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Given a finite Pand amap f : P — R, we define two piecewise
linear convex functions:

u(x) = F*(x) = sup(x - p — 1(p))
peP

u*(p) = **(p) = sup(x - p — u(x)) = f°(p) = convex hull of f.
X
Domains of the linearity of u yield a Laguerre tessellation:

X(f) :={X(p) : pe R}, X(p)=0u*(p).

Domains of the linearity of u* yield a weighted Delaunay
tessellation:

P(f) = {P(x): x e R}, P(x)=du(x).



Legendre Transform

For generic f:

Q*

T

(Courtesy of N. Lei, W. Chen, Z. Luo, X. Gu 2019)
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Recall that P is fixed and we only vary f. Fix a domain Q and
define v : P — [0, c0), by
v(p) = [X(p) N Q.
X(p) is the set of slopes of subgradients (generized tangents)
to the graph of u* at p.

If v is known, then we can recover f (and hence u) from it in €.
Alexandrov Map | The inverse map v +— u.
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Discrete Gauss Curvature

Let x € X(p), then
N(x) = (1+ [x?)712(x, 1),

is normal to a face of the graph.
Define A
X(p) = {N(x): xe X(p)nQ} cs?.

Think of p — X(p) as a discrete Gauss map. Define
a(p) = o(X(p)),

where ¢ is the d-dimensional (surface) area on the sphere.
When Q = RY, then a(p) is our candidate for the Gauss
curvature at p.
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If o is known, then we can recover f (and hence u) from it in Q.
Alexandrov Map Il The inverse map a +— u.

Write A\ for the Lebesgue measure on Q.

Write A, for the pull back of o with respect to x — N(x).
Important Observation

1. The locally constant p = Vu pushes forward )\ to

pr=>_v(p)d,.

peP
2. The locally constant p = Vu pushes forward X, to

M2 = Z a(p)dp-
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Monge-Kantorovich Problem and Duality

Brenier: Given two measures \ and i, there exists a unique
(modulo a constant) convex function u : Q — R such that

p = Vu pushes forward A to p.

Moreover p is a minimizer in

) (= 10,0)) = inf 5 [ = s M.

Infimum over maps p that pushes forward A to .

Dual Formulation There is a dual presentation that is achieved
by introducing a Lagrange multiplier and applying the minimax
principle:
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Dual Problem

10 =sup{ [ 60N@) + [ 0(6) ()},

where the supremum is over pairs (¢, ¢) such that
1
#(X) +(p) < 5lx = pP? forall (x,p).
For each pair (p, 1), we define (u, v) as
1 1

u(x) = 51xI* —(x), V(o) = 5lol* = ¥(p).
We then define

1) =sup { - [ uox(@) - [ (o) o)
with supremum over (u, v) with

x-p <u(x)+v(p) forall (x,p).
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Dual Problem
These optimization problems are equivalent:

1) =)+ [ 5xP @)+ [ 316 ().

The maximizing pair (u, v) satisfies u = v*, and v is the desired
convex function.
This suggests a functional

E(v) :/v*(x) A(dx),
which is convex. In terms of this functional,
I(p) = Sldp(—u vV —E(v)) = E*(—p).

In summary the inverse of the map f — v is given by
v =—VE(f).
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Hamilton-Jacobi Dynamics

We are interested in the PDE u; = H(uyx) with u(x, 0) convex
and piecewise linear.

Write C(P) for the set of functions of the form u = f* where
f:P—R.

Write ¢; for the flow associated with the PDE:

®ru(-,0) = u(-, 1).
The set C(P) is invariant under the flow by Hopf’s theorem:
®+(C(P)) C C(P).
Indeed, if f{ = f — tH, then by Hope’s formula,
o(F*) = (F)".

Set
Xi = X(ft), T = T(ft).
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We wish to understand the dynamics of t — X; and t — T;.
Without loss of generality we may assume that P is finite.
(Speed of propagation is finite.)

Main Theorem: There are times

h=0<t < - <l <lxs1 =00,

such that
1. In (t;, t=1), we have a free motion.
2. At transition

li— — b+,

we either have a coagulation or collision.

3. For t > tx, the triangulation associated with ! is very special
(stable). We call it anti-H triangulation.

The definitions will be given shortly.
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Hamilton-Jdacobi Dynamics: Free Motion
During a free motion interval:
u*: The triangulation (domains of linearity of u*) T; stays put,
but the slopes of the graph of u* change linearly with a velocity
that will be described shortly.
u: The slopes of the graph stay put. The vertices of X; travel
according to their velocities. If t, t' are two times in the interval,
then the corresponding faces in X; and Xy are parallel. Angles
do not change.
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Hamilton-Jacobi Dynamics: Coagulation

The red triangle shrinks: Triangles in X; can only shrink (not
true for other type of cells).
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Hamilton-Jacobi Dynamics: Collision
u*: Before tj, there is a circuit D with d + 2 extreme points.
There are exactly two possible triangulations for this circuit, say
T+. At t; we switch from T~ to T+.
u: Before t; there are two vertices that travel according to their
velocities and move towards each other.
At 1;, these vertices collide and gain new velocities.
After t; these vertices travel according to their new velocities.



Hamilton-Jacobi Dynamics: Collision

Two red vertices may get closer or move away from each other.
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Hamilton-Jdacobi Dynamics: Velocities
Remarks
1. X(p) N X(p') is a common face of X(p) and X(p').
The vector p — p' L X(p) N X(p') (In dimension one this is
known as Rankine-Hugoniot Formula).
It points from X(p') side to X(p) side (this is entropy
condition/viscosity criteria).
2. If T is a triangle/simplex in the triangulation, then it is
associated with a vertex x(T) = x!(T) that is uniquely
determined from solving

X(T)-(p=p)=F(p) - F1(0), poeT

3. The velocity of x!(T) is —v(T), where v(T) is the unique
solution of the linear system

V(T)-(p—p)=H(p)—H(p), p.peT.

Moral: v is a vertex in the tessellation X(H).
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Hamilton-Jacobi Dynamics: Positive Edges

There are two triangulations:
T5(R) = {R\ {m}: me R},

Choose =+ so that

meR+ meR—

In this way the restriction of H to R is associated with the
triangulation T~(R).

If two triangulations T and T’ are vertices of an edge of the
secondary polytope, then they differ only on a circuit R.

We call the edge positive if T — T’ means switching from T~ (R)
to TT(R).

In the HJ dynamics we can only jump across a positive edge at
t.
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Hamilton-Jacobi Dynamics: Coagulation/Collision

1. The time of a coagulation of a shrinking f: R — R:

2.1f f: R— R, and #(R) < 0, then the triangulation induced by
fis T*(R) and there will be no collision.

3.If f: R— R, and f(R) > 0, then the triangulation induced by
fis T~(R), and collision occurs at
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