pushes forward λ1 to

µ1 =
∑
ρ∈P

ν(ρ)δρ.

2. The locally constant ρ = ∇u pushes forward λ2 to

µ2 =
∑
ρ∈P

α(ρ)δρ.
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Monge-Kantorovich Problem and Duality

Brenier: Given two measures λ and µ, there exists a unique
(modulo a constant) convex function u : Ω→ R such that
ρ = ∇u pushes forward λ to µ.
Moreover ρ is a minimizer in

I(µ)
(

= I(λ, µ)
)

:= inf
1
2

∫
Ω
|x − ρ(x)|2 λ(dx).

Infimum over maps ρ that pushes forward λ to µ.
Dual Formulation There is a dual presentation that is achieved
by introducing a Lagrange multiplier and applying the minimax
principle:
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Dual Problem

I(µ) = sup
{∫

φ(x)λ(dx) +

∫
ψ(ρ) µ(dρ)

}
,

where the supremum is over pairs (φ, ψ) such that

ϕ(x) + ψ(ρ) ≤ 1
2
|x − ρ|2 for all (x , ρ).

For each pair (ϕ,ψ), we define (u, v) as

u(x) =
1
2
|x |2 − ϕ(x), v(ρ) =

1
2
|ρ|2 − ψ(ρ).

We then define

Î(µ) = sup
{
−
∫

u(x)λ(dx)−
∫

v(ρ) µ(dρ)

}
with supremum over (u, v) with

x · ρ ≤ u(x) + v(ρ) for all (x , ρ).
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Dual Problem
These optimization problems are equivalent:

I(µ) = Î(µ) +

∫
1
2
|x |2 λ(dx) +

∫
1
2
|ρ|2 µ(dρ).

The maximizing pair (u, v) satisfies u = v∗, and u is the desired
convex function.
This suggests a functional

E(v) =

∫
v∗(x) λ(dx),

which is convex. In terms of this functional,

Î(µ) = sup
v

(−µ · v − E(v)) = E∗(−µ).

In summary the inverse of the map f 7→ ν is given by
ν = −∇E(f ).
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Î(µ) = sup
v

(−µ · v − E(v)) = E∗(−µ).

In summary the inverse of the map f 7→ ν is given by
ν = −∇E(f ).



Dual Problem
These optimization problems are equivalent:

I(µ) = Î(µ) +
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Hamilton-Jacobi Dynamics
We are interested in the PDE ut = H(ux ) with u(x ,0) convex
and piecewise linear.
Write C(P) for the set of functions of the form u = f ∗ where
f : P → R.
Write Φt for the flow associated with the PDE:

Φtu(·,0) = u(·, t).

The set C(P) is invariant under the flow by Hopf’s theorem:

Φt (C(P)) ⊂ C(P).

Indeed, if f t = f − tH, then by Hope’s formula,

Φt (f ∗) = (f t )∗.

Set
Xt = X(f t ), Tt = T(f t ).



Hamilton-Jacobi Dynamics
We are interested in the PDE ut = H(ux ) with u(x ,0) convex
and piecewise linear.
Write C(P) for the set of functions of the form u = f ∗ where
f : P → R.
Write Φt for the flow associated with the PDE:

Φtu(·,0) = u(·, t).

The set C(P) is invariant under the flow by Hopf’s theorem:

Φt (C(P)) ⊂ C(P).

Indeed, if f t = f − tH, then by Hope’s formula,

Φt (f ∗) = (f t )∗.

Set
Xt = X(f t ), Tt = T(f t ).



Hamilton-Jacobi Dynamics
We are interested in the PDE ut = H(ux ) with u(x ,0) convex
and piecewise linear.
Write C(P) for the set of functions of the form u = f ∗ where
f : P → R.
Write Φt for the flow associated with the PDE:

Φtu(·,0) = u(·, t).

The set C(P) is invariant under the flow by Hopf’s theorem:

Φt (C(P)) ⊂ C(P).

Indeed, if f t = f − tH, then by Hope’s formula,

Φt (f ∗) = (f t )∗.

Set
Xt = X(f t ), Tt = T(f t ).



Hamilton-Jacobi Dynamics
We are interested in the PDE ut = H(ux ) with u(x ,0) convex
and piecewise linear.
Write C(P) for the set of functions of the form u = f ∗ where
f : P → R.
Write Φt for the flow associated with the PDE:

Φtu(·,0) = u(·, t).

The set C(P) is invariant under the flow by Hopf’s theorem:

Φt (C(P)) ⊂ C(P).

Indeed, if f t = f − tH, then by Hope’s formula,

Φt (f ∗) = (f t )∗.

Set
Xt = X(f t ), Tt = T(f t ).



Hamilton-Jacobi Dynamics
We are interested in the PDE ut = H(ux ) with u(x ,0) convex
and piecewise linear.
Write C(P) for the set of functions of the form u = f ∗ where
f : P → R.
Write Φt for the flow associated with the PDE:

Φtu(·,0) = u(·, t).

The set C(P) is invariant under the flow by Hopf’s theorem:

Φt (C(P)) ⊂ C(P).

Indeed, if f t = f − tH, then by Hope’s formula,

Φt (f ∗) = (f t )∗.

Set
Xt = X(f t ), Tt = T(f t ).



Hamilton-Jacobi Dynamics
We are interested in the PDE ut = H(ux ) with u(x ,0) convex
and piecewise linear.
Write C(P) for the set of functions of the form u = f ∗ where
f : P → R.
Write Φt for the flow associated with the PDE:

Φtu(·,0) = u(·, t).

The set C(P) is invariant under the flow by Hopf’s theorem:

Φt (C(P)) ⊂ C(P).

Indeed, if f t = f − tH, then by Hope’s formula,

Φt (f ∗) = (f t )∗.

Set
Xt = X(f t ), Tt = T(f t ).



Hamilton-Jacobi Dynamics

We wish to understand the dynamics of t 7→ Xt and t 7→ Tt .
Without loss of generality we may assume that P is finite.
(Speed of propagation is finite.)
Main Theorem: There are times

t0 = 0 < t1 < · · · < tk < tk+1 =∞,

such that
1. In (ti , tk=1), we have a free motion.
2. At transition

ti− → ti+,

we either have a coagulation or collision.
3. For t > tk , the triangulation associated with f t is very special
(stable). We call it anti-H triangulation.
The definitions will be given shortly.
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The definitions will be given shortly.
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Hamilton-Jacobi Dynamics: Free Motion
During a free motion interval:
u∗: The triangulation (domains of linearity of u∗) Tt stays put,
but the slopes of the graph of u∗ change linearly with a velocity
that will be described shortly.
u: The slopes of the graph stay put. The vertices of Xt travel
according to their velocities. If t , t ′ are two times in the interval,
then the corresponding faces in Xt and Xt ′ are parallel. Angles
do not change.
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Hamilton-Jacobi Dynamics: Coagulation

u∗: Before ti , there is a subtraingulation with d + 1
triangles/simplexes as in the figure:

After ti the d + 1 simplexes are replaced with one simplex (their
union).
u: Before ti one cell in the tessellation Xt is a simplex/triangle.
This cell shrinks before ti . At ti the cell collapses to a vertex.
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Hamilton-Jacobi Dynamics: Coagulation

The red triangle shrinks: Triangles in Xt can only shrink (not
true for other type of cells).



Hamilton-Jacobi Dynamics: Collision
u∗: Before ti , there is a circuit D with d + 2 extreme points.
There are exactly two possible triangulations for this circuit, say
T±. At ti we switch from T− to T+.
u: Before ti there are two vertices that travel according to their
velocities and move towards each other.
At ti , these vertices collide and gain new velocities.
After ti these vertices travel according to their new velocities.
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Hamilton-Jacobi Dynamics: Collision

Two red vertices may get closer or move away from each other.



Hamilton-Jacobi Dynamics: Velocities
Remarks
1. X (ρ) ∩ X (ρ′) is a common face of X (ρ) and X (ρ′).
The vector ρ− ρ′ ⊥ X (ρ) ∩ X (ρ′) (In dimension one this is
known as Rankine-Hugoniot Formula).
It points from X (ρ′) side to X (ρ) side (this is entropy
condition/viscosity criteria).
2. If T is a triangle/simplex in the triangulation, then it is
associated with a vertex x(T ) = x t (T ) that is uniquely
determined from solving

x t (T ) · (ρ− ρ′) = f t (ρ)− f t (ρ′), ρ, ρ′ ∈ T .

3. The velocity of x t (T ) is −v(T ), where v(T ) is the unique
solution of the linear system

v(T ) · (ρ− ρ′) = H(ρ)− H(ρ′), ρ, ρ′ ∈ T .

Moral: v is a vertex in the tessellation X(H).
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Hamilton-Jacobi Dynamics: Circuits

If R is a circuit, then there exists a function c : R → (0,∞) and
a decomposition R = R− ∪ R+ such that∑

m∈R±
c(m) = 1,

a :=
∑

m∈R−
c(m)m =

∑
m∈R+

c(m)m.
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Hamilton-Jacobi Dynamics: Positive Edges

There are two triangulations:

T±(R) =
{

R \ {m} : m ∈ R∓
}
.

Choose ± so that

Ĥ(R) =
∑

m∈R+

c(m)H(m)−
∑

m∈R−
c(m)H(m) ≥ 0.

In this way the restriction of H to R is associated with the
triangulation T−(R).
If two triangulations T and T′ are vertices of an edge of the
secondary polytope, then they differ only on a circuit R.
We call the edge positive if T→ T′ means switching from T−(R)
to T+(R).
In the HJ dynamics we can only jump across a positive edge at
ti .



Hamilton-Jacobi Dynamics: Positive Edges

There are two triangulations:

T±(R) =
{

R \ {m} : m ∈ R∓
}
.

Choose ± so that
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Hamilton-Jacobi Dynamics: Coagulation/Collision

1. The time of a coagulation of a shrinking f : R → R:

τ =
f̂ (R)

Ĥ(R)
.

2. If f : R → R, and f̂ (R) < 0, then the triangulation induced by
f is T+(R) and there will be no collision.
3. If f : R → R, and f̂ (R) > 0, then the triangulation induced by
f is T−(R), and collision occurs at

τ =
f̂ (R)

Ĥ(R)
.
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