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1 Introduction

Hamiltonian systems appear in conservative problems of mechanics as in celestial mechanics
but also in statistical mechanics governing the motion of particles and molecules in fluid.
A mechanical system of N planets (particles) is modeled by a Hamiltonian function H(x)
where x = (q, p), q = (q1, . . . , qN), p = (p1, . . . , pN) with (qi, pi) ∈ Rd×Rd being the position
and the momentum of the i-th particle. The Hamiltonian’s equations of motion are

(1.1) q̇ = Hp(q, p), ṗ = −Hq(q, p),

which is of the form

(1.2) ẋ = J̄∇xH(x), J̄ =

[
0 In

−In 0

]
,

where n = dN and In denotes the n×n identity matrix. The equation (1.2) is an ODE that
possesses a unique solution for every initial data x0 provided that we make some standard
assumptions on H. If we denote such a solution by ϕt(x0) = ϕ(t, x0), then ϕ enjoys the group
property

ϕt ◦ ϕs = ϕt+s, t, s ∈ R.

The ODE (1.1) is a system of 2n = 2dN unknowns. Such a typically large system can
not be solved explicitly. A reduction of such a system is desirable and this can be achieved
if we can find some conservation laws associated with our system. To find such conservation
laws systematically, let us look at a general ODE of the form

(1.3)
dx

dt
= b(x),

with the corresponding flow denoted by ϕt, and study u(x, t) = Ttf(x) = f(ϕt(x)). A
celebrated theorem of Liouville asserts that the function u satisfies

(1.4)
∂u

∂t
= Lu = b · ux.

Recall that a function f(x) is conserved if d
dt
f(ϕt(x)) = 0. From (1.4) we learn that a function

f is conserved if and only if

(1.5) b · fx = 0.

In the case of a Hamiltonian system, b = (Hp,−Hq) and the equation (1.5) becomes

(1.6) {f,H} := fq ·Hp − fp ·Hq = 0.
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As an obvious choice, we may take f = H in (1.6). In general, we may have other conservation
laws that are not so obvious to be found. Nother’s principle tells us how to find a conservation
law using a symmetry of the ODE (1.3). With the aid of the symmetries, we may reduce
our system to a simpler one that happens to be another Hamiltonian-type system.

Liouville discovered that for a Hamiltonian system of Nd-degrees of freedom (2Nd un-
knowns) we only need Nd conserved functions in order to solve the system completely by
means of quadratures. Such a system is called completely integrable and unfortunately hard
to come by. Recently there has been a revival of the theory of completely integrable sys-
tems because of several infinite dimensional examples (Korteweg–deVries equation, nonlinear
Schrödinger equation, etc.).

As we mentioned before, the conservation laws can be used to simplify a Hamiltonian
system by reducing its size. To get more information about the solution trajectories, we
may search for other conserved quantities. For example, imagine that we have a flow ϕt
associated with (1.3) and we may wonder how the volume of ϕt(A) changes with time for a
given measurable set A. For this, imagine that there exists a density function ρ(x, t) such
that

(1.7)

∫
g(ϕt(x))ρ

0(x)dx =

∫
g(x)ρ(x, t)dx,

for every bounded continuous function g. This is equivalent to saying that for every nice set
A,

(1.8)

∫
ϕ−t(A)

ρ(x, 0)dx =

∫
A

ρ(x, t)dx,

where ρ0(x) = ρ(x, 0). In words, the ρ0-weighted volume of ϕ−t(A) is given by the ρ(·, t)-
weighted volume of A. Using (1.5), it is not hard to see that in fact ρ satisfies the (dual)
Liouville’s equation

(1.9)
∂ρ

∂t
+ div(ρb) = 0.

As a result, the measure ρ0(x)dx is invariant for the flow ϕt if and only if

div(ρ0b) = 0.

In particular, if div b = 0, then the Lebesgue measure is invariant. In the case of a Hamil-
tonian system b = J∇H, we do have div b = 0, and as a consequence,

(1.10) vol(ϕt(A)) = vol(A),

for every measurable set A.
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In our search for other invariance properties, let us now look for vector fields F : Rn → Rn

such that

(1.11)
d

dt

∫
ϕt(γ)

F · dx ≡ 0,

for every closed curve γ. Such an invariance property is of interest in (for example) fluid
mechanics because

∫
γ
F · dx measures the circulation of the velocity field F around γ. To

calculate the left-hand side of (1.11), observe∫
ϕt(γ)

F · dx =

∫
γ

F (ϕt(x))Dϕt(x) · dx

where Dϕt denotes the derivative of ϕt in x and we regard F as a row vector. Set F =
(F 1, . . . , F k), ϕ = (ϕ1, . . . , ϕk), u = (u1, . . . , uk), u(x, t) = TtF (x) = F ◦ϕt(x)Dϕt(x), so that

uj(x, t) =
∑
i

F i(ϕt(x))
∂ϕit
∂xj

(x).

To calculate the time derivative, we write

u(x, t+ h) = F (ϕt+h)Dϕt+h = F (ϕt ◦ ϕh) Dϕt ◦ ϕhD ϕh

= u(ϕh(x), t)Dϕh(x),

so that

d

dh
uj(x, t+ h)

∣∣∣∣
h=0

=
∑
i

[
(∇ui · b)δij + ui

∂bi

∂xj

]
= ∇uj · b+

∑
i

ui
∂bi

∂xj

= (u · b)xj +
∑
i

(ujxi − uixj)b
i.

In summary,

(1.12)
∂u

∂t
= ∇(u · b) + C(u)b,

where C(u) is the matrix [uixj − ujxi ]. In particular,

(1.13)
d

dt

∫
ϕt(γ)

F · dx =

∫
γ

C(u)b · dx,
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for every closed curve γ. Recall that we would like to find vector fields F for which (1.11) is
valid. For this it suffices to have C(F )b a gradient. Indeed if C(F )b is a gradient, then

d

dt

∫
ϕt(γ)

F · dx =
d

dh

∫
ϕt+h(γ)

F · dx

∣∣∣∣∣
h=0

=
d

dh

∫
ϕh(ϕt(γ))

F · dx
∣∣∣∣
h=0

=

∫
ϕt(γ)

C(F )b · dx = 0.

Let us examine this for some examples.

Example 1.1. (i) Assume that k = 2n with x = (q, p) = (q1, . . . , qn, p1, . . . , pn). Let
b(q, p) = (Hp,−Hq)

∗ = J∇H for a Hamiltonian H(q, p). Choose F (q, p) = (p, 0). We then

have C(F ) =
[

0 In
−In 0

]
= J , and C(F )b = JJ∇H = −∇H. This and (1.13) imply that for

a Hamiltonian flow ϕt and closed γ,

(1.14)
d

dt

∫
ϕt(γ)

p · dq = 0,

which was discovered by Poincaré originally.
(ii) Assume k = 2n+ 1 with x = (q, p, t) and b(q, p, t) = (Hp,−Hq, 1)

∗ where H is now a
time-dependent Hamiltonian function. Define

F (q, p, t) = (p, 0,−H(q, p, t)).

We then have

(1.15) C(F ) =

 0 In H∗
q

−In 0 H∗
p

−Hq −Hp 0

 =

[
J (∇H)∗

−∇H 0

]
.

Since C(F )b = 0, we deduce that for any closed (q, p, t)-curve γ,

(1.14)
d

ds

∫
ϕs(γ)

(p · dq −H(q, p, t)dt) = 0,

proving a result of Poincaré and Cartan. Note that if γ has no t-component in (1.16), then
(1.16) becomes (1.14).
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(iii) Assume n = 3. Then C(F ) =

 0 −α3 α2

α3 0 −α1

−α2 α1 0

 with (α1, α2, α3) = ∇×F . Now if

b = ∇× F , then C(F )b = (∇× F ) × b and d
dt

∫
ϕt(γ)

F · dx = 0. In words, the F -circulation

of a curve moving with velocity field ∇× F is preserved with time. □

Example 1.2. A Hamiltonian system (1.2) simplifies if we can find a function w(q, t) such
that p(t) = w(q(t), t). If such a function w exists, then q(t) solves

(1.17)
dq

dt
= Hp(q, w(q, t), t).

The equation ṗ gives us the necessary condition for the function w:

ṗ = wq q̇ + wt = wq ·Hp(q, w, t) + wt,

ṗ = −Hq(q, w, t).

Hence w(q, t) must solve,

(1.18) wt + wq ·Hp(q, w, t) +Hq(q, w, t) = 0.

For example, if H(q, p, t) = 1
2
|p|2 + V (q, t), then (1.18) becomes

(1.19) wt + wqw + Vq(q, t) = 0.

The equation (1.17) simplifies to

(1.20)
dq

dt
= w(q, t)

in this case. If the flow of (1.20) is denoted by ψt, then ϕt(q, w(q, 0)) = (ψt(q), w(ψt(q), t)).
Now (1.14) means that for any closed q-curve η,

d

dt

∫
ψt(η)

w(q, t) · dq = 0.

This is the celebrated Kelvin’s circulation theorem. □

We may use Stokes’ theorem to rewrite (1.14) as

(1.21)
d

dt

∫
ϕt(Γ)

ω̄ :=
d

dt

∫
ϕt(Γ)

dp ∧ dq = 0

for every two-dimensional surface Γ. In words, the 2-form ω̄ is invariant under the Hamil-
tonian flow ϕt. In summary, we have found various invariance principles for Hamiltonian
flows:
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� The conserved functions f satisfying (1.6) is an example of an invariance principle for
0-forms.

� The Liouville’s theorem (1.10) is an example of an invariance principle of an n-form.

� Poincaré’s theorem (1.21) is an instance of an invariance principle involving a 2-form.

In fact (1.21) implies (1.10) because the invariance of ω̄ implies the invariance of the
k = 2n form ω̄n = ω̄ ∧ · · · ∧ ω̄ which is a constant multiple of the volume form. More
generally, we may take an arbitrary l-form ω and evolve it by the flow ϕt of a velocity field
b. If we write ω(t) for ϕ∗

tω: ∫
Γ

ω(t) =

∫
Γ

ϕ∗
tω =

∫
ϕt(Γ)

ω,

then by a formula of Cartan,

dω

dt
= Lbω := d(ibω) + ib(dω)

where Lbω denotes the Lie derivative.
The configuration space of a system with constraints is a manifold. Also, when we use

conservation laws to reduce our Hamiltonian system, we obtain a Hamiltonian system on
a manifold. If the configuration space is a n-dimensional differentiable manifold N , and
L : TN → R is a differentiable Lagrangian function, then p = ∂L

∂q̇
is a cotangent vector. The

cotangent bundle M = T ∗N is an example of a symplectic manifold because it possesses a
natural closed non-degenerate form ω̄ which is simply

∑n
1 dpi∧dqi, in local coordinates. More

generally we may study an even dimensional manifold M , equipped with a non-degenerate
closed 2-form ω, and construct vector fields XH associated with scalar functions H such that
iXH

(ω) = −dH. The vector field XH is the analog of J∇H in the Euclidean case M = R2n.
By the non-degeneracy of ω, such XH exists for every differentiable Hamiltonian function
H.

A celebrated theorem of Darboux asserts that any symplectic manifold is locally equiv-
alent to an Euclidean space with its standard symplectic structure. As a result, the most
important questions in symplectic geometry are the global ones.

Consider the Euclidean space (R2n, ω̄). If the hypersurface Γ = H−1(c) is a compact
energy level set with ∇H ̸= 0 on Γ, then the unparametrized orbits on Γ of the Hamiltonian
vector field XH = J∇H are independent of the choice of H. One can therefore wonder what
hypersurfaces carry a periodic orbit. P. Rabinowitz showed that every star-like hypersurface
carries a periodic orbit. Later, Viterbo showed that the same holds more generally for
hypersurfaces of contact type, establishing affirmatively a conjecture of A. Weinstein.

Consider two compact connected domains U1 and U2 in R2n with smooth boundaries. If U1

and U2 are diffeomorphic and volume(U1) = volume(U2), then we can find a diffeomorphism
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between U1 and U2 that is also volume preserving (Dacorogna–Moser). We may wonder
whether or not there exists a symplectic diffeomorphism between U1 and U2. Gromov’s
squeezing theorem shows that the symplectic transformations are more rigid; if there exists
a symplectic embedding from the ball

BR(0) = {(q, p) : |q|2 + |p|2 < R2}

into the cylinder
Zr(0) = {(q, p) : q21 + p21 < r2},

then we must have r ≥ R! Motivated by this, Gromov defines the symplectic radius r(M) of
a symplectic manifold (M,ω) as the largest r for which there exists a symplectic embedding
from Br(0) into M . The Gromov’s radius is an example of a symplectic capacity that is a
symplectic invariant. Since the discovery of the Gromov radius, new capacities have been
discovered. The existence of some of these capacities can be used to prove various global
properties of Hamiltonian systems such as Viterbo’s existence of periodic orbits.

Another rigidity of symplectic transformation is illustrated in an important result of
Eliashberg and Gromov: If {fm} is a sequence of symplectic transformation that converges
uniformly to a differentiable function f , then f is also symplectic. The striking aspect of
this result is that our definition of a symplectic function f involves the first derivative of f .
As a result, we should expect to have a definition of symplicity that does not involve any
derivative. This should be compared to the definition of a volume preserving transformation
that can be formulated with or without using derivative.
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2 Quadratic Hamiltonians and Linear Symplectic Ge-

ometry

In this section, we discuss several central concepts and fundamental results of symplectic
geometry in linear setting. More specifically, we establish Darboux Theorem for symplectic
vector spaces, define symplectic spectrum for quadratic Hamiltonian functions, construct
linear symplectic capacities for ellipsoids, establish symplectic rigidity for linear symplectic
maps, and analyze complex structures that are compatible with a symplectic form.

A symplective vector space (V, ω) is a pair of finite dimensional real vector space V
and a bilinear form ω : V × V → R which is antisymmetric and non-degenerate. That is,
ω(a, b) = −ω(b, a) for all a, b ∈ V , and that ∀a ∈ V with a ̸= 0, ∃b ∈ V such that ω(a, b) ̸= 0.
The non-degeneracy is equivalent to saying that the transformation a 7→ ω(a, ·) is a linear
isomorphism between V and its dual V ∗. Clearly (Rk, ω̄) is an example of a symplectic vector
space when k = 2n and ω(a, b) = J̄a · b, where J̄ was defined in (1.2). More generally, given
a k by k matrix C, the bilinear form ω(a, b) = Ca · b is symplectic if C is invertible and
skew-symmetric. Note that since

detC = detC∗ = det(−C) = (−1)n detC,

necessarily k = 2n is even. Observe that the eigenvalues of C are of the form ±iλj, with
λ1 ≤ · · · ≤ λk. Moreover, we can find eigenvectors of the form aj ± ibj : j = 1, . . . k, such
that

Caj = −λjbj, Cbj = λjaj, aj · aℓ = bj · bℓ = δjℓ, aj · bℓ = 0,

for all j, ℓ ∈ {1, . . . , k}. As a consequence,

ω(aj, aℓ) = ω(bj, bℓ) = 0, ω(bj, aℓ) = λjδjℓ.

Given a symplectic (V, ω), then we say a and b are ω-orthogonal and write a ⨿ b if
ω(a, b) = 0. If W is a linear subspace of V , then

W⨿ = {a ∈ V : a⨿W}.

In our first result we state a linear version of Darboux’s theorem and some elementary
facts about symplectic vector spaces. Darboux’s theorem in Euclidean setting asserts that
for every invertible skew-symmetric matrix C we can find an invertible matrix T such that
C = T ∗J̄T .

Proposition 2.1 Let (V, ω) be a symplectic linear space of dimension k = 2n and W be a
subspace of V .
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(i) dimW + dimW⨿ = dimV .

(ii)
(
W⨿)⨿ = W.

(iii) (W,ω) is symplectic iff W ⊕W⨿ = V .

(iv) If W is a symplectic subspace, then W⨿ is also symplectic.

(v) There exist a linear invertible T : V → Rk such that ω(a, b) = ω̄(Ta, Tb). Equiva-
lently, there exists a basis {e1, . . . , en, f1, . . . , fn} such that ω(ei, ej) = ω(fi, fj) = 0
and ω(fi, ej) = δij.

Proof (i) Assume that dimV = k and dimW = m. Choose a basis {a1, . . . , am} for
W . Then by non-degeneracy a∗1, . . . , a

∗
m are independent where a∗j(b) = ω(aj, b). Since

W⨿ = {a : a∗j(a) = 0 for j = 1, . . . ,m}, with a∗j independent, we have that dimW⨿ = n−m.

(ii) Evidently W ⊆ (W⨿)⨿. Since dimW + dimW⨿ = dimW⨿ + dim(W⨿)⨿, we deduce
that W = (W⨿)⨿.

(iii) By definition, (W,ω) is symplectic iff W ∩W⨿ = {0}. Since dimW +dimW⨿ = dimV ,
we have that W ⊕W⨿ = V .

(iv) If W is symplectic, then V = W ⊕W⨿ = (W⨿)⨿ ⊕W⨿, which implies that in fact W⨿

is symplectic.

(v) Inductively, we construct a collection {e1, . . . , eℓ, f1, . . . , fℓ}, with ℓ ≤ n, such that

(2.1) ω(ei, ej) = ω(fi, fj) = 0, ω(fj, ei) = δij.

We start from ℓ = 1 (assuming dimV ≥ 2). Let e1 be a non-zero vector of V . Since ω
is non-degenerate, we can find f1 ∈ V such that ω(f1, e1) = 1. Clearly f1, e1 are linearly
independent, and (2.1) holds for ℓ = 1.

Assume that (2.1) holds for some ℓ < n. Set

Wℓ = span{e1, . . . , eℓ, f1, . . . , fℓ}.

Clearly, Wℓ is symplectic, and by parts (iii) and (iv), W⨿ is also symplectic, and

V = Wℓ ⊕W⨿
ℓ .

Using the case ℓ = 1, we can find eℓ+1, fℓ+1 ∈ W⨿
ℓ , such that ω(fℓ+1, eℓ+1) = 1. Clearly the

collection
{e1, . . . , eℓ, f1, . . . , fℓ},
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satisfies (2.1) where ℓ is replaced with ℓ + 1. We continue this until we reach the index
n. □

We now turn our attention to quadratic Hamiltonian functions and ellipsoids. By a
quadratic Hamiltonian we mean a function H(x) = 1

2
Bx · x for a symmetric matrix B. We

are particularly interested in the case B ≥ 0. We note that for such quadratic Hamiltonians,
the corresponding Hamiltonian vector field X(x) = J̄Bx is linear. Since the flow of

(2.2) ẋ = J̄Bx,

preserves H, we also study the level sets of nonnegative quadratic functions. By an ellipsoid
we mean a set E of the form

E = {x : H(x) ≤ 1}

where H(x) = 1
2
Bx · x with B ≥ 0. Note that if B > 0, the ellipsoid E is a bounded set.

Otherwise, the set E is unbounded and may be also called a cylinder or cylindrical ellipsoid.
Our goal is to show that we can make a change of coordinates to turn the ODE to a simpler
Hamiltonian system for which B is a diagonal matrix. Before embarking on this, let us first
review some well-known facts about symmetric matrices, which is the symmetric counterpart
of what we will discuss for symplectic matrices.

To begin, let us recall that the standard Euclidean inner product is preserved by a matrix
A if A is orthogonal. That is

Aa · Ab = a · b for all a, b ∈ Rk ⇔ A−1 = A∗.

Let us write O(k) for the space of k × k orthogonal matrices. We also write S(k) for the
space of symmetric matrices. A quadratic function H : Rk → R is defined by H(x) = 1

2
Bx ·x

with B ∈ S(k).

Proposition 2.2 Let H1 and H2 be two quadratic functions associated with the symmetric
matrices B1 and B2. Then there exists A ∈ O(k) such that H1 ◦ A = H2 if and only if B1

and B2 have the same spectrum.

As a consequence, if H(x) = 1
2
Bx·x and B has eigenvalues λλλ(H) = (λ1, . . . , λk) with λ1 ≥

λ2 ≥ · · · ≥ λk, then there exists A ∈ O(k) such that H(Ax) = 1
2

∑k
j=1 λjx

2
j . In particular,

if B ≥ 0, then λj’s are nonnegative and we may define radii R(H) = (R1(H), . . . , Rk(H)) ∈
(0,∞]k by R2

i = R2
i (H) = 2

λj
so that 0 < R1(H) ≤ R2(H) ≤ · · · ≤ Rk(H) and

H(A(x)) =
k∑
j=1

x2j
R2
j

.
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If E is the corresponding ellipsoid,

E = {x : H(x) ≤ 1} ,

then we write
R(E) = (R1(E), . . . , Rk(E))

for R(H) and refer to its coordinates as the radii of E. We now rephrase Proposition 2.1 as

Corollary 2.1 Let E1 and E2 be two ellipsoids. Then there exists A ∈ O(k) such that
A(E1) = E2 if and only if R(E1) = R(E2).

We next discuss the monotonicity of R.

Proposition 2.3 (i) Let H1 and H2 be two quadratic functions. Then H1 ◦ A ≤ H2 for
some A ∈ O(k) if and only if λλλ(H1) ≤ λλλ(H2).

(ii) Let E1 and E2 be two ellipsoids. Then A(E2) ⊆ E1 for some A ∈ O(k) if and only if
R(E2) ≤ R(E1).

Proof We note that (i) implies (ii) because if Er = {x : Hr(x) ≤ 1} for r = 1 and 2, then

E2 ⊆ A−1E1 ⇔ H1 ◦ A ≤ H2.

As for the proof of (i), observe that if λλλ = λλλ(H1) ≤ λλλ′ = λλλ(H2), then we can find A1 and
A2 ∈ O(k) such that

H1(A1x) =
1

2

k∑
j=1

λjx
2
j ≤

1

2

k∑
j=1

λ′jx
2
j = H2(A2x),

proving the “if” part of (i). The “only if” is an immediate consequence of Courant–Hilbert
Minimax Principle that will be stated in Lemma 2.1 below. □

Lemma 2.1 (Courant–Hilbert) Let B ∈ S(k) with eigenvalues µ1 ≤ µ2 ≤ · · · ≤ µk. Then

µj = inf
dimV=j

sup
x∈V \{0}

Bx · x
|x|2

,(2.3)

µj = sup
dimV=j−1

inf
x∈V ⊥\{0}

Bx · x
|x|2

,(2.4)

where V denotes a linear subspace of Rk.
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Proof Let us write µ̂j for the right-hand side of (2.3). Let u1, u2, . . . , uk be an orthonormal
basis with Buj = µjuj, j = 1, . . . , k. Note that

sup

{
Bx · x
|x|2

: x ∈ span{u1, . . . , uj}, x ̸= 0

}
= sup

c1,...,cj

∑j
1 µlc

2
l∑j

1 c
2
l

≤ µj,

proving µ̂j ≤ µj. For µ̂j ≥ µj, pick a linear subspace V of dimension j and choose non-zero
x ∈ V such that x ⊥ u1, . . . , uj−1. Such x exists because dimV = j and we are imposing

j − 1 many conditions. Since we can write x =
∑k

l=j clul, we have

(2.5)
Bx · x
|x|2

=

∑k
j µlc

2
l∑k

j c
2
l

≥ µj.

As a result, µ̂j ≥ µj and this completes the proof of (2.3).
As for (2.4), note that if x ⊥ u1, . . . , uj−1, x ̸= 0, then Bx·x

|x|2 ≥ µj by (2.5). Hence, if µ̄j
denotes the right-hand side of (2.3), then µ̄j ≥ µj by choosing V = span{u1, . . . , uj−1}.
For µj ≥ µ̄j, let V be any linear space of dimension j − 1 and pick a non-zero x ∈
span{u1, . . . , uj} ∩ V ⊥. For such a vector x we have x =

∑j
1 clul, (c1, . . . , cj) ̸= 0, and

Bx·x
|x|2 ≤ µj. This implies that µj ≥ µ̄j. □

We would like to develop a theory similar to what we have seen in this section but now
for the bilinear form ω̄. The following table summarizes our main results:

Symmetric Antisymmetric
Form a · b ω̄(a, b) = Ja · b
Invariant matrix A ∈ O(k) : A−1 = A∗ T ∈ Sp(n) : T−1 = −J̄T ∗J̄
Vector field ∇H(x) = Bx, B ∈ S(k) J̄∇H(x) = J̄Bx; J̄B ∈ Ham(n)
Spectral theorem Proposition 2.2 Weirstrauss Theorem

(Theorem 2.1)
Monotonicity Courant–Hilbert Minimax Theorem 2.2, Lemma 2.2

(Lemma 2.1)

We say a matrix T is symplectic if ω̄(Ta, Tb) = ω̄(a, b). Equivalently T ∗J̄T = J̄ or
T−1 = −J̄T ∗J̄ . The set of 2n × 2n symplectic matrices is denoted by Sp(n). We say a
matrix C is Hamiltonian if C = J̄B for a symmetric matrix B. The space of 2n × 2n
Hamiltonian matrices is denoted by Ham(n). We have

C ∈ Ham(n) ⇔ J̄C + C∗J̄ = 0 ⇔ C∗ = J̄CJ̄.

We note that if H(x) = 1
2
Bx · x with B ∈ S(2n), then J̄∇H(x) = J̄Bx with J̄B ∈ Ham(n).

We are now ready to state Weirstrass Theorem which allows us to diagonalize a Hamil-
tonian matrix using a symplectic change of variable.
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Theorem 2.1 Let B be a positive matrix. Then the matrix B̂ = J̄B has purely imaginary
eigenvalues of the form ±iλ1, . . . ,±iλn with λ1 ≥ · · · ≥ λn > 0. Moreover there exists
T ∈ Sp(n) such that the quadratic Hamiltonian function H(x) = 1

2
Bx · x can be represented

as

H ◦ T (x) =
n∑
j=1

λj
2
(q2j + p2j),

where x = (q1, p1, . . . , qn, pn).

Proof (Step 1) Let µ± iλ be an eigenvalue of B̂ associated with the (non-zero) eigenvector
a± ib (withoust loss of generality, we may assume that λ ≥ 0). As a result,

B̂a = µa− λb, B̂b = λa+ µb or Ba = λJb− µJa, Bb = −λJa− µJb.

Hence
Ba · b = µω̄(b, a), Bb · a = −µω̄(b, a), Ba · a = Bb · b = λω̄(b, a).

From this, B = B∗, µ + iλ ̸= 0, and a + ib ̸= 0, we deduce that µ = 0, ω̄(b, a) ̸= 0, and
Ba · b = 0. Since by assumption λ > 0, we must have ω̄(b, a) > 0. As a result, for every
eigenvalue iλ, we can find an eigenvector a+ ib, such that

Ba · a = Bb · b = λ, Ba · b = 0, ω̄(b, a) = 1,(2.6)

B̂a = −λb, B̂b = λa.

(Step 2) Let λ1 be the largest number such that ±iλ1 is an eigenvalue of B̂. By Step 1, we
can find (2.6) find a1 and b1 such that

Ba1 · a1 = Bb1 · b1 = λ1, Ba1 · b1 = 0, B̂a = −λ1b, B̂b = λ1a.

As a result, if V1 = span{a1, b1}, then B̂V1 ⊆ V1, and for q1 and p1 ∈ R,

H(q1a1 + p1b1) = q21H(a1) + p21H(b1) + q1p1Ba1 · b1 =
λ1
2
(q21 + p21).

By Proposition 2.1, the spaces V1 and V ⨿
1 are symplectic and R2n = V1 ⊕ V ⨿

1 . We now
claim

(2.7) a ∈ V1, b ∈ V ⨿
1 ⇒ Ba · b = 0, and B̂V ⨿

1 ⊆ V ⨿
1 .

Indeed if a ∈ V1, b ∈ V ⨿
1 , then B̂a ∈ V1, and

ω̄(B̂b, a) = J̄B̂b · a = −Bb · a = −b ·Ba = −J̄b · B̂a = −ω̄(b, B̂a) = 0,
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which proves both claims in (2.7) because we just showed that B̂b ∈ V ⨿
1 .

(Final Step) From (2.7) we learn that if a ∈ V1 and b ∈ V ⨿
1 , then

H(a+ b) = H(a) +H(b).

Let us look at the restriction ofH to the symplectic vector space (V ⨿
1 , ω̄), which is a quadratic

function. By Proposition 2.1, this pair is isomorphic to (R2n−2, ω̄). As a result, we may
repeat the above argument to assert that there exits a pair of vectors a2, b2 ∈ V ⨿

1 with
ω̄(b2, a2) = 1, H(a2) = H(b2) = λ2/2 and Ba2 · b2 = 0. Continuing this process would yield
a basis (a1, b1, a2, b2, . . . , an, bn) such that

ω̄(ai, aj) = ω̄(bi, bj) = 0, ω̄(bi, aj) = δij,

H(aj) = H(bj) = λj/2, Baj · bj = 0.

From this we learn that the linear map T : R2n → R2n defined by

T (q1, p1, . . . , qn, pn) =
n∑
1

qjaj + pjbj

is symplectic, and

H(T (x)) =
n∑
1

λj
2
(q2j + p2j).

□

Given H(x) = 1
2
Bx · x with B ≥ 0, let us write 1

2
λj =

1
r2j

so that rj = rj(H) ∈ (0,∞]

satisfy
0 < r1(H) ≤ r2(H) ≤ · · · ≤ rn(H).

We also write r(H) = (r1(H), . . . , rn(H)) and if E is the corresponding ellipsoid, we write
r(E) for r(H). We may rephrase Theorem 2.1 as follows:

Corollary 2.2 (i) If H1 and H2 are two positive definite quadratic forms, then r(H1) =
r(H2) if and only if H2 = H1 ◦ T for some T ∈ Sp(n).

(ii) Let E1 and E2 be two ellipsoid. Then T (E2) = E1 for T ∈ Sp(n) if and only if
r(E1) = r(E2).

Example 2.1(i) In Theorem 2.1, we cannot drop the assumption B > 0. For example, if

B =

[
µ1 0
0 µ2

]
,
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with µ1µ2 < 0, then the eigenvalues of B̂ are ±
√
−µ1µ2.

(ii) Let n = 1 and H(q1, p1) =
q21
R2

1
+

p21
R2

2
so that R(H) = (R1, R2). Here H(x) = 1

2
Bx · x with

B =

[
2
R2

1
0

0 2
R2

2

]
.

We have

C =

[
0 1
−1 0

]
B =

[
0 2

R2
2

− 2
R2

1
0

]
.

The matrix C has eigenvalues ±i 2
R1R2

. Hence r(H) = (r1(H)) with r1(H) =
√
R1R2 and

there exists T ∈ Sp(n) such that H ◦ T (q1, p1) = q21+p
2
1

R1R2
. □

As our next corollary to Theorem 2.1, we solve (2.2) with the aid of a symplectic change
of coordinates:

Corollary 2.3 Let H, T and (λ1, . . . , λn) be as in Theorem 2.1. Let x(t) be a solution of
(2.2) and define y(t) = T−1x(t). Then ẏ = J̄B0y, where B0 is a diagonal matrix that has
the entries

λ1, . . . , λn, λ1, . . . , λn,

on its main diagonal.

Proof From (2.2), we learn that T ẏ = J̄BTy. Also, by Theorem 2.1 we know that (BTx) ·
(Tx) = B0x · x, which means that T ∗BT = B0. As a result

ẏ = T−1J̄BTy = −J̄T ∗J̄ J̄BTy = J̄T ∗BTy = J̄B0y.

□

Remark 2.1(i) If we write ϕt(y) for the flow of ẏ = J̄B0y and use the complex notation
y = (z1, . . . , zn) with zj = qj + ipj =: ρie

iθi , then

ϕt(z1, . . . , zn) = (e−iλ1tz1, . . . , e
−iλntzn).

What we have is known as a quasi-periodic motion. We note that
(
ρj = |zj| : j = 1, . . . , n

)
are conserved, and in terms of the angles, we have, (θ1, . . . , θn) 7→ (θ1 − tλ1, . . . , θn − tλn).
In particular, for each zj ̸= 0, λj ̸= 0, if we set ẑj for the complex vector that has zj for the
j-coordinate and 0 for the other coordinates, then the orbit (ϕt(ẑj) : t ∈ R) is periodic of
period 2π/λj = πr2j .
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The periods
(
cj = πrj(E)

2 : 1 ≤ j ≤ n
)
are closely related to the symplectic capacities of

the ellipsoid E. Indeed, if we form the collection

{mcj : m ∈ N∗, j ∈ N} ,

and rewrite them in nondecreasing order as µ0 = 0 < µ1 ≤ µ2 ≤ . . . (with repetition), then
µℓ equals to cEHℓ (E), the ℓ-th Ekland-Hofer capacity of E. □

We now turn to the question of monotonicity.

Theorem 2.2 (i) If H1 and H2 are two non-negative definite quadratic forms, then r(H1) ≥
r(H2) if and only if there exists T ∈ Sp(n) such that H1 ◦ T ≤ H2.

(ii) Let E1 and E2 be two ellipsoids. Then r(E2) ≤ r(E1) if and only if T (E2) ⊆ E1 for
some T ∈ Sp(n).

Proof As before (i) implies (ii). By approximation, it suffices to establish (i) when H1

and H2 are positive definite. In this case, (ii) is an immediate consequence of a variational
formula we obtain for rj(H) in Lemma 2.2 below. □

Lemma 2.2 Let H be a positive definite quadratic function of R2n. Then

(2.8)
1

2
r2j (H) = inf

dimV=2n+2j
sup

[x,y]∗∈V \{0}

ω̄(x, y)+

H(x) +H(y)
.

Here V is for linear subspace of R4n.

Proof Recall that ±i2r−2
j are the eigenvalues of C = JB where H(x) = 1

2
Bx · x. Hence

± i
2
r2j are the eigenvalues of C−1. If aj + ibj denotes the corresponding eigenvector, then

C−1(aj + ibj) =
i
2
r2j (aj + ibj). This means

(2.9) C−1aj = −
r2j
2
bj, C

−1bj =
r2j
2
aj.

This suggests looking at the 4n× 4n matrix

D =

[
0 C−1

−C−1 0

]
.

From (2.9) we readily deduce

D

[
aj
bj

]
=
r2j
2

[
aj
bj

]
, D

[
bj
−aj

]
=
r2j
2

[
bj
−aj

]
,

D

[
bj
aj

]
= −

r2j
2

[
bj
aj

]
, D

[
−aj
bj

]
= −

r2j
2

[
−aj
bj

]
.
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Note that since aj + ibj ̸= 0, the vectors

[
aj
bj

]
,

[
bj
−aj

]
are linearly independent. Hence ± i

2
r2j

produces eigenvalue ± r2j
2

of multiplicity 2 for D. We would like to apply Courant–Hilbert
minimax principle to D, except that D is not symmetric with respect to the dot product of
R4n. However if we define an inner product

⟨[x, y]∗, [x′, y′]∗⟩ = Bx · x′ +By · y′,

with corresponding norm
∥[x, y]∗∥ = 2H(x) + 2H(y),

then D is ⟨·, ·⟩-symmetric. Indeed,〈
D

[
x
y

]
,

[
x′

y′

]〉
=

〈[
C−1y
−C−1x

]
,

[
x′

y′

]〉
= BC−1y · x′ −BC−1x · y′

= J̄x′ · y + J̄x · y′,

which is symmetric. Moreover, 〈
D

[
x
y

]
,

[
x
y

]〉
= 2ω̄(x, y).

We are now in a position to apply Lemma 2.1 to obtain (2.8) with ω̄ instead of ω̄+ in the
numerator. (Note that 1

2
r2j (H) is the 2n+2j-th eigenvalue of D.) Finally we need to replace

ω̄ with ω̄+. This is plausible because the left-hand side is positive. □

An immediate consequence of Theorem 2.2 is a linear version of Gromov’s non-squeezing
theorem. More precisely, if we define

BR = {x : |x| ≤ R}, ZR = {x : q21 + p21 ≤ R2},

then r(BR) = (R,R, . . . , R) and r(ZR) = (R,∞,∞, . . . ,∞). By Theorem 2.2(ii) if for some
T ∈ Sp(n), we have T (Br) ⊆ ZR, then r ≤ R. We now slightly improve this and give a
direct proof of it.

Proposition 2.4 Suppose that for some T ∈ Sp(n) and z0 ∈ R2n, T (Br) ⊆ z0 + ZR. Then
r ≤ R.

Proof Write z0 = (q01, . . . , q
0
n, p

0
1, . . . , p

0
n) and let (s1, . . . , sn, t1, . . . , tn) denote the rows of T .

By assumption
(x · s1 − q01)

2 + (x · t1 − p01)
2 ≤ R2
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for x satisfying |x| ≤ r. Hence

(2.10) (x · s1)2 + (x · t1)2 − 2x · (q01s1 + p01t1) ≤ R2.

On the other hand, since T ∗ is symplectic,

(2.11) ω̄(s1, t1) = ω̄(T ∗ē1, T
∗f̄1) = ω̄(ē1, f̄1) = −1

where {ē1, . . . , ēn, f̄1, . . . , f̄n} denote the standard symplectic basis for R2n, i.e., ēj · x = qj
and f̄j · x = pj for x = (q1, . . . , qn, p1, . . . , pn). From (2.11) we learn that

1 = |ω̄(s1, t1)| = |Js1 · t1| ≤ |s1||t1|.

So either |s1| ≥ 1 or |t1| ≥ 1. Both cases can be treated similarly, so let us assume that
for example |t1| ≥ 1. We then choose x = ±r t1

|t1| in (2.10). We select + or − for x so that

x · (q01s1 + p01t1) ≤ 0. This would allow us to deduce r2 ≤ R2 from (2.10) and |t1| ≥ 1, and
this completes the proof. □

Remark 2.2 Note that if we consider Z ′
R = {x : q21 + q22 ≤ R2} instead, then r(Z ′

R) =
(∞, . . . ,∞) and we can embed Br symplectically inside Z ′

R no matter how large r is. This is
because the map T (q, p) = (εq, ε−1p) is symplectic (use ω(q, p, q′, p′) = p · q′ − q · p′ to check
this), and T (Br) consists of points (q, p) such that ε−2|q|2 + ε2|p|2 ≤ r2. □

As our next topic, we address the issue of symplectic rigidity for linear transformations.
Note that the condition | detA| = 1 for a matrix A is equivalent to the claim that the sets
E and A(E) have the same Euclidean volume. To be able to establish Eliashberg-Gromov
rigidity, we would like to have a similar criterion for symplectic maps. Since a symplectic
change of variables does not change symplectic radii, the volume must be replaced with
suitable linear capacities that are defined in terms of the symplectic radii. Though as in the
case of volume, the orientation could be reversed when a symplectic capacity is preserved.
So instead of T ∈ Sp(k), what we really have is

(2.12) |ω̄(Ta, Tb)| = |ω̄(a, b)|.

We set S ′(k) to be the set of matrices T for which (2.12) is valid for all a, b ∈ Rk. We also say
that matrix T is anti-symplectic if ω̄(Tx, Ty) = −ω̄(x, y), or equivalently T ∗J̄T = −J̄ . It is
not hard to show that T ∈ S ′(k) iff T is either symplectic or anti-symplectic (see Exercise 2.1).
On the other hand, it is straightforward to check that a linear map T is anti-symplectic iff
T ◦ τ ∈ S(k), where τ(q, p) = (p, q). From this we learn that indeed in Theorem 2.1 and
Corollary 2.2 apply to anti-symplectic transformations as well. In summary,

Proposition 2.5 (i) Let H be a positive definite quadratic function. Then there exists

T ∈ S ′(k) such that H ◦ T (x) =
∑n

1

q2j+p
2
j

r2j
, where rj = rj(H).
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(ii) Let E1 and E2 be two ellipsoids. Then T (E2) = E1 for some T ∈ S ′(k) if and only if
r(E2) = r(E1).

We are now ready for a converse to Proposition 2.5, which will be used for the proof of
Eliashberg’s theorem in Section 6.

Theorem 2.3 Let T be an invertible 2n× 2n matrix. Then T ∈ S ′(k) iff r1(E) = r1(T (E))
for every ellipsoid E.

Proof Given a pair of vectors (a, b) with ω̄(a, b) ̸= 0, let us define

Z(a, b) = {x : (x · a)2 + (x · b)2 ≤ 1},

which is a cylinder. We claim that in fact Z(a, b) is a (degenerate) ellipsoid with

(2.13) r1(Z(a, b)) = |ω̄(a, b)|−1/2, rj(Z(a, b)) = ∞, for j ≥ 2.

Once we establish this, we are done: If r1(Z(a, b)) = r1(T (Z(a, b)) for every a and b with
ω̄(T ∗a, T ∗b)ω̄(a, b) ̸= 0, then using Z(a, b) = T

(
Z(T ∗a, T ∗b)

)
, we deduce

|ω̄(a, b)| = |ω̄(T ∗a, T ∗b)|,

whenever ω̄(a, b), ω̄(T ∗a, T ∗b) ̸= 0. As a result

A :=
{
(a, b) : |ω̄(a, b)| ≠ |ω̄(T ∗a, T ∗b)|

}
⊆ A′ :=

{
(a, b) : ω̄(a, b)ω̄(T ∗a, T ∗b) = 0

}
.

Since the set A is open and the set A′ is the union of two linear sets of codimension 1, we
must have A = ∅, which in turn implies that T ∗ ∈ S ′(k). From this, we can readily show
that T ∈ S ′(k).

It remains to verify (2.13). First observe that if r = |ω̄(a, b)|−1/2 and (a1, b1) = r(a, b),
then |ω̄(a1, b1)| = 1, and

Z(a1, b1) =
{
x : H(x) :=

[
(x · a1)2 + (x · b1)2

]
/r2 ≤ 1

}
.

Without loss of generality, let us assume that in fact ω̄(a1, b1) = −1. We then build a
(symplectic) basis {a1, . . . , an, b1, . . . , bn} such that

ω̄(bj, ai) = δi,j, ω̄(ai, aj) = ω̄(bi, bj) = 0,

for all i and j. Let us write {ē1, . . . , ēn, f̄1, . . . , f̄n} for the standard basis, in other words,
ēi and f̄i satisfy ēi · x = qi and f̄i · x = pi. We then choose a map T̂ so that T̂ ∗ai = ēi and
T̂ ∗bi = f̄i. We have

H ◦ T̂ (x) =
[
(T̂ x · a1)2 + (T̂ x · b1)2

]
/r2 =

[
(x · ē1)2 + (x · f̄1)2

]
/r2 = (q21 + p21)/r

2.
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From this we deduce (2.13) by definition. □

As we observed in Remark 2.1, sometimes it is beneficiary to identify R2n with Cn and
use complex number. More precisely, we may write zj = qj + ipj, so that if a = (z1, . . . , zn)
and b = (z′1, . . . , z

′
n) are in Cn, then J̄a = (−iz1, . . . ,−izn), and

a · b = Re

n∑
j=1

zj z̄
′
j, ω̄(a, b) = Im

n∑
j=1

zj z̄
′
j.

More generally, given a symplectic vector space (V, ω), we may try to express ω as

(2.14) ω(a, b) = g(Ja, b),

where g is an inner product on V and J : V → V is a linear map satisfying J2 = −I. When
(2.14) holds, we say that the pair (g, J) is compatible with ω. Let us write I(ω) for the space
of compatible pairs (g, J). We also define

G(ω) := {g : (g, J) ∈ I(ω), for some J} .

Note that if (g, J) ∈ I(ω), then

g(Ja, Jb) = ω(a, Jb) = −ω(Jb, a) = g(b, a) = g(a, b),

which means that J∗J = I, where J∗ is the g-adjoint or transpose of J . From this and J2 =
−I, we learn that for every (g, J) ∈ I(ω), we have J∗ = −J . Define T ∗g(a, b) = g(Ta, Tb)
and T ∗ω(a, b) = ω(Ta, Tb).

Proposition 2.6 For an invertible linear map T : V → V , we have T ∗(G(ω)) = G
(
T ∗ω

)
.

Proof Set T̂ (J) = T−1JT . If (g, J) ∈ I(ω), then

(T ∗ω)(a, b) = ω(Ta, Tb) = g(JTa, T b) = ω(T T̂ (J)a, T b) = (T ∗ω)(T̂ (J)a, b).

From this we deduce that if (g, J) ∈ I(ω), then (T ∗g, T̂ (J)) ∈ I(T ∗ω). As a result,
T ∗(G(ω)) ⊆ G(T ∗ω). Similarly, (T−1)∗G(T ∗ω) ⊆ G(ω). Hence T ∗(G(ω)) = G(T ∗ω). □

Example 2.2 Identifying a metric g(a, b) = Ga · b with the matrix G > 0, one can readily
show

(2.15) I(ω̄) =
{(
G,G−1J̄

)
: G > 0, G ∈ Sp(2n)

}
.

To see this, observe(
G−1J̄

)2
= −I ⇔ G−1J̄G−1 = J̄ ⇔ G−1 ∈ Sp(2n) ⇔ G ∈ Sp(2n).

21



□

When g ∈ G(ω), we know how to calculate the area of the parallelogram associated with
two vectors a and b, namely

Ag(a, b) =
(
∥a∥2g∥b∥2g − g(a, b)2

) 1
2 ,

where ∥a∥g = g(a, a)1/2. Of course ω(a, b) offers the symplectic area of the same parallelo-
gram. In the next proposition, we compare these two areas.

Proposition 2.7 For every g ∈ G(ω), we have

(2.16) ω(a, b) ≤ Ag(a, b) ≤
1

2

(
∥a∥2g + ∥b∥2g

)
.

Moreover we have equality iff b = Ja.

Proof The second inequality is obvious and the first inequality is also obvious when g(a, b) =
0, because

ω(a, b)2 = g(Ja, b)2 ≤ g(Ja, Ja)g(b, b) = ∥a∥2g∥b∥2g.

Given arbitrary a and b, with a ̸= 0, set t = g(a, b)/g(a, a) so that g(a, b′) = 0, for b′ = b− ta
(ta is the orthogonal projection of b onto a). We certainly have

ω(a, b)2 = ω(a, b′)2 ≤ g(Ja, Ja)g(b′, b′) = g(a, a)g(b′, b′) = g(a, a)g(b′, b)

= g(a, a)g(b, b)− tg(a, a)g(a, b) = Ag(a, b),

with equality iff Ja = θb′ for some θ ≥ 0. However, if we require 2ω(a, b) = ∥a∥2g + ∥b∥2g,
then

∥Ja− b∥2g = ∥a∥2g + ∥b∥2g − 2g(Ja, b) = ∥a∥2g + ∥b∥2g − 2ω(a, b) = 0.

□

Exercise 2.1

(i) Let V be a vector space with dimV = 2n. Then a 2-form ω : V × V → R is non-
degenerate if and only if ωn = ω ∧ · · · ∧ ω︸ ︷︷ ︸

n times

̸= 0.

(ii) Use part (i) to deduce that if T ∈ Sp(n), then detT = 1.

(iii) Recall that an invertible matrix T can be written as T = PO with P > 0 symmetric
and O orthogonal, and that this decomposition is unique (polar decomposition). Show
that if T ∈ Sp(n), then P and O ∈ Sp(n).
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(iv) Show that if T ∈ Sp(n) ∩ O(2n), then T =

[
X −Y
Y X

]
with X, Y two n × n matrices

such that X + iY is a unitary matrix.

(v) Let V be a vector space with dimV = 2n + 1. Assume β is an antisymmetric 2-form
on V with

dim{v ∈ V : β(v, a) = 0 for all a ∈ V ) = 1.

Then there exists a basis {e1, . . . , en, f1, . . . , fn, ā} such that β(ei, ej) = β(fi, fj) = 0,
β(fj, ei) = δij, and β(ā, fj) = β(ā, ej) = 0.

(vi) If T ∈ Sp(n) and A ∈ Ham(n), then T−1AT ∈ Ham(n).

(vii) An invertible T maps the flows of dx
dt

= Ax to the flows of dx
dt

= Bx iff B = TAT−1.

(viii) If C1, C2 ∈ Ham(n) and r ∈ R, then C1+C2, [C1, C2] = C1C2−C2C1, C
t
1, rC1 ∈ Ham(n).

(ix) If T1, T2 ∈ Sp(n), then T−1
1 , T ∗

1 , T1T2 ∈ Sp(n).

(x) Show that if (2.12) is true for all a and b, then T is either symplectic or ani-symplectic.

(xi) If Z(t0, t) denotes the fundamental solution of ẋ = JB(t)x with B : [t0,∞) → S(2n) a
C1-function, then Z(t0, t) ∈ Sp(n) for every t ≥ t0.

(xii) If etC ∈ Sp(n) for every t, then C ∈ Ham(n).

(xiii) If C ∈ Ham(n), and pC(λ) = det(λI − C), then pC(λ) = pC(−λ).

(xiv) If T ∈ Sp(n), then pT (λ
−1) = λ−2npT (λ).

(xv) Let T be an invertible matrix and assume that n ≥ 2. Show that if r2(T (E)) = r2(E)
for every ellipsoid E, then T ∈ S ′(2n).

(xvi) Let (V, ω) be a symplectic vector space, and assume that (g, J) ∈ I(ω). Then

ωk(v1, . . . , v2k) ≤ k!∥v1 ∧ · · · ∧ v2k∥g,

where ∥v1 ∧ · · · ∧ v2k∥g denotes the 2k-volume associated with the metric g. Show that
the equality holds iff W = span(v1, . . . , v2k) is J-complex (i.e. JW = W ).

(xvii) Assume thatW is a J̄-complex subspace of R2n of dimension 2k. Let T ∈ Sp(n). Show

V ol2k(W ∩ T (B2n) ≤ V ol2k(B
2k).

Here Br denotes the unit ball in Rr, and V olr is the r-dimensionsl volume.
□
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3 Symplectic Manifolds and Darboux’s Theorem

Before discussing symplectic manifolds, let us review some useful facts about our basic
example (R2n, ω̄) with ω̄(a, b) = J̄a · b. We write Sp(R2n) for the space of differentiable
functions φ such that φ∗ω̄ = ω. This means

φ∗ω̄(a, b) = ω̄(φ′(x)a, φ′(x)b) = ω̄(a, b),

for every a, b, x ∈ R2n. Here φ′(x) denotes the derivative of φ. A function φ ∈ Sp(R2n)
is called symplectic. Note that φ ∈ Sp(R2n) iff φ′(x) ∈ Sp(2n) for every x. Hence for a
symplectic transformation φ, we have

φ′(x)∗J̄φ′(x) = J̄ .

Evidently ω̄ =
∑n

i=1 dpi ∧ dqi = dλ̄ where λ̄ =
∑n

1 pidqi = p · dq. Let us define

(3.1) A(γ) =

∫
γ

λ̄.

Clearly φ ∈ Sp(R2n) iff d(φ∗λ̄− λ̄) = 0. Hence φ ∈ Sp(R2n) is equivalent to saying

(3.2) A(φ ◦ γ) = A(γ)

for every closed curve γ. It is worth mentioning that if γ is parametrized by θ 7→ x(θ),
θ ∈ [0, T ], then

(3.3) A(γ) =

∫ T

0

p · q̇dθ = 1

2

∫ 1

0

(p · q̇ − q · ṗ)dθ = 1

2

∫ 1

0

(J̄x · ẋ)dθ.

Given a scalar-valued (0-form) function H, we may use non-degeneracy of ω̄ to define a
vector-field XH such that

ω̄(XH(x), a) = −dH(x)a = −∇H(x) · a,

which means that XH = J∇H. We write ϕt = ϕHt for the corresponding flow:

(3.4)

{
d
dt
ϕt(x) = XH(ϕt(x)),

ϕ0(x) = x.

Our interest in symplectic transformation stems from two important facts. Firstly, ϕt ∈
Sp(R2n) if ϕt is a Hamiltonian flow. We have seen this in Section 1 and will be proved later
in this section for general symplectic manifolds. Secondly a symplectic change of coordinates
preserve Hamiltonian structure (see Proposition 3.1 below). More precisely, if φ ∈ Sp(R2n),
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and ϕt is the flow of XH , then ψt = φ−1 ◦ ϕt ◦ φ is the flow of a Hamiltonian system. To
guess what the Hamiltonian function of ψt is, observe

d

dt
ψt

∣∣∣∣
t=0

= (φ−1)′ ◦ φ XH ◦ φ = (φ′)−1 J̄∇H ◦ φ

= −J̄(φ′)∗ J̄ J̄∇H ◦ φ = J̄(φ′)∗ ∇H ◦ φ = J̄∇(H ◦ φ).

A pair (M,ω) is called a symplectic manifold ifM is an even dimensional manifold and ω
is a closed non-degenerate 2-form onM . This implies that for each x ∈M , the pair (TxM,ωx)
is a symplectic vector space. Also, by Exercise 2.1(i) we know that if dim(M) = 2n, then
the form ωn is a volume form. Hence M is an orientable manifold. In fact if M is a compact
symplectic manifold without boundary, then ω is never exact. This is because if ω = dλ,
then Ω := ωn = d(λ ∧ ωn−1). But by Stokes’ theorem

∫
M
Ω =

∫
M
d(λ ∧ ωn−1) = 0, which

contradicts the non-degeneracy of Ω. Note however that (R2n, ω̄) is an example of a non-
compact symplectic manifold with ω̄ = dλ̄.

Example 3.1 (i) Any orientable 2-dimensional manifold is symplectic where ω is chosen to
be any volume form.

(ii) The sphere S2n with n > 1 is not symplectic because any closed 2-form is exact, hence
degenerate.

(iii) The classical example (R2n, ω̄) has a natural generalization that is relavant for models in
classical mechanics: Every cotangent bundle T ∗M can be equipped with a symplectic ω = dλ
where λ is a standard 1-form that can be defined in two ways; using local charts and pull-
backing λ̄ to λ, or giving a chart-free description. We start with the former. Let us assume
thatM is an n-dimensional C2 manifold and choose an atlasA of charts (U, h) ofM such that
U is an open subset of M and h : U → h(U) := V ⊆ Rn is a diffeomorphism. This induces
a C1 transformation dh : TU → TV = V × Rn. We next define a natural transformation
h̄ : T ∗U → T ∗V = V × Rn. To construct h̄, take the standard basis {e1, . . . , en} of Rn

and define êj(q) = (dϕ)q(ej), where ϕ = h−1. (We may define TqM as the equivalence
classes of curves γ : (−δ, δ) → M with γ(0) = q, and two such curves γ1 and γ2 are
equivalent if (h ◦ γ1)′(0) = (h ◦ γ2)′(0). We may then define êj(q) as the equivalent class of
γj(θ) = h−1(h(q)+θej). ) Certainly {ê1(q), . . . , ên(q)} defines a basis for TqM . We now define

a basis for T ∗
q L by taking dual vectors e∗1, . . . , e

∗
n that are defined e∗i (q)

(∑n
j=1 vj êj(q)

)
= vj.

We now define h̄ by

h̄

(
q,

n∑
j=1

pje
∗
j(q)

)
= (h(q), (p1, . . . , pn)).

We finally define λ as the unique 1-form such that for each chart (U, h), the restriction of
λ to T ∗U is given by λ = h̄∗λ̄. For an alternative chart-free description, observe that if
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π̂ : T ∗Rn → Rn is the projection π̂(q, p) = q, then

dπ̂ : T (T ∗Rn) → TRn = Rn × Rn

is simply given by
dπ̂(q,p)(α, β) = α.

Hence we may write λ̄(q,p)(α, β) = p · α = p · (dπ̂)(q,p)(α, β). Going back to M , let us also
define π : T ∗M → M to be the projection onto the base point, i.e., π(q, p) = q with q ∈ M
and p ∈ T ∗

qM . Since the following diagram commutes

T ∗U
π−−−→ U

h̄

y yh
R2n −−−→

π̂
Rn

we also have that their derivatives

T (T ∗U)
dπ−−−→ TU

dh̄

y ydh
TR2n −−−→

dπ̂
R2n

commute. Hence we also have

λ(q,p)(a) = p
(
dπ(q,p)(a)

)
,

which gives the desired chart-free description of λ. □

A differentiable map f : (M1, ω
1) → (M2, ω

2) between two symplectic manifolds is called
symplectic if f ∗ω2 = ω1. This means

(3.5) ω2
f(x)(df(x)a, df(x)b) = ω1

x(a, b)

for x ∈ M1 and a, b ∈ TxM1. We write Sp(M1,M2) for the space of symplectic transforma-
tions. When M1 = M2 = M and ω1 = ω2 = ω, we simply write Sp(M) for Sp(M1,M2).
We note that if f ∈ Sp(M1,M2), then df(x) is injective by (3.5) and non-degeneracy of ω1

x.
Hence, if such f exists, then dimM1 ≤ dimM2.

Let (M,ω) be a symplectic manifold and assume that X is sufficiently nice vector field
for which the ODE ẋ = X(x, t) is well defined. The flow of this vector field is denoted by
ϕt = ϕXt . We wish to find conditions on X to guarantee that ϕ∗

tω = ω. To prepare for this
let us take an arbitrary ℓ-form α and evolve it with the flow; set α(t) = ϕ∗

tα. We would like
to derive an evolution equation for α(t). Let’s examine some examples.

Example 3.2 Assume that (M,ω) = (R2n, ω̄).
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(i) If α = f is a 0-form, then α(t) is a function u that is given by u(x, t) = f(ϕt(x)). By
differentiating u at t = 0 and using the group property of the flow (see the proof of
Proposition 3.1 below), we can readily show

ut = X · ux.

(ii) If α = m(x) dx1 . . . dxk, with k = 2n, then α(t) = m(ϕt(x)) det(ϕ
′
t(x)) dx1 . . . dxk. In

this case, differentiating in t yields,

ρt = ρx ·X + ρ divX = div(ρX),

because for small t, we have det(ϕ′
t(x)) = det(I + tX ′(x) + o(t)) = 1 + tdivX + o(t).

(iii) If ω = F · dx is a 1-form, then

α(t) = ϕ∗
tα = F (ϕt(x)) · ϕ′

t(x)dx = ϕ′
t(x)

∗F (ϕt(x)) · dx.

Hence, if we set u(x, t) = ϕ′
t(x)

∗F (ϕt(x)), then

(3.6) ut(x, t) = Xx(x, t)
∗u(x, t) + ux(x, t)X(x, t).

If u = (u1, . . . , uk) and X = (X1, . . . , Xk), then the i-th component of the right-hand
side of (3.6) equals∑

j

(
Xj
xi
uj + uixjX

j
)
=

(∑
j

Xjuj

)
xi

+
∑
j

(uixj − ujxi)X
j.

As a result,

(3.7) ut = (X · u)x + C(u)X.
□

As Example 3.2(iii) indicates, a simple manipulation of the right-hand side of (3.6) leads
to the compact expression of the right-hand side of (3.7), that may be recognized as

[(X · u)x + C(u)X] · dx = d (iXα(t)) + iXdα(t).

More generally we have the following useful result of Cartan:

Proposition 3.1 (i) Let X be a vector field with flow ϕt and let α be a ℓ-form. Then

(3.8)
d

dt
ϕ∗
tα = LXϕ∗

tα = ϕ∗
tLXα

with LX = iX ◦ d+ d ◦ iX .
(ii) Let X(·, t) be a possibly time dependent vector field and denote is flow by ϕs,t. If ϕt = ϕ0,t,

then
d

dt
ϕ∗
tα = ϕ∗

tLX(·,t)α.
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Proof (i) Let us define

Lβ = lim
h→0

1

h
(ϕ∗

hβ − β)

whenever the limit exists. Since

(ϕ∗
t+h − ϕ∗

t )α = ϕ∗
t (ϕ

∗
hα− α) = ϕ∗

h(ϕ
∗
tα)− ϕ∗

tα,

it suffices to show that L = LX . Let us study some properties of L. From ϕ∗
t (α ∧ β) =

ϕ∗
tα ∧ ϕ∗

tβ, we learn

ϕ∗
t (α ∧ β)− α ∧ β = (ϕ∗

tα− α) ∧ ϕ∗
tβ + α ∧ (ϕ∗

tβ − β).

From this we deduce

(3.9) L(α ∧ β) = α ∧ Lβ + Lα ∧ β.

From ϕ∗
t ◦ d = d ◦ ϕ∗

t , we deduce

(3.10) L ◦ d = d ◦ L.

We can readily show that LX satisfy (3.9) and (3.10) as well. Since locally every form can
be built from 0-th forms using the operations ∧ and d, we only need to check that L = LX
on 0-forms. That is, if f : M → R, then Lf = iX ◦ df = df(X). This is trivially verified
because ϕh(x) = x+ hX(x) + o(h).

(ii) For h > 0, we write
(ϕ∗

t+h − ϕ∗
t )α = ϕ∗

t (ϕ
∗
t,t+hα− α).

A repetition of the proof of Part (i) leads to

lim
h→0

1

h

(
ϕ∗
t,t+hβ − β

)
= LX(·,t)β.

This readily implies Part (ii). □

Armed with (3.8), we can readily find necessary and sufficient conditions on a vector field
X such that the flow of X preserves ω. In view of Proposition 3.1,(

ϕXt
)∗
ω = ω for all t ⇔ LXω = d (iXω) = 0.

This leads to two definitions:

Definition 3.1

� We call a vector field X symplectic iff iXω is exact.
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� Given a differentiable H : M → R, we can find a unique vector field X = XH = Xω
H

such that
(iXH

ω) = ω(XH , ·) = −dH.

(Note that the non-degeneracy of ω guarantees the existence XH .) The vector field
XH is called Hamiltonian and its corresponding flow is denoted by ϕHt .

Example 3.2 If ωx(v1, v2) = C(x)v1 · v2 is a symplectic form in R2n, then XH = −C−1∇H.
□

As in the case of ω̄, a change of coordinates turn a Hamiltonian flow to another Hamil-
tonian flow as our next Proposition demonstrates.

Proposition 3.2 Let (M,ω) be a symplectic manifold. If φ : N → M is a diffeomorphism
and H : M → R is a smooth Hamiltonian, then Xφ∗ω

H◦φ = (dφ)−1Xω
H ◦ φ. In other words,

φ∗Xω
H = Xφ∗ω

H◦φ, and

φ−1 ◦ ϕX
ω
H

t ◦ φ = ϕ
φ∗Xω

H
t = ϕ

Xφ∗ω
H◦φ

t ,

where ϕXt denotes the flow of the vector field X.

Proof By Lemma 10.2 of Appendix A, ψt is the flow of φ∗Xω
H . Furthermore, for X = Xω

H

and X̂ = (dφ)−1X ◦ φ,

(φ∗ω)x(X̂(x), v) = ωφ(x)

(
(dφ)xX̂(x), (dφ)xv

)
= ωφ(x) (X(φ(x)), (dφ)xv)

= −(dH)φ(x) ((dφ)xv) = − (φ∗(dH))x (v) = −d(H ◦ φ)x(v),

for every v. Hence X̂ = Xφ∗ω
H◦φ, as desired. □

We now turn to the question of the equivalence of two symplectic manifolds or the
embedding of one symplectic manifold inside another symplectic manifold. As a warm-up,
let us discuss the analogous question for volume forms.

Theorem 3.1 (Moser) Let M be a connected oriented compact manifold with no boundary.
Assume that α and β are two volume forms. Then there exists a diffeomorphism φ such that
φ∗α = β iff

∫
M
α =

∫
M
β.

Proof Evidently if for some diffeomorphism φ, we have φ∗α = β, then∫
M

β =

∫
M

φ∗α =

∫
φ(M)

α =

∫
M

α.
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As for the converse, assume that c =
∫
M
α =

∫
M
β. Without loss of generality, we may

assume that c = 1, and regard α and β as two mass (or probability) distributions on M .
We may interpret φ as a plan of transportation; a unit mass at x is transported to ϕ(x)
so that after this transportation is performed for all points, the mass distribution changes
from α to β. With this interpretation in mind, we may design a route for our transportation
so that this change of transportation is carried out in one unit of time. Equivalently, we
may search for a (possibly time dependent) vector field X such that if ϕt denotes its flow,
then φ = ϕ1. Note that if we set α(t) = ϕ∗

tα, then α(0) = α and α(1) = β. This scheme
of finding φ has a chance to work only if there exists a path of volume forms connecting
α to β. So for achieving our goal, let us first such a path. We now argue that in fact
the path α(t) = tβ + (1 − t)α would do the job. Since α and β are volume forms, locally
α = a dx1∧· · ·∧dxk and β = b dx1 · · ·∧ . . . dxk with a and b non-zero and continuous. Since∫
M
α =

∫
M
β, the functions a and b must have the same sign. Hence tβ + (1 − t)α is never

zero, and as a result, α(t) is never degenerate. We next search for a vector field X(·, t) such
that its flow ϕt satisfies ϕ

∗
tα = tβ + (1 − t)α. Differentiating both sides with respect to t

yields

β − α =
d

dt
α(t) = LXα(t) = d(iX(·,t)α(t)).

by Proposition 3.1. But
∫
M
(β − α) = 0 implies that β − α = dγ for some k − 1-form γ (See

Lemma A1 of the Appendix). The existence of X(·, t) with iX(·,t)α(t) = γ follows from the
non-degeneracy of α(t). □

Remark 3.1. (i) As a consequence of Theorem 3.1, if M and N are two oriented compact
closed manifolds with volume forms α and η respectively, then they there exists a diffeomor-
phism ϕ : N →M with ϕ∗α = η iff M and N are diffeomorphic and

∫
M
α =

∫
N
η. Indeed if

ψ :M → N is a diffeomorphism, then α and β = ψ∗η are two volume forms on M for which
Theorem 3.1 applies: there exists a diffeomorphism φ : M → M , such that ϕ∗α = ψ∗η. We
then set ϕ = ϕ ◦ ψ−1 to deduce that ϕ∗α = η.

(ii) If M = Tk and α = α̂(x) dx1 ∧ · · · ∧ dxk, β = β̂(x) dx1 ∧ · · · ∧ dxk, then φ∗α = β means
that α̂(φ(x)) detφ′(x) = β̂(x). If φ = ∇w for some w : Tk → R, then α̂(∇w) det(D2w) = β̂.
This is the celebrated Monge–Ampère’s equation. However the function φ in Moser’s proof
is not a gradient. In fact the vector field X in the proof of Theorem 3.1 can be constructed
by the following recipe: First find a vector field Y such that div Y = β̂ − α̂, so that if
γ =

∑k
1(−1)j−1Y jdx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxk, then dγ = β − α. Such a vector field Y exists

because
∫
(β̂ − α̂)dx = 0. We then set

X(x, t) = − Y (x)

tβ̂(x) + (1− t)α̂(x)
.

In fact for the existence of Y , we may try a gradient Y = ∇u so that the scalar-valued
function u satisfies ∆u = β̂− α̂. Again this equation has a solution because

∫
(β̂− α̂)dx = 0.
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(iii) There has been new developments for Moser’s theorem. In fact the transformation φ
in Theorem 3.1 is by no means unique. However, one may wonder whether or not a “nice”
φ exists. More precisely, let (M, g) be a Riemannian manifold. Assume that M is compact,
connected with no boundary. Using g we can talk about a Riemannian distance. More
precisely, let d(x, y) be the length of the geodesic distance between two points x and y.
We have a natural volume form Ω that is expressed by (det[gij])

1/2dx1 ∧ · · · ∧ dxk in local
coordinates. Consider two forms α = aΩ and β = bΩ with a, b > 0 and

∫
M
α =

∫
M
β = 1.

Set
S(α, β) = {f :M →M with φ∗α = β}.

By Moser’s theorem, this set is non-empty. Monge’s problem searches for a function f ∈
S(α, β) which minimizes the cost function

I(f) =
∫
M

c(x, f(x))β,

with c(x, y) a suitable function of M × M . If we choose c(x, y) = 1
2
(d(x, y))2, then the

minimizer φ is of the form φ = ∇w for a convex function w. This was shown by Brenier
(1987, 1991) in the Euclidean case and by McCann in (2001) in the case of a Riemannian
manifold. Brenier observed that such a minimizer can be used to find a non-linear polar
decomposition. To explain this, let F : U → Rk be an invertible integrable function with
α = (F−1)∗β where β = dx1 ∧ · · · ∧ dxk and α is a volume form. According to Brenier’s
theorem, there exists a convex function ψ such that (∇ψ)∗α = β. If we write ρ = (∇ψ)−1◦F ,
then ρ∗β = F ∗(∇ψ)−1∗β = F ∗α = β. As a consequence, any function F can be decomposed
as F = ∇ψ◦ρ with ψ convex and ρ volume preserving. It turns out that polar decomposition
implies the Hodge decomposition. To see this assume that F ϵ(x) = x + ϵf(x) with ϵ small.
We then expect to have ψϵ(x) = 1

2
|x|2 + ϵφ(x) + o(ϵ) and ρϵ(x) = x+ ϵm(x) + o(ϵ). Hence

x+ ϵf(x) = x+ ϵ∇φ(x+ ϵm(x)) + ϵm(x) + o(ϵ)

= x+ ϵ(∇φ(x) +m(x)) + o(ϵ).(3.11)

On the other hand, since ρϵ is volume preserving,

1 = det(id+ ϵm′) = 1 + ϵ div(m) + o(ϵ).

From this and (3.11) we learn

f(x) = ∇φ(x) +m(x) with div m = 0.

(iv) Theorem 3.1 can be used to show that the total volume is the only invariant of volume
preserving diffeomorphisms. More precisely, if

V(M) = {α : α is a volume form on M}
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with M compact and closed, and
c : V(M) → R

is a function such that c(α) = c(β) whenever φ∗α = β for some diffeomorphism φ, then c
must be a function of

∫
M
α. □

Given a manifold M with two symplectic forms α and β, we may wonder whether or
not for some diffeomorphism φ, we have φ∗α = β. By Theorem 3.1, this would be the
case if dim M = 2 and

∫
M
α =

∫
M
β. However, when dim M = 2n ≥ 4, we may have

non-isomorphic symplectic forms α and β with
∫
M
αn =

∫
M
βn. To see how the proof of

Theorem 3.1 breaks down, we note that we may fail to find a path of symplectic forms α(t)
that connects α to β. Even if such a path exists, the equation LXα(t) = d iXα(t) = dα(t)/dt
requires that dα(t)/dt to be exact for t ∈ [0, 1]. Though both of these issues can be handled
locally as the next theorem demonstrate.

Theorem 3.2 (Darboux) Let (M,ω) be a symplectic manifold of dimension 2n and take
x0 ∈M . Then there exists an open set U ⊆ R2n with 0 ∈ U and a diffeomorphism φ : U →M
such that φ(0) = x0 and φ∗ω = ω̄.

Proof Since M is locally diffeomorphic to an open subset of R2n, we may assume that
M = U0 ⊆ R2n and x0 = 0 ∈ U . In view of Proposition 2.1, we may also assume that ω0 = ω̄.
Our goal is finding an open set U ⊆ U0 with 0 ∈ U , and a diffeomorphism φ : U → U with
φ(0) = 0 and φ∗ω = ω̄ = ω0. Indeed if ωx(v1, v2) = C(x)v1 · v2 and ω(t) = ω̄ + t(ω − ω̄), for
t ∈ [0, 1], then ω(t)x(v1, v2) = C(x, t)v1 · v2, with C(x, t) = J̄ + t(C(x) − J̄) and C(0) = J̄ .
Clearly, we can find an open neighborhood U = Br(0) of 0 such that for x ∈ U we have that
∥C(x)−J̄∥ < ∥J̄∥ = 1, which in turn guarantees that C(x, t) is invertible for (x, t) ∈ U×[0, 1].
This means that in U , the form ω(t) is symplectic for all t ∈ [0, 1]. We then search for a
time-dependent vector field X(·, t) such that its flow ϕt satisfies

ϕ∗
tω = ω(t) for t ∈ [0, 1].

From differentiating both sides with respect to t and using Proposition 3.1, we learn

(3.12) ω − ω̄ = LX(·,t)ω(t) = d iX(·,t)ω(t).

In the ball U = Br(0), we can express ω − ω̄ = dα for a 1-form α such that α0 = 0. Hence
(3.12) would follow if we can find a time-dependent vector field X such that iX(·,t)ω(t) = α.
By nondegeneracy of ω(t), such a vector field X exists with X(0, t) = 0 for every t ∈ [0, 1].
We are done. □

Remark 3.2 If we write ω = u · dx and ω̄ = ū · dx near the origin, then X constructed in
the proof has the form

X(x, t) = C
(
tu(x) + (1− t)ū(x)

)−1
(u(x)− ū(x)) = C(x, t)−1(u(x)− ū(x)).
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□

As an immediate consequence of Darboux’s theorem we learn that any symplectic mani-
fold M of dimension 2n has a an atlas consisting of pairs {(Uj, hj} with hj : Uj → R2n, such
that

hi ◦ h−1
j : hj(Ui ∩ Uj) → hi(Ui ∩ Uj)

is symplectic for every i and j. The family {(Uj, hj)} is an example of a symplectic atlas
that always exists by Darboux’s theorem.

Definition 3.2(i) Let (M,ω) be a symplectic manifold and assume that L is a submanifold
of M . then we say that L is a Lagrangian submanifold if the restriction of ω to L is 0.

(ii) Note that if ω = dλ for a 1-form λ, then the submanifold L is a Lagrangian iff the
restriction of λ to L is closed. We say that L is an exact Lagrangian if the restriction of λ
to L is exact. That is λ = du on L for some C1 function u : L→ R. □

Exercise 3.1 (i) Show that LX = d ◦ iX + iX ◦ d satisfy

LX ◦ d = d ◦ LX , LX(α ∧ β) = (LXα) ∧ β + α ∧ (LXβ) .

(ii) Let (M,ω) be a 2n-dimensional symplectic manifold. Assume that M is compact with
no boundary. Then for every j ∈ {1, . . . , n}, there exists a closed 2j-form which is not exact.

(iii) Let (M1, ω
1) and (M2, ω

2) be two symplectic manifolds. Define (M1×M2, ω
1×ω2) with

(ω1 × ω2)(x,y)((a1, a2), (b1, b2)) = ω1
x(a1, b1) + ω2

y(a2, b2).

Show that (M1 ×M2, ω
1 × ω2) is symplectic.

(iv) Let (M,ω) be a symplectic manifold. Show that if φ∗ω = fω for some diffeomorphism
φ :M →M , and C1 scalar function f , then either dim M = 2 or f is a constant function.

(v) Use polar coordinates in R2n to write qi = ri cos θi, pi = ri sin θi, and let ei (respectively
fi) denote the vector for which the qi-th coordinate (respectively pi-th coordinate) is 1 and
any other coordinate is 0. Set

ei(θi) = (cos θi)ei + (sin θi)fi, fi(θi) = −(sin θi)ei + (cos θi)fi.

Given a vector field u, we may write

u =
n∑
i=1

(
aiei(θi) + bifi(θi)

)
.
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The form α = u · dx can be written as

α =
n∑
i=1

(
aidri + rib

idθi
)
=:

n∑
i=1

(
aidri +Bidθi

)
.

Assume that all ais and bis depend on r = (r1, . . . , rn) only. What are the the necessary and
sufficient conditions on a and B in order for ω = dα to be symplectic.

(vi) Let U1 and U2 ⊂ Br be two planar open sets with smooth boundaries that are diffeomor-
phic to a disc. Show that if area(U1) = U2, then there is an area preserving diffeomorphism
ψ : R2 → R2 such that ψ(U1) = U2 and ψ(x) = x for x /∈ Br. Here Br = {x : |x| < r}.
Hint: Construct ψ from three diffeomrphisms ψ1, ψ2 and ψ3 with the following properties:

� ψ1 : R2 → R2 with ψ1(x) = x, for x /∈ Br, ψ1(U1) = U2, and ψ1 is area-preserving on a
small neigberhood of ∂U1.

� ψ2 : Ū1 → Ū2 is area preserving and ψ2(x) = ψ1(x) for x near ∂U1.

� ψ3 : Br \ Ū1 → Br \ Ū2 is area-preserving and ψ3(x) = ψ1(x) for x near ∂U1 ∪ ∂Br.
□
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4 Contact Manifolds and Weinstein Conjecture

In this section we will give two motivations for studying contact manifolds. As our first
motivation we observe that we can construct exotic symplectic forms on R4 from certain
contact forms in R3. Our second motivation is the Weinstein’s conjecture that predicts every
compact nonsingular contact level set of a Hamiltonian function carries at least one periodic
orbit of the corresponding Hamiltonian vector field.

We first give a simple recipe for constructing a symplectic form on M̂ = M × R from
certain 1-forms on a manifold M : Given a 1-form α on M , define α̂(x,s)(v, τ) = esαx(v) for
every x ∈ M , v ∈ TxM , and s, τ ∈ R. There is nothing special about es and our approach
is applicable if we replace es with a strictly increasing or decreasing C1 function of s. The
question is whether or not ω̂ = dα̂ is symplectic.

Proposition 4.1 Let M be any manifold of odd dimension and α any 1-form on M . Then
the form dα̂ is symplectic iff ℓx(α) ∩ ξx(α) = {0} for every x ∈M , where

ℓx = ℓx(α) = {v ∈ TxM : dαx(v, w) = 0 for every w ∈ TxM} ,
ξx = ξx(α) = kerαx = {v ∈ TxM : αx(v) = 0} .

Proof We certainly have dα̂ = es
(
dα− α ∧ ds

)
. As a result,

(dα̂)(x,s)
(
(v, τ), (w, τ ′)

)
= es

(
(dα)x(v, w)− αx(v)τ

′ + αx(w)τ
)
.

From this we can readily show that if v ∈ ℓx ∩ ξx, then

(dα̂)(x,s)
(
(v, 0), (w, τ ′)

)
= 0,

for every (w, τ ′) ∈ TxM × R.
Conversely, suppose that ℓx(α) ∩ ξx(α) = {0}, and that for some (v, τ) ∈ TxM × R, we

have

(4.1) (dα)x(v, w)− αx(v)τ
′ + αx(w)τ = 0,

for every (w, τ ′) ∈ TxM × R. We wish to show that (v, τ) = 0. To see this, first vary τ ′ in
(4.1), to deduce that αx(v) = 0, or v ∈ ξx. Hence we now have

(4.2) (dα)x(v, w) + αx(w)τ = 0,

for every w ∈ TxM . If τ = 0, then (4.2) means that v ∈ ℓx. As a result, v ∈ ℓx ∩ ξx = {0}
and we are done. On the other hand, if τ ̸= 0, choose any non-zero w ∈ ℓx in (4.2) to deduce
that αx(w) = 0, or w ∈ ξx, which contradicts our assumption ℓx∩ ξx = {0}. (Note that since
the dimension of M is odd, ℓx ̸= {0}.) This completes the proof. □
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Note that since dimM = 2n − 1 is odd, the dimension of ℓx is at least 1. Hence the
condition ℓx ∩ ξx = {0} implies that dim ℓx = 1 and dim ξx = 2n− 2. Equivalently,

(4.3) TxM = ℓx ⊕ ξx,

for every x ∈M .

Definition 4.1 The pair (M,α) of a manifold M and 1-form α is called a contact manifold
if ℓx(α) ∩ ξx(α) = {0} for every x ∈ M . The Reeb vector field R = Rα is the unique R ∈ ℓx
such that α(R) = 1. The R-projection onto ξ is denoted by π = πα; πx(v) = v− αx(v)R(x).

□
One of the main interest in contact manifold is the following conjecture:

Weinstein Conjecture The Reeb vector field of a closed contact manifold has a closed
(periodic) orbit. □

We next discuss the analog of Hamiltonian vector fields for contact manifolds.

Proposition 4.2 Let (M,α) be a contact manifold, and let H : M → R be a C1 function.
Set Ĥ(x, s) = esH(x). If Xdα̂

Ĥ
= (Z, V ), then the vector field Z and the function V :M → R

depend on x and are uniquely determined by the equations

(4.4) iZdα = dH(Rα)α− dH, α(Z) = H, V = −dH(Rα).

Moreover, LZα = −V α.

Proof By definition

i(Z,V )dα̂ = es (iZdα− α(Z) ds+ V α) = −es (H ds+ dH) .

This implies that α(Z) = H and iZdα+V α = −dH. By evaluating both sides at Rα we learn
that V = −dH(Rα), completing the proof of (4.4). The vector field Z is uniquely determined
by the first two equations of (4.4) because the restriction of dα to ξ is symplectic, and π(Z)
satisfies

iπ(Z)dα = iZdα = dH(Rα)α− dH := ν,

with ν(R) = 0. Finally,

LZα = iZdα + d
(
α(Z)

)
= iZdα + dH = dH(Rα)α = −V α,

by (4.4). □

Definition 4.2 Given a contact manifold (M,α), we say that a vector field Z is an α-
contact, if LZα+V α = 0, for some function V :M → R. Moreover, given a C1 Hamiltonian
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function H, the unique α-contact vector field Z and scalar-valued function V satisfying(4.4)
are denoted by ZH = Zα

H and V α
H = VH respectively. □

Remark 4.1 (i) Note that if the flow of an α-contact vector filed Z is denoted by ϕt, then

d

dt
ϕ∗
tα = ϕ∗

tLZα = −ϕ∗
t (V α) = −(V ◦ ϕt)ϕ∗

tα,

which implies (
ϕ∗
tα
)
x
= e−

∫ t
0 ϕθ(x)dθαx.

(ii) Since LRα α = 0, the Reeb vector field is an example of an α-contact vector field. Indeed,
when H = 1 in Proposition 4.2, then Z = Rα, and V = 0. In fact the flow of Rα preserves
α. □

Example 4.1 When M = R3, the form α = u · dx is contact if and only if ρ = (∇× u) · u
is never 0. Indeed,

dα(v1, v2) =
(
(∇× u)× v1

)
· v2 =:

[
(∇× u), v1, v2

]
which implies that when (∇ × u)(x) ̸= 0, the set ℓx is the line spanned by (∇ × u)(x). In
this case the Reeb vector field is given by R = ρ−1(∇× u), and

(4.5) α ∧ dα = ρ dx1 ∧ dx2 ∧ dx3,

is a volume form. Moreover, if we write LZ(u · dx) =
(
L′
Zu
)
· dx, then

(4.6) L′
Zu = ∇(u · Z) + (∇× u)× Z.

The contact vector field associated with H is given by

(4.7) ρXH = u×∇H +H(∇× u).

More generally, if M = R2n−1 with n ≥ 2, we may express a 1-form α as α = u · dx for a
vector field u. Moreover

βx(v1, v2) = dαx(v1, v2) = C(u)v1 · v2,

where C(u) = Du− (Du)∗. The form α is contact iff u never vanishes, and the null space of
C(u)(x) is not orthogonal to u. The set ℓx is one dimensional and Rα is the unique vector
in ℓx such that u(x) ·R(x) ≡ 1. Writing u⊥ and R⊥ for the space of vectors perpendicular to
u and R respectively, then ξ = u⊥, and we may define a matrix C ′(u) which is not exactly
the inverse of C(u) (because C(u) is not invertible), but it is specified uniquely by two
requirements:
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� (i) C ′(u) restricted to R⊥ is the inverse of C(u) : u⊥ → R⊥.

� (ii) C ′(u)u = 0.

The α-contact vector field associated with H is given by

(4.8) XH = −C ′(u)∇H +HR.

□
As Example 4.1 and (4.5) indicates, in dimension 3, a form α is contact iff α ∧ dα is a

volume form. More generally we have the following elementary result.

Proposition 4.3 Let α be a 1-form on a manifold M . Then α is contact iff α ∧ (dα)n−1 is
a volume form.

Proof. Assume that (M,α) is contact and set γ = (dα)n−1. Since the restriction of
dα to ξx is non-degenerate and dim ξx = 2(n − 1), we may use Exercise 2.1(i) to assert
that (dα)n−1

x is a volume form on ξx. More specifically, we may choose a symplectic basis
{e1, . . . , en−1, f1, . . . , fn−1} for ξx so that if their duals are denoted by

{e∗1, . . . , e∗n−1, f
∗
1 , . . . , f

∗
n−1} =: {dx1 . . . , dx2n−2}

then dαx =
∑

i f
∗
i ∧ e∗i . From this we deduce

γx = (n− 1)! dx1 ∧ · · · ∧ dx2n−2.

To show that α ∧ γ is a volume form, observe

(α ∧ γ)(v1, . . . , v2n−1) =
2n−1∑
i=1

(−1)i−1α(vi)γ(v1, . . . , v̂i, . . . , v2n−1)

which means that if dz denotes the dual of the vector R, then

α ∧ γ = (n− 1)! dz ∧ dx1 ∧ · · · ∧ dx2n−2.

The converse is left as an exercise. (See Exercise 4.1(ii).) □

If (N,ω) is a symplectic manifold andM is a closed co-dimension 1 submanifold of N , we
may wonder whether or not we can find a contact form α onM , δ > 0, and a diffeomorphism
ψ : M̂ =M × (−δ, δ) → U ⊆M , such that ψ∗ω = ω̂, where ω̂ = dα̂, for α̂ = esα. In words,
a neighborhood U of N in M is isomorphic to (M̂, ω̂). As we will see below that this is
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possible whenever M is compact and there is a vector field X that plays the role of ∂
∂s
. The

point is that if the flow of the vector field ∂
∂s

is denoted by ϕt, then ϕt(x, s) = (x, s+ t) and

ϕ∗
t α̂ = es+tα = etα̂.

Hence ϕ∗
t ω̂ = es+tdα = etω̂, which means(

ψ ◦ ϕt ◦ ψ−1
)∗
ω = etω.

As a result, if

X = ψ∗

(
∂

∂s

)
,

then

(4.9)
(
ϕXt
)∗
ω = etω.

In fact the existence of a vector field X that satisfies (4.9) is exactly what we need for ω to
be isomorphic to ω̂ in a neighborhood of M .

Definition 4.3 Let X be a vector field on a symplectic manifold (M,ω). We say X is
an ω-Liouville vector field if LXω = diXω = ω. Equivalently, X is ω-Liouville if (4.9) is
valid. □

Remark 4.2 Note that if a Liouville vector field X exists, then we can define a 1-form
α′ = iXω which satisfies dα′ = ω. Moreover, since α′(X) = ω(X,X) = 0, we also have

(4.10) LXα′ = iXdα
′ = iXω = α′,

(
ϕXt
)∗
α′ = etα′.

□

Theorem 4.1 Let (N,ω) be a symplectic manifold of dimension 2n, and let M be compact
closed submanifold of M with dimM = 2n− 1. The following statements are equivalent:

(i) There exists a neighborhood U of M in N and an ω-Liouville vector field X such that
X is transverse to M .

(ii) There exists a contact form α on M such that dα is the restrictions of ω to M .

(iii) There exists a contact form α on M , δ > 0, and a diffeomorphism ψ : M̂ = M ×
(−δ, δ) → U ⊆ M , with ψ(x, 0) = 0, such that if α̂ = esα and α′ =

(
ψ−1

)∗
α̂, then

dα′ = ω.
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Proof Suppose that (i) is true. In other words, there exists a Liouville vector field X such
that X(x) /∈ TxM for every x ∈M . Set α′ = iXω so that dα′ = ω. Write α for the restriction
of α′ to M . Set ξx = kerα, and

ℓx := {v ∈ TxM : ωx(v, w) = 0 for all w ∈ TxM},

for x ∈ M . We wish to show that ℓx ∩ ξx = {0}. Pick any v ∈ ℓx ∩ ξx. By definition,
ωx(v, w) = 0 for all w ∈ TxM . On the other hand ωx(X(x), v) = αx(v) = 0. Hence
ωx(v, a) = 0 for all v ∈ TxN because X transverses to M . Since ωx is symplectic, we deduce
that v = 0. Thus α is contact. In summary (i) implies (ii).

The converse is carried out in several steps.

Step1. Starting from a contact form α on M with dα = ω|M , we wish extend α to α′ with
dα′ = ω, and construct a Liouville vector field X in a neighborhood ofM . First we construct
X on M . Recall that R = Rα denotes the Reeb vector field and ξx = kerαx ⊂ TxM is of
dimension 2n− 2. Since we hope to find X satisfying α = iXω on M , the restriction of such
X to M much satisfy ωx(X(x), v) = α(v) for every v ∈ TxM . As a result, for every x ∈ M
and v ∈ ξx, we must have

(4.11) ωx(X(x), R(x)) = 1, ωx(X(x), v) = 0.

It is not hard to construct a vector field X that satisfies (4.11). For example, we may use
Proposition 4.2 to take an almost complex structure J and a Riemannian metric g so that
ω(v1, v2) = g(Jv1, v2). We then search for a vector field X of the form

X(x) = f(x)JxR(x) + Y (x), Y (x) ∈ ξx,

with f :M → R a scalar-valued function. To satisfy (4.11), we need

f = −g(R,R)−1, iY ω = −f
(
iJR ω

)
.

The latter equation has a unique solution Y ∈ ξ because dα|ξ is symplectic. We note that
the first requirement in (4.11) implies that X(x) /∈ TxM for every x ∈ M . In summary, we
have constructed a vector field X that transverses to M and satisfies iXω = α on M .

Step2. So far our vector field X(x) is defined only on M . Since M is compact and X
transverses to M , we can use the g-exponential map to define φ(x, s) = expx(sX(x)), so
that φ : M × (−δ, δ) → U ⊆ N is a diffeomorphism. Here φ(x, s) = γ(s), where γ is the
unique geodesic with γ(0) = x and γ̇(0) = X(x). (Alternatively, extend X to a vector field

X̂ that is defined on a neighborhood of M , and set φ(x, s) = ϕX̂s (x).) This map has the

40



desired property on M ;

(φ∗ω)(x,0)
(
(v1, τ1), (v2, τ2)

)
= ωx

(
dφ(x,0)(v1, τ1), dφ(x,0)(v2, τ2)

)
= ωx

(
v1 + τ1X(x), v2 + τ2X(x)

)
= ωx(v1, v2) + τ1ωx(X(x), v2) + τ2ωx(v1, X(x))

= ωx(v1, v2) + τ1α(v2)− τ2α(v1)

= (ω + ds ∧ α)(x,0)
(
(v1, τ1), (v2, τ2)

)
,

because φ(x,0)(v, τ) = τX(x) + v. Hence, if we define α̂ = esα and ω̂ = dα̂ on M̂ =
M × (−δ, δ), then φ∗ω = ω̂ on M = M × {0}. As a result, if we set ω′ = φ∗ω, then
η := ω′− ω̂ is a closed form on M̂ such that η|M = 0. As we will see in Lemma 4.1 below, the
form η is necessarily exact. In fact, there exists a 1-form β such that β|M = 0 and dβ = η.

Hence, ω′ = d(α̂ + β) with (α̂ + β)|M = α. From this we learn that if α′ =
(
φ−1

)∗
(α̂ + β),

then dα′ = ω, and α′
|M = α.

Step3. So far we now that there exists a neighborhood U of M , and a 1-form α′ that is
defined in U and satisfies

α′
|M = α, dα′ = ω.

Since ω is symplectic, we can find a vector field X in U such that iXω = α′. This vector field
is a Liouville vector field because diXω = dα′ = ω. Moreover, since ωx(X(x), v) = αx(v),
for every x ∈ M and v ∈ TxM , we learn that X(x) /∈ TxM for every x ∈ M ; otherwise
αx(R(x)) = 0 which is impossible. This completes the proof of (i).

It remains to show the equivalence of (i) and (iii). If (i) is true, simply define ψ(x, s) =
ϕXs (x). Note that by (4.10), we have ϕ∗

sα
′ = esα′. Since

ϕ̂t(x, s) :=
(
ψ−1 ◦ ϕt ◦ ψ

)
(x, s) = (x, t+ s),

we deduce

ψ∗X =
∂

∂s
.

On the other hand, if α̂ = ψ∗α′, then
(
ϕ̂s
)∗
α̂ = esα̂, which implies that α̂(x,s)(v, τ) = esαx(v),

because ϕ̂ is the flow of ∂/∂s. We are done.
Conversely, if (iii) is true, then the Liouville vector field is given by

X =
(
ψ−1

)∗ ∂
∂s
.

□

We continue with the proof of a Poincaré-type lemma that was used in the proof of
Theorem 4.1.
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Lemma 4.1 Let η be a closed l-form on M̂ = M × (−δ, δ) with η|M×{0} = 0. Then there

exists an (l − 1)-form β on M̂ such that dβ = η and β|M×{0} = 0.

Proof Define Φθ(x, s) = (x, eθs) for y = (x, s) ∈ M̂ and θ ∈ R. Note that d
dθ
Φθ(y) =

Y (Φθ(y)), for Y (x, s) = (0, s). Let us simply write M for M ×{0}. Since Φ−∞(x, s) = (x, 0),
we have Φ∗

−∞η = η|M = 0 by our assumption. We now write

η = Φ∗
0η − Φ∗

−∞η =

∫ 0

−∞

d

dθ
Φ∗
θη dθ =

∫ 0

−∞
Φ∗
θLY η dθ

= d

[∫ 0

−∞
Φ∗
θiY η dθ

]
=: dβ.

For example, when l = 2,

β(x,s)(v, τ) =

∫ 0

−∞
η(x,eθs)

(
(0, eθs), (v, eθτ)

)
dθ

=

∫ 0

−∞
η(x,eθs)

(
(0, s), (v, eθτ)

)
eθdθ

=

∫ 1

0

η(x,θs)
(
(0, s), (v, θτ)

)
dθ.

From this we learn that β is well-defined and that β|M = 0. The case of general l can be
treated in the same way. □

Definition 4.2 If the assumptions of Theorem 4.1 are satisfied, we say that the submanifold
M is of contact type. □

Remark 4.3 An important consequence of Theorem 4.1 is that a neighborhood of a sub-
manifold M of contact type is isomorphic to

(
M̂, ω̂

)
. This means that such a neighborhood

can be foliated into submanifolds that are, in some sense isomorphic to M . More pre-
cisely, if ϕt is the flow of the corresponding Liouville vector field X, then the hypersurfaces(
M s = ϕs(M) : s ∈ (−δ, δ)

)
are all of contact type. In fact if we write ℓ(M s) for the

corresponding line bundle,

ℓx(M
s) = {v ∈ TxM

s : ωx(v, w) = 0 for all w ∈ TxM
s},

and Rs(x) for the Reeb vector field associated with
(
M s, α′

|Ms

)
, then we have the following

identities:

(4.12) (dϕs)x
(
ℓx(M

0)
)
= ℓϕs(x)(M

s), (dϕs)x(R
0(x)) = esRs(ϕs(x)).
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The second equation is a consequence of (4.10):

es = esαx(R
0(x)) = esα′

x(R
0(x)) =

(
ϕ∗
sα

′)
x
(R0(x)) = α′

ϕs(x)

(
(dϕs)x(R

0(x))
)
.

We may also define a Hamiltonian function K = KM : U → (−δ, δ) with K(M s) = es. In
other words, if ψ is as in Theorem 4.1(iii) and Ĥ : M̂ → (−δ, δ) is defined by Ĥ(x, s) = es,
then

(4.13) K = Ĥ ◦ ψ−1.

We can readily show
X ω̂
Ĥ
(x, s) = (R(x), 0).

From this we deduce

Xω
K(ϕs(x)) = (dψ)(x,s)(R(x), 0) = (dϕs)x(R(x)) = esRs(ϕs(x)),

because by Proposition 3.2 Xω
K ◦ ψ = (dψ)X ω̂

Ĥ
. In summary,

(4.14) (Xω
K)|Ms = esRs.

Hence the periodic orbits of K coincide with the closed orbits of
(
Rs : s ∈ (−δ, δ)

)
. □

As we learned from Remark 4.2, the hypersurfaces of contact-type may be regarded as
the level sets of a Hamiltonian function for which the corresponding Hamiltonian vector field
is closely related to the Reeb vector field. Now imagine that we start with a 2n dimensional
symplectic manifold (N,ω) and a Hamiltonian vector field Xω

H , and wonder whether or not
level sets of H carry periodic orbits. We note that when the Hamiltonian function H is
independent of time, then the level sets of H are conserved because

d

dt

(
H ◦ ϕHt

)
= dH

(
Xω
H ◦ ϕHt

)
= −ω

(
Xω
H , X

ω
H

)
◦ ϕHt = 0.

Let us write M(c) = {x : H(x) = c}, and set ℓx(c) := (TxM(c))⨿. We call M = M(c)
regular if dHx ̸= 0 for all x ∈ M(c). Since dimTxM(c) = 2n− 1 for a regular M(c), we use
Proposition 2.1(i) to assert

dim ℓx(c) = 1.

On the other hand, since
TxM(c) = {w : (dH)x(w) = 0},

we deduce that indeed XH(x) ∈ ℓx(c), for c = H(x) because for every w ∈ TxM(c),

ωx(XH(x), w) = −(dH)x(w) = 0.
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This means that the line lx is parallel XH(x). What we learn from this is that the existence
of a periodic orbit of XH onM =M(c) is a property ofM and ω and does not depend on H.
In other words, ifM possesses a periodic orbit of XH and ifM = {x : H ′(x) = c′} for another
regular H ′, then XH′ possesses a periodic orbit as well. Evidently lx = (TxM)⨿ offers an
H-independent candidate for the tangent lines to the orbit. More precisely, if M is a closed
hypersurface of a symplectic manifold (N,ω), define ℓx(M) = (TxM)⨿ which is a line. We
always have ℓx(M) ⊆ TxM because if v ∈ ℓx(M) but v /∈ TxM , then v ⨿

(
ℓx(M)⊕ TxM

)
=

TxN which implies v = 0 because ω is symplectic. As a result, LM =
⊔
x∈M lx is a line

bundle of M , and we can express our question of the existence of periodic orbits purely in
terms of this line bundle. The existence of periodic orbits is now reduced to the existence of
closed characteristics of the line bundle LM . It turns out that there are hypersurfacesM and
symplectic structures ω such that the corresponding line bundle has no closed characteristics.
However Weinstein’s conjecture asserts that if M is of contact type, then such a closed
characteristic can be found. In view of (4.14), the existence of a closed orbit of the Reeb
vector field follows from the existence of a periodic orbit of the vector field XK where K was
defined by (4.13). From the preceding discussion and (4.14) we learn that we only need to
find a periodic orbit in a neighborhood of a hypersurface of contact type:

Proposition 4.4 LetM be a compact hypersurface of contact type of the symplectic manifold
(M,ω). Let K = KM : U → R be the corresponding Hamiltonian function that is defined for
a neighborhood U of M as in (4.13). If the vector field Xω

K has a periodic orbit in U , then
the Reeb vector field of M has a closed orbit.

Remark 4.4 As we mentioned in the introduction, Weinstein’s conjecture has been estab-
lished for the hypersurfaces of (R2n, ω̄) by Viterbo. As we will see in Section 6 below, we
will use Hofer-Zehnder Capacity to give a rather straightforward proof of Viterbo’s theorem.
The point is that if Hofer-Zehnder Capacity of a neighborhood U of a contact type hyper-
surface M is positive, then by very definition of this capacity, a periodic orbit would exist
for every Hamiltonian vector field with compact support inside U . From this it is not hard
to deduce that XKM

also possesses periodic orbits. We then use Proposition 4.4 to conclude
that M carries a closed orbit. It is not known how to use the same line of reasoning to
settle Weinstein’s conjecture for general (N,ω); it is not known how to show the positivity
of Hofer-Zehnder Capacity of open sets of general symplectic manifolds. Though the Wein-
stein’s conjecture has now been established for all closed 3-dimensional manifolds by Taubes
(2007) employing a variant of Seiberg-Witten Floer homology. □

Starting from a symplectic manifold (N,ω) with dimN = 2n, and a Hamiltonian function
H : N → R for which the level set M = {x : H(x) = c} is compact and regular, we have
seen that the line bundle ℓx(c) = (TxM)⨿ is well-defined. If we already know that ω = dα′

for a 1-form α′, in a neighborhood U ofM , then using the fact that ω is symplectic, we learn
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that there exists a unique vector field X such that iXω = α′. On the other hand

iXω
H
ω = −dH, and iXω = α′ ⇒ α′(Xω

H

)
= dH(X).

Hence
X(x) /∈ TxM for all x ∈M ⇔ α = α′

|M is of contact type.

IfM =M(c) is of contact type, then we also have a natural volume form α∧(dα)n−1 that
is defined on M and we expect it to be invariant under the flow of Xω

H . Indeed, if (M̂, ω̂)
with ω̂ = dα̂ is as in Theorem 4.1, then

Ω̂ := (n!)−1 ω̂n = (n!)−1 ens ds ∧ α ∧ (dα)n−1 = dĤ ∧m,

where Ĥ = es, and
m = (n!)−1 e(n−1)s α ∧ (dα)n−1.

Using ψ as in Theorem 4.1, we can write

(4.15) Ω := (n!)−1 ωn = dH ∧ µ,

where H = Ĥ ◦ ψ−1, and µ =
(
ψ−1

)∗
m. In particular, µ|M is a volume form for M when M

is of contact type. We now assert that in general we can always find a 2n − 1- form on M
that satisfies (4.15).

Proposition 4.5 Let (N,ω) be a symplectic manifold with dimN = 2n, and assume that
H : N → R is a function for which the level set M = {x : H(x) = c} is compact and regular.

(i) There exists a (2n−1)-form µ such that the volume form Ω = (n!)−1 ωn can be expressed
as

(4.16) Ω = dH ∧ µ,

in a neighborhood of M .

(ii) The form µ|M is uniquely determined by (4.16): If ω = dH∧µ = dH∧µ′ then µ|M = µ′
|M .

(ii)
(
ϕHt
)∗
µ|M = µ|M . In words, µ is invariant for ϕHt , restricted to M .

Proof (i) The existence of µ is an immediate consequence of the non-degeneracy of dH ̸= 0
on M . (See Exercise 4.1(vi).)

(ii) Write j : M → N for the inclusion map. We certainly have dH ∧ (µ − µ′) = 0. From
Exercise 4.1(vii) below we deduce that for some 2n−2 form γ, µ−µ′ = dH ∧γ. As a result,
I(µ− µ′) = I(dH ∧ γ) = (IdH) ∧ Iγ = 0 because IdH = d(H ◦ j) = 0.

45



(iii) Write ϕt for ϕ
H
t . By (4.16),

Ω = ϕ∗
tΩ = (ϕ∗

tdH) ∧ ϕ∗
tµ = d(H ◦ ϕt) ∧ ϕ∗

tµ = dH ∧ ϕ∗
tµ.

By uniqueness result of (ii), we deduce Iϕ∗
tµ = Iµ, or (ϕt ◦ j)∗µ = Iµ. We may write

ϕt ◦j = j ◦ϕt where the second ϕt :M →M is the restriction of ϕt toM . Hence Φ∗
tIµ = Iµ,

as desired. □
Remark 4.4 When (N,ω) = (R2n, ω̄), we can describe the form µ of (4.16) explicitly. To

ease the notation, let us write k = 2n. Note that if {gj : j = 1, . . . , k} is a collection of

smooth functions with
∑k

j=1 gjHxj(−1)j−1 ≡ 1, then we may choose for µ,

µ =
k∑
j=1

gjdx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxk.

For example gj = (−1)j−1Hxj/|∇H|2 would do the job.) We now claim

(4.17)

∫
Γ

α = c0

∫
Γ

|∇H|−1dσ,

for a constant c0. To see this, let us assume Hxk ̸= 0 so that locally we can find a function
f(x1, . . . , xk−1) with

H(x1, . . . , xk−1, f(x1, . . . , xk−1)) = c.

This means that the graph of f gives a parametrization of M and that fxj = −Hxj

Hxk
for

j = 1, . . . , k − 1. On the other we can use the function f to express the volume measure
on M that is induced by the standard volume of Rk. More precisely, consider the vector
a = (a1, . . . , ak) with

aj =
∂(x1, . . . , x̂j, . . . , xk)

∂(x1, . . . , xk−1)
= (−1)k−j

Hxj

Hxk

, .

for 1 ≤ j ≤ k. If Γ = {(x1, . . . , xk−1, f(x1, . . . , xn−1)) : (x1, . . . , xk) ∈ U}, then∫
Γ

µ =

∫
U

(
k∑
j=1

ajgj

)
dx1, . . . , dxk−1.

On the other hand

ā =

(
k∑
j=1

a2j

)1/2

=
|∇H|
|Hxk |

.
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Since locally either Hxk > 0 or Hxk < 0, we have∫
Γ

µ =

∫
U

(−1)k−1 1

Hxk

dx1, . . . , dxk−1

= ±
∫
U

1

|∇H|
ā dx1, . . . , dxk−1 = ±

∫
Γ

1

|∇H|
dσ,

proving (4.17). Note that this is consistent with the coarea formula∫
f dx1, . . . , dxk =

∫ ∞

−∞

[∫
H=c

f
dσ

|∇H|

]
dc.

□

We now give examples of contact type hypersurfaces.

Example 4.2(i) Let N = T ∗Q for an n-dimensional manifold Q, and let ω = dλ denotes its
standard symplectic form as was defined in Example 3.1. The level set M of H : T ∗Q → R
is of contact type if

(4.18) λ(q,p)
(
XH(q, p)

)
= p

(
(dπ)(p,q) (XH(q, p))

)
̸= 0,

on M . When Q = Rn, then (4.19) means that p ·Hp ̸= 0 on M .

(ii) Let M be as in (i) and assume that H : T ∗Q → R is homogeneous of degree l > 0 in
the p-variable: for every r > 0,

(4.19) H(q, rp) = rlH(q, p).

We claim that this condition is equivalent to

(4.20) iXH
λ = lH.

The proof of the equivalence of (4.19) and (4.20) is straightforward when Q = Rn: By
differentiating both sides of (4.19) we can show that H is homogeneous of degree l > 0 iff
p · Hp = lH, which is exactly (4.20). The proof of general Q is similar. Use the Darboux
charts we defined in Example 3.1, namely take h : U → Rn as a chart of Q and use this to
construct h̄ : T ∗U → R2n so that λ = h̄∗λ̄. Define H̄ : h(U) × Rn → R so that H̄ ◦ h̄ = H.
By the construction,

h̄(q, p) = (h(q), p̄) ⇒ h̄(q, rp) = (h(q), rp̄),

for every r > 0. This implies that H is homogeneous of degree l > 0 iff H̄ is homogeneous
of degree l > 0. Similarly,

iXω̄
H̄
λ = lH̄ ⇔ h̄∗

(
iXω̄

H̄
λ
)
= lH̄ ◦ h̄ ⇔ iXH

λ = lH.
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This completes the proof of the equivalence of (4.19) and (4.20). From this and (4.18) we
deduce that M = {x : H(x) = c} is always of contact type for every homogeneous H and
non-zero c. □

Remark 4.5 We note that the Hamiltonian vector field XH on T ∗Q preserves the 1-form λ
if and only if H(q, p) is (positively) homogeneous of degree 1 in p. Indeed by Proposition 3.1,
the form λ is preserved by the flow of XH iff

0 = LXH
λ = d ◦ iXH

λ+ iXH
◦ dλ = d

(
iXH

λ−H
)
.

This is equivalent to assert that iXH
λ −H is a constant. Since adding a constant does not

change XH , we may assume that the constant is zero so that the condition now is iXH
λ = H.

In view of the equivalence of (4.19) and (4.20), we deduce that LXH
λ = 0 is equivalent to

the degree-1 p-homogeneity of H. □

The positions of a conservative system are points in an n-dimensional manifoldM that is
known as the configuration space. The phase space in Lagrangian formulation is the tangent
bundle TQ. The motion is determined by a Lagrangian L : TQ → R. In the Hamiltonian
formulation we use a Hamiltonian function H : M = T ∗Q → R to determine the motion of
the system. In our next example we study the level set of classical Hamiltonians.
Example 4.3 Observe that the Riemannian metric g on a manifold Q, allows us to define

an operator ♯ : T ∗Q→ TQ that maps 1-forms to vector fields by requiring

gq ((♯p)q, v) = pq(v),

for every vector v ∈ TqM . This duality also induces a metric on T ∗Q by

Gq(p, p
′) = gq(♯p, ♯p

′).

Given a smooth potential energy V : Q→ R, we define

(4.21) H(q, p) =
1

2
Gq(p, p) + V (q).

We now claim

(4.22) λ (Xω
H) = Gq(p, p),

for H given by (4.21). The proof is very similar to the equivalence of (4.19) and (4.20);
using h and h̄ as in Examples 3.1 and 4.2, we can find a metric Ḡ on h(U) and a function
V̄ : h(U) → R such that V = V̄ ◦ h, and H = H̄ ◦ h̄, where

H̄(q, p) =
1

2
Ḡq(p, p) + V̄ (q).
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Writing Ḡq(p, p) = A(q)p · p with A > 0, we deduce that X ω̄
H̄
= (S(q)p,−∇V (q)). From this

we can readily deduce
λ̄ (X ω̄

H̄) = Ḡq(p, p).

We then apply h̄∗ to both sides to arrive at (4.22). Using the elementary Lemma 4.10, we
can now readily show that if

ME = {(q, p) : H(q, p) = E}

is compact and regular, and if E > maxV , then ME is of contact type simply because for
such E we always have p ̸= 0, whenever (q, p) ∈ME. It turns out that ME is of contact type
even when E ≤ maxV (See [HZ]). It is worth mentioning that when E > maxV , then we
can define a new Riemannian metric

Ĝq(p, p) =
Gq(p, p)

E − V (q)
,

that is known as the Jacobi metric. We then have

ME = {(q, p) = H(q, p) = E} =

{
(q, p) =

1

2
Ĝq(p, p) = 1

}
.

The Hamiltonian Ĥ(q, p) = 1
2
Ĝq(p, p) induces a Hamiltonian vector field XĤ . It is simply

related to XH by

(4.23) XH(q, p) = Gq(p, p)XĤ(q, p), (q, p) ∈ S.

Hence a periodic orbit exists on ME for XH if the same is true for XĤ . Geometrically, XĤ

generates the geodesic flow defined by the Jacobi metric Ĝ on M = T ∗Q. □
We next discuss some examples of non-contact types hypersurfaces.

Example 4.3 (Zehnder [Z])

(i) Let M̂ = T3 × I where T3 is the 3-dimensional torus and I is an open interval. We
write θ = (θ1, θ2, θ3) ∈ T3 for points in T3 and define H : M̂ → I by H(θ, s) = s. The level
sets of H are Ms = T3 × {s} for s ∈ I. Writing (x1, . . . , x4) for (θ1, θ2, θ3, s), any constant
skew-symmetric C = [cij], define a 2-form ω =

∑
i<j cijdxi∧dxj. Note that each dθi is closed

(but not exact), and ds is exact. Hence ω is always closed because C is constant. As a result,
ω is symplectic iff C is invertible. Given a vector ζ = (ζ1, ζ2, ζ3) with ζ3 ̸= 0, we define C by

−C−1 = Ĉ :=


0 1 0 ζ1
−1 0 0 ζ2
0 0 0 ζ3

−ζ1 −ζ2 −ζ3 0

 .
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We further assume that ζ is irrational in the following sense:

a ∈ Z3, a · ζ = 0 ⇒ a = 0.

Evidently, XH = Xω
H = Ĉ∇H that in our case leads to XH = (ξ, 0). Hence ϕHt (θ, s) =

(θ + tζ, s) where θ + sζ is understood as a (mod 1) summation; here we identify T as the
interval [0, 1] with 0 and 1 regarded as the same point. The irrationality ζ guarantees that
XH has no periodic orbit. Hence ω|Ms does not induce a contact structure.

(ii) Let us write x = (q1, q2, p1, p2) for angles in a 4-dimensional torus T4 that may be defined
as [0, 1]4 with 0 = 1. Take a 1-periodic function f : R → R that can be regarded as a function
on the circle T. Let ω = dp1 ∧ dq1 + dp2 ∧ dq2 + ζdp1 ∧ dq2 for an irrational number ζ. Take
H(x) = f(p1) so that Xω

H(x) = (f ′(p1), ζf
′(p1), 0, 0). The corresponding flow is

ϕHt (x) = (q1 + tf ′(p1), q2 + ζf ′(p1), p1, p2),

with (mod 1) additions. Again since ζ is irrational, ϕHt (x) is never periodic whenever f
′(p1) ̸=

0. □
As we mentioned in the beginning of this section, contact structures in R3 can be used

to produce exotic structures. The process of going from a contact manifold (M,α) to the
symplectic manifold (M̂, ω̂) as in Proposition 4.1 is called the symplectization. For example
we equip

R2n−1 = {(q, p, z) : q, p ∈ Rn−1, z ∈ R},
with the so-called standard contact form ᾱ = p·q+dz, then the corresponding symplectization
(R2n, ω̂) is isomorphic to the standard (R2n, ω̄). However if we equip R3 with an overtwisted
contact form, the symplectization yields a symplectic form on R4 that is not equivalent to the
standard symplectic structure. Before giving the definition of overtwised contact structures,
let us observe that if (M,α) is contact, then ξ = kerα is never integrable. The reason is that
the integrability of ξ is equivalent to α∧ dα = 0 (see Lemma A.4 in Appendix), whereas the
contact assumption requires α∧ (dα)n−1 to be a volume form by Proposition 4.3. In fact we
have a following results for integrals of ξ:

Proposition 4.6 Let (M,α) be a contact manifold of dimension 2n−1. If Γ is an l dimen-
sional submanifold of M with TxΓ ⊆ ξx = kerαx for every x ∈ Γ, then dimΓ ≤ n− 1.

Proof Using Lemma A.3 of the Appendix, we can readily show that if X and Y are two
vector fields that are tangent to Γ, then dα(X, Y ) = 0. Simply because for X, Y ∈ ξ, we
have α(X) = α(Y ) = 0, and from X, Y ∈ TΓ we know that [X, Y ] ∈ TΓ by Frobenius’
theorem. This means that if we use the symplectic form ω = dα|ξ for orthogonality, then
TxΓ ⊆ (TxΓ)

⨿, which by Proposition 2.1 implies

2n− 2 = dimTxΓ + dim(TxΓ)
⨿ ≥ 2 dimTxΓ.
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This clearly implies that dimTxΓ ≤ n− 1. □

Definition 4.3 We call a submanifold Γ of a 2n − 1 dimensional contact manifold (M,α)
Legendrian if TxΓ ⊂ TxM and dimΓ = n− 1. □

Let us now examine contact forms on R3. If α is a contact form on R3 and ξ = kerα is
the corresponding contact structure, we expect that the plan field ξ experience some twists
as we move along a hypersurface because ξ is not integrable. Given a 2 dimensional surface
Γ, we may define a plane field γx = TxΓ ∩ ξx. For generic points of Γ, γx is a line and the
integrals of this line bundle have been used to classify the contact structures in R3 or even
arbitrary 3-dimensional manifolds. The simplest way to produce examples of exotic contact
structures in R3 is using cylindrical coordinates; q = r cos θ, p = r sin θ so that if x = (q, p, z),
then

dq = cos θ dr − sin θ rdθ, dp = sin θ dr + cos θ rdθ.

Example 4.4(i) If α = qdp− pdq − dz = r2 dθ − dz, then for x = (q, p, z),

ξx = {(q̂, p̂, ẑ) : qp̂− pq̂ = ẑ}.

Observe that for Γ = {z = 0}, the set γx = TxΓ ∩ ξx is a line only when x ̸= 0. More
precisely,

γx = {(q̂, p̂, 0) : qp̂− pq̂ = 0},
is the ray {(sq, sp, 0) : s ∈ R} if x ̸= 0, whereas ξ0 = Γ. So the line bundle {γx : x ∈ Γ}
has a singularity at 0. For example, on the {(s, 0, 0) : s > 0}, the vector u = (−p, q,−1)
twists from −π/2 to 0 as s goes from 0 to ∞.

(ii) Let β = sin r rdθ + cos r dz, so that

ξx = {(q̂, p̂, ẑ) : (r tan r)θ̂ = ẑ},

where (1 + tan2 θ)θ̂ = q−2(qdp− pdq). Note that the curve {r = π, z = 0} is Legendrian. If
we set

Γε = {(q, p, ε) : r ≤ π},
then the interior Γε has no singular point for ε > 0 and ∂Γ is Legendrian. We say a contact
form is overtwisted if such Γ = Γε exists for β. Note that for this particular example, if we
move along a ray emanating from the origin, the plane ξx make complete turns infinitely
many times. □

Exercise 4.1

(i) Verify (4.6)-(4.8).

(ii) Let M be a manifold of dimension 2n − 1 and let α be a 1-form on M . Show that if
α ∧ (dα)n−1 is a volume form, then α is contact.
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(iii) Consider (R2n, ω̄) and let S be the boundary of a set A that is star-shaped with respect
to the origin. Assume that each ray emanating from the origin intersect S at exactly one
point and X(x) = x/2 traverses to S. Show that S is of contact type. Determine the
corresponding contact form. Hint: Show that X is a Liouville vector field.

(iv) Consider the contact manifold (R2n−1, ᾱ). Let H(q, p, z) be a smooth function. Show
that the corresponding contact vector field ZH is given by

(Hp,−Hq + pHz,−p ·Hp +H).

(v) Let S2n−1 be a unit sphere in R2n. The form λ̄ induces a 1-form µ̄ on S2n−1. Show that
(S2n−1, µ̄) is not a contact manifold. Define µ = 1

2
(p · dq − q · dp). Show that (S2n−1, µ) is a

contact manifold. Find its Reeb flow.

(vi) Let Ω be a volume form and let τ be a non-degenerate 1-form. Show that there exists
a form β such that Ω = τ ∧ β.

(vii) Let η be an l-form and τ a 1-form with τ ∧ η = 0. Show that η = τ ∧ γ for some
(l − 1)-form γ.

(viii) Verify (4.22). □
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5 Variational Principle and Convex Hamiltonian

In this section, we use variational techniques to prove the following result of A. Weinstein:

Theorem 5.1 Assume that the hypersurface S ⊆ R2n is the smooth boundary of a compact
strictly convex region. Then the Reeb’s vector field on S has a periodic orbit.

In fact Theorem 5.1 allows us to define some kind of a symplectic width or capacity of
convex sets K with nonempty interiors:

c0(K) : = inf
{
|A(γ)| : γ is a Reeb characteristic of ∂K

}
(5.1)

= inf
{
T : There is a T -periodic orbit of the Reeb’s vector field on ∂K

}
,

where the symplectic action A(γ) of γ was defined by (3.1). Of course Theorem 5.1 guarantees
that c0(K) < ∞ for every bounded convex set K of nonempty interior. Our strategy for
proving Theorem 5.1 is by figuring out an alternative dual like variational principle of (5.1).
Once this dual problem is formulated, we can readily establish its finiteness.

Remark 5.1 Let us write

ᾱ =
1

2
(p · dq − q · dp) or ᾱx(v) =

1

2
J̄x · v,

so that dᾱ = ω̄. Let K =
{
x : H(x) ≤ r

}
be a bounded convex set, where H is a

Hamiltonian function and r ∈ R is a constant. Assume that x : R → R2n is a non-constant
T -periodic function with H(x) = r and ẋ = J̄∇H(x). To turn x into an ᾱ-Reeb orbit, set
η(t) = 1

2

∫ t
0
x · ∇H(x) ds, and choose τ with (τ ◦ η)(t) = t. If γ = x ◦ τ , then γ is periodic of

period T ′ = η(T ) = A(x), and

ᾱγ(γ̇) =
1

2
J̄γ · γ̇ = τ̇

(
J̄x ◦ τ

)
·
(
J̄∇H(x ◦ τ)

)
= τ̇(η̇ ◦ τ) = 1.

We have

A(x) = A(γ) =

∫
γ

ᾱ = T ′.

□

Example 5.1 Assume that U is an ellipsoid with 0 ∈ U . We learned in Chapter 2 that
there are radii r1 ≤ · · · ≤ rn and a linear symplectic T such that T (U) = E, where E = {x :
H(x) ≤ 1}, with

H(x) =
n∑
j=1

q2j + p2j
r2j

.
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The corresponding Hamiltonian flow is ϕt(z1, . . . , zn) =
(
e−iλ1tz1, . . . , e

−iλntzn
)
, where zj =

qj + ipj, and λj = 2/r2j . For y = (z1, . . . , zn) and γ : [0, T ] → R2n, defined by γ(t) = ϕt(y),
we have

A(γ) =
1

2

∫ T

0

ω̄(γ(s), γ̇(s)) ds =
1

2

∫ T

0

∑
j

Im
(
e−iλjszj iλje

iλjsz̄j
)
ds

=
1

2
T
∑
j

λj|zj|2 = TH(γ(0)).

If this γ lies on ∂E, we must have H(γ(0)) = 1 which means that A(γ) = T for such γ. Now
if γ is a periodic orbit of period T > 0, then we must have

zj ̸= 0 ⇒ λjT = 2kπ, for some k ∈ N.

This implies T ≥ 2π/λ1 = πr21. Hence, c0(E) ≥ πr21. On the other hand, if we choose
(z1, . . . , zn) satisfying |z1| = r1, and zj = 0 for j ̸= 1, we have that A(γ) = T = πr21 for the
corresponding γ. From all this we deduce that for an ellipsoid E,

(5.2) c0(E) = πr1(E)
2.

□

Before embarking on finding the dual problem associated with (5.1), let us first review the
Lagrangian formulation of Hamiltonian systems. As we will see below, this formulation is not
well-suited for finding periodic characteristics on the boundary of a convex set. Nonetheless
we will learn some fruitful ideas from it that will play essential role later in showing the
finiteness of c0(U).

To study Newton’s equation with constraints, Lagrange initiated variational formulation
of conservative mechanical problems. Let L : TQ → R be a C1-function. Given q0, q1 ∈ Q,
we define B : ΓT (q

0, q1) → R with

ΓT (q
0, q1) = {γ : [0, T ] → Q is C1 and γ(0) = q0, γ(T ) = q1},

B(γ) =
∫ T

0

L(γ(t), γ̇(t))dt.

Let us denote the argument of L by (q, v) with v ∈ TqQ and write Lq and Lv for the partial
derivatives of L.

We now claim that if q(·) is a critical point of B, then q solves the Euler–Lagrange–
Newton’s equation

(5.3)
d

dt
Lv(q, q̇) = Lq(q, q̇).

54



Indeed if we use the L2-inner product, then the derivative of B is given by

(5.4) ∂B(γ) = Lq(γ, γ̇)−
d

dt
Lv(γ, γ̇),

for every γ ∈ ΓT (q
0, q1). To see this, take any η = η(θ, t) with θ ∈ (−δ, δ) and t ∈ [0, T ],

such that ηθ(0, t) = τ(t), and η(0, ·) = γ(·). Now

⟨∂B(γ), τ⟩ := d

dθ
B(η(θ, ·))

∣∣∣∣
θ=0

=

∫ T

0

[Lq(γ, γ̇) · τ + Lv(γ, γ̇) · τ̇ ] dt

=

∫ T

0

[
Lq(γ, γ̇)−

d

dt
Lv(γ, γ̇)

]
· τ dt.

Here we used the fact that τ(0) = τ(T ) = 0 which follows from η(θ, 0) = q0, η(θ, T ) = q1

for all θ. As an example, let L(q, v) = m
2
|v|2 − V (q) in Rn. Then the equation (5.3) reads as

mq̈ = −∇V (q).
To explain the connection between Lagrangian formulation with the the Hamiltonian, let

us assume that Q = Rn and that for p ∈ Rn = T ∗
qQ, we can solve the relationship

p = Lv(q, v)

uniquely for v. Denoting the solution by v(q, p), and setting

H(q, p) = p
(
v(p, q)

)
− L(q, v(q, p)),

we learn

Hp = v + pvp − vpLv = v + pvp − pvp = v,

Hq = pvq − Lq(q, v)− Lv(q, v)vq = −Lq(q, v).

Hence

(5.5) p = Lv(q, v) ⇔ Hp(q, p) = v,

and

(5.6) Hq(q, p) = −Lq(q, v).

If we set p(t) = Lv(q(t), q̇(t)), then by (5.3), (5.5), and (5.6),

q̇ = Hp(q, p), ṗ = −Hq(q, p).
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The inversion (5.5) is possible if we assume that L is strictly convex in v. In this case H can
be constructed from L by Legendre transform:

H(q, p) = sup
v
(p · v − L(q, v)).

More generally, if L : TQ→ R is convex in v, we may define H : T ∗Q→ R by

H(q, p) = sup
v

(
p(v)− L(q, v)

)
.

This relationship maybe inverted to yield

L(q, v) = sup
p

(
p(v)−H(q, p)

)
.

If we assume that L has superlinear growth in variable v as |v| → ∞, then H is finite
and the supremum is attained at v = v(q, p) so that (5.5) is valid.

For a v-convex L, we may find solutions to (5.1) by minimizing B. For example, if for
some constants c1, c2 > 0 and α > 1,

(5.7) L(q, v) ≥ c1|v|α − c2,

for every v ∈ TqN and q ∈ N , and if γl is a sequence in ΓT (q
0, q1) such that liml→∞ B(γl) =

A = inf B, then by (5.7) we have the bound

sup
l

∫ T

0

|γ̇l(t)|αdt <∞.

This bound allows us to extract a subsequence of γl which converges weakly with respect to
the topology of Sobolev space W 1,α. It turns out that B is lower semicontinuous because L
is convex in v. This allows us to deduce that for any limit point q(·) of the sequence γl(·),
we have that B(q) ≤ A. Since A = inf B, we learn that B(q) = A and that the infimum is
achieved.

In spite of the appeal of the above argument, it is not clear how to use it to prove
Theorem 5.1. Recall that we are searching for a periodic solution on a given energy surface.
Of course we could have chosen q0 = q1 so that our solution satisfies q(0) = q(T ). But
to lie on the surface S we need to make sure that (q(0), p(0)) ∈ S. In fact the solution
we have found may not even be periodic in (q, p) coordinates because we cannot guarantee
p(0) = p(T ).

To this end let us define another functional A of which critical points solve the Hamilto-
nian system. Set A : ΓT → R to be

A(x(·)) =
∫
x(·)

[p · dq −H(x)] dt

=

∫ T

0

[
1

2
J̄x · ẋ−H(x)

]
dt,
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where
ΓT = {x : R → R2n is C1 and T -periodic}.

We have

(5.8) ∂A(x(·)) = −J̄ ẋ−∇H(x),

because

⟨∂A(x(·)), τ(·)⟩ = d

dδ
A(x+ δτ)

∣∣∣∣
δ=0

=

∫ T

0

[
1

2
J̄τ · ẋ+ 1

2
J̄x · τ̇ −∇H(x) · τ

]
dt

= −
∫ T

0

(J̄ ẋ+∇H(x)) · τ dt

for every x, τ ∈ ΓT . From (5.8) we learn that ∂A(x(·)) ≡ 0 iff x solves

(5.9) ẋ = J̄∇H(x).

Note that A involves H explicitly and no additional assumption such as convexity is needed.
However typically the critical points of A are saddle points and it is helpless to search for
(local) maximizers or minimizers. Because of this, finding critical points for A is far more
challenging. Before discovering a remedy for this, let us show that a hypersurface S as in
Theorem 5.1 can be realized as a level set of a convex homogeneous Hamiltonian function.

Definition 5.1 Let U ⊆ R2n be an open convex set with 0 ∈ U . Set K = Ū for its closure.

(i) The gauge function associated with K is defined by

gK(x) = ∥x∥K = inf{r > 0 : x/r ∈ K} = inf{r > 0 : x/r ∈ U}.

(ii) The polar set associated with K is defined by

Ko := {x : x · y ≤ 1 for all y ∈ K}.

(iii) The support function hK associated with K is defined by

(5.10) hK(x) := sup
y
{x · y : y ∈ K}.

(iii) The indicator function of K is a convex function that is defined by

χK(x) :=

{
0 if x ∈ K;

∞ otherwise,

□
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Proposition 5.1 Let U ⊆ R2n be an open convex set with 0 ∈ U and K = Ū .

(i) The gauge function ∥ · ∥K is a norm. Its Legendre transform is given by

sup
y

(
x · y − ∥y∥K

)
= χKo(x).

(ii) We have

(5.11) K = {y : x · y ≤ hK(x) for all x}.

(iii) We have K◦◦ = K. Moreover, x · y ≤ ∥x∥K∥y∥Ko, and

(5.12) ∥x∥K◦ = hK(x), ∥x∥K = hK◦(x).

(iv) If HK(x) =
1
2
∥x∥2K, then its Legendre transform is given by H∗

K = 1
2
h2K = HK◦.

Proof The proof of (i) and (ii) are left as an exercise. As for (iii), observe

∥x∥K◦ = inf{ρ > 0 : x/ρ ∈ K◦} = inf{ρ : x · y ≤ ρ for every y ∈ K}
= inf{ρ : hK(x) ≤ ρ} = hK(x).

For the second equality, observe that since x · y ≤ ∥x∥K for every y ∈ K◦, we have

hK◦(x) = sup{x · y : y ∈ K◦} ≤ ∥x∥K .

On the other hand, by (5.11),

∥x∥K = inf{ρ : x/ρ ∈ K} = inf{ρ : ρ−1(x · z) ≤ hK(z) for every z}
= inf{ρ : (x · z/hK(z)) ≤ ρ for every z} = sup

z
(x · z/hK(z))

≤ sup
y∈K◦

(x · y) = hK◦(x),

because z/hK(z) ∈ K◦ always. This completes the proof of second equality in (5.12). Note
that two equalities of (5.12) imply that ∥x∥K = ∥x∥K◦◦ . As an immediate consequence we
conclude that K = K◦◦.

We now turn to (iv). We certainly have

H∗
K(x) = sup

y

(
x · y − 1

2
∥y∥2K

)
= sup

y
sup
t≥0

(
tx · y − t2

2
∥y∥2K

)
.
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If x · y > 0, then the t-supremum is attained at t = (x · y)/∥y∥2K ; otherwise the t-supremum
is 0. As a result,

2H∗
K(x) = sup

y

((x · y)+)2

∥y∥2K
= sup

y

[(
x · y

∥y∥K

)+
]2

=
[
sup {x · y : ∥y∥K = 1}

]2
=
[
sup {x · y : ∥y∥K ≤ 1}

]2
=
[
sup {x · y : y ∈ K}

]2
= hK(x)

2,

as desired. □

We next address the regularity of the function HK .

Lemma 5.1 Let U ⊆ R2n be an open strictly convex set with 0 ∈ U , S = ∂U , and K = Ū .
If S is C2, then HK is C2 and strictly convex.

Proof Write g(x) = gK(x) := ∥x∥K , 2H = 2HK = g2. Note that g is not differentiable at 0.
When x ̸= 0, the derivative Dg(x) is uniquely determined from

Dg|TxS = 0, x · ∇g(x) = g(x).

The latter follows from the homogeneity of g. On the other hand,

(5.13) D2g(x)|TxS > 0, D2g(x)x = 0

for x ∈ S. Again the latter is a consequence of the homogeneity of g. To see the first claim
in (5.13), let us look at the curvatures of S. Note that n(x) = ∇g(x)

|∇g(x)| is the unit normal to
S and

Dn(x) = |∇g(x)|−1D2g(x) +∇g(x)⊗∇(|∇g(x)|−1).

As a result,

Dn(x)a · a = |∇g(x)|−1D2g(x)a · a+ (∇g(x) · a)(∇|∇g(x)|−1 · a).

As a result, if a ∈ TxS, then

(5.14) Dn(x)a · a = |∇g(x)|−1D2g(x)a · a.

Since S is strictly convex, we have Dn(x) > 0. This and (5.14) imply (5.13).
Evidently H is C1 and C2 off the origin. Since H is homogeneous of degree 2,

∇H = g∇g,
D2H = ∇g ⊗∇g + gD2g.
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Hence,
D2H(x)a · a = (∇g(x) · a)2 + g(x)D2g(x)a · a.

Note that if a = b+c with b∥x and c ∈ TxS, then (∇g(x) ·a)2 > 0 if b ̸= 0 and D2g(x)a ·a > 0
if b = 0 and c ̸= 0. Hence D2H(x) > 0 for all x ̸= 0. □

Let us set H = HK and study the corresponding functional A. Note that A = AT

is defined for T -periodic functions whereas for Theorem 5.1 we need a periodic orbit on
S = {H = 1/2} of some period. Of course if x(·) is such a periodic orbit of period T , then
y(t) = x (Tt) is 1-periodic and

(5.15) ẏ = T J̄∇H(y).

In view of the form of functional AT , perhaps we should fix the period to be 1 always and
now insist that y(·) solves (5.15) for some T . As a result, we now want to find a critical
point of

T−1

∫ 1

0

[
1

2
J̄y · ẏ − TH(y)

]
dt =

1

2T

∫ 1

0

J̄y · ẏ dt−
∫ 1

0

H(y) dt

with y a 1-periodic path and some T ∈ R. The scalar η = T−1 resembles a Lagrange
multiplier that now is employed for a functional defined on an infinite dimensional space.
Motivated by this, define C : Λ → R by

C(x(·)) =
∫ 1

0

H(x(t)) dt

with

Λ =

{
x : R → R2n is C1, 1-periodic and

∫ 1

0

J̄x · ẋ dt = 1

}
.

It is not hard to show that Λ ̸= ∅.

Lemma 5.2 (i) Let y(·) be a non-constant critical point of C : Λ → R. Then either
∇H(y) ≡ 0, or there exists a constant T such that ẏ = T J̄∇H(y).

(ii) If H = HK, then any critical y(·) satisfies ẏ = T J̄∇H(y) for some T > 0. Moreover,
z(t) =

√
Ty(t/T ) is a T -periodic solution of ż = J̄∇H(z), such that A

(
z(·)
)
= T/2 and

2H(z) ≡ 1.

Proof First, let us determine the space Ty(·)Λ. Take a path z : (−δ, δ) → Λ with z(·, 0) = y(·)
and zθ(·, 0) = τ(·). The condition∫ 1

0

J̄z(·, θ) · zt(·, θ) dt = 1

60



can be differentiated with respect to θ to yield

0 =

∫ 1

0

[
J̄y · τ̇ + J̄τ · ẏ

]
dt = −2

∫ 1

0

J̄ ẏ · τ dt.

In other words, for τ ∈ Ty(·)Λ, we always have

(5.16)

∫ 1

0

J̄ ẏ · τ dt = 0.

The converse is also true; if a 1-periodic function τ satisfies (5.16), then the path z(t, θ) =
y(t) + θτ(t) lies in Λ and satisfies zθ(·, 0) = τ(·).

Now, if y(·) is critical for C, then d
dθ
C(z(·, θ))

∣∣
θ=0

= 0. This means that y(·) is critical iff

(5.17)

∫ 1

0

J̄ ẏ · τ dt = 0 ⇒
∫ 1

0

∇H(y) · τ dt = 0.

In particular if y ∈ Λ satisfies∇H(y) ≡ 0, it is critical. Assume that∇H(y) is not identically
0. We then use (5.17) to deduce that for every 1-periodic τ satisfying (5.16), and every T ∈ R,
we have

(5.18)

∫ 1

0

(
J̄ ẏ + T∇H(y)

)
· τ dt = 0.

We wish to select τ = J̄ ẏ+T∇H(y) to deduce that J̄ ẏ+T∇H(y) = 0. For the admissibility
of such selection, we need ∫ 1

0

|ẏ|2 dt+ T

∫ 1

0

J̄ ẏ · ∇H(y) dt = 0.

This can be solved for T if

(5.19)

∫ 1

0

J̄ ẏ · ∇H(y) dt ̸= 0.

In fact if (5.19) were not the case, then we could choose τ = ∇H(y) in (5.17) to deduce that
∇H(y) = 0, which contradicts our assumption. Hence y must satisfy ẏ = T J̄∇H(y).

We now turn to the proof of (ii). For a critical y ∈ Λ, we know that ẏ = T J̄∇H(y). On
the other hand, since H is homogeneous of degree 2, we also know that y · ∇H(y) = 2H(y).
Hence

(5.20) 1 =

∫ 1

0

J̄y · ẏ dt = 2T

∫ 1

0

H(y) dt = 2TH(y),
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because H(y) is a constant function. Since y cannot be identically 0 by the constraint, we
deduce that T > 0 and that H(y) = (2T )−1. Now if z(t) =

√
Ty(t/T ), then obviously z is

T -periodic with H(z) = 1/2 by the homogeneity of H. On the other hand,

ż(t) = T−1/2 ẏ(t/T ) =
√
T J̄ ∇H

(
y(t/T )

)
= J̄ ∇H

(√
Ty(t/T )

)
= J̄ ∇H(z(t)).

Finally

A(z) =
1

2

∫ T

0

J̄z · ż dt = T

2

∫ T

0

J̄y(t/T ) · ẏ(t/T )T−1 dt =
T

2

∫ 1

0

J̄y(t) · ẏ(t) dt = T

2
.

This completes the proof of (ii). □

On account of Lemma 5.2, we only need to find critical points for C on Λ. Since H is
convex, we may wonder whether or not a minimum provides us with a critical point. It turns
out that supΛ C = +∞ and infΛ C = 0. Note that for H as in Lemma 5.2 infimum is not
achieved because if C(x(·)) = 0, then x(·) ≡ 0 and 1

2

∫ 1

0
J̄x · ẋ ̸= 1 for such x(·). Let us study

an example to see why the infimum is not achieved.

Example 5.2 Assume that n = 1 and H : R2 → R is given by H(x) = π|x|2. We already
know how to solve the corresponding system ẋ = J̄∇H(x); the solutions are given by
x(t) = (q(t), p(t)) = r(sin 2πt, cos 2πt), t ≥ 0. The set {x : H(x) = 1/2} carries the periodic

orbit x(t) = (2π)−1/2(sin 2πt, cos 2πt). The set Λ consists of 1-periodic y with
∫ 1

0
J̄y ·ẏ dt = 1.

If y is a simple curve with coordinates q and p, then
∫ 1

0
J̄y · ẏ dt is twice the area enclosed by

y. We can easily construct a sequence yl(t) in Λ with C(yl) → ∞ as l → ∞. For example,

set yl(t) =
(
2
√
l sin 2πt, 1

π
√
l
cos 2πt

)
, so that yl ∈ Λ and C(yl) = 2πl + 1

2πl
. This confirms

supΛ C = +∞. As for the infimum, let us choose a sequence zl ∈ Λ of high oscillation, say
zl(t) = (2πl)−1/2(sin 2πlt, cos 2πlt). Since H(zl) = (2l)−1, we learn that infΛ C = 0. □

From Example 5.2 it is clear that a control on C(yl) for yl ∈ Λ guarantees no control on ẏl
and this results in infΛ C = 0. We now follow an idea of Clarke to switch to a new functional
D which involves the derivative. To motivate the definition, observe that if

(5.21) ẏ = T J̄ ∇H(y),

for some T > 0, then for any constant c ∈ R2n,

d

dt
J̄(c− y) = T∇H(y).

Writing w = J̄(c− y), we deduce that for H = HK and G = HK◦ ,

(5.22) ∇G(ẇ) = T (J̄w + c).
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because ∇H is homogeneous of degree 1 and
(
∇H

)−1
= ∇G. Here we are using Proposi-

tion 5.1 to assert that H∗ = G. The condition
∫ 1

0
J̄y · ẏ dt = 1 becomes

1 =

∫ 1

0

J̄(J̄w + c) · J̄ẇ dt =

∫ 1

0

J̄w · ẇ dt.

Motivated by this and (5.21), set

Λ′ =

{
w ∈ Λ :

∫ 1

0

w dt = 0

}
,

and let us define D : Λ′ → R by

D(y) =

∫ 1

0

G(ẏ(t)) dt.

Lemma 5.3 If w(·) is a C1 critical point of D : Λ → R such that
∫ 1

0
w dt = 0, then w

solves (5.22) for some constants T > 0 and c ∈ R2n. Moreover if y = J̄w + c, then y ∈ Λ, y

satisfies (5.21), 2TH(y(·)) ≡ 1, and
∫ 1

0
G(ẏ) dt = T/2.

Proof As in the proof of Lemma 5.2, we can show that if w is a critical point for D on Λ,
then ∫ 1

0

J̄w · τ̇ dt = 0,

∫ 1

0

τ dt = 0 ⇒
∫ 1

0

∇G(ẇ) · τ̇ dt = 0,

for every periodic C1 path τ . Hence

(5.23)

∫ 1

0

(
T J̄w + c′ −∇G(ẇ)

)
· τ̇ dt = 0,

for every T ∈ R and c′ ∈ R2n. We wish to choose τ so that

(5.24) τ̇ = T J̄w + c′ −∇G(ẇ),
∫ 1

0

τ dt = 0.

For this, we need to satisfy two conditions:∫ 1

0

(
T J̄w + c′ −∇G(ẇ)

)
dt = 0,

∫ 1

0

(
T J̄w + c′ −∇G(ẇ)

)
· J̄w dt = 0.

Since
∫ 1

0
w dt = 0, we simply have

c′ =

∫ 1

0

∇G(ẇ)
)
dt, T

∫ 1

0

|w|2 dt =
∫ 1

0

∇G(ẇ) · J̄w dt.
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The second equation can be solved for T because w is not zero. Now choosing τ satisfying
(5.24) in (5.23) implies that τ̇ is identically 0, which in turn implies

(5.25) ∇G(ẇ) = T J̄w + c′.

Since G is homogeneous of degree 2, we know that ẇ · ∇G(ẇ) = 2G(ẇ). From this and
(5.25) we deduce ∫ 1

0

2G(ẇ) dt =

∫ 1

0

ẇ · ∇G(ẇ) dt = T

∫ 1

0

J̄w · ẇ dt = T.

Hence T > 0 because G > 0 away from 0. We then choose c so that cT = c′. Substituting
this in (5.25) yields (5.22). We can readily show that if y = J̄w + c, then y ∈ Λ and y
satisfies (5.21). Clearly (5.21) implies that 2TH(y) = 1 by (5.20). We are done. □

We are now ready for the proof of Theorem 5.1.

Proof of Theorem 5.1 First we obtain some useful properties of G. Note that by homo-
geneity of G,

G(x) = |x|2G
(
x

|x|

)
.

As a result, there are positive constants c1 and c2, such that

(5.26) c1
|x|2

2
≤ G(x) ≤ c2

|x|2

2

for all x ∈ R2n. From the homogeneity of G, we also know that ∇G(a) = |a|∇G
(
a
|a|

)
. This

in turn implies that for some constant c3,

(5.27) |∇G(a)| ≤ c3|a|.

We then remark that even though we have worked with the space C1, our Lemma 5.3 is
valid for a larger space H1. The space H1 consists of 1-periodic functions w : R → R2n which
are weakly differentiable with the weak derivative ẇ ∈ L2. That is, there exists v ∈ L2 such
that for every ζ ∈ C1, ∫ 1

0

w · ζ̇ dt = −
∫ 1

0

v · ζ.

We simply write ẇ for the weak derivative v. Note that we can define D : Λ̄ → R where

Λ̄ =

{
w ∈ H1 :

∫ 1

0

J̄w · ẇ dt = 1,

∫ 1

0

w dt = 0

}
.
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In Lemma 5.3, we may replace Λ with Λ̄.
On account of our extension of Lemma 5.3, it suffices to find a critical point of D : Λ̄ → R.

This can be achieved by showing the existence of a minimizer of D.
Set a = infΛ̄D and choose a sequence wl ∈ Λ̄ such that wl(0) = 0 and D(wl) → a. In

view of (5.24), we certainly have

(5.28) c4 := sup
l

∫ 1

0

|ẇl|2 dt <∞.

From this and Exercise 5.1(ii) we know

|wl(t)− wl(s)| ≤
√
c4|t− s|1/2.

This implies that wl − wl(0) has a convergent subsequence with respect to the uniform
topology. If h is the limit of this sequence, then∫ 1

0

h dt = lim
l→∞

∫ 1

0

(wl − wl(0)) dt = − lim
l→∞

wl(0).

As a result, wl also has a convergent subsequence with respect to the uniform topology. On
account of (5.28) we may choose a subsequence such that

wl → w uniformly,

ẇl → v weakly,

for some v ∈ L2 and continuous w. We now assert that in fact w is weakly differentiable and
its weak derivative is v. Indeed if ζ ∈ C1, then∫ 1

0

w · ζ̇ dt = lim
l→∞

∫ 1

0

wl · ζ̇ dt = − lim
l→∞

∫ 1

0

ẇl · ζ dt = −
∫ 1

0

v · ζ dt.

It remains to show that w ∈ Λ̄ and

(5.29) a = D(w).

For the former observe∫ 1

0

J̄w · ẇ dt =

∫ 1

0

J̄w · (ẇ − ẇl) dt+

∫ 1

0

J̄(w − wl) · ẇl dt+
∫ 1

0

J̄wl · ẇl dt

=: Ω1 + Ω2 + Ω3.

We certainly have that liml→∞Ω1 = 0 and Ω3 = 1. Moreover

|Ω2| ≤ ∥w − wl∥L2∥ẇl∥L2 → 0
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as l → ∞ by (5.28) and uniform convergence of wl to w. This shows that w ∈ Λ̄.
It remains to establish (5.29). Since a = inf D, it suffices to show that D(w) ≤ a. This

follows from the lower semi-continuity of the functional D which is a consequence of the
convexity of G. Indeed by convexity of G,

G(ẇ) +∇G(ẇ) · (ẇl − ẇ) ≤ G(ẇl).

Hence, ∫ 1

0

G(ẇ) dt+

∫ 1

0

∇G(ẇ) · (ẇl − ẇ) dt ≤
∫ 1

0

G(ẇl) dt.

We now send l → ∞. Since ∇G(ẇ) ∈ L2 by (5.17) and ẇ ∈ L2, we know that the second
term on the left-hand side goes to 0. As a result,∫ 1

0

G(ẇ) dt ≤ lim inf
l→∞

∫ 1

0

G(ẇl) = a.

Using H1 version of Lemma 5.3, we know that for some y ∈ H1, and T > 0, we have
ẏ = T J̄∇H(y). Since the right-hand side is continuous, we use Exercise 5.6(i) to deduce
that for almost all t,

y(t) = y(0) + T

∫ t

0

J̄∇H(y(s)) ds.

From this we deduce that in fact y ∈ C1. As in Lemma 5.2, we may use y to construct a
solution x to ẋ = J̄∇H(x) with 2H(x) = 1 to complete the proof. □

As a corollary to the proof of Theorem 5.1, we derive three useful expressions for the
symplectic capacity that was defined in (5.1).

Theorem 5.2 For every bounded convex set K with the origin in its interior, we have
c0(K) = c′0(K) = c′′0(K), where

c′0(K) : = inf
w∈Λ

1

2

∫ 1

0

h2K(ẇ) dt = inf
w∈Λ̄

1

2

∫ 1

0

h2K(ẇ) dt(5.30)

c′′0(K) : = inf

{
T

2
: There exists a T -periodic orbit of XHK

on ∂K

}
.

Proof Note that infimum over Λ can be replaced with an infimum over Λ̄ because adding
a constant to w does not chance hK(ẇ) or A(w). Let w be a 1-periodic function in Λ that
minimizes D. By Lemma 5.3, we can find T > 0 and c ∈ R2n such that

(5.31) ẏ = T J̄∇H(y),

∫ 1

0

J̄y · ẏ dt = 1, 2TH(y) = 1,

∫ 1

0

G(ẇ) dt =
T

2
,
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for y = J̄w + c. We then build z out of y by z(t) =
√
Ty(t/T ), so that z is T -periodic and

(5.32) ż = J̄∇H(z), A
(
z(·)
)
=
T

2
, 2H(z) = 1,

by Lemma 5.2. Hence z(·) is a periodic orbit of XH that lies on S = ∂K. This and
Remark 5.1 immediately imply

(5.33) c0(K) ≤ c′0(K), c′′0(K) ≤ c′0(K).

For the reverse inequalities, let z be a periodic orbit of the Reeb vector field. By reversing
the orientation if necessary, we may assume that A(z) > 0. After a reparametrization, we
may assume that z is a T -periodic orbit of the vector field XH with H = HK , that lies on
the level set H = 1/2. Note that since H satisfies z · ∇H(z) = 2H, we have

1

2

∫ T

0

J̄z · ż dt = 1

2

∫ T

0

J̄z · J̄∇H(z) dt =
1

2

∫ T

0

2H(z) dt =
T

2
.

This implies that c0 = c′′0. Also this z (a T -periodic orbit of the vector field XH) satisfies
(5.32). Defining y(t) = T−1/2z(Tt) yields a 1-periodic function which satisfies the first three
equations in (5.31). We then take any constant c ∈ R2n and set w = J̄(c− y) so that (5.22)
is valid, which in turn can be used as in the proof of Lemma 5.3 to derive the last equation
of (5.31). As in the calculation right after (5.22), we can use (5.32) to assert that y ∈ Λ.
From this and the last equation of (5.31) we deduce that c′0(K) ≤ c0(K) = c′′0(K). This and
(5.33) complete the proof. □

Remark 5.2(i) In (5.1), we defined c0(K) for a convex set with smooth boundary. However
the equality c0(K) = c′0(K) gives us an expression that is well defined for arbitrary convex
sets with nonempty interior. In fact if w is a minimizer for c′(K) and z is the corresponding
orbit as in Lemmas 5.2 and 5.3, then z still solves ż = J̄∇H(z) in some generalized sense.
Given any convex function H, we may define its subdifferential ∂H(z) as the set of vectors
v such that

H(a)−H(z) ≥ v · (a− z),

for all a ∈ R2n. Now the corresponding Hamiltonian ODE reads as

ż± ∈ J∂H(z),

where ż± denotes the left and right derivatives. Similarly, the line bundle ℓx for x ∈ ∂K
consists of lines in the direction Jv, where v ∈ ∂gK(x). So a Reeb orbit will be tangent to a
single line in the direction of J∇gK(x) if it passes through a point x ∈ ∂K at which ∇gK(x)
exists; otherwise there is a cone of directions {Jv : v ∈ ∂gK(x)} that represents ℓx. When
K has a smooth boundary, ∇g(x) exists at every x ∈ ∂K and belongs to ∂Ko.
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(ii) When H = HK , then a T -periodic orbit z(·) on ∂K yields periodic orbits on the other
level sets of the same period. Indeed if λ > 0 and u(t) =

√
2λz(t), then u still solves

u̇ = J̄∇H(u), simply because ∇H is homogeneous of degree 1. What we learn from this is
that if T is the smallest period that a periodic orbit of XH can have on ∂K, then this T is
the smallest period that a non-constant periodic orbit can have any where in R2n. Moreover,
since H(u) = 2λH(z) = λ, then

c0 ({H ≤ λ}) = Tλ.

It is this formula that generalizes to the Hofer-Zehnder capacity in Chapter 6. □

Example 5.3 Let V and W be two open convex subsets of Rn with 0 ∈ V and W . Set
K = A× B, where A = V̄ and B = W̄ . This convex set does not have a smooth boundary.
Nonetheless we can use c′(K) to define its symplectic capacity as we discussed in Remark 5.1.
We certainly have

∂K =
(
∂V ×W

)
∪
(
V × ∂W

)
∪
(
∂V × ∂W

)
.

It is the set ∂U × ∂V that is responsible for the non-smoothness of ∂K. (For example if
n = 1, then K is a rectangle and ∂U × ∂V consists of its 4 corners.) To figure out how a
Reeb orbit looks like, let us use the Hamiltonian function gK for which K is the level set
{gK = 1}. In this case gK(q, p) = max{gA(q), gB(p)}, and ∂gK(x) = {∇gK(x)} is singleton
only in

(
∂V ×W

)
∪
(
V × ∂W

)
:

∇gK(q, p) =

{(
0,∇gB(p)

)
if (q, p) ∈ V × ∂W(

∇gA(q), 0
)

if (q, p) ∈ ∂V ×W.

The corresponding Hamiltonian vector field is given by

XgK (q, p) =

{(
∇gB(p), 0

)
if (q, p) ∈ V × ∂W(

0,−∇gA(q)
)

if (q, p) ∈ ∂V ×W.

We now describe an orbit (q(t), p(t)) of XgK on ∂K with (q(0), p(0)) = (q0, p0) ∈ V × ∂W :

(i) While in V × ∂W , p(t) stays put and q(t) travels with velocity ∇gB(p0);
(ii) At some time t0, the position q(t) reaches the boundary ∂V . At this point q(t0) =: q1,
the velocity ∇gB(p0) is pointing outward with respect to the convex set V ;

∇gB(p0) · ∇gA(q1) < 0.

Observe that now the vector −∇gA(q1) is inward at the point p0 with respcet to the convex
set W ; (

−∇gA(q1)
)
· ∇gB(p0) > 0.
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Then the particle enters the set ∂V ×W through the point (q1, p0) ∈ ∂V × ∂W . While in
∂V ×W , q(t) = q(t0) = q1 stays put and p(t) travels in W with velocity −∇gA(q(t0)).
(iii) At some time t1, the momentum p(t) reaches the boundary ∂W . At p1 = p(t1), the
vector −∇gA(q(t0)) is pointing outward;(

−∇gA(q1)
)
· ∇gB(p1) < 0.

Then it enters the set V × ∂W through the point (q(t0), p(t1)) ∈ ∂V × ∂W . Then (i) is
repeated with (q0, p0) replaced with (q(t0), p(t1)).

The orbit we described in (i)-(iii) is a trajectory of a Minkowski Billiard. To see why
we have a billiard, let us describe the orbit when W = B0(1) is the unit ball in Rn: Given
q0 ∈ V and p0 of length 1, we have the following orbit:

(i) A particle starts at q0 and travels with velocity p0 in V .

(ii) As q reaches the boundary at q1 = q(t0), it enters {q(t0)}×B0(1). Then q(t0) stays put
while p0 travels with velocity −n(q1) = −∇gA(q1) which is the inward normal to ∂V at q1.

(iii) As p(t) reaches the boundary of the unit ball at time t1, we simply have

p1 = p(t1) = p0 − 2|n1|−2(n1 · p0)n1,

where n1 = n(q1). So, the relationship between p0 and p1 is that of a specular reflection.

From the preceding description, it is clear the if we ignore the time spent in ∂V ×W , what
we have is a billiard trajectory. The part of dynamics spent in ∂V ×W is for transforming
the incident velocity p(t2i) to the reflecting velocity p(t2i+1). If we calculate the symplectic

action of an orbit
∫ T
0
p · dq, the part of the orbit inside ∂V ×W does not contribute because

q(t) stays put. From this we learn that for the capacity of K, we are dealing with a billiard
trajectory that is defined in the following way:

(i) We start from a point q0 ∈ V that has a velocity ∇gA(p0) with p0 ∈ ∂W . The q-point
travels according to its velocity until it reaches the boundary.

(ii) At the boundary point q1 = q(t0), the velocity changes from ∇gA(p0) to ∇gA(p1), where
p1 = ηB(p0, q1). The function ηB depends on the incoming velocity and the normal at the
boundary point.

Now a periodic Reeb orbit corresponds to a periodic Minkowski billiard trajectory. If we
write q0, q1, . . . , ql ∈ ∂V with ql = q1, for the hitting locations of a periodic Reeb orbit γ of
the boundary, then

A(γ) = (q1 − q0) · p0 + · · ·+ (ql − ql−1) · pl−1,

where p0, p1, . . . , pl are the corresponding momenta with pl = p1, and pi+1 = ηB(qi, pi).
In the case of a standard billiard (when B = B0(1) is the unit ball), we have that pi =
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(qi+1−qi)/|qi+1−qi|, and A(γ) is the total length of the billiard trajectory. So, c0
(
A×B0(1)

)
is simply the length of the shortest periodic billiard trajectory in the convex set A. □

In Example 5.3, we related c0(A × B) to the the shortest (with respect to B) periodic
billiard trajectories in A. However in general it is hard to calculate the capacity of a convex
body. We now state a conjecture that would allow us to compare the capacity of a set with
its volume.

Conjecture 5.1 (Viterbo) If B2n denotes the unit ball in R2n, then

(5.34)
c0(K)

c0(B2n)
≤
[
V ol(K)

V ol(B2n)

] 1
n

,

for every bounded convex set K ⊂ R2n. □
Of course we know that c0(B

2n) = π and V ol(B2n) = πn/n!. Also we have equality in
(5.34) if K is a ball.

Recently Artstein-Avidan, Karasev and Ostrover have observed that Viterbo’s conjecture
implies an old conjecture of Mahler in Convex Geometry that was formulated in 1939.

Conjecture 5.2 (Mahler) For every centrally symmetric convex set A of Rn with 0 in its
interior,

(5.35) V ol(A) V ol(A◦) ≥ 4n/n!.

□
To see how (5.34) implies (5.35), observe that if we apply (5.34) to the set A×A◦, then

(5.34) reads as
cn0 (A× A◦)

πn
≤ n! V ol(A) V ol(A◦)

πn
,

which implies (5.34) if we can show that c0(A×A◦) = 4. This was established by Artstein-
Avidan et al. in [AKO] (see Exercise 5.1(iv) below). According to [AKO],

c0(A×B) = 4max{r > 0 : rB◦ ⊂ A}.

Remark 5.3(i) Conjecture 5.1 asserts that among all convex sets of a given volume, the
Euclidean ball has the largest possible capacity. Indeed if B2n(R) is a ball of V ol(K), then
the right-hand side of (5.34) is R2.

(ii) Several weaker versions of (5.34) have been already established. Viterbo showed

c0(K)

c0(B2n)
≤ γn

[
V ol(K)

V ol(B2n)

] 1
n

,
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where γn = 2n for a centrally symmetric K and γn = 32n for general convex K. Accord-
ing to Arestein-Avidan Milman and Ostrove (2007), we can choose the constant γn to be
independent of n.

(iii) According to Gluskin and Ostrover [GO],

(5.36) ω̄(K◦)−1 ≤ c0(K),

where ω̄(K◦) = supa,b∈K◦ ω̄(a, b) and K is any bounded convex set that has the origin in
its interior. The proof flollows from the fact that ω̄(K◦) bounds the Lipschitz constant
of a K-characteristic with respect to the gK-norm. More precisely, if γ̇ = J∇gK(γ) and
0 ≤ s ≤ t ≤ T, then

(5.37) gK
(
γ(t)− γ(s)

)
≤
∫ t

s

gK(γ̇(θ)) dθ =

∫ t

s

hK◦(J∇gK(γ)) dθ ≤ (t− s)ω̄(K◦),

because ∇gK ∈ ∂K◦. On the other hand

gK
(
γ(t)− γ(s)

)
= hK◦

(
γ(t)− γ(s)

)
≥
(
γ(t)− γ(s)

)
· ∇gK(γ(t)) = 1− γ(s) · ∇gK(γ(t)).

This and (5.37) yields
1 ≤ γ(s) · ∇gK(γ(t)) + (t− s)ω̄(K◦).

Choose s = 0 and integrate this over t ∈ [0, T ], where T is the period;

T ≤
∫ T

0

γ(s) · ∇gK(γ(t)) dt+ ω̄(K◦)T 2/2 = ω̄(K◦)T 2/2,

because
∫ T
0
J∇gK(γ(t)) dt =

∫ T
0
γ̇ dt = 0. Hence 2 ≤ ω̄(K◦)T , which proves (5.36).

In the case of a centrally symmetric convex K, we also have

c0(K) ≤ 4 (ω̄(K◦))−1 ,

as was shown in [GO]. □

In (5.30), we can replace L2 norm with the Lp norm. Observe,

c0(K) = inf

{
1

2

∫ 1

0

h2K(ẇ) dt : w ∈ Λ1, 2A(w) = 1

}
= inf

{
1

4

∫ 1

0

h2K(ẇ) dt : w ∈ Λ1, A(w) = 1

}
.

Given p ≥ 1, define

(5.38) c0,p(K) = inf

{
1

4

(∫ 1

0

hpK(ẇ) dt

)2/p

: w ∈ Λ1, A(w) = 1

}
.
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We can show that c0,p = c0. Moreover, if we define

ĉ0,p(K) =

[
sup

{
2

∫ 1

0

J̄w · ẇ dt :

∫ 1

0

hpK(ẇ) dt ≤ 1

}]−1

(5.39)

=

[
sup

{
2

∫ 1

0

J̄w · ẇ dt :

∫ 1

0

hpK(ẇ) dt = 1

}]−1

,

then

(5.40) c0,p(K) = ĉ0,p(K),

In particular, when p = ∞, we simply have

c0(K) = ĉ0,p(K) = ĉ0,∞(K)(5.41)

=

[
sup

{∫ 1

0

J̄w · ẇ dt :
1

2
hK(ẇ) ≤ 1)

}]−1

=

[
sup

{
1

2

∫ 1

0

J̄w · ẇ dt : ẇ ∈ Ko)

}]−1

,

for every p ≥ 1.

Exercise 5.1 (i) Verify Parts (i) and (ii) of Proposition 5.1.

(ii) Let w ∈ H1. Show that w(t) =
∫ t
0
ẇ(θ)dθ for almost all t. Also show

|w(t)− w(s)| ≤ ∥ẇ∥L2 |t− s|
1
2 .

for s, t ∈ [0, 1] and L2 = L2[0, 1].

(iii) Prove that if y ∈ H1 and
∫ 1

0
y dt = 0, then

∥y∥L2 ≤ 1

2π
∥ẏ∥L2 .

(iv) Show that if A is a centrally symmetric convex subset Rn with 0 in its interior, then
c0(A× A◦) ≤ 4. (Hint: Show that if the Hamiltonian flow starts from (0,∇gA(q)) for some
q ∈ ∂A then it reaches the boundary at q and reflect backs on itself to hit ∂A at −q for the
next hitting location. Such a periodic orbit has the value 4 for its action.)

(v) Verify (5.40). Show that the function p 7→ c0,p is non-decreasing.

(vi) Verify (5.41). (Hint: Show that if w is a maximizer for ĉ0,1, then a reparametrization
of w can serve as a maximizer for ĉ0,∞.)
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(vii) For any convex sets K and K ′ in R2n, show

c0(K +K ′)1/2 ≥ c0(K)1/2 + c0(K
′)1/2,

where
K +K ′ =

{
x+ x′ : x ∈ K, x′ ∈ K ′}.

(Hint: use c0 = c0,1.) □
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6 Capacities and Their Applications

In this chapter we assume the existence of a capacity for the symplectic manifolds and
deduce several properties of Hamiltonian systems. As we mentioned in the introduction the
non-squeezing theorem of Gromov inspired the search for symplectic capacities.

In (5.1), we assign a positive number c0(K) to every convex set with nonempty interior.
By Theorem 5.2, we have an alternative variational expression c′0(K) for c0(K) that allows
us to easily verify two important properties of c0(·):

(6.1) K ⊆ K ′ ⇒ c0(K) ≤ c0(K
′), c0(λK) = λ2c0(K),

for every λ > 0. Moreover, (5.1) allows us to show that c0(K) is invariant under a symplectic
change of coordinates. More precisely, if ψ is a symplectic diffeomorphism, and both K and
ψ(K) are convex, then

(6.2) c0(K) = c0(ψ(K)),

because (dψ)xTx(∂K) = Tψ(x)(∂ψ(K)), which implies

(dψ)x
(
ℓx(∂K)

)
= ℓψ(x)(ψ(∂K)),

where the line ℓx(A) denotes the kernel of ω̄|A. (See also (4.12) and Proposition 4.4.) Clearly
the finiteness of c0(K) is exactly Weinstein’s conjecture for convex subsets of R2n. We now
wonder whether c0(·) has an extension to all subsets of R2n. The finiteness of c0(A) for a
bounded A would lead to the existence of a periodic orbit of the Reeb vector field on ∂A as we
discussed in Remark 4.4. As a naive guess we may try c0(K) = inf |A(γ)|, with infimum over
the periodic characteristic of the line bundle ℓx(∂K), which is always well-defined because ω̄
is symplectic. But this cannot be a useful extension for our purposes because many smooth
hypersurfaces carry no periodic orbit as we saw in Example 4.3. We will offer shortly several
legitimate extensions of (5.1). Let us first formulate our wish-list for what an extension
should satisfy.

Definition 6.1 Write P
(
R2n
)
for the set of subsets of R2n. Then c : P

(
R2n
)
→ [0,∞] is

called a weak Euclidean capacity if the following conditions hold:

(i) If ψ : R2n → R2n is a symplectomorphism (i.e., a symplectic diffeomorphism with
ψ(R2n) = R2n) and ψ(A) ⊆ B then c(A) ≤ c(B).

(ii) c(λA) = λ2c(A) for λ > 0.

(iii) c(B2n(1)) > 0 and c(Z2n(1)) <∞, where B2n(1) is the Euclidean ball of radius 1, and
Z2n(1) is the cylinder {(q, p) : q21 + p21 ≤ 1}.
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We say c is a strong Euclidean capacity if in place of (iii), we require the stronger
assumption

c(B2n(1)) = c(Z2n(1)) = π.

□

Definition 6.2 Write SM for the set of all symplectic manifolds. Then c : SM → [0,∞]
is a weak symplectic capacity if the following conditions hold:

(i) If ψ : (M1, ω1) → (M2, ω2) is a symplectic embedding and dimM1 = dimM2, then
c(M1, ω1) ≤ c(M2, ω2).

(ii) c(M,λω) = λc(M,ω) for λ > 0.

(iii) c(B2n(1), ω̄) > 0, and c(Z2n(1), ω̄) <∞.

We say c is a strong symplectic capacity if in place of (iii), we require the stronger
assumption

(6.3) c(B2n(1), ω̄) = c(Z2n(1), ω̄) = π.

□

Note that the condition c(B2n(1), ω̄) > 0, guarantees that c ≡ 0 is not a capacity.
The requirement c(Z2n(1)) < ∞, disqualifies c(M,ω) = |

∫
M
ωn|1/n, n = dim(M), to be a

capacity. A strong capacity for symplectic manifolds can be used to define a strong Euclidean
capacity by

(6.4) c(A) = inf
{
c(U, ω̄) : A ⊆ U, U open in R2n

}
.

The proof of this is left to the reader (Exercise 6.1(i)).
We now define four capacities.

Definition 6.3(i) (Gromov Width) For a symplectic manifold (M,ω) with dim(M) = 2n,

c(M,ω) = sup
{
πr2 : There exists a symplectic embedding from (B2n(r), ω̄) into (M,ω)

}
,

c̄(M,ω) = inf
{
πr2 : There exists a symplectic embedding from (M,ω) into (Z2n(r), ω̄)

}
(ii) (Hofer-Zehnder Capacity) Given a symplectic (M,ω), we first set H(M) to denote the
set C1 functions H :M → [0,∞) such that H = maxH outside a compact subset of M and
H = minH = 0 on some non-empty open set. We then set

Ĥ(M,ω) = {H ∈ H(M) : XH has no periodic orbit of period T ∈ (0, 1]}.
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We now define

(6.5) cHZ(M,ω) = sup
H∈Ĥ(M,ω)

maxH.

(iii) (Displacement Energy) First we define it for open subsets U ⊆ R2n. Given a time
dependent Hamiltonian function H : R2n × [0, 1] → R, define

∥H∥∞,1 :=

∫ 1

0

(
sup
x
H(x, t)− inf

x
H(x, t)

)
dt.

We then define the displacement energy of a set U by

e(U) := inf
{
∥H∥∞,1 : ϕ

H
1 (U) ∩ U = ∅, H is of compact support

}
.

As in (6.4), we may also define e(A) for arbitrary subsets of R2n. More generally, if (M,ω)
is symplectic and U is an open subset of M , then

e(U ;M,ω) := inf
{
∥H∥∞,1 : ϕ

H,ω
1 (U) ∩ U = ∅, H is of compact support

}
.

□

Remark 6.1(i) The motivation behind the definition of c and c̄ is Gromov’s non-squeezing
theorem. Later we give a minimax-type expression for c and c̄ that is based on Gromov’s
proof of non-squeezing theorem and involves pseudo-holomorphic curves.

(ii) Let us write

Tmin(H;ω) = Tmin(H) = inf
{
T : Xω

H has a non-constant periodic orbit of period T
}
.

We may then write

cHZ(M,ω) = sup
H∈H(M)

{
maxH : Tmin(H;ω) ≥ 1

}
.

Obviously,
cHZ(M,ω) ≤ sup

H∈H(M)

(
Tmin(H;ω)maxH

)
.

Since a T -periodic orbit x(·) of XH yields a T/λ-periodic orbit y(t) = x(tλ) of XλH , we learn

(6.6) Tmin(λH) = λ−1Tmin(H),

for every λ > 0. As a result, if H ∈ H(M) and T̄ = Tmin(H), then Tmin(T̄H) = 1 and
T̄H ∈ Ĥ(M,ω), which in turn implies that T̄ maxH ≤ cHZ(M,ω). In summary, for every
H of compact support,

(6.7) Tmin(H;ω) ≤ cHZ(M,ω)

maxH
, and cHZ(M,ω) = sup

H∈H(M)

(
Tmin(H;ω)maxH

)
.
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When M = U is a convex open subset of R2n with 0 ∈ U and K = Ū , then we may set
H = min{HK , 1/2} so that H = 1/2 in the complement ofK and H(0) = 0. In some sense H
is the Hamiltonian for which the supremum in (??) is attained. Since H /∈ H(U), we choose a
sequenceHl ∈ H(U) so thatHl → H as l → ∞. This implies that cHZ(U) = cHZ(Ū) ≥ c(Ū).
The details are left to the reader (see Exercise 6.1((v)).

(iii) If XH = X ω̄
H has a periodic orbit x of period T , then y(t) = x(Tt) is 1-periodic and

solves ẏ = T J̄∇H(y). By differentiating we obtain ÿ = T J̄D2H(y)ẏ, which in turn yields
the bound

∥ÿ∥L2 ≤ aT∥ẏ∥L2 ≤ aT

2π
∥ÿ∥L2 ,

where a = max |D2H| and for the last inequality we used Exercise 5.1(iii). From this we
learn

Tmin(H) ≥ 2π

max |D2H|
.

However, the capacity cHZ(M,ω), provides us with an upper-bound on the period that
depends on ∥H∥ only. Note that if we write T (H) = T (H;ω) for 1/Tmin(H;ω), then in
some sense, T (H) measures the size of the function H in some symplectic sense. In fact, for
H ∈ H(U) and λ > 0,

(6.8) T (λH) = λT (H), cHZ(U)
−1 maxH ≤ T (H) ≤ (2π)−1 max |D2H|.

(iv) From (6.8) we deduce the bound

∥H∥ ≤ (2π)−1cHZ(U)max |D2H|,

for every H with compact support in U . In fact it is elementary to show

∥H∥ ≤ diam(U)max |∇H|, max |∇H| ≤ diam(U)max |D2H|,

where diamU denotes the diameter of U . So, we have maximum-type-principle inequality of
the form

∥H∥ ≤ diam(U)2max |D2H|.
According to Alexandroff-Bakelman-Pucci (ABP) Maximum Principle,

max
U

u ≤ max
∂U

u+
diam(U)

V ol(B2n)1/n

[∫
U

| detD2u| dx
] 1

n

.

In Viterbo [V], a symplectic geometry proof of ABP is given by using Hofer’s theorem for
the displacement energy (Theorem 6.2 (iv) below). □

Here are some straightforward properties of capacities.
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Proposition 6.1 Suppose that c is a strong capacity.

(i) For every ellipsoid E, we have c(E, ω̄) = πr1(E)
2.

(ii) For every symplectic manifold (M,ω),

c(M,ω) ≤ c(M,ω) ≤ c̄(M,ω).

Proof By Corollary 2.2, the ellipsoid E is symplectomorphic to the ellipsoid

E ′ =

{
x :

n∑
1

r−2
j (q2j + p2j) ≤ 1

}
.

Hence c(E, ω̄) = c(E ′, ω̄). On the other hand,

B2n(r1) ⊆ E ⊆ Z2n(r1).

As a result, πr21 ≤ c(E ′, ω̄) = c(E, ω̄) ≤ πr21. This completes the proof of (i). The proof of
(ii) is left as an exercise. □

In Chapter 5 we had a candidate for the symplectic capacity of a convex set. It is
conjectured that all capacities coincide on convex sets.

Conjecture 6.1 (Viterbo) For every convex subsetK of R2n with nonempty interior, c(K) =
c̄(K). □

In Chapter 7 we will show that cHZ is a capacity.

Theorem 6.1 The Hofer-Zehnder function cHZ is a strong capacity.

Remark 6.2 As we will see in Exercise 6.1(iv), it is not hard to show that cHZ
(
B2n(1)

)
≥ π.

Chapter 7 is devoted to the proof of cHZ
(
Z2n(1)

)
≤ π. Let us explain how the coarea

formula can be used to prove the latter bound for n = 1. In fact we can even show that
cHZ(U) ≤ area(U) for every connected open set in the plane. According to the coarea
formula, ∫

f |∇H| dx =

∫ ∞

−∞

(∫
{H=r}

f dℓ

)
dr,

where dx and dℓ denote the area and the length integration (see Proposition 4.5 and Re-
mark 4.4, or [EG] for the coarea formula). Hence if H ∈ H(M) with support in an open set
U ,

(6.9) area (U ∩ {∇H ̸= 0}) =
∫ maxH

0

(∫
U∩{H=r}

11(∇H ̸= 0)
dℓ

|∇H|

)
dr.
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Now if x(·) is a periodic orbit of period T that lies on the level set {H = r}, then its arc
length is given by

dℓ = |ẋ(t)|dt = |∇H(x(t))|dt.

Hence

(6.10)

∫
U∩{H=r}

11(∇H ̸= 0)
dℓ

|∇H|
≥ T

If T̂ is the smallest possible period for the non-constant periodic orbits of XH , then by (6.9)
and (6.10), we have

(maxH)T̂ ≤ area(U).

This in turn implies that cHZ(U) ≤ area(U). For the reverse inequality cHZ(U) ≥ area(U),
we need to find H : U → [0,∞) so that each nonzero level set {H = r} consists of exactly
one periodic orbit of period very close to area(U). In fact when U is convex with 0 ∈ U , then
a slight modification of HŪ would do the job as we demonstrated this in Remark 5.1(ii).
If U is simply connected, we can find an area preserving φ such that φ(B2n(r)) = U with
πr2 = area(U). Then a modification of H(x) = |x|2 yields a Hamiltonian in H(B2n(r), and
this will be pushed forward to U by φ to yield the desired Hamiltonian. □

We now discuss four fundamental results in symplectic geometry that will be established
in this chapter with the aid of Theorem 6.1.

Theorem 6.2 (i) (Gromov) If there exists a symplectic diffeomorphism ψ : R2n → R2n with
ψ(B2n(r)) ⊆ Z2n(R), then r ≥ R.

(ii) (Gromov, Eliashberg) If ψk : R2n → R2n are symplectomorphisms such that ψk → ψ
uniformly with ψ a diffeomorphism, then ψ is symplectic.

(iii) (Viterbo) The Reeb vector field of a closed hypersurface S of contact type in R2n has a
periodic orbit.

(iv) (Hofer) For every open set U , we have cHZ(U) ≤ e(U).

Remark 6.3(i) As we will see later, parts (i) and (ii) are consequences of the existence a
strong symplectic capacity. Though (iii) and (iv) relies on the form of cHZ .

(ii) In view of Theorems 6.1-6.2, Proposition 6.1, and Exercise 6.1(vi), we deduce that
c, cHZ , e and c̄ are all strong capacities and

c ≤ cHZ ≤ e ≤ c̄.

□
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Proof of Theorem 6.2(i) If ψ is a symplectomorphsim with ψ(B2n(r)) ⊆ Z2n(R), and c
is a strong capacity, then

r2π = c(rB2n(1)) = c(B2n(r)) = c(ψ(B2n(r)) ≤ c(Z2n(R)) = R2π,

as desired.

Proof of Theorem 6.2(iii) On account of Proposition 4.4, we only need to show that if
K = KS, then the Hamiltonian vector field XK has a periodic orbit in a bounded neighbor-
hood V of S. Recall that there exists an open set U with U = ∪t∈(−δ,δ)St, and K(Ss) = es.
To turn K to a Hamiltonian H ∈ H(U), take a smooth function g : [e−δ, eδ] → [0, 1] such
that

g(r) = 0 for r ≤ e−δ/2, g(r) = 1 for r ≥ eδ/2, g′(r) > 0 for e−δ/2 < r < eδ/2.

If we H = g(K), then H ∈ H(U). By Theorem 6.1, we know that cHZ(U) < ∞. From this
and (??), we deduce that XH has a non-constant periodic orbit in U . This periodic orbit
must lie in

V = ∪{St : t ∈ (−δ/2, δ/2)}.

We are done by Proposition 4.4. □

We now turn to the proof of Theorem 6.2(ii). The key idea of the proof is an equivalent
criterion for the symplecticity of a transformation that does not involve any derivative. This
should be compared to the notion of a volume preserving transformations. We can say that
a transformation is volume preserving if its Jacobian is one, or equivalently it preserves the
volume. The latter criterion is more useful when we want to show that a limit of a sequence
of measure preserving transformations is again measure preserving.

Theorem 6.3 (Ekeland-Hofer) Let c be a strong capacity and let ψ : R2n → R2n be a
diffeomorphism. Then the following statements are equivalent:

(i) For every small ellipsoid E, we have c(ψ(E)) = c(E).

(ii) Either ψ∗ω̄ = ω̄ or ψ∗ω̄ = −ω̄.

Proof Evidently if ψ∗ω̄ = ω̄, then (i) is true. If ψ∗ω̄ = −ω̄, then ψ̂∗ω̄ = ω̄ for ψ̂ = ψ ◦ τ ,
where τ is given by τ(q, p) = (p, q). We then have that for an ellipsoid E, c(ψ(τ(E))) = c(E).
On the other hand, if E is a standard ellipsoid given by

n∑
i=1

r−2
i (q2i + p2i ) ≤ 1,
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then τ(E) = E. Hence for such ellipsoids, c(ψ(E)) = c(E). Since for any symplectic φ we
have (ψ ◦ φ)∗ω̄ = −ω̄, we also have

c(φ(E)) = c(E) = c(ψ(φ(E))),

for any standard ellipsoid . Now any ellipsoid can be represented as φ(E) for some linear
symplectic φ and a standard E. This completes the proof of (ii) ⇒ (i).

For the converse, assume (i) is true and define

ϕk(x) = k(ψ(a+ k−1x)− ψ(a)).

We have that ϕk(x) → ψ′(a)x locally uniformly as k → ∞. Note that if E is an ellipsoid
and ψ satisfies (i), then

c(ϕk(E)) = c(kψ(a+ k−1E)− kψ(a))

= k2c(ψ(a+ k−1E))

= k2c(k−1E) = c(E).

On the other hand, it follows from Lemma 6.1 below that limϕk(·) = ψ′(a) also satisfies
(i). We finally use Theorem 2.3 to deduce that the matrix A = ψ′(a) satisfies A∗ω̄ = ω̄ or
A∗ω̄ = −ω̄. By continuity we have ψ(a)′∗ω̄ = ω̄ for all a or ψ(a)′∗ω̄ = −ω̄ for all a. □

To complete the proof of Theorem 6.3, we till need to show that the property (i) of
Theorem 2.3 is preserved under a uniform limit. In Lemma 6.1 we prove a stronger variant
that does not assume that the functions {ψk}k∈N are diffeomorphism.

Lemma 6.1 Let {ψk} be a sequence of continuous functions for which (i) of Theorem 6.3 is
valid. If ψk → ψ locally uniformly and ψ is a homeomorphism, then ψ satisfies (i) as well.

Proof Imagine that we can prove this: For every λ ∈ (0, 1) and every 0-centered ellipsoid
E, there exists k0 such that for k > k0 we have

(6.11) ψk(λE) ⊆ ψ(E) ⊆ ψk(λ
−1E).

Then we are done because

c(ψ(E)) ≤ c(ψk(λ
−1E)) = c(λ−1E) = λ−2c(E),

c(ψ(E)) ≥ c(ψk(λE)) = c(λE) = λ2c(E)

and yields property (i) for ψ by sending λ to 1.
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To establish (6.11), let us write φk = ψ−1 ◦ψk. Clearly the sequence φk converges to the
identity, locally uniformly in the large k limit. From this it is clear that for large k,

ψ−1 ◦ ψk(λE) ⊆ E,

establishing the first inclusion in (6.11).
If ψk is a homeomorphism for each k, then the second inclusion in (6.11) can be established

in the same way. It remains to show that for large k,

(6.12) E ⊆ φk(λ
−1E),

even when ψk’s are not homeomorphism. If (6.12) fails, then there exists a sequence kl → ∞
and yl ∈ E such that yl /∈ φkl(λ

−1E). This allows us to define

Fl(x) =
φkl(x)− yl
|φkl(x)− yl|

,

for x ∈ λ−1E =: Eλ. It follows from Lemma A.1 of the Appendix that deg fl = 0 where
fl : ∂Eλ → S2n−1 is the restriction of Fl to ∂Eλ. On the other hand, we may define

gl : ∂Eλ → ∂S2n−1 by gl(x) =
φkl

(x)

|φkl
(x)| . The function gl is well-defined for large l because φkl

is uniformly close to identity over the set ∂Eλ. The function gl has deg 1 simply because gl
is uniformly close to x 7→ x

|x| which has degree 1. To arrive at a contradiction, it suffices to

show that gl is homotopic to fk. (By Lemma A.1 homotopic transformations have the same
degree.) For homotopy, define

Φl(x, t) =
φkl(x)− tyl
|φkl(x)− tyl|

,

for x ∈ ∂Eλ, t ∈ [0, 1]. Again, since φk → id and tyl ∈ E the homotopy is well-defined.
□

With Theorem 6.3 and Lemma 6.1 at our disposal, we can now give a straightforward
proof for Theorem 6.2((iii).

Proof of Theorem 6.2(iii) Let ψk be a sequence of symplectic transformations such that
ψk → ψ locally uniformly. Assume that ψ is a diffeomorphism. By Lemma 6.1, ψ preserves
the capacity of ellipsoids and by Theorem 6.3, either ψ∗ω̄ = ω̄ or ψ∗ω̄ = −ω̄. We now need
to rule out the second possibility. Indeed if ψ∗ω̄ = −ω̄, and we define

ϕn = ψn × id : R4n → R4n, ω = ω̄ × ω̄,

then ϕ∗
nω = ω, and ϕn → ϕ := ψ×id locally uniformly. But ϕ∗ω = ψ∗ω̄×ω̄ = (−ω̄)×ω̄ ̸= ±ω.

As a result, we must have ψ∗ω̄ = ω̄. □
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Motivated by Theorem 6.3, we may define the notion of symplecticity for homeomor-
phism. Note that if ψ : R4n → R4n is a diffeomorphism with ψ∗ω̄ = −ω̄, then ψ∗ω̄n =
(−1)nω̄n, and if n is odd then ψ can not be orientation preserving. Based on this we have
the following definition.

Definition 6.3 Let ψ : R2n → R2n be a homeomorphism. We say ψ is a symplectic
homeomorphism if either n is odd and ψ is an orientation preserving transformation for
which c(ψ(E)) = c(E) for every ellipsoid E. Or n is even and ψ × id : R2n+2 → R2n+2 is a
symplectic homeomorphism.

From the proof of Theorem 6.2(iii) it is clear that if ψk is a sequence of symplectic home-
omorphism such that ψk → ψ locally uniformly, then ψ is also a symplectic homeomorphism.

Remark 6.4 Observe that if ψ : R2n → R2n is C1, with

ψ(x) = ψ(x1, . . . , x2n) =
(
X1(x), . . . , X2n(x)

)
,

and {u1, . . . , u2n} is the standard basis for R2n, then

(dψ)J̄(dψ)∗ui · uj = J̄(dψ)∗ui · (dψ)∗uj = J̄∇Xi · ∇Xi =: {Xi, Xj}.

In other words
(dψ)J̄(dψ)∗ =

[
{Xi, Xj}

]2n
i,j=1

.

We may wonder wether or not we can make sense of (dψ)J̄(dψ)∗ in some weak sense when ψ is
only a continuous function. Equivalently, given a pair of continuous function f, g : R2n → R,
we wish to make sense of {f, g}. Observe

{f, g} = J̄∇f · ∇g = ∇ ·
(
fJ̄∇g

)
,

∫
{f, g}ζ dx = −

∫
f{g, ζ} dx,

for any smooth ζ : R2n → R of compact support. Hence, it suffice to find a weak interpreta-
tion of f∇g. It turns out that this is possible of (f, g) ∈ Cα×Cβ, when α+β > 1, where Cα

represents the space of α-Hölder continuous functions. Indeed, we can talk about suitable
negative Hölder space Cβ−1, and a continuous bilinear operator

B : Cα × Cβ → Cβ−1,

such that B(f, g) = f∇g if g ∈ C1. From this we learn that if ψ ∈ Cα, with α > 1/2,
then we can make sense of (dψ)J̄(dψ)∗ as a Schwartz distribution in Cα−2, and such a ψ is
symplectic if (dψ)J̄(dψ)∗ = J̄ . The operator B was constructed by Young in dimension 1.
Indeed, for f, g : R → R, with (f, g) ∈ Cα × Cβ, we can find a candidate for fg′ ∈ Cβ−1, if

h(x) =

∫ x

0

f(y)g′(y) dy =:

∫ x

0

f dg,
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can be defined as a function in Cβ. Young discovered that the standard Riemann-Steiltjes
approximation is convergent even when (f, g) ∈ Cα × Cβ, for some α and β satisfying
α + β > 1. We refer to [R] for more details. □

We now turn our attention to the energy displacement and Theorem 6.2(iv). The proof
of Hofer’s theorem will be discussed in Chapter 8. Alternatively, we may use Theorem 6.1
or Theorem 6.2 (i) to establish a weaker version of Theorem 6.2(iv) but in a more general
setting. A slight variant of Theorem 6.4 below is due to Lalonde-McDuff (see [DS]).

Theorem 6.4 Let c : SM → [0,∞) be a capacity (satisfying (i) and (ii) of Definition 6.2)
such that for any symplectic manifold (M,ω), and any open planar set V , we have

(6.13) min
{
c(M,ω), |V |

}
≤ c
(
M × V, ω ⊗ ω̄

)
≤ |V |,

with |V | = area(V ). Then for any symplectic manifold (M,ω), and any open subset U of
M , we have

(6.14) c(U, ω) ≤ 2e(U ;M,ω).

As a preparation, we start with a straightforward proposition:

Proposition 6.2 Let (M,ω) be a symplectic manifold, and H : M × R → R be a time
dependent Hamiltonian function. Set

M̃ :=M × R2 = {(x, h, t) : x ∈M, h, t ∈ R}, ω̃ := ω + dt ∧ dh,
ψ(x, h, t) := (ϕt(x), h+H (ϕt(x), t) , t) ,

with ϕt = ϕH,ωt . Then the transformation ψ is ω̃-symplectic.

Proof Let us write d for differentiation with respect to x ∈ M , and d̂ for the differention
with respect to if z = (x, h, t). If ẑ = (x̂, ĥ, t̂) ∈ TxM × R2, then

(d̂ψ)z ẑ =
(
(dϕt)xx̂+ t̂XH(ϕt(x)), ĥ+ t̂V (x, t) + d(H ◦ ϕt)x(x̂), t̂

)
,

where V = V (x, t) = Ht (ϕt(x), t) + (dH)ϕt(x)
(
XH(ϕt(x))

)
. As a result,(

ψ∗ω̃
)
z
(ẑ, ẑ′) = ω̃ψ(z)

(
(dψ)z(ẑ), (dψ)z(ẑ

′)
)
,
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equals

(ϕ∗
tω)x (x̂, x̂

′) + t̂ ωϕt(x) (XH(ϕt(x)), (dϕt)xx̂
′)− t̂′ ωϕt(x) (XH(ϕt(x)), (dϕt)xx̂)

+ (dt ∧ dk)
(((

ĥ+ t̂V (x, t) + d(H ◦ ϕt)x(x̂)
)
, t̂
)
,
((
ĥ′ + t̂′V (x, t) + d(H ◦ ϕt)x(x̂)

)
, t̂′
))

= ωx(x̂, x̂
′) + (ϕ∗

t (iXH
ω))x (t̂x̂

′ − t̂′x̂) + (dt ∧ dk)
(
(ĥ, t̂), (ĥ′, t̂′)

)
+ (dt ∧ dk)

((
d(H ◦ ϕt)xx̂, t̂

)
,
(
d(H ◦ ϕt)xx̂′, t̂′

))
= ω̃z(ẑ, ẑ

′)− (ϕ∗
tdH)x (t̂x̂

′ − t̂′x̂) + (dt ∧ dk)
((
d(H ◦ ϕt)xx̂, t̂

)
,
(
d(H ◦ ϕt)xx̂′, t̂′

))
= ω̃z(ẑ, ẑ

′),

as desired. □

Remark 6.5(i) In the case of M = R2n, simply write ϕt(q, p) = (Q,P ), and k = h +
H
(
ϕHt (x), t

)
, and observe∑

i

dP i ∧ dQi + dt ∧ dk =
∑
i

dpi ∧ dqi +
∑
i

[
P i
t dt ∧ dQi +Qi

t dP
i ∧ dt

]
+ dt ∧ dh

+
∑
i

[
Hqi(Q,P, t) dt ∧ dQi +Hpi(Q,P, t) dt ∧ dP i

]
=
∑
i

dpi ∧ dqi + dh ∧ dt.

(ii) Observe that if α = p · dq − H(x, t)dt, then dα = ω̄ + dt ∧ dh, where h = H(x, t).
Regarding h as a new coordinate we get ω̃ = ω̄ + dt ∧ dh. It is worth mentioning that if
Ĥ(x, h, t) = H(x, t)− h, and H t(x, s) := H(x, t+ s), then

ϕĤ,ω̃s (x, h, t) =
(
ϕH

t,ω̄
s (x), H

(
ϕH

t,ω̄
s (x), t+ s

)
−H(x, t) + h, t+ s

)
,

which resembles ψ. □

Proof of Theorem 6.4 To ease the notation, we write ϕ for ϕH1 . Before embarking on the
proof (6.19), let us explain the idea behind the proof. Observe that the condition ϕH1 (U)∩U =
∅ is a property of the flow at time 1, whereas the right-hand side of (6.19) involves the
Hamiltonian function H. Because of this, we switch from ϕH1 to ψ of Proposition 6.2 that
explicitly involves the Hamiltonian function. Let us define

h+(t) = max
x

H(x, t), h−(t) = min
x
H(x, t), Γ = ψ

(
U × {0} × [0, 1]

)
.

The set Γ is a hypersurface in M̃ , and Γ ⊆M × E0, where

E0 =
{
(k, t) : t ∈ [0, 1], k ∈ [h−(t), h+(t)]

}
,
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In other words, ψ embeds U × {0} × [0, 1] into a cylinder like set M × E0, and we wish to
show

(6.15) c(U, ω) ≤ 2 area(E0).

This indeed has the same flavor as our Theorem 6.2(iii) (Gromov’s non-squeezing theorem),
though U × [0, 1] is not a symplectic manifold. To rectify this, we replace [0, 1] with a planar
set A and use ψ instead of ψ0. More specifically, the set A is defined as,

A =
(
[−a, a]× [−2a, 0]

)
∪
(
[−ε, ε]× [0, 1]

)
∪
(
[−a, a]× [1, 1 + 2a]

)
=: A− ∪ A0 ∪ A+.

As the first step, let us assume that H(x, t) = 0 for t close to 0 or 1. This allows us to
extend H for all times by setting H(x, t) = 0 for t < 0 and t > 1. Note

� ψ(x, h, t) = (x, h, t) for t ≤ 0,

� ψ(x, h, t) = (ϕ(x), h, t) for t ≥ 1.

As a result, if we write W± = U × A±, W 0 = U × A0, and W = U × A, then

ψ(W−) = W−, ψ(W+) = ϕ(U)× A+, ψ(W 0) ⊂M × E(ε),

where E(ε) is a small neighborhood of E0 for small ε. We have the embedding

ψ : U × A ↪→M × (A− ∪ E(ε) ∪ A+) =: Z.

We now want to use ϕH(U) ∩ U = ∅ to replace Z with a slimmer cylinder. To achieve this,
take a symplectic covering map λ : R2 →

[
R× S1

]
∪
[
R× (−∞, 0)

]
such that

λ(R× [0, 1]) = R× S1, λ(h, t) =

{
(h, 1− t), for t ≥ 1

(h, t), for t ≤ 0.

Since ϕH(U) ∩ U = ∅, we have that the map

ψ̂ =
(
id× h) ◦ ψ,

is a symplectic diffeomorphism. This time

(6.16) ψ̂ : U × A ↪→M × (A− ∪ E ′(ε)) :=M × E ′′,

where E ′(ε), is the set we obtain from E(ε) by setting 0 = 1 for the t-coordinate. Evidently
area(E ′(ε)) → ∥H∥∞,1 as ε→ 0. From (6.16), we learn

(6.17) c(U × A, ω̃) ≤ c(M × E ′′, ω̃),
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where ω̂ = ω + dθ ∧ dt, where dθ is the standard 1-form on S1. This and (6.13) imply

(6.18) min
{
c(M,ω), |A|

}
≤≤ |E ′′|.

By sending ε to 0 we obtain

min
{
c(M,ω), 2(2a)2

}
≤ (2a)2 + ∥H∥∞,1.

We now choose a so that c(M,ω) = 2(2a)2, to deduce (6.19).
It remains to show that without loss of generality, we can always assume that H = 0 for

t near 0 and 1. For this, first observe that since the definition of cHZ involves Hamiltonian
function with compact support inside U , we may find a sequence of nested open sets Uk so
that ∪kUk = U , and that if δk denotes the distance between M \ U and Uk, then δk → 0
in large k-limit. Because of this, it suffices to establish (6.19) for Uk in place of U . We
now take a Hamiltonian H with support in Uk and mollify it in the following way: Take a
smooth function χ = χδ such that 0 ≤ χ ≤ 1, χ(t) = 1, for t ∈ [δ, 1 − δ], and χ(t) = 0 for
t /∈ (0, 1), and set H ′(x, t) = χ(t)H(x, t). We certainly have that ∥H∥∞,1 −∥H ′∥∞,1 = O(δ),
and that there exists δ̄ > 0 such that if 0 < δ < δ̄, then ϕ′(Uk) ∩ U = ϕ′(Uk) ∩ Uk = ∅
for ϕ′ = ϕH

′,ω
1 . The constant δ̄ many depend on C2-norm of H but that would not cause

any difficulty because our bound (6.19) depends only on ∥H ′∥∞,1. We finally send δ → 0 to
arrive at our bound for Uk. □

Note that the condition cHZ(M×B2(r)) ≤ πr2 is valid forM = R2n. Given a symplectic

manifold (M,ω), and H ∈ H(M), we set

S(H;ω) = (maxH)Tmin(H;ω).

Proposition 6.3 Let (M,ω) and (M ′, ω′) be a pair of sympletic manifolds.

(i) If H ∈ H(M), H ′ ∈ H(M ′), and (H ⊗H ′)(x, x′) = H(x)H ′(x′), then

S
(
H ⊗H ′;ω ⊕ ω′) = min

{
S(H;ω), S(H ′;ω′)

}
.

(ii) We have

(6.19) cHZ(M ×M ′, ω ⊕ ω′) ≥ min
{
cHZ(M,ω), cHZ(M

′, ω′)
}
.

Proof(i) Without loss of generality, we may assume that H,H ′ ̸= 0. Clearly

XH⊗H′(x, x′) =
(
H ′(x′)XH(x), H(x)XH′(x′)

)
.
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Choose a ∈M and a′ ∈M ′ such that m := maxH = H(a) and m′ := maxH ′ = H ′(a′). Let
x (respectively x′) be a T -periodic (respectively T ′-periodic) orbit of XH (respectively XH′).
Then z(t) = (x(tm′), a′) and z′(t) = (a, x′(tm)) are two orbits of XH⊗H′ with periods T/m′

and T ′/m respectively. From this we learn

S(H ⊗H ′;ω ⊕ ω′) = mm′ Tmin(H ⊗H ′;ω ⊕ ω′)

≤ mm′ min
{
Tmin(H;ω)/m′, Tmin(H ′;ω′)/m

}
= min

{
m Tmin(H;ω),m′ Tmin(H ′;ω′)

}
= min

{
S(H;ω), S ′(H ′;ω′)

}
.

For the reverse inequality, let z = (x, x′) be a non-constant T -periodic orbit. Hence
ż = XH⊗H′(z), or

ẋ = H ′(x′)XH(x), ẏ = H(x)XH′(x′).

Clearly
d

dt
H(x) =

d

dt
H ′(x′) = 0.

Since z is a T -periodic orbit with λ = H(x) and λ′ = H(x′), then x̂(t) = x(t/λ′) is a Tλ′

periodic orbit of XH and x̂(t) = x(t/λ) is a Tλ periodic orbit of XH′ . Since z is non-
constant, either x̂ or x̂′ is non-constant. Without loss of generality, we may assume that x̂
is non-constant. Hence

λ′T ≥ Tmin(H,ω).

This in turn implies

mm′T ≥ mλ′T ≥ m Tmin(H,ω) = S(H,ω).

From this we can readily deduce

S(H ⊗H ′;ω ⊕ ω′) ≥ S(H,ω) ≥ min
{
S(H,ω), S(H ′, ω′)

}
.

(ii) We have

min
{
cHZ(M,ω), cHZ(M

′, ω′)
}
= min

{
sup

H∈H(M)

S(H;ω), sup
H′∈H(M ′)

S(H ′;ω′)

}
≤ sup

H∈H(M)

sup
H′∈H(M ′)

min
{
S(H;ω), S(H ′;ω′)

}
= sup

H∈H(M)

sup
H′∈H(M ′)

S(H ⊗H ′;ω ⊗ ω′)

≤ sup
K∈H(M×M ′)

S(K;ω ⊗ ω′) = cHZ(M ×M ′, ω ⊕ ω′),
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as desired. □

Exercise 6.1(i) Show that c given by (6.4) is a strong Euclidean capacity.

(ii) Verify properties (i) and (ii) of Definition 6.2 for c, c̄, cHZ , and Euclidean e. (Hint:
For e, use Ĥ(x) = λ2H(x/λ).)

(iii) Verify Proposition 6.1(ii).

(iv) Show that cHZ(B
2n(1), ω̄) ≥ π.

(v) Show that cHZ(K, ω̄) ≥ c0(K) for every bounded convex subset of R2n with nonempty
interior.

(vi) Show that e(U) = area(U) for every simply connected open subset U ⊂ R2. Use this
to show e(Z2n(1)) ≤ π. Hint: Use Exercise 3.1(vi) to reduce the problem to the case of
U = [0, a]2.

(vii) Show that if H is of compact support and its support is contained in the set U , then

Tmin(H) ≤ cHZ(M,ω)

∥H∥∞
,

where ∥H∥∞ = max |H|.

(viii) Show

c(U)

c(B2n)
≤
(
V ol(U)

V ol(B2n)

)1/n

,

for every bounded open set U ⊂ R2n. From this deduce that if c(K) = c0(K), for a convex
set K, then (5.34) holds. □
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7 Hofer-Zehnder Capacity

This section is devoted to the proof of Theorem 6.1. In fact we have the following result of
Hofer and Zehnder.

Theorem 7.1 For every convex set K of nonempty interior, cHZ(K) = c0(K).

On account of Exercise 6.1(v), we only need to show that cHZ(K) ≤ c0(K). Similarly,
for Theorem 6.1, we only need to verify cHZ(Z

2n(1), ω̄) ≤ π. Equivalently, we need to show
that for every H1 ∈ H(Z2n), and λ > 1,

1 ≥ λ−1π−1(maxH) Tmin(H) = Tmin
(
λπH

maxH

)
=: Tmin(H0).

Since maxH0 > π, it suffices to prove that such a Hamiltonian function has a con-constant
periodic orbit.

Theorem 7.2 Assume H0 ∈ Ĥ(Z2n(1)) with supH0 > π. Then the Hamiltonian flow of H0

has a non-constant periodic orbit of period 1.

Let H0 ∈ H(Z2n(1)). In fact we may assume that H0 vanishes near the origin. This
is because we may replace H with H ◦ ψ for a symplectic ψ : Z(1) → Z(1) that satisfies
ψ(x) = x outside a compact subset of Z(1). Indeed we may choose ψ = ϕh1 where h is a
suitable Hamiltonian function that vanishes outside a compact subset of Z(1). For example,
first choose h0(x) = J̄x · a for a fix vector a, so that ϕh01 (x) = x + a, then set h = h0χ,
where χ is a function of compact support in Z(1) that is identically 1 in a neighborhood of
the line segment connecting the origin to a. Using such ψ, we may shift a minimizer of H
to the origin. Since the flows of XH and XH◦ψ are conjugated, it suffices to find the desired
1-periodic orbit for H0 ◦ ψ. From now on we assume that H0 in Theorem 7.2 vanishes near
the origin.

As our next step we extend H0 to a Hamiltonian function H : R2n → R. For this, we
take an ellipsoid

E0 =

{
x ∈ R2n : Q(x) = q21 + p21 +

1

l2

n∑
j=2

(q2j + p2j) < 1

}
.

Since H0 ∈ H(Z2n(1)), we have that H0 = maxH0 for x /∈ K where K is a compact subset
of Z := Z2n(1). Choose l sufficiently large so that K ⊆ E0. We now pick ϵ > 0 so that
maxH0 > π+ ϵ and pick a smooth function f : [0,∞) → [0,∞) such that f(r) = maxH for
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r ∈ [0, 1], f(r) = (π + ϵ)r for large r, f(r) ≥ (π + ϵ)r for all r, and 0 < f ′(r) ≤ π + ϵ for
r > 1. We now define

(7.1) H(x) =

{
H0(x) if x ∈ E0,

f(Q(x)) if x /∈ E0.

We note that H(x) = (π + ϵ)Q(x) for large x. Also note that if Q is quadratic (or even
homogeneous of degree 2), then its action for a 1-periodic orbit is always 0:

A(x(·)) = 1

2

∫ 1

0

(
J̄x · J̄∇Q(x)− 2Q(x)

)
dt = 0.

This suggests that a periodic orbit of XH of positive action must be periodic orbit of the
original XH0 .

Lemma 7.1 Assume that x(·) is a 1-periodic solution of ẋ = J̄∇H(x) with

(7.2) A(x(·)) =
∫ 1

0

(
1

2
J̄x · ẋ−H(x)

)
dt > 0.

Then x(t) ∈ E0 for all t and x(·) is non-constant.

Proof Evidently XH = 0 on ∂E0. Hence, all points on ∂E0 are equilibrium points and if
x(t) ≡ a ∈ ∂E0, then A(x(·)) = −H(a) ≤ 0 which contradicts (7.2). As a result, either
x(t) ∈ E0 for all t, or x(t) /∈ E0 for all t. It remains to rule out the latter possibility.

If x(t) /∈ E0 for all t, then

ẋ = J̄∇H(x) = f ′(Q(x))J̄∇Q(x),
d

dt
Q(x) = f ′(Q(x))∇Q(x) · J̄∇Q(x) = 0.

Hence, for such x(·) we have that Q(x(·)) = Q0, and

A(x(·)) =
∫ 1

0

(
1

2
J̄x · ẋ−H(x)

)
dt

=

∫ 1

0

[
1

2
f ′(Q0)∇Q(x) · x− f(Q0)

]
dt

= f ′(Q0)Q0 − f(Q0) ≤ (π + ϵ)Q0 − (π + ϵ)Q0 = 0,

which contradicts (7.2). Here we used the fact that 2Q(x) = ∇Q(x) · x. □
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In view of Lemma 7.1, we only need to find a critical point of A which satisfies (7.2). Let
us first observe that A is not bounded from below or above. Indeed if yk(t) = (cos 2πkt)a+
(sin 2πkt)J̄a, for some a ∈ R2n, then∫ 1

0

|yk(t)|2dt = |a|2,
∫ 1

0

J̄yk(t) · ẏk(t)dt = 2πk|a|2,

which in particular implies that limk→±∞ A(yk) = ±∞, whenever a ̸= 0. Because of this, we
search for saddle-type critical points of A. A standard way of locating such critical points
is by using the celebrated minimax principle.

To prepare for this, let us first extend the domain of definition of A from C1 to the largest
possible Sobolev space which turns out to be the space of function with “half” a derivative.
We begin with H0 = L2 which consists of measurable functions

x(t) =
∑
k∈Z

e2πktJ̄xk =
∑
k∈Z

[(cos 2πkt)I + (sin 2πkt)J̄ ]xk

with xk ∈ R2n and ∥x∥0 =
∑

k |xk|2 < ∞. Here we are using the Fourier expansion of x(·)
where instead of i =

√
−1 we use −J̄ . We write

⟨x, y⟩0 =
∫ 1

0

x(t) · y(t)dt,

for the standard inner product of H0. Note that if

x(t) =
∑
k

e2πktJ̄xk and y(t) =
∑
k

e2πktJ̄yk,

then ⟨x, y⟩0 =
∑

k xk · yk and ∥x∥20 = ⟨x, x⟩0. We note that
∫ 1

0
H(x(t))dt is well defined for

every x ∈ H0 because H(x) = Q(x) for large x. However, to make sense of
∫ 1

0
J̄x · ẋdt, we

need to assume that x(·) possesses half a derivative. To see this first observe that if x ∈ C1,
with x =

∑
k e

2πktJ̄xk, then ∫ 1

0

1

2
J̄x · ẋdt = π

∑
k

k|xk|2.

This suggests defining

H1/2 =

{
x ∈ H0 :

∑
k

|k||xk|2 <∞

}
.

We turn H1/2 into a Hilbert space by defining

⟨x, y⟩ = ⟨x, y⟩1/2 = x0 · y0 + 2π
∑
k∈Z

|k|(xk · yk).
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More generally, we define

⟨x, y⟩s = x0 · y0 + (2π)2s
∑
k∈Z

|k|2s(xk · yk),

for every s > 0 and Hs consists of function x ∈ H0 such that ∥x∥2s = ⟨x, x⟩s < ∞. Observe

that if x ∈ C1, then
∫ 1

0
|ẋ(t)|2dt =

∑
k(2πk)

2|xk|2 and that in general x ∈ H1 iff x has a
weak derivative in L2.

So far we know that our functional A is defined on the Hilbert space H1/2. Let us take
an arbitrary Hilbert space E and a function F : E → R, and explain the idea of minimax
principle for such a function.

Definition 7.1(i) We say that F is continuously differentiable with a derivative ∇F if
∇F : E → E is a continuous function such that for all x and a,

F (x) = F (a) + ⟨∇F (x), x− a⟩+ o(∥x− a∥).

We say that x is a critical point of F if ∇F (x) = 0.

(ii) We say that F ∈ C1(E ;R) satisfies Palais–Smale (PS) condition if the conditions

(7.3) sup
l

|F (xl)| <∞, lim
l→∞

∇F (xl) = 0,

for a sequence {xl} imply that {xl} has a convergent subsequence. □

Given a family F of subsets of E , define

α(F,F) = inf
A∈F

sup
x∈A

F (x) ∈ [−∞,+∞].

Theorem 7.3 (Minimax Principle). Let F : E → R be a Palais–Smale function and assume
that the flow Φt of the gradient ODE ẋ = −∇F (x) is well-defined for all t ∈ R+. If
Φt(A) ∈ F for A ∈ F and that α = α(F,F) ∈ R, then there exists x∗ ∈ E such that

(7.4) ∇F (x∗) = 0 and F (x∗) = α(F,F).

Proof It suffices to show

(7.5) inf
{
∥∇F (x)∥ : α− < F (x) < α+

}
= 0,

for every pair of constants α+ and α− such that α− < α < α+. Indeed if (7.5) is true, then
for every l ∈ N, we can find xl such that

α− l−1 < F (xl) < α+ l−1, ∥∇F (xl)∥ ≤ l−1.
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We then use the Palais–Smale property of F to assert that {xl} has a convergent subsequence
that converges to x∗. Since F ∈ C1, we deduce that ∇F (x∗) = 0.

To establish (7.5), we argue by contradiction. Suppose to the contrary,

(7.6) inf
{
∥∇F (x)∥ : α− < F (x) < α+

}
= ε > 0.

By the definition of α, we can find a set A ∈ F such that

sup
x∈A

F (x) < α+.

To get a contradiction, we use the flow of Φt to come up with another set Â = Φt(A) ∈ F
for which supÂ F ≤ α− for sufficiently large t. Indeed, if x ∈ A and F (Φt(x)) > α−, then

α− < F (Φs(x)) < α+,

for every s ∈ [0, t]. From this and (7.6) we deduce

α− < F (Φt(x)) = F (x)−
∫ t

0

∥∇F (Φs(x))∥2 ds < α+ − tε2,

which is impossible if t > (α+ −α−)/ε2. Hence we must have F (Φt(x)) ≤ α−, for such large
t. This in turn implies

sup
Φt(A)

F ≤ α−,

which contradicts our assumption α− < α. Thus (7.5) must be true. □

Example 7.1 Let F ∈ C1(Rd;R) be a function which satisfies the Palais–Smale condition.
Assume that F is bounded from below. Then F has a minimizer x∗, i.e., F (x∗) = inf F .
This can be shown using Theorem 7.3 by taking F = {{x} : x ∈ Rd}. Similarly, when F is
bounded above, take F = {E} to deduce that the function F has a maximizer. □

We now give two applications of Theorem 7.3.

Proposition 7.1 Let F ∈ C1(E) be a Palais–Smale function.

(i) (Mountain Pass Lemma of Ambrosetti and Rabinowitz) Assume that R ⊆ E is a mountain
range relative to F in the following sense:

� E \R is not connected,

� infR F =: β > −∞,

� If A is a connected component of E \R, then infA F < β.
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Then F has a critical value α satisfying α ≥ β.

(ii) Let Γ and Σ be two bounded subsets of E such that infΓ F = β > −∞, Φt(Σ)∩Γ ̸= ∅ for
all t ≥ 0, and supΣ F <∞. Then F has a critical point x∗ such that

F (x∗) = inf
t≥0

sup
x∈Φt(Σ)

F (x) ≥ β.

(As in Theorem 7.3, Φt denotes the flow of −∇F.)

Proof (i) Let E1 and E2 be two connected components of E \ R and set Ê i = {x ∈ E i :
F (x) < β}, for i = 1 and 2. We now define

F = {γ[0, 1] such that γ : [0, 1] → E is continuous with γ(0) ∈ Ê1 and γ(1) ∈ Ê2}.

We set α = α(F,F) and would like to apply Theorem 7.2. Note that if A = γ[0, 1] ∈ F , then
A∩R ̸= ∅ and supA F ≥ β. Hence α ≥ β. Evidently α <∞ because A ∈ F is compact. On
the other hand, if A = γ[0, 1] ∈ F with γ(0) = a1 ∈ Ê1 and γ(1) = a2 ∈ Ê2, then Φt(aj) ∈ Ê j
for j = 1, 2 and t ≥ 0, because

F (Φt(aj)) ≤ F (aj) < β

and Φt(aj) /∈ R by infR F = β.

(ii) We simply take F = {Φt(Σ) : t ≥ 0}. Evidently α(F,F) ≤ supΣ F < ∞. Moreover,
since Φt(Σ) ∩ Γ ̸= ∅, we have

sup
t∈Φt(Σ)

F (x) ≥ β

for every t ≥ 0. We can now apply Theorem 7.3 to complete the proof. □

Our goal is proving Theorem 7.2 with the aid of Lemma 7.1 and Proposition 7.1 for
F = A and E = H1/2. Let us write A = A0 − C where

A0(x) =
1

2

∫ 1

0

J̄x · ẋdt, C(x) =
∫ 1

0

H(x)dt.

To differentiate A, we need the following operators: given x =
∑

k e
2πktJ̄xk, set

P±x =
∑
±k>0

e2πktJ̄xk, P 0x = x0,

I(x) = x0 +
∑
k ̸=0

1

2π|k|
e2πktJ̄xk.
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When we differentiate x(·), the k-th Fourier coefficient is multiplied by 2πkJ̄ = −2πki, where
as in the definition of I(x), the k-th coefficient is divided by 2π|k|. In some sense I is an
integration operator and it is easy to see

(7.7) ∥I(x)∥1 = ∥x∥0.

As we have seen before, if we consider the Hilbert space H0 = L2, then the gradient of A
with respect to the L2 inner product is of the form

∂A(x) = −J̄ ẋ−∇H(x).

However, if we write ∇A for the derivative of A with respect to E = H1/2, then

∇A = I∂A.

Proposition 7.2 (i) The function A is C1 with

(7.8) ∇A(x) = P+x− P−x−∇C(x) = P+x− P−x− I
(
∇H(x)

)
.

(ii) The operator C is a compact operator with

∥∇C(x)−∇C(y)∥1/2 ≤ c0∥x− y∥,

where c0 = sup ∥D2H∥.
(iii) The flow for the vector field −∇A is well-defined for all times.

(iv) If ∇A(x) = 0, then x is C1 and ẋ = J̄∇H(x).

(v) If ∇A(xl) → 0 in H1/2, then the sequence {xl} has a convergent subsequence. In
particular, the function A satisfies the (PS) condition.

Proof (i) Note that A0 is quadratic and therefore smooth. In fact for x =
∑

k e
2πktJ̄xk,

A0(x) =
∑
k

πk|xk|2 =
1

2
∥P+x∥2 − 1

2
∥P−x∥2,

which in turn implies

(7.9) ∇A0(x) = (P+ − P−)x.

We now turn to the functional C. Of course C is differentiable with respect to L2-inner
product and its derivative is given by ∇H(x). More precisely, since sup ∥D2H∥ = c0 < ∞,
we have

|H(x+ h)−H(x)−∇H(x) · h| ≤ c0
2
|h|2.
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As a result,

|C(x+ h)− C(x)− ⟨∇H(x), h⟩0| ≤
c0
2
∥h∥20 ≤

c0
2
∥h∥21/2

which implies ∇C(x) = I(∇H(x)), because

⟨∇H(x), h⟩0 = ⟨I(∇H(x)), h⟩1/2,

completing the proof of (7.7).

(ii) The operator x(·) → ∇H(x(·)) maps bounded subsets of H0 = L2 to bounded subset of
H0 because |∇2H(x)| ≤ c0. The operator I maps bounded subset of H0 to bounded subsets
of H1 by (7.7). By Exercise 7.1(iv) below, bounded subsets of H1 are precompact in H1/2.
Hence ∇C is a compact operator.

For Lipschitzness of ∇C, observe that by (7.7)

∥∇C(x)−∇C(y)∥1/2 = ∥I(∇H(x)−∇H(y))∥1/2 ≤ ∥I(∇H(x)−∇H(y))∥1
= ∥∇H(x)−∇H(y)∥0 ≤ c0∥x− y∥0 ≤ c0∥x− y∥1/2.

(iii) Since ∇C is Lipschitz and ∇A0 is linear, we learn that ∇A is Lipschitz. This guarantees
that the gradient flow is well-defined.

(iv) Since ∇A(x) = 0, we have that P+x− P−x = I
(
∇H(x)

)
. If

x =
∑
k

e2πktJ̄xk, ∇H(x) =
∑
k

e2πktJ̄ak,

then we deduce that a0 = 0 and sgn(k)xk = (2π|k|)−1ak for k ̸= 0, or 2πkxk = ak for all k.
Since ∇H(x) ∈ H0 = L2, we learn that

∑
k |k|2|xk|2 < ∞, or x ∈ H1. From 2πkxk = ak,

we can readily deduce that ẋ = J̄∇H(x) weakly. Since the right-hand side is continuous by
H1 ⊆ C(S1), we learn that x ∈ C1(S1).

As an alternative proof, observe that if ∇A(x) = 0, then for every ζ ∈ H1/2,

0 = ⟨∇A(x), ζ⟩1/2 = ⟨∂A(x), ζ⟩0,

which implies ẋ = J̄∇H(x) weakly.

(v) Step 1. Take a sequence {xl} such that

(7.10) ∇A(xl) = P+xl − P−xl −∇C(xl) → 0,

as l → ∞. We first prove the boundedness of {xl}. Assume to the contrary

lim
l→∞

∥xl∥1/2 = ∞.
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Observe that if yl =
xl

∥xl∥1/2
, then by (7.8),

(7.11) P+yl − P−yl − I
(

1

∥xl∥1/2
∇H(xl)

)
→ 0.

Now we use ∥∥∥∥∇H(xl)

∥xl∥1/2

∥∥∥∥
0

≤ c0
∥xl∥0
∥xl∥1/2

≤ c0,

to deduce that the sequence

I
(

1

∥xl∥1/2
∇H(xl)

)
,

has a convergent subsequence in H1/2. This and (7.11) implies that the sequence {P+yl −
P−yl} has a convergent subsequence. Without loss of generality, we may assume that the
sequence {P+yl − P−yl} is convergent. Since P+ and P− project onto the positive and
negative frequencies, we deduce that both sequences {P+yl} and {P−yl} are convergent.
Since the sequence {yl} is bounded, the sequence {P 0yl} is bounded in R2n. Hence, by
switching to a subsequence if necessary, we may assume that yl = P+yl + P−yl + P 0yl is
convergent. Let us continue to use {yl} for such a subsequence and write y for its limit.
Recall that for z ∈ R2n with large |z|,

H(z) = (π + ϵ)Q(z) =: Q̂(z)

where Q(z) = q21 + p21 + l−2
∑n

j=2(q
2
j + p2j). We now argue

(7.12) lim
l→∞

∥∥∥∥∇H(xl)

∥xl∥1/2
−∇Q̂(y)

∥∥∥∥
0

= 0.

To see this, observe∥∥∥∥∇H(xl)

∥xl∥1/2
−∇Q̂(y)

∥∥∥∥
0

≤ ∥∇H(xl)−∇Q̂(xl)∥∥xl∥−1
1/2 + ∥∇Q̂(yl)−∇Q̂(y)∥0.

Now (7.12) follows because |∇H − ∇Q̂| is uniformly bounded and ∥yl − y∥1/2 → 0. From
(7.12) and (7.7) we deduce

lim
l→∞

1

∥xl∥1/2
I(∇H(xl)) = I

(
∇Q̂(y)

)
,

in H1/2. From this, liml→∞ yl = y, and (7.11) we deduce

P+y − P−y − I
(
∇Q̂(y)

)
= 0,
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for y satisfying ∥y∥ = 1. This means that y is a critical point of

A1(y) =

∫ 1

0

[
1

2
J̄y · ẏ − Q̂(y)

]
dt.

We then apply part (iv) where H is replaced with Q̂. As a result y is C1 and ẏ = J̄∇Q̂(y).
Hence

y(t) =
(
e−2(π+ϵ)ita1, e

−2
(π+ϵ)

l2
ita2, . . . , e

−2
(π+ϵ)

l2
itan

)
.

This is 1-periodic only if y ≡ 0, contradicting ∥y∥ = 1. Hence the sequence {xl} must be
bounded.

Step 2. For a sequence {xl} satisfying (7.10), we know that {xl} is bounded. This implies
the precompactness of {∇C(xl)} by the compactness of the operator ∇C. This and (7.10)
imply that x+l −x

−
l has a convergent subsequence. As in Step 1, we learn that {P+xl+P

−xl}
has a convergent subsequence. From this we deduce that {xl} has a convergent subsequence
because {P 0xl} is also bounded. □

We are now ready to establish Theorem 7.2. On the account of Lemma 7.1, we need to
find a critical point of A with A(x) > 0. Note that our Hamiltonian H is supposed to vanish
on some neighborhood of the origin.

Proof of Theorem 7.2 Step 1. To ease the notation, let us write x± = P±x, and
x0 = P 0x. We also write

H1/2 = E = E− ⊕ E0 ⊕ E+,

where E± and E0 denote the ranges of the operators P± and P 0 respectively. Let us use the
variation of constants formula to derive a nice representation for the flow Φt of the vector
field −∇A:

(7.13) Φt(x) = etx− + x0 + e−tx+ +K(x, t),

for a function K : E ×R → E that is continuous and compact. To see this, observe that the
flow Φ̄t of the vector field −∇A0 = P− − P+ is simply given by

Φ̄t(x) = etx− + x0 + e−tx+.

From this, we can readily deduce (7.13) with K given by

K(x, t) =

∫ t

0

(et−sP− + P 0 + es−tP+)∇C(Φs(x))ds

= I
∫ t

0

(et−sP− + P 0 + es−tP+)∇H(Φs(x))ds.
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Here we are using the fact that P± and P 0 commute with I. Now the compactness of K fol-
lows from the facts that the flow Φs maps bounded sets to bounded sets (see Exercise 7.1(iii))
and that I is a compact operator.

Step 2. To establish Theorem 7.2 with the aid of Proposition 7.1(ii), we need to come up
with suitable candidates for the sets Γ and Σ. Define

Γ = Γ(r) = {x ∈ E+ : ∥x∥ = r},
Σ = Σ(θ) = {x : x = x− + x0 + se+ : ∥x− + x0∥ ≤ θ, 0 ≤ s ≤ θ}

where e+(t) = e2πtJ̄e1 with e1 = (1, 0, . . . , 0) ∈ R2n. Evidently supΣ A <∞, because

A(x) ≤ 1

2
∥P+x∥21/2 ≤

θ2

2
∥e+∥21/2.

Let us check that indeed infΓ(r) A = β > 0, for r > 0 sufficiently small. Recall that
|H(z)| ≤ c1|z|2 for a constant c1. This however doesn’t do the job and we need to use the
fact that H vanishes near the origin. This property implies that for every p ∈ (2,∞), we
can find a constant c1(p) such that |H(z)| ≤ c1(p)|z|p. On the other hand, by a well-known
Sobolev-type inequality,

∥x∥Lp =

(∫ 1

0

|x(t)|p dt
) 1

p

≤ c0(p)∥x∥1/2,

for a universal constant c0(p) (see Appendix B). As a result, if x ∈ Γ(r), and p > 2, then

A(x) =
1

2
∥x+∥21/2 −

∫ 1

0

H(x(t)) dt ≥ 1

2
∥x+∥21/2 − c1(p)

∫ 1

0

|x(t)|p dt

≥ 1

2
∥x∥21/2 − c1(p)c0(p)

p∥x∥p1/2 =
1

2
r2 − c1(p)c0(p)

prp =: β.

Evidently β > 0, if r is sufficiently small.

Step 3. On account of Proposition 7.1(ii), it suffices to show that if θ is sufficiently large,
then Φt(Σ(θ)) ∩ Γ ̸= ∅ for all t ≥ 0. Note that this is true for t = 0 whenever θ > r(2π)−1/2:

Σ(θ) ∩ Γ =
{
(2π)−1re+

}
.

As we evolve points in Σ with time, this intersection point also evolves with time. To achieve
our goal, it suffices to make sure that this single intersection point does not leave Φt(Σ(θ)).
If the intersection point runs off, at some point must cross the boundary of Φt(Σ(θ)). To
rule out such possibility, it suffices to show

(7.14) Φt(∂Σ) ∩ Γ = ∅,
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for every t ≥ 0. The idea is that in some sense ∂Σ and Γ link with respect to Φt. That is,
Φt(∂Σ) can not cross the sphere Γ as t increases, so Γ must intersect the “frame” Φt(Σ).

If fact for (7.14) the requirement H(x) = (π + ε)Q(x) with π + ε > 1
2
∥e+∥1/2 is used in

an essential way. This is the only place that the condition of maxZ H0 > π of Theorem 7.2
is used. Since infΓA = β > 0, it suffices to show

sup
t≥0

sup
Φt(∂Σ)

A ≤ 0.

Since d
dt
A(Φt(x)) ≤ 0, it suffices to show

(7.15) sup
∂Σ

A ≤ 0.

We write ∂Σ = ∂1Σ ∪ ∂2Σ where ∂1Σ = {x ∈ ∂Σ : x = x− + x0}. In the case of x ∈ ∂1Σ, we
have

A(x) = −1

2
∥x−∥2 −

∫ 1

0

H(x) dt ≤ 0

because H ≥ 0. It remains to show that sup∂2Σ A ≤ 0, for sufficiently large θ. Recall that
there exists a constant c1 such that H(x) ≥ (π+ ϵ)Q(x)− c1. Hence, for x = x− + x0 + se+,

A(x) =
1

2
s2∥e+∥2 − 1

2
∥x−∥2 −

∫ 1

0

H(x) dt

≤ πs2 − 1

2
∥x−∥2 − (π + ϵ)

∫ 1

0

Q(x− + x0 + se+) dt+ c1

= πs2 − 1

2
∥x−∥2 − (π + ϵ)

[∫ 1

0

Q(x−) dt+

∫ 1

0

Q(x0) dt+

∫ 1

0

Q(se+) dt

]
+ c1

≤ −1

2
∥x−∥2 − (π + ϵ)

[∫ 1

0

Q(x−) dt+Q(x0)

]
− ϵs2 + c1

≤ c1 − c2(∥x− + x0∥2 + ∥se+∥2),

where c2 = min
{
1/2, (π + ε)/l2

}
, for the first inequality we used H ≥ (π + ϵ)Q − c1 and

∥e+∥2 = 2π, and for the second equality we used the fact that Q is quadratic and that
E+, E−, E0 are orthogonal with respect to L2-inner product. It is now clear that if either
∥x− + x0∥ = θ or s = θ with θ sufficiently large, then A(x) ≤ 0, proving sup∂2Σ A ≤ 0. This
completes the proof of (7.15) which in turn implies (7.14).

Step 3. To show that Φt(Σ) ∩ Γ ̸= ∅ for t ≥ 0, we need to find x ∈ Σ such that ∥Φt(x)∥ = r
and (P− + P 0)Φt(x) = 0. The latter means

etx− + x0 + (P− + P 0)K(x, t) = 0,
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or equivalently,

(7.16) x0 + P 0K(x, t) = 0, x− + e−tP−K(x, t) = 0.

To combine this with the former condition ∥Φt(x)∥ = r, define

L(x, t) = (e−tP− + P 0)K(x, t) + P+{(∥Φt(x)∥ − r)e+ − x}.

We can readily show that Φt(Σ) ∩ Γ ̸= ∅ is equivalent to finding x ∈ Σ such that

(7.17) x+ L(x, t) = 0.

We wish to find a solution of (7.17) in the interior of Σ, which is an open bounded subset of

Ê = E− ⊕ E0 ⊕ Re+.

Note that L : Ê × R → Ê is a compact operator simply because K is compact and E+ part
of Ê is one-dimensional.

Step 4. We will use Leray-Schauder degree theory to solve (7.17). (We refer to Appendix C,
for a review of Degree Theory.) Note that by (7.14),

0 /∈ (I + L(·, t))(∂Σ).

Because of this, deg0(I +L(·, t)) is well-defined. Observe that (I +L(·, s) : s ∈ [0, t]) defines
a homotopy, which implies

(7.18) deg0(I + L(·, t)) = deg0(I + L(·, 0)).

From the definition of K given in (7.13), we know that K(·, 0) ≡ 0. As a result,

L(x, 0) = P+{(∥x∥ − r)e+ − x}.

To calculate the right-hand side of (7.18), let us define

Lα(x) = P+{(α∥x∥ − r)e+ − αx},

for α ∈ [0, 1]. We claim

(7.19) 0 /∈ (I + Lα)(∂Σ).

Indeed if (I + Lα)(x) = 0 for some x ∈ ∂Σ, then x = se+ for some s ∈ {0, θ} and s +
αs∥e+∥ − r − αs = 0, or s((1 − α) + α

√
2π) = r because ∥e+∥ =

√
2π. Evidently s ̸= 0

because r ̸= 0. To rule out s = θ, observe that we may take θ large enough to have θ > r.
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But r = s((1 − α) +
√
2πα) > s which implies that θ > s. In summary x + Lα(x) = 0 has

no solution in ∂Σ, or equivalently (7.19) holds.
By (7.19), deg0(I + Lα) is well-defined and by the homotopy invariance of degree,

deg0(I + L(·, 0)) = deg0(I + L1) = deg0(I + L0)

= deg0(I − re+) = degre+(I) = 1,

provided that re+ ∈ Σ, which is true by our assumption r < θ. From this and (7.18) we
deduce that (7.17) has a solution x ∈ Σ, for which A(x) ≥ β > 0. This completes the proof
of Theorem 7.2 . □

Proof of Theorem 7.1 (Sketch) The proof of Theorem 7.1 is similar to the proof of The-
orem 7.2. We refer to [HZ] for details and only give a list of adjustments that we need to
make to the proof of Theorem 7.2:

(Step 1) Take a bounded strictly convex set K with 0 in its interior. Given H0 ∈ H(K)
with maxH0 > c0(K), it suffices to show that XH0 has a non-constant 1-periodic orbit. As
before, we may assume that H0 = 0 in a neighborhood of the origin. We then pick a constant
m ∈ (c0(K),maxH), and define

H(x) =

{
H0(x) if x ∈ K,

f(Q(x)) if x /∈ K.

where Q = g2K , and f : R → R is a smooth function such that f(r) = maxH for r ∈ [0, 1],
f(r) = mr for large r, f(r) ≥ mr for all r, and 0 < f ′(r) ≤ m for r > 1. We then have the
analog of Lemma 7.1 for H provided that the ellipsoid E is replaced with K.

(Step 2) As we verify PS condition, let y be as in the proof of Proposition 7.2(v). We need
to get a contradiction from the conditions ∥y∥1/2 = 1 and ẏ = mJ̄∇Q(y), where Q = g2K .
Note that y is a 1-periodic solution of XmQ. On the other hand,

Tmin(mQ) = (2m)−1 Tmin(HK) = (2m)−1 2c0(K) < 1,

where we used Remark 5.1(ii) for the second equality. This of course does not lead to a
contradiction. However, it is possible to find a new compact set K ′ near K so that K ′ has no
1-periodic orbit. We then choose Q = g2K′ in part (i) in our extension. To ease the notation,
we write K for K ′.

(Step 3) We choose the same Γ = Γ(r) as in the proof of Theorem 7.2. Given p > 2, we can
find a constant c1(p) such that H(x) ≤ c1(p)|x|p. Fix p > 2, and a repetition of our proof in
Step 2 of the proof of Theorem 7.2 yields

inf
Γ(r)

AH =: β > 0,
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for sufficiently small r.

(Step 4) Our choice of Σ = Σ(θ) is as before, expect that our candidate for e+ is related to
the minimizing orbit in the definition of c0(K). Set m̄ = c0(K) and consider the Hamiltonian
equation ẋ = m̄J̄∇Q(x). This corresponds to the Hamiltonian function m̄Q with

Tmin(m̄Q) = (2m̄)−1 Tmin(HK) = 1,

which means that the vector field m̄XQ has a 1-periodic orbit x̄ that lies on ∂K. We
then set e+ = P+x̄. We note that A(x̄) = m̄ > 0 which implies that e+ ̸= 0, because
2A(x̄) = ∥P+x̄∥2 − ∥P−x̄∥2. We note for sufficiently large θ,

Γ ∩ Σ(θ) =
{
s0e

+
}
,

where
s0 =

r√
A(e+)

.

Repeating the proof of Theorem 7.1, it remains to verify

(7.20) sup
∂2Σ

A ≤ 0.

Observe that there exists a constant c1 such that

H(x) ≥ mQ(x)− c1 = m̄Q(x) + (m− m̄)Q(x)− c1.

Hence,

(7.21) AH(x) ≤ Am̄Q(x)− (m− m̄)

∫ 1

0

Q(x) dt+ c1.

Let us write
Es = E− ⊕ E0 ⊕ se+.

We claim

(7.22) sup
Es

Am̄Q ≤ 0.

Assuming this, we can use (7.21) to assert

sup
∂2Σ

A ≤− (m− m̄) inf
x∈Σ

∫ 1

0

Q(x) dt+ c1 ≤ −δ(m− m̄) inf
x∈∂2Σ

∫ 1

0

|x|2 dt+ c1

≤c1 − δ(m− m̄) inf

{∫ 1

0

[
|x−|2 + |x0|2 + s2|e+|2

]
dt : ∥x− + x0∥ = θ, or s = θ

}
,
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where δ > 0 is chosen so that Q(x) ≥ δ|x|2. From this we readily deduce (7.20).

(Step 5) It remains to verify (7.22). By strict convexity of K, we can readily show that the
supremum on the left-hand side of (7.22) is attained at a unique ȳ ∈ Es. This ȳ must satisfy

(P− ⊕ P 0)(∇Am̄Q)(ȳ) = 0.

On the other hand, (∇Am̄Q)(x̄) = 0, which implies (∇Am̄Q)(sx̄) = 0. Hence ȳ = sx̄. On
the other hand, since Q is homogeneous of degree 2, and ȳ solves the Hamiltonian ODE
associated with sQ, we deduce that Am̄Q(ȳ) = 0. This implies (7.22). □

Exercise 7.1(i) Assume F ∈ C1(Rd;R) satisfies lim|x|→∞ F (x) = ∞ and that F possesses
two distinct relative minima x1 and x2. Show that F has a third critical point x3 that is
different from x1 and x2. Hint: Use paths connecting x1 to x2 for the members of F in
Theorem 7.2.

(ii) Show that F (x, y) = e−x − y2 does not satisfy Palais–Smale condition. Let

E± = {(x, y) : F (x, y) ≤ 0, ±y ≥ 0}

and set

F = {γ[0, 1] : γ : [0, 1] → R2, γ(0) ∈ E−, γ(1) ∈ E+ and γ is continuous}.

Show that α(F,F) = 0 but there is no x∗ with F (x∗) = 0 and that F has no critical point.

(iii) Let G : E → E be a Lipschitz function and let Φt denote the flow of the ODE ẋ = G(x).
Show that for every l > 0,

sup
0≤t≤l

sup
∥x∥≤l

∥Φt(x)∥ <∞.

(iv) Let Hs = {x ∈ L2 : ∥x∥s < ∞}. Show that if s < t, then a bounded subset of H t is
precompact in Hs.

(v) Show that if x ∈ Hθ for θ > 1/2, and θ ̸= 3/2, then x is Hölder continuous with

|x(t)− x(s)| ≤ c∥x∥θ|t− s|α

with α = min
(
1, θ − 1

2

)
. Hint: Given x =

∑
k e

2πktJ̄xk, write x = y + z with z =∑
|k|≤N e

2πktJ̄xk. Estimate sup|t−s|<δ |y(t) − y(s)| and supt |z(t)| in terms of δ and N . This

yields a bound for |x(t)− x(s)| that can be minimized with respect to N . When θ = 3/2, a
logarithmic correction is needed:

|x(t)− x(s)| ≤ c∥x∥θ|t− s|
∣∣ log |t− s|

∣∣1/2.
□
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8 Hofer Geometry

As we can see from (6.10) and Exercise 6.1(vii) of Chapter 6, a uniform lower bound on a
Hamiltonian function yields an upper bound on the shortest non-constant periodic orbit of
the corresponding Hamiltonian vector field. In this chapter we explore deeper connections
between the norm ∥H∥∞,1 and the corresponding flow ϕHt . In particular we will be able to
define a metric on the space of Hamiltonian functions with compact support that is invariant
with respect to any symplectic change of coordinates. This metric was defined by Hofer and
is closely related to the displacement energy and the capacity e.

Let us write H (respectively H0) for the set of smooth functions H : R2n × [0, 1] → R
(respectively H : R2n → R) of compact support. The time-one map ϕH = ϕH1 defines a map
from H into the space of ω̄-symplectic maps. The image of this map is denoted by D. Note
that the map H 7→ ϕH is not injective. We may define an equivalence relation ∼ on H by
H ∼ K iff ϕH = ϕK . The set of equivalence classes will be denoted by H̃. We map H 7→ ϕH

induces a bijection between H̃ and D. We wish to equip D, or equivalently H̃ with a metric.
This metric is closely related to the norm

∥H∥∞,1 =

∫ 1

0

∥H(·, t)∥ dt,

where ∥K∥ = maxK−minK. This norm induces a notion of “size” on the set of equivalence
classes H̃ by

E([H]) = inf{∥K∥1,∞ : K ∼ H}.

Alternatively, we define the expression

E(ψ) = inf{∥H∥1,∞ : ϕH = ψ},

for ψ ∈ D. In fact we may regard E(ψ) as the distance of ψ from identity. We can turn this
into a metric for D, because D is a group. More precisely, the expression

(8.1) D(ψ, φ) := E(ψ−1 ◦ φ),

defines a metric on D. Before verifying the metric properties of D, let us examine the group
properties of D and H̃ in details.

Proposition 8.1 Let H,K ∈ H and φ ∈ D. (i) ϕH♯Kt = ϕHt ◦ ϕKt , where

(H♯K)(x, t) := H(x, t) +K
((
ϕHt
)−1

(x), t
)
.

(ii)
(
ϕHt
)−1

= ϕH̄t , where H̄(x, t) = −H
(
ϕHt (x), t).
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Proof Part (ii) follows from Part (i), because H♯H̄ = 0. For Part (i), observe that if

ψt = ϕHt ◦ ϕKt , and ηt =
(
ϕHt
)−1

, then

dψt
dt

=
dϕHt
dt

◦ ϕKt + (dϕHt ) ◦ ϕKt
dϕKt
dt

= XH ◦ ϕHt ◦ ϕKt + (dϕHt ) ◦ ϕKt XK ◦ ϕKt
= XH ◦ ψt + (dϕHt ) ◦ ηt ◦ ψt XK ◦ ηt ◦ ψt
=
(
XH + (dηt)

−1XK ◦ ηt
)
◦ ψt = (XH +XK◦ηt) ◦ ψt

= XH♯K ◦ ψt,

where we used Proposition 3.2 for the fifth equality. It is staightforward to show that
H♯K ∈ H beacuse ϕHt (x) = x outside a compact set. We are done. □

To ease the notation, we simply write φψ for φ ◦ψ when there is no danger of confusion.

Proposition 8.2 (i) The function D defined by (8.1) is a metric on D.

(ii) D(φ, ψ) = D(φη, ψη) = D(ηφ, ηψ), for every η ∈ D.

(iii) D(φ1 . . . φk, ψ1 . . . ψk) ≤ D(φ1, ψ1) + · · ·+D(φk, ψk).

This is an immediate consequence of the following result.

Proposition 8.3 For φ, ψ, η, φ1, . . . , φk, ψ1, . . . , ψk ∈ D, we have

(i) E(φ) = E(φ−1),

(ii) E(φψ) ≤ E(φ) + E(ψ),

(iii) E(η−1φη) = E(φ),

(iv) if φ ̸= id, then E(φ) > 0,

(v) E
(
(φ1 . . . φk)(ψk . . . ψ1)

)
≤
∑k

i=1E(φiψi).

Proof (i) This is an immediate consequence of the fact that φ = ϕH iff φ−1 = ϕH̄ , and that
∥H∥∞,1 = ∥H̄∥∞,1.

(ii) It suffices to check that ∥H♯K∥∞,1 ≤ ∥H∥∞,1 + ∥K∥∞,1. Indeed, using the fact that
∥A+B∥ ≤ ∥A∥+ ∥B∥ for every A,B ∈ H0, we have

∥H♯K∥∞,1 ≤
∫ 1

0

[∥H(·, t)∥+ ∥K(ηt(·), t)∥] dt =
∫ 1

0

[∥H(·, t)∥+ ∥K(·, t)∥] dt

= ∥H∥∞,1 + ∥K∥∞,1,
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where ηt =
(
ϕHt
)−1

.

(iii) The Proposition 3.2 implies that η−1 ◦ ϕHt ◦ η = ϕH◦η. This and ∥H∥∞,1 = ∥H ◦ η∥∞,1

imply the desired equality.

(iv) If φ ̸= id, then for some a ∈ R2n, we have that φ(a) ̸= a. As a result, there exists r > 0,
such that φ(Br(a)) ∩Br(a) = ∅. We then use Theorem 6.2(vi) to assert

E(φ) ≥ cHZ(Br(a)) = πr2.

Alternatively, we may use Theorem 6.5 to show that E(φ) ≥ πr2/2. In any case, we deduce
that E(φ) > 0, as desired.

(v) We certainly have (φ1 . . . φk)(ψk . . . ψ1) equals to

(φ1ψ1)
[
ψ−1
1 (φ2ψ2)ψ1

][
(ψ2ψ1)

−1(φ3ψ3)(ψ2ψ1)
]
. . .
[
(ψk−1 . . . ψ1)

−1(φkψk)(ψk−1 . . . ψ1)
]
.

From this and Parts (ii) and(iii), we deduce the desired inequality. □

One possible interpretation of Hofer metric is that we are turning the infinite dimensional
group D into a Finsler Manifold. More precisely, since paths of symplectic paths in D are
generated by Hamiltonian vector fields, we may define the tangent fibers of D by

TφD =
{
XH ◦ φ : H ∈ H

}
,

for every φ ∈ D. Identifying this space with the vector space H, we equip the space TφD
with the norm ∥XH ◦ φ∥ = ∥H∥∞,1. We may define L : TD → R by

L(φ, ν) = ∥H∥∞,1,

where H is uniquely defined by ν ◦ φ−1 = XH . Now

(8.2) D(φ, ψ) = inf

{∫ 1

0

L (γ(t), γ̇(t)) dt : γ : [0, 1] → D, γ(0) = φ, γ(1) = 1

}
.

Remark 8.1 When n = 1, the set D consists of area preserving diffeomorphisms that
coincide with the identity map outside a compact set. Also

TD =
{
(φ, u ◦ φ) : φ ∈ D, div u = 0

}
.

If we equip TφD with the Riemannian metric

gφ(u ◦ φ, v ◦ φ) =
∫
(u ◦ φ) · (v ◦ φ) dx =

∫
u · v dx,
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then we obtain a very different geometry that is related to the incompressible Euler Equation,
as was observed by Arnold (in other words, we replace the L∞−norm of H with the L2-norm
of ∇H). More generally, if V denotes the space of volume preserving diffeomorphism of Rd,
then

TφV =
{
u ◦ φ : div u = 0

}
,

and a geodesic φ(·, t) with respect the metric g will satisfy

φ̇ ⊥ TφV =
{
∇P ◦ φ : P : Rd → R smooth

}
.

If we define u(·, t) by u ◦ φ = φ̇, then the divergence-free vector field u(·, t) satisfies

ut + (Du)u+∇P = 0,

for a scalar valued function P (x, t). □
In view of Remark 8.1 and the interpretation (8.2), we may wonder what the geodesic of

(D, D) are.

Definition 8.1(i) Let I be an interval. We say a smooth path φ : I → D is regular if
φ̇(t) ̸= 0 for every t ∈ I. Equivalently, if φ̇ = XH(φ), then φ is regular, if ∥H(·, t)∥ ≠ 0 for
every t ∈ I.

(ii) A regular smooth path φ : I → D with φ̇ = XH(φ) is called minimal geodesic if

D(φ(·, a), φ(·, b)) =
∫ b

a

∥H(·, t)∥ dt,

for every a, b ∈ I with a < b.

(iii) A regular smooth path φ : I → D with φ̇ = XH(φ) is called geodesic if for every s in
the interior of I, there exists and interval (s− δ, s+ δ) ⊂ I such that the restriction of φ to
(s− δ, s+ δ) is minimal geodesic. □

We have a complete classifications of the geodesic paths in D. As a warm-up, we first
consider the flows of time-independent Hamiltonian functions.

Theorem 8.1 (Hofer) Let H ∈ H be a non-zero time-independent Hamiltonian function.
Then E(ϕHt ) = t∥H∥ for t < Tmin(H), where Tmin is the shortest period of the non-constant
periodic orbits of XH .

Remark 8.2(i) To appreciate the significance of Theorem 8.1, assume that 0 < T0 =
Tmin(H) < 1 for a nonzero H ∈ H0 so that the system ẋ = XH(x) has a periodic orbit
(ϕHt (x0) : t ∈ R) of period T0. We note that if φ = ϕH1 , then

φ(y) = ϕH1 (y) = ϕH1−T0(y) = ϕ
(1−T0)H
1 (y),
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for every y on the orbit
γ =

{
ϕHt (x0) : t ∈ R

}
,

of x0. Hence, on the set γ, we can lower the energy ∥H∥ by switching from H to (1− T0)H.
From this we expect to lower the energy for φ by modifying H near γ. In other words, if
Tmin(H) < 1, we may have E(φ) < ∥H∥ for φ = ϕH , because of the presence of a (fast)
periodic orbit of period T0 < 1. What we learn from Theorem 8.2 is that such fast periodic
orbits are the only feature of the system ẋ = XH(x) to watch out for; if they are absent,
then we do have E(ϕH) = ∥H∥.

(ii) As an immediate consequence of Theorem 8.1 we learn that for any non-zero time-
independent Hamiltonian function H ∈ H, the path φ(t) = ϕHt with t ∈

(
0, Tmin(H)

)
is

minimal geodesic. Consequently φ : (0,∞) → D is geodesic because φ :
(
t, t+Tmin(H)

)
→ D

is minimal geodesic. □

Before embarking on the proof of Theorem 8.1 and discuss the analog of Theorem 8.1
for the time dependent Hamiltonian functions, we need to discuss two important notions
of generating functions and action spectrum. These two notions would prepare us for the
construction of an auxiliary function U : D → [0,∞), that would play an essential role in
proving Theorem 8.1.

Consider a symplectic manifold (M,ω) with ω = dλ for a 1-form λ. Let us write ΓT for
the set of smooth paths x : [0, T ] → M . We also write ΓT ⊂ ΓT for the T -periodic loops.
Given a smooth Hamiltonian function H :M × [0, T ] → R, we define AH : ΓT → R by

AH(x) =

∫
x(·)

λ−
∫ T

0

H(x(t), t) dt.

The restriction of AH to the set of T - periodic x is denotes by AT
H . We note that as in (5.8),

we can show

(8.3) ∂AT
H(x(·)) = −J̄ ẋ(·)−∇H(x(·), ·),

if (M,ω) = (R2n, ω̄) and λ = λ̄.
We define ΛTH :M → R, by

(8.4) ΛTH(x0) = AH (ηx0T ) , where ηx0T (t) = ϕHt (x0) for t ∈ [0, T ].

We now claim that Λ is a generating function for ϕH .

Proposition 8.4 For every T ≥ 0 and any Hamiltonian H, we have

(8.5) dΛTH =
(
ϕHT
)∗
λ− λ.
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Proof I Set

A(x0) =

∫
η
x0
T

λ, B(x0) =

∫ T

0

H
(
ηx0T (t), t

)
dt.

Take any
(
τ(θ) : 0 ≤ θ ≤ h

)
with τ(0) = x0 and τ̇(0) = v ∈ Tx0M . Set y(t, θ) = ϕtH

(
τ(θ)

)
,

Θ = {y(t, θ) : 0 ≤ t ≤ T, 0 ≤ θ ≤ h},

and use Stokes’ theorem to assert

h−1

∫ h

0

∫ T

0

ωy(yt, yθ) dtdθ = h−1

∫
Θ

dλ = h−1

[∫
ητ(0)

λ−
∫
ητ(h)

λ+

∫
φ◦τ(·)

λ−
∫
τ(·)

λ

]
,

h−1

∫ h

0

∫ T

0

(iXH
ω)y (yθ) dtdθ = h−1

[∫
ητ(0)

λ−
∫
ητ(h)

λ+

∫
τ(·)

(φ∗λ− λ)

]
,

where φ = ϕHT . Sending h→ 0 yields

−(dB)x0(v) = −(dA)x0(v) +
(
φ∗λ− λ)x0(v).

This is exactly (8.5).

Proof II Let us write H t(x) = H(x, t). By Proposition 3.1,

(
ϕHT
)∗
λ− λ =

∫ T

0

d

dt

(
ϕHt
)∗
λ dt =

∫ T

0

(
ϕHt
)∗ LXH(·,t)λ dt

=

∫ T

0

(
ϕHt
)∗ [(

iXH(·,t) ◦ d
)
λ+

(
d ◦ iXH(·,t)

)
λ
]
dt

=

∫ T

0

(
ϕHt
)∗
d
[
−H t + λ (XH(·, t))

]
dt

= d

∫ T

0

(
ϕHt
)∗ [−H t + λ (XH(·, t))

]
dt := dΛ̂.

On the other hand, if we write η(t) = ϕHt (x0) for t ∈ [0, T ], then

Λ̂(x0) =

∫ T

0

λ (XH(η(t), t)) dt−
∫ T

0

H(η(t), t) dt = ΛT (x0),

because η̇ = XH ◦ η. We are done. □

From now on we assume M = R2n and that λ = λ̄. We also write ΛH for Λ1
H . We note

that if H ∈ H, then ΛH(x0) = 0 if |x0| is sufficiently large. From this and the identity (8.5)
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we learn that if ϕH = ϕK , then ΛH = ΛK . This allows us to define Λ on H̃ or D. More
precisely, for every φ ∈ D, with φ = ϕH , we set

Λφ := ΛH .

We also note that if
Ĥ(x, t) = p ·Hp(x, t)−H(x, t),

then

ΛH(x0) =

∫ 1

0

Ĥ
(
ϕHt (x0), t

)
dt.

Remark 8.3(i) We note that by integration by parts,∫
Ĥ(x, t) dx = −(n+ 1)

∫
H(x, t) dx.

From this and the fact that ϕHt is volume preserving we learn that if φ = ϕH , then∫
Λφ dx =

∫ ∫ 1

0

Ĥ(x, t) dtdx = −(n+ 1)

∫ ∫ 1

0

H(x, t) dtdx.

Motived by this, we may define

Cal(φ) := − 1

n+ 1

∫
Λφ dx =

∫ ∫ 1

0

H(x, t) dtdx.

This defines a map Cal : D → R, that is known as Calabi Homomorphism. It is a group
homomorphism because Cal(φ ◦ ψ) = Cal(φ) + Cal(ψ). One way to see this is to use

dΛφ◦ψ = (φ ◦ ψ)∗λ− λ = ψ∗dΛφ + ψ∗λ− λ = d
(
Λφ ◦ ψ + Λψ),

to deduce
Λφ◦ψ = Λφ ◦ ψ + Λψ.

Alternatively, we may use ϕH♯K = ϕH ◦ ϕK and∫
(H♯K) dx =

∫
H dx+

∫
K dx.

(ii) Set Hc0 for the set of Hamiltonian function with support in the set

{x : |x| ≤ c0} × [0, 1].
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We write Dc0 for the set of symplectic maps associated with H ∈ Hc0 . We may define

D̂p,c0(id, φ) := inf

{∫ 1

0

∫ ∣∣∇H(x, t)
∣∣p dxdt : ϕH = φ for some H ∈ Hc0

}
.

We also set
D̂p(id, φ) = inf

c0
D̂p,c0(id, φ).

When n = 1, and p = 2, then the corresponding metric coincides with the Arnold’s metric
that was discussed in Remark 8.1. We note that since

φ(x)− x =

∫ 1

0

XH

(
ϕHt (x), t

)
dt,

and ϕHt is volume preserving, we have∫
|φ(x)− x|p dx ≤

∫ ∫ 1

0

|XH(x, t)|p dtdx =

∫ ∫ 1

0

|∇H(x, t)|p dtdx.

This implies ∫
|φ(x)− x|p dx ≤ D̂p(id, φ).

There is also an interesting lower bound in terms of Cal(φ) on D̂1 that was discovered by
Eliashberg and Ratiu. To explain their lower bound, observe that if H ∈ Hc0 , and we pick
some a with |a| = c0, then∣∣Ĥ(x, t)

∣∣ = |p ·Hp(x, t)−H(x, t) +H(a, t)| ≤ c0

[∣∣∇H(x, t)
∣∣+ ∫ 1

0

∣∣∇H((1− θ)x+ θa)
∣∣ dθ] ,

for any x with |x| ≤ c0. As a result,∫
|x|≤c0

|Λφ(x)| dx ≤ 2c0

∫
|x|≤c0

∫ 1

0

|∇H(x, t)| dtdx,

because ϕHt is volume preserving. Since Λφ(x) = 0 for |x| ≥ c0, we deduce∣∣Cal(φ)∣∣ ≤ 1

(d+ 1)

∫
|Λφ(x)| dx ≤ 2c0

d+ 1
D̂1,c0(id, φ).

From this inequality we can readily show that the diameter of the set Dc0 is infinite, a fact
that was discovered by Shnirelman in the case of n = 1.

(iii) Note that ΛH is well-defined for any Hamiltonian function H. When H(q, p) is convex
in p, then

Ĥ(q, p) = L
(
q,Hp(q, p)

)
,
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where L(q, v) denotes the Legendre Transform of H in p-variable. Moreover, if x(t) =
(q(t), p(t)) = ϕHt (x0), then

ΛH(x0) =

∫ 1

0

L
(
q(t), Hp(q(t), p(t))

)
dt =

∫ 1

0

L
(
q(t), q̇(t)

)
dt.

(iv) Let H : R2d → R be a time-independent Hamiltonian. Given x : R2 → R2d, and writing
ẋ = xt for the time derivative and xs for the s-derivative, we have

d

ds

(
1

2
J̄x · ẋ−H(x)

)
=

1

2

(
J̄xs · ẋ+ J̄x · ẋs

)
−∇H(x) · xs

=
d

dt

(
1

2
J̄x · xs

)
−
(
J̄ ẋ+∇H(x)

)
· xs,

d2

ds2

(
1

2
J̄x · ẋ−H(x)

)
=

d

dt

(
1

2
J̄x · xss

)
−
(
J̄ ẋ+∇H(x)

)
· xss

−
(
J̄ ẋs +D2H(x)xs

)
· xs

Hence, if x(t) = x(t, 0) is a Hamiltonian orbit and x̂(t) = xs(t, 0), x̃(t) = xss(t, 0), then

d

ds

∫ T

0

(
1

2
J̄x · ẋ−H(x)

)
dt =

1

2

(
ω̄
(
x(T ), x̂(T )

)
− ω̄

(
x(0), x̂(0)

))
,

d2

ds2

∫ T

0

(
1

2
J̄x · ẋ−H(x)

)
dt =

1

2

(
ω̄
(
x(T ), x̃(T )

)
− ω̄

(
x(0), x̃(0)

))
−
∫ T

0

(
J̄
dx̂

dt
+D2H(x)x̂ · x̂

)
dt.

These equations correspond to the first and second variations of the energy in Riemannian
Geometry, when H(q, p) = 1

2

∑
i,j g

ij(q)pipj is quadratic in p-variable. □

Definition 8.2 We define
Fix(φ) = {x0 : φ(x0) = x0}.

The action spectrum σ(φ) of φ ∈ D is a subsets of R that is defined by

σ(φ) =
{
Λφ(x0) : x0 ∈ Fix(φ)

}
.

Similarly, for any Hamiltonian function H, we define

σ(H) =
{
ΛH(x0) : x0 ∈ Fix

(
ϕH
) }
,

so that σ
(
ϕH
)
= σ(H). □
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Proposition 8.5 (i) The set σ(φ) is compact and nowhere dense.

(ii) For every φ ∈ D and symplectic map τ : R2n → R2n, we have σ
(
τ−1 ◦ φ ◦ τ

)
= σ(φ).

Proof(i) It is not hard to show that if H ∈ Cr+2, then ΛH ∈ Cr. In particular Λ is smooth
if H is smooth. Since the set of fixed points of φ is closed, we deduce that σ(φ) is closed.
Also, since Λφ is of compact support, we learn that the set σ(φ) is bounded.

It remains to show that the set σ(φ) is nowhere dense. Recall that if Γ1 denotes the
space of 1-periodic loops, and we regard A1

H : Γ1 → R, then

∂A1
H(x(·)) = −J̄ ẋ(·)−∇H(x(·), ·),

as we saw in (8.5). We now find a smooth function G : R2n → R such that G(x0) = Λφ(x0),
whenever φ(x0) = x0, and

σ(φ) ⊆ {G(x) : ∇G(x) = 0}, .

This and the celebrated Sard’s theorem imply that the set σ(φ) is nowhere dense.
Indeed we may define G by G(x) = A1

H(ψ(x, ·)), where

ψ(x, t) = (1− f(t))ϕHt (x) + f(t)ϕHt

((
ϕH1
)−1

(x)
)
,

with f : [0, 1] → [0, 1] any smooth function such that f(0) = 0 and f(1) = 1. Clearly
ψ(x0, t) = ϕHt (x0) for x0 ∈ Fix(φ) and ψ(x, ·) ∈ Γ1 for every x ∈ R2n. We are done.

(ii) Assume that ϕH = φ so that by Proposition 3.2, we have ϕH◦τ = τ−1 ◦φ ◦ τ := φ̂. Now,
if x0 ∈ Fix(φ), and ΛH(x0) ∈ σ(φ), then we wish to show that ΛH(x0) ∈ σ(φ̂). We show
this by verifying

ΛH◦τ (x̂0) = ΛH(x0).

for x̂0 = τ−1(x0) ∈ Fix(φ̂). Indeed if

η(t) = ϕHt (x0), η̂(t) = ϕH◦τ
t (x̂0) = τ−1

(
η(t)

)
.

As a result, since η is a closed curve, we have

ΛH◦τ (x̂0) =

∫
η̂

λ̄−
∫ 1

0

H
(
τ ◦ η̂(t), t

)
dt =

∫
η

λ̄−
∫ 1

0

H
(
η(t), t

)
dt = ΛH(x0),

as desired. □
We are now ready to state a theorem that is a generalization of Theorem 8.1 for the time

dependent Hamiltonian functions. As it turns out the nature of the local maximizer and
minimizer of the Hamiltonian function would play a pivotal role on the geodesic property.
Here is the relevant definition.
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Definition 8.3(i) A smooth Hamiltonian function H : Rd × I → R is called quasi-
autonomous if there exists x± ∈ R2n such that

(8.6) max
x

H(x, t) = H(x+, t), min
x
H(x, t) = H(x−, t),

for all t ∈ I.

(ii) A smooth Hamiltonian function H : Rd × I → R is called locally quasi-autonomous
if for every t in the interior of I, we can find small δ > 0 such that the restriction H to
R2n × (t− δ, t+ δ) is quasi-autonomous.

(iii) Let φ : [a, b] → D be a regular smooth path associated with a quasi-Hamiltonian
function H. Its bifurcation diagram is defined by

Γ(φ) :=
{
(s, h) ∈ (a, b]× R : h ∈ σ

(
φ(s) ◦ φ(a)−1

)}
.

(iv) Let φ be as in part (iii) and set

γ±(t) = −
∫ t

a

H(x±, s) ds,

with x± as in (8.3). We say that a bifurcation diagram Γ(φ) is simple if there is no continuous
curve in Γ(φ) that connects a point of the form (t, γ±(t)), t > a, to a points on the line s = b.

□

Theorem 8.2 (Bialy-Polterovich) (i) A regular smooth path φ : I → D with φ̇ = XH(φ) is
geodesic iff H is locally quasi-autonomous.

(ii) If a regular smooth path φ : I → D is associated with a quasi-autonomous Hamiltonian
that has a simple bifurcation diagram, then φ is minimal geodesic.

As a consequence of Theorem 8.2, one can show that locally D is flat. For example, near
identity, we can use generating functions to represent elements of D and their distances to
the identity map can be readily expressed it terms of their generating functions.

We have already seen an example of a generating function. Namely, if φ = ϕH , then
dΛH = φ∗λ̄ − λ̄. We regard Λ = ΛH as a generating function for φ. If we write φ(x) =
φ(q, p) = (Q,P ), then

(8.7) dΛ = P · dQ− p · dq,

which is compatible with the fact that φ is symplectic so that d(P ·dQ−p ·dq) = 0. However
because of the very form (8.7), it is desirable to have a function dS with S = S(q,Q) on the
left-hand side of (8.7). That is,

(8.8) dS = P · dQ− p · dq,
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This is possible if we can solve the equation Q = Q(q, p) for p = p(q,Q) for every pair
(q,Q) ∈ R2n. We refer to Proposition 9.1 of Chapter 9 for conditions that would guarantees
the existence of S, that is called (Type I) generating function. Note that (8.8) implies

(8.9) p = −Sq(q,Q), P = SQ(q,Q).

There are other possibilities for the definition of generating functions. For example, if we
set Λ̂ = Λ + p · q, then the equation (8.7) reads as

dΛ̂ = P · dQ+ q · dp.

We now search for a function W (Q, p) such that

(8.10) dW = P · dQ+ q · dp.

If such a function W exists, we call it a generating function of Type II. By (8.10),

(8.11) WQ(Q, p) = P, Wp(Q, p) = q.

The next Proposition explains the original motivation behind the formulation of theHamilton-
Jacobi PDE.

Proposition 8.6 (i) Assume that the flow ϕHt has a generating function S(q,Q, t) of Type
I for t ∈ [a, b]. Then S satisfies the Hamilton-Jacobi PDE

(8.12) St(q,Q, t) +H (Q,SQ(q,Q, t), t) = 0,

for t ∈ (a, b).

(ii) If the flow ϕHt has a generating function W (Q, p, t) of Type II for t ∈ [a, b], then W
satisfies the Hamilton-Jacobi PDE

(8.13) Wt(Q, p, t) +H (Q,WQ(Q, p, t), t) = 0,

for t ∈ (a, b).

Proof(i) Since S(q,Q, t) = Λt(q, p), for p = Sq(q,Q, t), we may write

S(q(0), q(t), t) =

∫ t

0

[
p(t) · q̇(t)−H(q(t), p(t), t)

]
dt,

where (q(t), p(t)) = ϕHt (q(0), p(0)). Differentiating both sides with respect to t yields

St(q(0), q(t), t) + SQ(q(0), q(t), t) · q̇(t) = p(t) · q̇(t)−H(q(t), p(t), t).
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This implies (8.12) because SQ(q(0), q(t), t) = p(t).

(ii) Since W = Λ+ q · p, we have

W (q(t), p(0), t) = p(0) · q(0) +
∫ t

0

[
p(t) · q̇(t)−H(q(t), p(t), t)

]
dt.

Differentiating both sides with respect to t yields

Wt(q(t), p(0), t) +WQ(q(t), p(0), t) · q̇(t) = p(t) · q̇(t)−H(q(t), p(t), t).

This implies (8.13) because WQ(q(t), p(0), t) = p(t). □

Note that when H ∈ H, and φ = ϕH ∈ D has a generating function of Type II, then we may
write

W (Q, p) = Q · p+ u(Q, p),

for a function u : R2n → R, that is of compact support. In this case we can write

(8.14) φ
(
Q+ up(Q, p), p

)
=
(
Q, p+ uQ(Q, p)

)
.

We write ∥u∥ = maxu−minu and refer to u as the generating function of φ.

Theorem 8.3 (Bialy-Polterovich) If φ and ψ ∈ D have generating functions u and u′, then
D(φ, ψ) = ∥u− u′∥.

Remark 8.4 Since the identity map has a generating function of the form W (Q, p) = Q · p,
it is not hard to show that any φ ∈ D that is sufficiently close to identity has a generating
function of type II with the corresponding u of compact support. In fact the formula (8.14)
allows us to define a map Φ(u) = φ that maps a small neighborhood of the origin in Cc(R2n),
onto a small neighborhood of identity in D. We then have the formula D(id,Φ(u)) = ∥u∥.

□
We now design a strategy for tackling Theorems 8.1-8.3. As a warm-up, we try to come

up with a direct proof of E(φ) > 0 for φ ̸= id. (This was verified in Proposition 8.1 with
the aid of Theorem 6.2(vi).) In other words, we wish to find non-trivial lower bounds for
E(φ). In fact it is easier to divide our job into two parts; if we define

(8.15) E±(φ) = inf

{∫ 1

0

sup
x

(
±H(x, t)

)
dt : ϕH = φ

}
,

then we always have where

(8.16) E(φ) ≥ E+(φ) + E−(φ),
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and we may try to find non-trivial lower bounds for E± separately.
As we learned from Proposition 8.4, the set σ(H) depends on ϕH , and could be useful for

finding such lower bounds. Based on our experience in Chapter 7, we may try the Minimax
Principle to pick a point in σ(H) to serve as a lower bound. In other words, we try to find
family F of subsets of E such that if

(8.17) U(H) = sup
A∈F

inf
x∈A

AH(x),

then

U(H) ≤ U(0)−
∫ 1

0

sup
x

(
−H(x, t)

)
dt,

which maybe used to find a lower bound for E− provided that U(0) = 0. Evidently, U(0) is
equivalent to saying

sup
A∈F

inf
x∈A

∫
x(·)

p · dq = 0.

We now state a result of Hofer that would guarantee the existence of a good F .

Theorem 8.4 (Hofer) There exists a universal family F of subsets of E such that E+ ∈ F ,
and for the corresponding U , we have the following properties:

(1) U(0) = 0 (or equivalently (8.8) holds),

(2) U(H) is a critical value (or equivalently U(H) ∈ σ(H)).

We now assert that U of Theorem 8.5 induces a map on D.

Proposition 8.7 Let F be as in Theorem 8.4. Then U(H) = U(K), whenever ϕH = ϕK.
(Hence U

(
ϕH) := U(H) is well-defined.)

Proof First observe that AH is well-defined for a continuous function H. Moreover, AH is
continuous in H; we have the bound

|AH(x)−AK(x)∥ ≤ ∥H −K∥∞,1.

This yields

(8.18)
∣∣U(H)− U(K)

∣∣ ≤ ∥H −K∥∞,1.

Since U is continuous by (8.18), and the set σ(H) = σ
(
ϕH
)
is nowhere dense, we have the

following property: If s 7→ Hs is a continuous path in H, such that ϕH
s
= φ is independent

of s, then U
(
Hs
)
∈ σ(φ) is independent of s. This suggest a two-steps strategy for the proof

of Proposition:
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(1) Design a map K : D → H such that φ = ϕK(φ).

(2) For every H with ϕH = φ, find a continuous family
(
Hs : s ∈ I

)
in H that would

connect H and K(φ).

Once (1) and (2) are materialized, we would deduce that U(H) = U
(
K(ϕH)

)
depends on

ϕH only, which is exactly what we wish to prove.
In fact our candidate for K(H) = K is the unique Hamiltonian function for which the

flow ϕKt is given by

φt(x) := ϕKt (x) =

{
tφ
(
x
t

)
if t ̸= 0,

x if t = 0.
,

where φ = ϕH1 . Observe that if φ(x) = x for |x| ≥ c, then φt(x) = x for |x| ≥ ct. Hence φt
is continuous in t ≥ 0. One can readily show φt is also differentiable for t ≥ 0, and that

d

dt
ϕKt (x) = X

(
ϕKt (x), t

)
,

where

X(x, t) =


X̂(x/t) if t ̸= 0,

φ(0) if t = 0, x = 0,

0 if t = 0, x ̸= 0,

with
X̂(x) = x−

(
dφ
)
φ−1(x)

(
φ−1(x)

)
.

We note that X̂ is of compact support because dφ is of compact support and φ = φ−1 = id
outside a large ball. Note however,

lim
t→0+

X(x, t) =

{
0 if x ̸= 0,

−
(
dφ
)
φ−1(0)

(φ−1(0)) if x = 0.

Hence X is of compact support but not continuous at t = 0 and x = 0. Nonetheless, we can
find a function K such that X = J̄∇K, with

K(x, t) :=

{
tK̂(x/t) if t ̸= 0,

0 if t = 0,

where K̂ is chosen to be of compact support and satisfying

J̄∇K̂(x) = X̂(x).
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We note K(x, t) = 0 for |x| ≥ ct. This in particular implies the smoothness of K everywhere
except at x = 0 and t = 0. As a result, U(K) is well-defined.

Now take any H ∈ H with ϕH = φ. It remains to find a continuous family of Hamiltonian
functions that would connect H to K(φ).

We first choose two smooth functions

τ : [0, 1)× [0, 1] → [0, 1], β : [0, 1]2 → [0, 1],

such that if we set τ s(t) = τ(s, t), and βs(t) = β(s, t), then τ 0(t) = t, β1(t) = t, and

s < 1 ⇒ τ s(0) = 0, βs(1) = 1,

t ≥ 1− s ⇒ τ s(t) = 1,

t ≤ 1− s ⇒ βs(t) = 0.

We then set γs,θ(t) = 1− θ + θβs(t), and define

ψs,θt (x) = γs,θ(t) ϕHτs(t)

(
x

γs,θ(t)

)
,

for (s, θ) ∈ [0, 1)× [0, 1]. The idea behind the construction of ψs,θt is that if we consider only
ψs,0t , then we have a family of flows that satisfies ψs,0t = φ for t ≥ 1− s, with s < 1. Ideally
we wish to have a flow that depends on φ only. We are tempted to send s → 1 but this is
not allowed because at s = 1 we get a

ψ1,0
t =

{
φ if t > 0,

id if t = 0,

which is not continuous at t = 0. To rectify the discontinuity of ψ1,0
t , we switch to θ > 0 that

would yield a continuous flow even at s = 1. To explain this in details, note that, ψ0,0
t = ϕHt .

On the other hand,

t ≥ 1− s ⇒ ψs,1t (x) = βs(t) φ

(
x

βs(t)

)
.

From this we learn

ψ1,1
t (x) := lim

s→1
ψs,1t (x) =

{
tφ
(
x
t

)
if t > 0,

x if t = 0,
.

which is ϕKt (x). Hence, we have a continuous family of paths in D that connects the flow
of XH to the flow of XK(φ). We note that for each (s, θ), we have ψs,θ0 (x) = x, because

τ s(0) = 0 and ϕH0 (x) = x. Moreover, ψs,θ1 = φ because τ s(1) = βs(1) = 1 and ϕH1 = φ. We
are done. □

We continue with an application of Theorem 8.4 and Proposition 8.7 to demonstrate that
the function U does serve our purposes.
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Proposition 8.8 Let U be as in Proposition 8.7, then

(i) For every H ∈ H, we have U(H) ≥ 0.

(ii) We have E−(φ) ≥ U(φ), and

(8.19) E(φ) ≥ U(φ) + U
(
φ−1

)
.

More generally,

(8.20) −E+(φ) ≤ U(ψ ◦ φ)− U(ψ) ≤ E−(φ).

(iii) If H ≥ 0, then U(H) = 0. Moreover, if H ≤ 0 and H ̸= 0, then U(H) > 0.

(iv) If H is independent of t, 1 < Tmin(H), then U(H) = − infH.

Proof(i) For every a ∈ R2n and consider Ha(x, t) = H(x + a, t). Since Ha = H ◦ τa,
for the symplectic map τa(x) = x + a, we may apply Proposition 8.5(ii) to assert that
σ(H) = σ(Ha). Since a 7→ U

(
Ha
)
∈ σ(H) is continuous in a and the set σ(H) is nowhere

dense, we deduce that U(H) = U(Ha). For every a. Since H is of compact support, we may
choose a with |a| sufficiently large so that Ha(x, t) ≤ π|x|2 =: H0 for all (x, t) ∈ R2n × [0, 1].
For such a,

U(H) = U(Ha) ≥ U(H0) ≥ inf
x∈E+

AH0(x) = inf
x∈E+

[
1

2
∥x+∥21/2 −

∫ 1

0

π|x|2dt
]
≥ 0,

because 2π∥x∥20 ≤ ∥x∥21/2. This completes the proof of Part (i).

(ii) First we show how (8.20) implies (8.19). Indeed by choosing ψ = id in (8.20), we have
U(φ) ≤ E−(φ). (this can be established directly using the definition of U and the property
U(0) = 0.) As a result,

U(φ) + U
(
φ−1

)
≤ E−(φ) + E− (φ−1

)
= E−(φ) + E+(φ) ≤ E(φ),

where we use Proposition 8.1(ii) and its consequence E−(φ−1
)
= E+(φ).

For the proof of (8.20), recall that if φ = ϕH and ψ = ϕK , then ψ ◦ ϕ = ϕK♯H . As a
result, (8.20) follows if we can show

−
∫ 1

0

sup
x
H(x, t) dt ≤ AK♯H −AK ≤

∫ 1

0

sup
x

(
−H(x, t)

)
dt.

This is an immediate consequence of the equality

(AK♯H −AK) (x(·)) = −
∫ 1

0

∫
H
((
ϕKt
)−1

(x(t)), t
)
dt.
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(iii) Since
H ≤ K ⇒ AH ≥ AK ,

we immediately deduce

(8.21) H ≤ K ⇒ U(H) ≥ U(K).

As a result, if H ≥ 0, then U(H) ≤ 0, which in turn implies U(H) = 0 by Part (i).

(iv) Suppose that H ∈ H is independent of time. Note that by the definition of U and
U(0) = 0 we always have

(8.22) U(tH) = U
(
ϕtH
)
≤ U(0) + t

∫ 1

0

sup
x

(
−H(x)

)
dt = −t infH.

To prove the opposite inequality, we first assert that U(tH) ≥ −tminH, for t sufficiently
small. To see this, we make a translation so that minH = H(0). This will not change
the value of U(tH) by our Proof of Part (i). We then choose t0 sufficiently small so that
t0max |D2H| ≤ 2π. As a result, if t ∈ (0, t0], then

tH(x) ≤ H1(x) := tH(0) + π|x|2 =: tH(0) +H0(x)

From this, Part (i), and (8.21) we deduce

U(tH) ≥ U(H1) ≥ −tH(0) + U(H0) ≥ −tminH.

This and (8.22) imply that U(tH) = −t infH, for t ≤ t0.
We now want to argue that U(tH) = −tminH even if t < Tmin(H). Note that for such

t, the flow ϕtH has no non-constant 1-periodic orbit. This implies

σ
(
ϕtH
)
=
{
− tH(y) : ∇H(y) = 0

}
=: tA0,

for every t ∈
(
0, Tmin(H)

)
. This implies that t−1U

(
ϕtH
)
∈ A0 for every t ∈

(
0, Tmin(H)

)
.

Since the map t 7→ t−1U
(
ϕtH
)
is continuous by (8.17), and the set A0 is nowhere dense, we

learn that a0 := t−1U
(
ϕtH
)
is constant for t ∈

(
0, Tmin(H)

)
. We are done. □

We are now ready to prove Theorems 6.2(iv) and 8.1.

Proof of Theorem 6.2(iv) Let U be a bounded open set. Assume that H,K ∈ H with
the following properties: H is independent of time, H ≤ 0, Tmin(H) > 1, the support of H
is contained in U , and

ψ(U) ∩ U = ∅,
for ψ = ϕK . We then would like to deduce

(8.23) − infH = U(φ) ≤ E(ψ).
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(The equality follows from Proposition 8.8(iv).) By Proposition 8.8(ii),

U(φ) ≤ U(ψ ◦ φ) + E+(ψ) = U(ψ ◦ φ)− U(ψ) + U(ψ) + E+(ψ)

≤ U(ψ ◦ φ)− U(ψ) + E−(ψ) + E+(ψ) ≤ U(ψ ◦ φ)− U(ψ) + E(ψ).

This implies (8.23) if we can show

(8.24) U(ψ ◦ φ) = U(ψ).

To prove (8.24), it suffices to show that

(8.25) σ
(
ψ ◦ ϕHt

)
= σ(ψ),

for t ≥ 0. Once (8.25) is established, then we use the continuity of t 7→ U
(
ψ ◦ ϕHt

)
∈ σ(ψ),

and the nowhere denseness of the set σ(ψ), to deduce (8.24).
For (8.25), observe

Fix
(
ψ ◦ ϕHt

)
= Fix(ψ),

because Fix(ψ) ∩ U = ∅. Since

ϕHt (x) = x, ΛϕHt (x) = 0, for x ∈ Fix(ψ) ⊂ R2n \ U,

we deduce

σ
(
ψ ◦ ϕHt

)
=
{
Λψ◦ϕHt (x) : x ∈ Fix

(
ψ ◦ ϕHt

)}
=
{
Λψ◦ϕHt (x) : x ∈ Fix(ψ)

}
=
{(

Λψ ◦ ϕHt
)
(x) + ΛϕHt (x) : x ∈ Fix(ψ)

}
= {Λψ(x) : x ∈ Fix(ψ)} = σ(ψ),

as desired. □

Proof of Theorem 8.1 It suffices to show that if Tmin(H) > 1, then E(φ) = ∥H∥, where
φ = ϕH . By Proposition 8.8(ii),

(8.26) E(φ) ≥ U(φ) + U
(
φ−1

)
.

On the other hand, by Exercise 8.1(i) below, we have φ−1 = ϕ−H . Since Tmin(−H) =
Tmin(H) > 1, we learn from Proposition 8.8(iv)

U(φ) = − infH, U
(
φ−1

)
= − inf(−H).

From and (8.22) we deduce

∥H∥ = − inf(−H)− infH = U(φ) + U
(
φ−1

)
≤ E(φ) ≤ ∥H∥.
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This completes the proof. □

Proof of Theorem 8.4 Step 1. Let us write Φt for the flow of −∇AH . Recall that by the
formula (7.13),

Φt(x) = e−tx+ + x0 + etx− +Kt(x),

for a suitable function Kt : E → E that maps bounded sets into precompact sets. The set F
takes the form

F =
{
g(E+) : g ∈ G

}
,

for a suitable set G of maps g : E → E . The set G consists of homeomorphism g : E → E of
the form

g(x) = eγ
+(x)x+ + x0 + eγ

−(x)x− +K(x),

for continuous functions γ± : E → R and K : E → E with the following properties:

(i) The restriction of functions γ± and K to E+ are 0 outside a bounded set.

(ii) The functions γ± and K map bounded sets into precompact sets.

Step 2. One can show that indeed the set G is a group of homeomorphism.

Step 3 A crucial property of G is that for every g ∈ G, we have

(8.27) g(E+) ∩
(
E− ⊕ E0

)
̸= ∅.

For this, we need to show that for each g ∈ G, we can find x ∈ E+ such that P+g(x) = 0.
For g(x) = eγ

+(x)x+ + x0 + eγ
−(x) +K(x), we need to solve

eγ
+(x)x+ P+K(x) = 0,

in E+. To express this as a fixed point problem, define the operator

T (x) = −e−γ+(x)P+K(x),

so that (8.27) is equivalent to find a fixed point for T : E+ → E+. Note that since K is of
bounded support in E+, we can find ℓ such that T (x) = 0 for ∥x∥ > ℓ. As a result,{

x ∈ E+ : λT (x) = x for some λ ∈ [0, 1]
}
⊂
{
x ∈ E+ : ∥x∥ ≤ ℓ

}
.

On the other hand since T is a compact operator, we may use Schaefer’s Fixed Point Theorem
to assert that T has a fixed point, proving (8.27).

Step 3. Evidently

(8.28) U(0) ≥ inf
E+

1

2

(
∥x+∥2 − ∥x−∥2

)
= inf

E+

1

2
∥x+∥2 = 0.
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Moreover, by (8.27),

U(0) ≤ sup
x∈E−⊕E0

1

2

(
∥x+∥2 − ∥x−∥2

)
= 0.

This and (8.28) imply that U(0) = 0.
It remains to check that U(H) ∈ σ(H). The proof of this is similar to the proof of

Minimax Theorem of Chapter 7 and is omitted. □

Remark 8.5 As a variation of what we have seen so far, consider the space Dper of sympletic
maps φ = ϕH : TTn → Tn × Rn, such that the corresponding Hamiltonian functions

H : Tn × Rn × R → R,

are of compact support. Let us assume that H is 1-periodic in time and convex in p. We
write L for the Legendre Transform of H in the p-variable. Let us write ϕ̂Lt for the flow of
the Euler-Lagrange-Newton’s equation

d

dt
Lv(q, q̇, t) = Lq(q, q̇).

As in Mather Theory, let us consider the following variational problem:

L̄(V ) = inf
µ

∫
L(q, v) µ(dq, dv),

where the infimum is over invariant measures µ of the flow ϕ̂Lt with the rotation number V ;

V =

∫
v µ(dq, dv).

If x(·) = (q(·), p(·) is a 1-periodic orbit of XH , then (q(·), q̇(·)) yields a 1-periodic orbit of
the Lagrangian flow ϕ̂Lt . Out this, we can build an invariant measure

µ(dq, dv) := 11(t ∈ [0, 1])δ(q(t),q̇(t))(dq, dv)dt,

which is of rotation number 0. As a result,∫ 1

0

L(q(t), q̇(t), t) dt ≥ L̄(0).

From this and Remark 8.3(iii) we learn

inf σ(H) ≥ L̄(0).
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There is an alternative way of establishing this inequality: According to Mather Theory,
many dynamical properties of the flow ϕHt are encoded in the sets of the form

LP =
{
(q, P + uq(q, t;P )) : q ∈ Tn

}
,

where for each P ∈ Rn, the function u(·, ·;P ) : TTn → R is 1-periodic in t, and solves the
Hamilton-Jacobi Equation

ut +H(q, uq, t) = H̄,

for a suitable constant H̄ = H̄(P ). Note that if h ∈ σ(H), then there is a 1-periodic orbit
x(t) = (q(t), p(t) of XH such that

h =

∫ 1

0

Ĥ(q(t), p(t), t) dt.

On the other hand, since H is convex,

Ĥ(q, p, t) = p ·Hp(q, p, t)−H(q, p, t) ≥
(
P + uq(q, p, t)

)
·Hp(q, p, t)−H

(
q, P + uq(q, p, t), t).

From this we learn

h ≥
∫ 1

0

[(
P + uq(q(t), p(t), t)

)
·Hp(q(t), p(t), t)−H

(
q(t), P + uq(q(t), p(t), t), t)

]
dt

=

∫ 1

0

[(
P + uq(q(t), p(t), t)

)
· q̇(t)−H

(
q(t), P + uq(q(t), p(t), t), t)

]
dt

=

∫ 1

0

[
ż(t)− ut(q(t), p(t), t)−H

(
q(t), P + uq(q(t), p(t), t), t)

]
dt = −H(P ),

where z(t) = u(q(t), p(t), t). As a result,

inf σ(H) ≥ sup
P

(
− H̄(P )

)
= L̂(0).

where L̂ denotes the Legendre Transform of H̄. It turns out that L̄ = L̂. More generally, if
we define Hv(q, p, t) = H(q, p, t)− p · v, then

inf σ
(
Hv
)
≥ sup

P

(
p · v − H̄(P )

)
= L̄(v).

We may define D on Dper in the same way we defined D on D. In view of Proposition 8.8,
we may expect

D
(
id, ϕH

)
≥ inf σ(H).
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This turns out to be the case as was demonstrated by Siburg [Si]. □

Remark 8.6 The minimax principle used for the proof of Theorem 8.4 can be used to
define Ekeland-Hofer Capacities (ckEH : k ∈ N). First we describe c1EH . To prepare for
the definition of this capacity, we first define a variant of the function U . More precisely,
fix an open neighborhood U of the origin, and let H1(U) denote the set of nonnegative C2

Hamiltonian functions for which the following conditions are true:

� H vanishes in U .

� There exist R > 0 and ρ > π, such that for x satisfying |x| ≥ R, we have H(x) = ρ|x|2.

We write H1 for the set of Hamiltonian H such that for some open neighborhood U of the
origin, we have H ∈ H1(U). We then define V : H1 → [0,∞) by

(8.29) V(H) = sup
g∈G

inf
x∈Γ

AH(g(x)),

where the group G was defined in the proof of Theorem 8.4, and

Γ =
{
x ∈ E+ : ∥x∥ = 1

}
.

As in the proof of Theorem 7.2, we can show that V(H) < ∞. For this, it suffices to
show that for every g ∈ G,

(8.30) g(Γ) ∩ Ê ̸= ∅,

where
Ê = E− ⊕ E0 ⊕ Re+,

with e+(t) = e2πJ̄t(1, 0, . . . , 0). Assuming (8.30), we can assert

V(H) ≤ sup
Ê

AH .

Since H ∈ H, we can find ρ > π and a constant c0 such that

H(x) ≥ ρ|x|2 − c0.

As a result, for x = x− + x0 + se+,

AH(x) ≤ πs2 − 2−1∥x−∥2 − ρ

∫ 1

0

|x(t)|2 dt+ c0

= πs2 − 2−1∥x−∥2 − ρ

[∫ 1

0

|x−(t)|2 dt+ x0 + s2
]
+ c0 ≤ c0,
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because E+, E−, E0 are orthogonal in L2. This implies that U ′(H) <∞.
Also, it is not hard to show that V(H) > 0. To see this, choose gε ∈ G so that gε(Γ) =

x0 + εΓ, where ε > 0 and x0 is chosen so that H vanishes in a neighborhood of x0. For such
gε,

inf
gε(Γ)

AH > 0,

for small ε, because AH(x0) = 0, ∇AH(x0) = 0, and D2AH(x0) = P+ − P−. □

We now turn our attention to bounding ∥H∥∞,1, or D(φ, ψ) from above. As a preparation
we make some definitions.

Definition 8.4(i) We write

supp(φ) =
{
x : φ(x) ̸= x

}
,

for the support of φ.

(ii) Let us write π1(x) = π(x1, . . . , xd) = x1 for the projection onto the first coordinate. We
say that the bounded open sets U1, . . . , Uk are properly separated, if there exists η ∈ D such
that the convex hulls of π1

(
η(Ū1)

)
, . . . , π1

(
η(Ūk)

)
are disjoint intervals.

(iii) We say φ1, . . . , φk ∈ D are properly separated if supp(φ1), . . . , supp(φk) are properly
separated.

(iv) We define the proper displacement energy of a bounded open set U by

ê(U) = inf
{
∥H∥∞,1 : U and ϕH(U) are properly separated

}
.

□
We are now ready to state two bounds on D(id, φ).

Theorem 8.5 (Hofer) For every φ ∈ D,

D(id, φ) ≤ 128 diam
(
supp(φ)

)
∥id− φ∥∞.

Theorem 8.6 (Sikorav) If H ∈ H and supp(H) ⊆ U × [0, 1], then

E
(
ϕH
)
≤ 16 ê(U).

As a preparation for Theorem 8.6, we prove the following variant:

Lemma 8.1 (i) If φ1, . . . , φk ∈ D are properly separated, then

(8.31) E(φ1 ◦ · · · ◦ φk) ≤ 2 max
1≤i≤k

E(φi).

(ii) If φ1, . . . , φk ∈ D with supp(φ1), . . . , supp(φk) ⊆ U , for a bounded open set U, then

E(φ1 ◦ · · · ◦ φk) ≤ 16 ê(U) + 2 max
1≤i≤k

E(φi).
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Proof (i) To ease the notation, we simply write αβ for α◦β. Set Ui = supp(φi). Take η ∈ D
such that V1 = η(U1), . . . , Vk = η(Uk) are properly separated. Note that if ψi = ηφiη

−1, then
supp(ψi) = Vi and E(φ1 . . . φk) = E(ψ1 . . . ψk). Choose Hi such that ψi = ϕHi . Note that
because of 1-periodic orbits, in general supp(Hi) ̸= supp(ψ) × [0, 1] = Vi × [0, 1]. So the
support of H ′

is may not be disjoint. Let us write Wi × [0, 1] for the support of Hi. We now
claim that we can find τ̂ ∈ D such that if ψ̂i = τ̂ψτ̂−1, and Ŵi = τ̂(Wi), then Ŵ1, . . . , Ŵk are
disjoint. To see this, first choose r > 0 sufficiently large so that supp(Hj) ⊆ Br(0)+Vi = V̂i.
We then use τ̂ ∈ D so that τ̂(x) = x + aj is simply a translation on Vj. These aj’s can be

chosen so that τ̂(V̂1), . . . , τ̂(V̂k) are disjoint.
Let us write Ĥi = Hi ◦ τ̂i and set H = Ĥ1 + · · ·+ Ĥi. Since the support of of Ĥ1, . . . , Ĥk

are disjoint, we have

ϕH = ϕĤ1 . . . ϕĤk = ψ̂1 . . . ψ̂k.

As a result,
E
(
φ1 . . . φk

)
= E

(
ψ̂1 . . . ψ̂k

)
= E

(
ϕH
)
≤ ∥H∥∞,1.

But
max
x

H(x, t)−min
x
H(x, t) ≤ 2 max

1≤i≤k

(
max
x

Ĥi(x, t)−min
x
Ĥi(x, t)

)
.

As a result,
∥H∥∞,1 ≤ 2 max

1≤i≤k
∥Ĥi∥∞,1,

completing the proof of (8.31).

(ii) First pick ε > 0 and choose η ∈ D such that

E(η) ≤ ê(U) + ε, and U and η(U) are properly separated.

Out of η we build a sequence α1, β1 . . . , α,βk ∈ D such that

(i) For each i, there exist τi, τ̂i ∈ D such that αi = τiητ
−1
i and βi = τ̂iητ̂

−1
i .

(ii) For each i, the support of αi and βi are a suitable translates of U .

(iii) The maps α1, β1 . . . , α,βk ∈ D are properly separated.

Set ψi = φ1 . . . φi. We set

ψ̂i = αiψiα
−1
i , ψ̄i = βiψ

−1
i β−1

i ,

so that the maps ψ̂1, ψ̄1 . . . , ψ̂k, ψ̄k, are properly separated and commute. We write

φ1 . . . φk = ψk = ψkψ̄kψ̂k−1ψ̄k−1 . . . ψ̂1ψ̄1

(
ψ̄kψ̂k−1ψ̄k−1 . . . ψ̂1ψ̄1

)−1
.
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From this and (8.31) we learn

E
(
φ1 . . . φk

)
≤ E

(
ψkψ̄kψ̂k−1ψ̄k−1 . . . ψ̂1ψ̄1

)
+ E

(
ψ̄kψ̂k−1ψ̄k−1 . . . ψ̂1ψ̄1

)
≤ 2 max

1≤i≤k
E
(
ψ̂iψ̄i

)
+ 2 max

1≤i≤k
E
(
ψ̂iψ̄i−1

)
.

We note

E
(
ψ̂iψ̄i

)
≤ E(αi) + E

(
ψiα

−1
i βiψ

−1
i

)
+ E

(
β−1
i

)
= 2E(η) + E

(
α−1
i βi

)
≤ 4E(η),

E
(
ψ̂iψ̄i−1

)
≤ E(αi) + E

(
ψiα

−1
i βi−1ψ

−1
i−1

)
+ E

(
β−1
i−1

)
= 2E(η) + E

(
ψiψ

−1
i−1ψi−1α

−1
i βi−1ψ

−1
i−1

)
= 2E(η) + E

(
ψiψ

−1
i−1

)
+ E

(
ψi−1α

−1
i βi−1ψ

−1
i−1

)
= 2E(η) + E(φi) + E

(
α−1
i βi−1

)
≤ 4E(η) + E(φi).

We are done. □

Proof of Theorem 8.6 Pick ε > 0. We write ϕH = φ1 ◦ · · · ◦ φk, where φi = ϕHti,ti+1
and

0 < t1 < · · · < tk < tk+1 = t are chosen so that E(φi) ≤ ε. By Lemma 8.1(ii),

E
(
ϕH
)
≤ 16 ê(U) + 2ε.

As send ε→ 0 to arrive at the desired conclusion. □
An interesting application of Theorem 6.2(iv) is the following regularity of the Poisson

Bracket.

Theorem 8.7 There is a constant c0 such that such that for every Hamiltonian functions
f, g, F,G : R2n → R,

max{f, g} ≤max{F,G}+ c0(1 + A2)(δ2/3 + Aδ1/3)(8.32)

where δ = max{∥F − f∥∞, ∥G− g∥∞}, and A = ∥f∥C2 + ∥g∥C2.

Proof According to Theorem 6.2(iv),

t∥g −G∥∞ ≤ πr2 ⇒ ϕgt
(
Br(x)

)
∩ ϕGt

(
Br(x)

)
̸= ∅,

for every r, t > 0 and x ∈ R2n. As a result, if we fix x ∈ R2n, r > 0, and choose t =
πr2∥G− g∥−1

∞ , then we can find y, y′ ∈ Br(x) such that ϕGt (y) = ϕgt (y
′). This in turn implies

f
(
ϕgt (y

′)
)
= f

(
ϕGt (y)

)
≤ F

(
ϕGt (y)

)
+ ∥F − f∥∞

= F (y) +

∫ t

0

{F,G}
(
ϕGs (y)

)
ds+ ∥F − f∥∞

≤ f(y′) +

∫ t

0

{F,G}
(
ϕGs (y)

)
ds+ 2∥F − f∥∞ + 2r Lip(f).
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Hence,

(8.33) t−1

∫ t

0

{f, g}
(
ϕgs(y

′)
)
ds ≤ t−1

∫ t

0

{F,G}
(
ϕGs (y)

)
ds+ 2t−1∥F − f∥∞ + 2t−1r Lip(f).

Observe
{f, g}

(
ϕgs(y

′)
)
≥ {f, g}(y′)− s∥{{f, g}, g}∥∞.

From this and (8.33) we learn

{f, g}(y′) ≤ max{F,G}+ 2t−1∥F − f∥∞ + 2t−1r Lip(f) + 2−1t∥{{f, g}, g}∥∞.

From this we deduce

{f, g}(x) ≤ max{F,G}+ 2t−1
(
∥F − f∥∞ + r Lip(f)

)
+ 2−1t∥{{f, g}, g}∥∞ + r Lip

(
{f, g}

)
,

for every x. Hence

max{f, g} ≤ max{F,G}+2t−1
(
∥F − f∥∞ + r Lip(f)

)
+2−1t∥{{f, g}, g}∥∞ + r Lip

(
{f, g}

)
,

provided that t = πr2∥G− g∥−1
∞ . As a result,

max{f, g} −max{F,G} ≤cr−2∥G− g∥∞∥F − f∥∞ + cr−1∥G− g∥∞ Lip(f)

+ cr2∥G− g∥−1
∞ ∥{{f, g}, g}∥∞ + cr Lip

(
{f, g}

)
≤cr−2∥G− g∥∞∥F − f∥∞ + cAr−1∥G− g∥∞

+ cA3r2∥G− g∥−1
∞ + cA2r,

where A = ∥f∥C2 + ∥g∥C2 . In the same fashion we can show

min{f, g} −min{F,G} ≥ − cr−2∥G− g∥∞∥F − f∥∞ − cAr−1∥G− g∥∞
− cA3r2∥G− g∥−1

∞ − cA2r.

We now interchange f with g to deduce

min{g, f} −min{G,F} ≥ − cr−2∥G− g∥∞∥F − f∥∞ − cAr−1∥F − f∥∞
− cA3r2∥F − f∥−1

∞ − cA2r.

Equivalently,

max{f, g} −max{F,G} ≤cr−2∥G− g∥∞∥F − f∥∞ + cAr−1∥F − f∥∞
+ cA3r2∥F − f∥−1

∞ + cA2r.
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Hence,

max{f, g} −max{F,G} ≤cr−2∥G− g∥∞∥F − f∥∞ + cAr−1∥F − f∥∞
+ cA3r2 (max {∥F − f∥∞, ∥G− g∥∞})−1 + cA2r

≤cr−2δ2 + cAr−1δ + cA3r2δ−1 + cA2r,

where δ = max{∥F − f∥∞, ∥G− g∥∞}. If we choose r = δ2/3, we arrive at

max{f, g} −max{F,G} ≤c(1 + A2)(δ2/3 + Aδ1/3),

as desired. □

In Chapter 6, we learned that the period of the shortest periodic orbit of XH is related
to ∥H∥ and the capacity of the support of H. Also the replacement energy provided another
mean to measure the symplectic size of a set. We now examine the relationship between the
time it takes to get from a set A to another set B and the Poisson bracket. We first start
with a general fact about ODE: Recall LXf denotes the Lie derivative of a 0-form f . In
Euclidean setting we simply have LXf = X · ∇f .

Definition 8.5 Given two sets A,B ⊂M , and a vector field X on M , we set

T (A,B;X) = inf
{
t ≥ 0 : ϕt(A) ∩B ̸= ∅

}
S(A,B;X) = inf

{
max
M

(LXf) : f ∈ C1, max
A

f ≤ 0, min
B
f ≥ 1

}
,

where ϕt denotes the flow of the vector field X. □

Proposition 8.9 (Fathi) We have T (A,B;X)S(A,B;X) = 1.

We may also formulate a discrete variant of Proposition 8.9 that was used by Fathi for
the proof of this proposition.

Definition 8.5 Let (M,d) be a compact metric space with metric d and assume that ψ :
X → X is a homeomorphism. Given two sets A,B ⊂M , we set

T (A,B;ψ) = inf
{
n ≥ 0 : ψn(A) ∩B ̸= ∅

}
S(A,B;ψ) = inf

{
max
M

(f ◦ ψ − f) : f ∈ C0, max
A

f ≤ 0, min
B
f ≥ 1

}
.

where ϕt denotes the flow of the vector field X. □

Proposition 8.10 (Fathi) assume that A and B are two closed subset ofM . Then T (A,B;ψ)S(A,B;ψ) =
1.
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Proof (Step 1.) Set Lf = f ◦ ψ − f . Take and continuous f with maxA f ≤ 0, and
minB f ≥ 1. Take any a ∈ A and n ≥ 0 such that ψn(x) ∈ B. Then

1 ≤ f
(
ψn(a)

)
= f(a) +

n−1∑
i=0

Lf
(
ψi(a)

)
≤ nmax(Lf).

As a result, T (A,B;ψ)S(A,B;ψ) ≥ 1. (Step 2.) Take any continuous function Γ :M×M →
[0,∞) with the following properties:

� Γ(x, z) ≤ Γ(x, y) + Γ(y, z).

� Γ
(
x, ψ(x)

)
= 1.

Given such Γ, define the operator Λ : C(X) → C(X) by

Λ(g)(x) = min
y∈M

{g(y) + Γ(y, x)}.

Observe that the properties of Γ guarantee that Λ(g) ◦ ψ ≤ Λ(g) + 1, or LΛ(g) ≤ 1. Since(
Λg ◦ ψ

)
(x) ≤ g(x) + Γ(x, ψ(x)) = g(x) + 1,

we also have LΛ̂g ≤ 1, for
Λ̂(g) = min{g,Λg}.

Now assume that g ≥ 0, and that g = 0 on a set A. Then L̂g = 0 on A as well because
Λg ≥ 0. Now we wish to find a lower bound on L̂g on the set B in terms of T (A,B;ψ). For
this we need to construct a suitable Γ to serve our purposes.

(Step 3) We construct Γ with the additional property

Γ(x, y) ≤ T (x, y;ψ),

where T (x, y;ψ) ≤ T
(
{x}, {y};ψ

)
. In other words, if ψn(x) = y, then T (x, y;ψ) ≤ n. This

may be achieved by taking a sequence from x to y and penalize it when it deviates from an
orbit of ψ. More precisely, take (a large) k > 0 and set

Γ(x, y) = Γk(x, y) = inf

{
ℓ−1∑
0

dk
(
ψ(xi), xi+1

)
: x0, . . . , xℓ ∈M, with x0 = x, xℓ = y

}
,

for dk(x, y) = kd(x, y)+1. For a large k, the appearance of the term kd
(
ψ(xi), xi+1

)
penalize

deviation from the orbits of ψ, while the appearance of 1 counts the time it takes to reach
y from x. It is not hard to see that Γ possesses all the aforementioned properties.
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(Final Step.) Let us write Λ̂k for Λ̂ associated with Γk. Recall that g ≥ 0 is 1 on the set A.
We wish to find a lower bound for

t̄ = sup
k

min
B

Λ̂kg.

Pick and t′ > t̄, and for each k ∈ N, choose ℓk ∈ N, a sequence

xk =
(
xk0 = x, xk1, . . . , x

k
ℓk−1, x

k
ℓk
= y
)
,

such that
ℓk−1∑
0

dk
(
ψ(xki ), x

k
i+1

)
≤ t′

Since ℓk ≤ A′, we may choose a subsequence kr → ∞ such that ℓkr = ℓ is constant, and that
the limit

x =
(
x0, . . . , xℓ

)
= lim

r→∞
xkr ,

exists. For this sequence, we certainly have ψ(xi) = xi+1 because kr → ∞. Hence

ℓ = lim
r→∞

ℓkr−1∑
0

dkr
(
ψ(xkri ), xkri+1

)
≤ t′.

As a result t′ ≥ T (A,B;ψ). This in turn implies t ≥ T (A,B;ψ). Hence for large k, we have

T (A,B;ψ) ≤ inf
B

Λ̂kg,

as desired. □

Proof of Proposition 8.9 Take and f ∈ C1 with maxA f ≤ 0, and minB f ≥ 1. Take any
a ∈ A and t ≥ 0 such that ϕt(x) ∈ B. Then

1 ≤ f
(
ϕt(a)

)
= f(a) +

∫ t

0

LXf
(
ϕs(a)

)
ds ≤ tmax(LXf).

As a result, T (A,B;X)S(A,B;X) ≥ 1.
We first give a short prove for a weaker reverse inequality. Pick any t0 < T (A,B;X) so

that ϕ[0,t0](A) ∩B = ∅. As a result

(8.34) ϕ[0,t0/2](A) ∩ ϕ[−t0/2,0](B) = ∅.

Take any C1 function g :M → R and observe

(8.35) t−1
(
g ◦ ϕt − g

)
= t−1

∫ t

0

d

ds

(
g ◦ ϕs

)
ds = t−1

∫ t

0

LX
(
g ◦ ϕs

)
ds = LXf,
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where

f = t−1

∫ t

0

g ◦ ϕs ds.

Choose t = t0/2 and a C1 function g : M → [0, 1] such that g = 0 on ϕ[0,t0/2](A), and g = 1
on ϕ[−t0/2,0](B). Such a function exists because (8.33) holds. For such g, the corresponding
f satisfies f = 0 on A and f = 1 on B. On the other hand, we have

max(LXf) ≤ 2t−1
0 ,

by (8.36). As a result, S(A,B;X) ≤ t0/2. This implies that T (A,B;X)S(A,B;X) ≤ 2.
□

Let us write H1(U,K) for the set of C1 Hamiltonian functions H :M → [0, 1] such that
H = 0 outside U and H = 1 on K ⊂ U . We then set

T̂ (A,B;U,K) = inf
{
t ≥ 0 : ϕHt (A) ∩B ̸= ∅ for some H ∈ H1(U,K)

}
= sup

H∈H(U,K)

T (A,B;XH),

Ŝ(A,B;U,K) = inf
{
max
M

(LXH
f) : H ∈ H(U,K), f ∈ C1, max

A
f ≤ 0, min

B
f ≥ 1

}
= inf

{
max
M

{H, f} : H ∈ H1(U,K), f ∈ C1, max
A

f ≤ 0, min
B
f ≥ 1

}
,

Proposition 8.11 We have T̂ (A,B;U,K)Ŝ(A,B;U,K) = 1.

Remark 8.7 We now describe a strategy of Buhevsky, Entrov and Polterovich for finding a
lower bound on Ŝ when ω = dλ. Set ωt = dλt with λt = λ+ tfdH. Since

ωdt = ωd − t{H, f}ωd =
(
1− t{H, f}

)
ωd,

we learn that ωt is symplectic so long as

t ∈
[
0,max{H, f}−1

)
.

Choose a time dependent vector field Xt such that

dωt
dt

+ LXtωt = 0.

This would be the case if iXtωt = Hdf. If ϕt is the flow of Xt, then ϕ
∗
tωt = ω, or

ωt = (ϕt)
−1∗ω.
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Hence for every closed curve Γ, ∫
ϕ−1
t Γ

ω + t

∫
Γ

fdH =

∫
Γ

ω.

Now the function (f,H) maps the set A ∩ B ∩ U ∩K to the square [0, 1]2. If (f,H)(Γ) is
the square with positive orientation, then∫

Γ

fdH =

∫
(f,H)(Γ)

qdp = 1.

Hence ∫
ϕ−1
t Γ

ω + t =

∫
Γ

ω.

By choosing Γ for which ∫
ϕ−1
t Γ

ω > 0.

we get the bound t ≤
∫
Γ
ω. This means

max{H, f}−1 ≤
∫
Γ

ω.

□

We can use Theorem 6.2(iv) to a get a lower bound for D(ϕ, ψ), namely, if

D̂(ϕ, ψ) = sup
{
πr2 : ∃a such that ϕ

(
Br(a)

)
∩ ψ
(
Br(a)

)
= ∅
}

≤ sup
{
e(U) : U open, ϕ(U)) ∩ ψ(U) = ∅

}
,

then

(8.36) D̂(ϕ, ψ) ≤ D(ϕ, ψ).

Here is a useful consequence of (8.36).

Proposition 8.12 For every ψ, ϕ ∈ D,

(8.37) ∥ϕ− ψ∥C0 ≤
(
αϕ + αψ

) (√
π−1D(ϕ, ψ)

)
,

where αϕ denotes the modulus of continuity of ϕ.
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Proof Given a, we certainly have

πr2 < D(ϕ, ψ) =⇒ ϕ
(
Br(a)

)
∩ ψ
(
Br(a)

)
̸= ∅.

This means that for such r > 0, and any a, we can find x, y ∈ Br(a) such that ϕ(x) = ψ(y).
As a result,

|ϕ(a)− ψ(a)| ≤ |ϕ(a)− ϕ(x)|+ |ψ(y)− ψ(a)| ≤
(
αϕ + αψ

)
(r).

Whe then maximize over r and minimize over a in this order to deduce (8.37). □

Note that if we restrict D to a C0-compact subset of D, then (8.37) means that the
uniform metric is is dominated by D. Let K be such a compact set. Define

KU =
{
φ ∈ D : supp(φ) ⊂ U, var ∈ K

}
.

Then D induces the same topology as uniform norm on KU for any bounde U .

Exercise 8.1(i) Show directly that
(
ϕHt
)−1

= ϕ−H
t for a time-independent Hamiltonian

function H. Use Proposition 8.1(ii) to draw the same conclusion.

(ii) Show that the limit
D̂(φ) := lim

ℓ→∞
ℓ−1D(id, φℓ),

exists and equals to infℓ ℓ
−1D(id, φℓ). □
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9 Generating Function, Twist Map and Arnold’s Con-

jecture

Given a Hamiltonian function H : M × [0,∞) → R on a symplectic manifold (M,ω), we
may wonder whether or not the corresponding Hamiltonian vector field XH = Xω

H has T -
periodic orbits for a given period T . We have addressed this question in Chapters 2,4-8
already, but now we would like to find some non trivial lower bounds on the number of such
periodic orbits. To convince that such a question is natural and important, let us examine
this question when the Hamiltonian function is time-independent first. We note that for the
autonomous XH we can even find rest points (or constant orbits) and there is a one-one
correspondence between the constant orbits of XH and the critical points of H. We can
appeal to the following classical theories in Algebraic Topology to obtain sharp universal
lower bounds on the number of critical points of a smooth function on M where M is a
smooth closed manifold. Let us write Crit(H) for the set of critical points of H :M → R.
(i) According to Lusternik-Schnirelmann (LS) Theorem,

(9.1) ♯Crit(H) ≥ cℓ(M),

where cℓ(M) denotes the cuplength of M . (See Appendix D.)

(ii) According to Morse Theory, for a Morse function H,

(9.2) ♯Crit(H) ≥
∑
k

βk(M),

where βk(M) denotes the k-th Betti’s number of M . (See Appendix F).

According to Arnold’s conjecture, the analogs of (9.1) and (9.2) are true for the non-
autonomous Hamiltonian functions provided that we count 1-periodic orbits of XH instead
of constant orbits. For the sake of comparison, we may regard (9.1) and (9.2) as a lower
bound on the number of 0-periodics orbit when H is 0-periodic in t. In Arnold’s conjecture,
we replace 0-periodicity with 1-periodicity. To this end, define

Per(H) =
{
x ∈M : ϕH1 (x) = x

}
= Fix

(
ϕH1
)
.

Arnold’s Conjecture Let (M,ω) be a closed symplectic manifold and let H :M×[0,∞) →
R be a smooth Hamiltonian function that is 1-periodic in the time variable. Then

(9.3) ♯Per(H) ≥ cℓ(M).

Moreover, if φ := ϕH1 is non-degenerate in the sense that det(dφ − id)x ̸= 0 for every
x ∈ Fix(φ), then

(9.4) ♯Per(H) ≥
∑
k

βk(M).
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□
We now describe our strategies for establishing Arnold’s conjecture under some additional

conditions on M :

(Main Strategy) (1) As in Chapters 5, 7 and 8, a natural way to tackle Arnold’s conjecture
is to study the set of critical points of AH : Γ → R, where Γ is the space of 1-periodic
x : R →M and

(9.5) AH(x(·)) =
∫
w

ω −
∫ 1

0

H(x(t), t) dt,

where w : D → M is any extension of x· : S1 → M to the unit disc D. (Note that since
ω is closed, the right-hand side of (9.5) is independent of the extension.) We may try to
apply LS and Morse Theory to the functional AH in order to get lower bounds on ♯Per(H).
Of course we cannot apply either Morse Theorem (9.2) or LS Theorem (9.1) to AH directly
because Γ is neither compact nor finite-dimensional. However, we may attempt to modify
the proofs of (9.1) and (9.2) to analyze the critical values of AH . A standard way to prove
either (9.1) or (9.2) is to study the gradient flow associated with AH as we did in Chapter 7.
This turns out to be plausible is some cases only, most notably when M = T2n is a torus.
In other words, we may establish Arnold’s conjecture in the case of a torus by analyzing the
gradient flow associated with AH : E → R, where E = H1/2, and

AH(x(·)) = AH(x(·)) =
∫
w

ω −
∫ 1

0

H(x(t), t) dt =
1

2

∫
x(·)

J̄x · ẋ dt−
∫ 1

0

H(x(t), t) dt,

with H : R2n × R → R, 1-periodic in x and t. More precisely, we look at the ODE

(9.6)
d

ds
u = −∇AH(u),

where
AH(x(·)) = P+x(·)− P−x(·)− I(∇H(x(·), ·)).

Here we have used our notations in Chapter 7. We note that if x(·) is 1-periodic, then
H(x(·), ·)) is also 1-periodic because H is 1-periodic in t. Also note that a solution of (9.6)
is a function u : R2 → M such that u is 1-periodic with respect to the second coordinate.
To find critical points of AH , we would look for solutions of (9.6) such that

lim
s→∞

u(s, ·) := x∞(·),

exists. This suggests that we may restrict the flow Φt = ΦH
t of the ODE (9.6) to those

starting loops for which the flow remains bounded for all times. In other words, we are only
interested in the set

(9.7) E∞ =

{
x ∈ E : sup

t∈R
∥Φt(x)∥1/2 <∞

}
.
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It turns out that the set E∞ is compact; this allows us to apply LS or Morse Theory for
the flow ψt restricted to E∞. Let us remark that if H = 0, then the equation (9.6) is easily
solved by

Φ0
t (x) = etP−x+ x0 + e−tP+x.

In this case, the equation (9.6) is a linear hyperbolic ODE with E0 consisting of the rest
points, and E± representing the stable/unstable subspaces. When H ̸= 0, we have a compact
perturbation of this hyperbolic picture.

(2) As we mentioned before, the strategy sketched in (1) works for the torus but not for
more general manifolds. Floer adopted another approach by studying the gradient flow in
L2 setting. That is,

(9.8)
dw

ds
= −∂AH(w).

Note however this equation as an ODE is not well-posed because ∂AH(w) is not defined
for w ∈ L2(S1;M). As we will see in Chapter 10, indeed (9.8) is an elliptic PDE and not
well-posed for an initial value problem. However, we may hope to solve this equation for
suitable boundary conditions; given two loops x± : S1 →M , we may wonder whether or not
there exists a solution w of (9.8) such that

lim
s→±∞

w(s, ·) = x±(·).

(3) In our Strategy (1) and (2), we solve a differential equation (9.8) or (9.6) in an infinite
dimensional space. However in the case of the torus or M = T ∗L, we may reduce the
problem by using generalized generating functions. In fact, one can show that ϕHt has a type
II generating function (recall (8.11)) provided that t is sufficiently small. We then use group
property of the flow to write

φ = ϕH1 = ψ1 ◦ · · · ◦ ψN ,
where each ψi has a generating function. This can be used to build a generalized generating
function for φ a la Chaperon. We may establish Arnold’s conjecture with the aid of gener-
alized generating functions in some cases. □

We now use our described strategies to establish Arnold’s conjecture in two cases: When
M = S1 × [−1, 1] is a cylinder or M = T2n is a torus. For these two cases, we may use
Strategy (3) to establish Arnold’s conjecture. Recall the definition of Type I generating
function as was discussed in Chapter 8 (see (8.8) and (8.9)). If φ : R2n → R2n is a sympletic
diffeomorphism with φ(q, p) = (Q,P ), we wish to find scalar-valued function S(q,Q) so that

(9.9) φ
(
q,−Sq(q,Q)

)
=
(
Q,SQ(q,Q)

)
.

Such S always exists locally under a non-degeneracy assumption as the next Proposition
demonstrates.
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Proposition 9.1 Let φ : U → R2n be a symplectic transformation and assume that at
(q0, p0) ∈ U ,

(9.10) det
∂Q

∂p
(q0, p0) ̸= 0.

Then there exist a neighborhood V of q0 and Q0 = Q(q0, p0), and a C1 function S : V → R
such that (9.11) holds.

Proof From (9.10) or (8.9), and Implicit Function Theorem, the relation Q = Q(q, p) can
be solved for p = p(q,Q) for q and Q near q0 and Q0. We then set P (q,Q) = P (q, p(q,Q)).
To solve (8.9) for S, we need to verify the solvability criterion

Pq + pQ = 0,

regarding P and p as functions of q and Q. This is exactly d(P · dQ− p · dq) = 0. □

As our first example, let us study generating functions for the case of a cylinder M =
S1 × [−1, 1]. Let φ : M → M be a sympletic (area-preserving) diffeomorphism. Such
a transformation was encountered by Poincaré as he used a Poincaré’s section to study
solutions to Hamiltonian systems. (Here we are use the standard symplectic (area) form on
M .) To have fixed points of φ, we need some appropriate boundary conditions. As we will
see such fixed points exist if φ is a twist map. To explain the twist condition, let us assume
that if

φ
(
S1 × {±1}

)
= (S1 × {±1}

)
,

then the restriction of φ to the boundary circles are two circle diffeomorphisms for which
rotation numbers can be defined. Roughly the twist condition means that the map on top
and bottom circles twist in opposite directions.

Definition 9.1(i) Regarding S1 as the interval [0, 1] with 0 = 1, let f : S1 → S1 be an
orientation preserving homeomorphism. Its lift F = ℓ(f) is an increasing map F : R → R
such that f(x) = F (x) ( mod 1), and F can be written as F (x) = x+ g(x), for a 1-periodic
function g : R → R.
(ii) For f and F as in (i), we define its rotation number

(9.11) ρ(f) = ρ(F ) = lim
n→∞

n−1F n(x).

By a result of Poincaré, the limit exists and is independent of x.

(iii) Let φ : S1 × [−1, 1] → S1 × [−1, 1], be an orientation preserving homeomorphism. Its
lift is a homeomorphism Φ : R× [−1, 1] → R× [−1, 1] such that

φ(x) = Φ(x) ( mod 1),
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and Φ = ℓ(φ) can be written as Φ(q, p) = (q, 0)+Ψ(q, p), for a continuous Ψ : R× [−1, 1] →
R× [−1, 1], that is 1-periodic function in q-variable.

(iv) An orientation-preserving diffeomorphism φ : S1× [−1, 1] → S1× [−1, 1] is called a twist
map if the following conditions are met:

(i) φ (or equivalently its lift) is area-preserving.

(ii) If we define φ± by (φ±(q),±1) = φ(q,±1), then ρ(φ+) < 0 < ρ(φ−).
□

Our main result about twist maps is the following result of Poincaré and Birkhoff.

Theorem 9.1 Any twist map has at least two fixed points.

To see Poincaré-Birkhoff’s theorem within a larger context, let us recall a result of
Poincaré for circle homeomorphism:

Proposition 9.2 Let f : S1 → S1 be an orientation preserving homeomorphism. Then the
following statements are true for f :

(i) f has a fixed point iff ρ(f) = 0.

(ii) ±ρ(f) > 0 iff ±(ℓ(f)(x)− x) > 0.

(iii) Let (r, s) be a pair of coprime positive integers. Then f has a (r, s)-periodic orbit (this
means that F s(x) = F (x) + r for F = ℓ(f)), iff ρ(f) = r/s.

One way to interpret Theorem 9.1 is that since 0 ∈ (ρ(φ−), ρ(φ+)), then φ has at least
two orbits in the interior of the cylinder that are associated with 0 rotation number, namely
fixed points. In fact an analogous result is true for periodic orbits which may be regarded
as a variant Theorem 9.2(ii) for the twist maps.

Theorem 9.2 (Birkhoff) Let φ : S1 × [−1, 1] → S1 × [−1, 1], be an area and orientation
preserving C1-diffeomorphism. If r/s ∈ (ρ(φ−), ρ(φ+)) is a rational number with r and s
coprime, then φ has at least two (r, s)-periodic orbits in the interior of S1 × [−1, 1].

Naturally we are led to the following question: How about an irrational ρ ∈ (ρ−, ρ+)?
Can we find an orbit of φ associated with such ρ? The answer to this question is affirmative
and this is the subject of the Mather Theory. For any irrational ρ ∈ (ρ−, ρ+), there exists an
invariant set on the cylinder that in some sense has the rotation number ρ. This invariant set
q-projects onto either a Cantor-like subset of S1 or the whole S1. The invariant set lies on a
graph of a Lipschitz function defined on S1. These invariant sets are known as Aubry–Mather
sets.

143



Poincaré established Theorem 9.1 provided that φ has a global generating function. Such
a generating function exists if φ is a monotone twist map. To explain Poincare’s argument,
let us formulate a condition on Φ = ℓ(φ) that would guarantee the existence of a global
generating function S(q,Q) for Φ.

Definition 9.2 A twist map φ or its lift Φ(q, p) = (Q(q, p), P (q, p)) is called positive (mono-
tone) if Q(q, p) is increasing in p for every q ∈ R. We say φ is negative (monotone) twist if
φ−1 is a positive twist. □

Proposition 9.3 Let Φ be a monotone twist map. Then there exists a C2 function S : U →
R with

U = {(q,Q) : Q(q,−1) ≤ Q ≤ Q(q,+1)}
such that

Φ(x,−Sq(q,Q)) = (Q,SQ(q,Q)).

Moreover

(9.12) S(q + 1, Q+ 1) = S(q,Q), SqQ < 0.

Proof The image of the line segment {q}× [−1, 1] under Φ is a curve γ with parametrization
γ(p) = (Q(q, p), P (q, p)). By the monotonicity, the relation Q(q, p) = Q can be inverted to
yield p = p(q,Q) which is increasing in Q. The set γ[−1, 1] can be viewed as a graph of the
function

Q 7→ P (q, p(q,Q))

with Q ∈ [Q(q,−1), Q(q,+1)]. The anti-derivative of this function yields S. This can be
geometrically described as the area of the region ∆ between the curve γ([−1, 1]), the line
P = −1 and the vertical line {q} × [−1, 1]. We now apply Φ−1 on this region. The line
segment {Q} × [−1, 1] is mapped to a curve γ̂([−1, 1]) which coincides with a graph of a
function q 7→ p. Since Φ is area preserving the area of Φ−1(∆) is S(q,Q). From this we
deduce that SQ = −p. Here we have used the fact that Φ−1 is a (negative) twist map. This
is because if we write Φ−1(Q,P ) = (q(Q,P ), p(Q,P )), then

(Φ−1)′ =

[
qQ qP
pQ pP

]
=

[
Qq Qp

Pq Pp

]−1

=

[
Pp −Qp

−Pq Qq

]
which implies that qQ = −Qp < 0.

The periodicity (9.12) is an immediate consequence of Φ(q + 1, p) = Φ(q, p) + (1, 0);

Φ({q + 1} × [−1, 1]) = Φ({q} × [−1, 1]) + (1, 0).

As for the second assertion in (9.12), recall that p(q,Q) is increasing in Q. Hence

SqQ = −pQ < 0.
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□

A partial converse to Proposition 9.3 is true, namely if a function S satisfies (9.12), then
it generates a map Φ which is area preserving. We don’t address the behavior of Φ on the
boundary lines and for simplicity assume that S is defined on R2.

Proposition 9.4 Let S be a C2 function satisfying (9.12). Then there exists a C1-function
Ψ such that

(i) Φ(q + 1, p) = Φ(q, p) + (1, 0)

(ii) Ψ(q,−Sq(q,Q)) = (Q,SQ(q,Q))

(iii) detΦ′ ≡ 1.

Proof. Since SqQ < 0, the function Q 7→ −Sq(q,Q) is increasing. As a result, p = −Sq(q,Q)
can be inverted to yield Q = Q(q, p). We then set

P (q, p) = SQ(q,Q(x, y)) and Φ(q, p) = (Q(q, p), P (q, p)).

Evidently (ii) is true and (i) follows from (ii) and (9.12) because Sq(q+1, Q+1) = Sq(q,Q),

and SQ(q+1, Q+1) = SQ(q,Q). It remains to verify (iii). For this, set Ŝ(q, p) = S(q,Q(q, p)).
We have

Ŝq = Sq + SQQq = −p+ PQq,

Ŝp = SQQp = PQp.

Differentiating again yields

Ŝqp = −1 + PpQq + PQqp,

Ŝpq = PqQp + PQpq.

Since S ∈ C2, we must have Ŝqp = Ŝpq, which yields PpQq − PqQp = 1, as desired. □

We now show how the existence of a generating function can be used to prove the existence
of fixed points.

Proof of Theorem 9.1 for a monotone twist map Define L(q) = S(q, q). We first
argue that a critical point of L corresponds to a fixed point of Φ. Indeed, if L′(q0) = 0,
then Sq(q

0, q0) + SQ(q
0, q0) = 0. Since Φ(q0,−Sq(q0, q0)) = (q0, SQ(q

0, q0)), we deduce that
Φ(q0, y0) = (q0, y0) for y0 = −Sq(q0, q0) = SQ(q

0, q0). On the other hand, by (9.12), we have
that L(q + 1) = L(q). Either L is identically constant which yields a continuum of fixed
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points for Ψ, or L is not constant. In the latter case, L has at least two distinct critical
points, namely a maximizer and minimizer. These yield two distinct critical points of Φ.

□
We may wonder whether a similar strategy as in the above proof can be used to Prove

Theorem 9.2 when φ is a monotone area-preserving map. Indeed if Φ is a monotone twist
map, then we can associated with it a variational principle which is the discrete analog of
the Lagrange Variational Principle, as can be seen in the following proposition.

Proposition 9.5 Let Φ be a monotone twist map with generating function S. Given q and
Q ∈ R, define

L(q1, q2, . . . , qk−1; q,Q) =
n−1∑
j=0

S(qj, qj+1),

with q0 = q, and qn = Q. Then the following statements are true.

(i) The point (q1, q2, . . . , qk−1) is a critical point of L(·; q,Q) iff there exist p0, p1, . . . , pk such
that Φj(qj, pj) = (qj+1, pj+1) for j = 1, 2, . . . , k − 1.

(ii) The point (q0, q1, q2, . . . , qs−1) is a critical point of

K(q1, q2, . . . , qs) = S(qs−1, q0 + r) +
s−2∑
j=0

S(qj, qj+1)

if and only if there exist p0, p1, p2, . . . , ps−1 such Φj(qj, pj) = (qj+1, pj+1) for j = 0, . . . , s− 1,
with qs = q0 + r.

ProofWe only prove (ii) because (i) can be proved by a verbatim argument. Let (q0, . . . , qs−1)
be a critical point and set qs = q0 + r. We also set pj = −Sq(qj, qj+1). The result follows
because if Pj = SQ(qj, qj+1), then

Kqj = pj − Pj−1

for j = 0, 1, 2, . . . , s− 1 and Ψ(qj, pj) = (qj+1, Pj). □

Before we discuss the proof of Theorem 9.1 for general twist maps, let us study an example
of a map which is not quite a twist map but still possesses a global generating function and
Theorem 9.2 may be applied to guarantee the existence of its periodic orbits.

Example 9.1 (Billiard map in a convex domain). Let C be a strictly bounded convex
domain in R2 and denote its boundary by Γ. Without loss of generality, we assume that the
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total length of Γ is 1. First we describe the billiard flow in C. This is the flow associated
with the Hamiltonian function H(q, p) = 1

2
|p|2 + V (q) where

V (q) =

{
0 if q ∈ C

∞ if q /∈ C.

Here is the interpretation of the corresponding flow: A ball of velocity x starts from a
point a ∈ C and is bounced off the boundary Γ by the law of reflection. This induces a
transformation for the hitting location and reflection angle. More precisely, if a trajectory
a+tv, t > 0 hits the boundary at a point γ(q) and a post-reflection angle θ, then we write γ(Q)
and Θ for the location and post-reflection angle of the next reflection. Here q is the length
of arc between a reference point A ∈ Γ and γ(q) on Γ in positive direction, and θ measures
the angle between the tangent at γ(q) and the post-reflection velocity vector. We write ψ
for the map (q, θ) 7→ (Q,Θ) with q,Q ∈ S1 and θ,Θ ∈ [0, π]. It is more convenient to define
p = − cos θ so that in the (q, p) coordinates, we have a map φ : S1 × [−1, 1] → S1 × [−1, 1].
As before, we write Φ for its lift. We claim that Φ is a monotone area-preserving map; it is
not a twist map because the twist conditions on the boundary lines p = ±1 are violated. We
show this by applying Proposition 9.4. In fact the generating function is simply given by

S(q,Q) = −|γ(q)− γ(Q)|,

because

−Sq(q,Q) = −(γ(Q)− γ(q))

|γ(Q)− γ(q)|
· γ̇(q) = − cos θ,

SQ(q,Q) = −(γ(Q)− γ(q))

|γ(Q)− γ(q)|
· γ̇(Q) = cosΘ,

SQq(q,Q) = Θq sinΘ.

Note that if Θ ∈ (0, π), then sinΘ > 0, and Θ is decreasing in q which means that SQq <
0. Here of course we are using the strict convexity. As for the boundary lines, we have
Φ(q,−1) = (q,−1), Φ(q, 1) = (q + 1, 1). Note that S(q,Q) is defined for (q,Q) satisfying
Q ∈ [q, q+1]. Also note that Φ has no fixed point inside R× (−1, 1). It is not hard to show
that ρ− = ρ(φ−) = 0 and ρ+ = ρ(φ+) = 1. According to Theorem 9.2, Φ has at least two
periodic orbits of type (r, s) whenever r and s are relatively prime and r < s. Recall that the
function K of Proposition 9.5 is defined for (q0, q1, . . . , qs−1) provided that qj+1 ∈ [qj, qj + 1]
for j = 0, 1, . . . , s − 1 with qs = q0 + r. This however does not reflect the ordering of the
orbit. For our purposes we define K on a smaller set Λ which consists of (q0, q1, . . . , qs−1)
such that there exists z0 ≤ z1 ≤ · · · ≤ zrs, with zi+s = zi + 1 for i = 0, 1, . . . , (r − 1)s,
and qj = zjr for j = 0, 1, . . . , s. Note that once (q0, q1, . . . , qs−1) ∈ Λ is known, then all zj
can be determined. Of course q ∈ Λ imposes various inequalities between q0, q1, . . . , qs−1.
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On the other hand, we can regard K as a function of (z0, z1, . . . , zrs). Also there are only
s many independent variables among them, say z0, z1, . . . , zs−1. So, we now have a function
K̂(z0, z1, . . . , zs−1) = K(q0, q1, . . . , qs−1). The advantage of K̂ to K is that it has a domain
which is much easier to describe, namely

Λ̂ = {(z0, z1, . . . , zs−1) : z0 ≤ z1 ≤ · · · ≤ zs−1 ≤ z0 + 1}.

Since K(q0 + 1, . . . , qs−1 + 1) = K(q0, . . . , qs−1), we learn that K̂(z0 + 1, . . . ,s−1+1) =
K̂(z0, . . . , zs−1). Introducing wj = zj − zj−1, we have that z = (z0, . . . , zs−1) ∈ Λ̂ if and
only if (z0, w1, . . . , ws−1) belongs to the set of points with

0 ≤ w1, w2, . . . , ws−1, w1 + w2 + · · ·+ ws−1 ≤ 1.

Writing K̄ for K̂ as a function of z0, w1, . . . , ws−1, then K̄ is defined on

Λ̄ =

{
(z0, w1, . . . , ws−1) : z0 ∈ R, w1, . . . , ws−1 ≥ 0,

s−1∑
1

wj ≤ 1

}
.

Since K̄(z0 + 1, w1, . . . , ws−1) = K(z0, w1, . . . , ws−1), K̄ is a lift of a function k̄ which is
defined on the set

λ = S1 ×

{
(w1, . . . , ws−1) : w1, . . . , ws−1 ≥ 0,

s−1∑
1

wj ≤ 1

}
⊆ S1 × [0, 1]s−1.

Of course k̄ has a maximizer and a minimizer. We now argue that a minimizer yields a
critical point which is in the interior of λ. To see this, let us assume that to the contrary the
minimizer is a point on the boundary. To explain this in its simplest non-trivial case, let us
take a boundary point of the form

zn−1 < zn = zn+1 < zn+2.

Recall that Φ(q, p(q,Q)) = (Q,P (q,Q)) where p(q,Q) = −Sq(q,Q) is increasing in Q and
P (q,Q) = SQ(q,Q) is decreasing in q. We now examine several cases:

(i) y(zn, zn+r) < Y (zn−r, zn)

In this case ∂K̂
∂zn

= SY (zn−r, zn) + Sy(zn, zn−r) > 0. Hence by decreasing zn a little bit, we

decrease K̂. This contradicts the fact that z is a minimizer.

(ii) p(zn+1, zn+r+1) > P (zn−r+1, zn+1)

In this case ∂K̂
∂zn+1

= SY (zn−r+1, zn+1)+Sy(zn, zn−r) < 0. Hence by increasing zn+1, the value

K̂ decreases, contradicting the fact that ẑ = (z0, . . . , zs−1) is a minimizer.
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(iii) If (i) and (ii) do not occur, then

Y (zn−r, zn) ≤ y(zn, zn+r) = y(zn+1, zn+r)

≤ y(zn+1, zn+r+1) ≤ Y (zn−r+1, zn−1)

= Y (zn−r+1, zn) ≤ Y (zn−r, zn).

Hence zn−r+1 = zn−r, zn+r+1 = zn+r and

Y (zn−r, zn) = y(zn, zn+r),

Y (zn−r+1, zn+1) = y(zn−1, zn+r+1)

which means that (zn−r, zn, zn+1) is the x-coordinate of an orbit. This is what we wanted.
In fact the other critical point is a saddle point in λ. To see this, let us examine the

problem when s = 2 and r = 1 which corresponds to a periodic orbit of period 2. In this
case, we simply have

K(q1, q2) = S(q1, q2) + S(q2, q1 + 1) = 2S(q1, q2)

which is defined on the set

Λ = {(q1, q2) : q1 ≤ q2 ≤ q1 + 1}.

Note that K(q1, q2) = 0 if (q1, q2) ∈ ∂Λ and we always have K(q1, q2) < 0 if (q1, q2) ∈ Λ0.
Writing K in terms of q1 and w2 = q2−q1 yields K̂(q1, w2) = 2S(q1, q1+w2) which is defined
for (q1, w2) ∈ R × [0, 1]. Since K̂ is periodic in q1, K̂ is the lift of k̂ : S1 × [0, 1] → R and
evidently its minimum is attained in the interior of S1 × [0, 1]. Note that −min k̂ is simply
the diameter of the convex set C. We now assert that k̂ has a saddle critical point which
corresponds to the width of C. To see this, for any q1 ∈ S1, we can find η(q1) = q2 ∈ S1 such
that the tangents at q1 and q2 = η(q1) are parallel. Now −maxq1 S(q1, η(q1)) = −S(q∗1, η(q∗1))
yields the width of C. We assert that (q∗1, q

∗
2) = (q∗1, η(q

∗
1)) is the other critical point of K.

Indeed, since Θ = π − θ, we have

Sq(q1, η(q1)) = SQ(q1, η(q1))

for all q1. On the other hand, at a maximizer q∗1 of S(q1, η(q1)), we must have

0 = Sq(q
∗
1, η(q

∗
1)) + SQ(q

∗
1, η(q

∗
1))η

′(q∗1)

= Sq(q
∗
1, q

∗
2)(1 + η′(q∗1)).

It is not hard to show that in fact η′(q∗1) > 0. Hence we must have Sq = SQ = 0 at (q∗1, q
∗
2).
□

We now turn to Theorem 9.2. So far we have a proof in the case of a monotone twist
map. Following an idea of Chaperon, we try to express a twist map as a composition of
monotone twist maps. To this end, let us define some function spaces.
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(i) T denotes a space of homeomorphism ψ from cylinder C = S1× [0, 1] onto itself which
is an orientation and area preserving diffeomorphism in the interior of C and preserves
the boundary circles S1 × {0} and S1 × {1}. The rotation numbers of ψ restricted to
S1 × {0} and S1 × {1} are denoted by ρ−(ψ) and ρ+(ψ) respectively.

(ii) T ∗ denotes the space of ψ ∈ T such that ρ−(ψ) ̸= ρ+(ψ). T + denotes the space of
ψ ∈ T with ρ−(ψ) < ρ+(ψ). T − denotes the space of ψ ∈ T with ρ+(ψ) < ρ+(ψ). M+

denotes the space of monotone twist maps.

We equip the space of T with the topology of C1-convergence in the interior of C and
uniform-convergence up to the boundary. Evidently T is a topological group with mul-
tiplication given by composition. As an example, note that the shear map ξ with lift
(q, p) 7→ (q + p, p) belongs to T + whereas ξ−1 = λ belongs to T −. We have the follow-
ing straightforward lemma.

Lemma 9.1 Every element ψ in the connected component of identity in T can be written
as

(9.13) ψ = λ ◦ ψ1 ◦ λ ◦ ψ2 ◦ · · · ◦ λ ◦ ψn

with ψ1, ψ2, . . . , ψn ∈ M+.

Proof Evidently there exists an open set U in T such that ξ ∈ U ⊆ M+. As a result,
id ∈ ξ−1U = λU =: V is an open neighborhood of identity and each ψ ∈ V can be written as
ψ = λ◦ψ1 with ψ1 ∈ M+. We now write Ω for the set of ψ in T for which the decomposition
(9.11) exists with ψ1, ψ2, . . . , ψn ∈ V . Clearly Ω is open because V is open. If we can show
that V is also closed, then we deduce that Ω is the connected component of id in T . To
see the closedness of Ω, let {φm} be a convergent sequence in Ω. If limm→∞ φm = φ, then
limm→∞ φ ◦φ−1

m = id and, as a result, φ ◦φ−1
m ∈ V , for large m. Hence there exists ψ̄ ∈ M+,

such that φ ◦ φ−1
m = λ ◦ ψ̄ for a sufficiently large m. That is, φ = λ ◦ ψ̄ ◦ φm. Since φm ∈ Ω,

we deduce that φ ∈ Ω, completing the proof of closedness of Ω. □

Proof of Theorem 9.1 Let Ψ be a twist map. On account of Lemma 9.1, there exist
monotone twist maps Ψ1,Ψ2, . . . ,Ψn such that

Ψ = Λ ◦Ψ1 ◦ Λ ◦Ψ2 ◦ · · · ◦ Λ ◦Ψn.

Each Ψj has a generating function Sj(q,Q) with Sj : Γj → R with

Γj = {(q,Q) : Aj−(q) ≤ Q ≤ Aj+(q)}.

Note that the generating function for Λ is T (q,Q) = −1
2
(Q− q)2 which is defined on the set

{(q,Q) : q − 1 ≤ Q ≤ q}.
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We now define

L(q0, q1, . . . , q2n−1) = −
n−1∑
j=0

1

2
(qij − qij+1)

2 +
n−2∑
j=0

Sj(q2j+1, q2j+2) + Sn(q2n−1, q0)

on the set Γ which consists of points q0, q1, . . . , q2n−1 such that for j = 0, 1, . . . , n− 2

−1 ≤ q2j − q2j+1 ≤ 0, Aj−(q2j+1) ≤ q2j+2 ≤ Aj+(q2j+1)

with q2j = q0. Now as in Proposition 8.8, we can show that if q0, q1, . . . , q2n−1 is a critical
point of L, then

Λ(q2j, p2j) = (q2j+1, p2j+1), Ψj(q2j+1, p2j+1) = (q2j+2, p2j+2)

for j = 0, 1, . . . , n − 1, where p2j+1 = TQ(q2j, q2j+1) = q2j − q2j+1, p2j+2 = SQ(q2j+1, q2j=2),
q2j = q0 and p2j = p0. Of course, in particular (q0, p0) is a fixed point of Ψ. □

Remark 9.1 Following an idea of Alan Weinstein, t he functional AH may be regarded as a
generating function for φ = ϕH1 . To explain this, let us write Γ̂ for the space of C1 functions
x : [0, 1] → R2n, and regard AH : Γ̂ → R. Write Γ̄ for the space C1 functions x̄ = (q̄, p) ∈ Ĝ
such that q̄(0) = q̄(1) = 0. Consider the map

A : Rn × Rn × Ḡ→ Ĝ, A
(
a, b, q̄(·), p(·)

)
(t) =

(
(1− t)a+ tb+ q̄(t), p(t)

)
,

and define A = AH ◦ A, so that

A
(
a, b, q̄(·), p(·)

)
=

∫ 1

0

[
p(t) · dq̄

dt
(t) + p(t) · (b− a)−H

(
(1− t)a+ tb+ q̄(t), p(t), t

)]
dt.

We can readily show

∂A
∂x̄

(a, b, q̄(·), p(·)
)
(t) = −J̄ ẋ(t)−∇H(x(t), t).

Hence if ∂A/∂x̄ = 0, at
(
a, b, q̄(·), p(·)

)
, then ẋ = J̄∇H(x, t), for x(t) =

(
(1 − t)a + tb +

q̄(t), p(t)
)
. For such a critical path x, we also have

∂A
∂a

(a, b, q̄(·), p(·)
)
= −

∫ 1

0

[
p(t) + (1− t)Hq(x(t), t)

]
dt

=

∫ 1

0

[
− p(t) + (1− t)ṗ(t)

]
dt = −p(0),

∂A
∂b

(a, b, q̄(·), p(·)
)
=

∫ 1

0

[
p(t)− tHq(x(t), t)

]
dt

=

∫ 1

0

[
p(t) + tṗ(t)

]
dt = p(1).
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In summary, A is a generating function of Type I for φ because

(9.14)
∂A
∂x̄

(a, b, x̄(·)
)
= 0 ⇒ φ

(
a,
∂A
∂a

(a, b, x̄(·)
))

=

(
b,
∂A
∂b

(a, b, x̄(·)
))

.

□

So far we have used generating functions to study various properties of twist maps on
cylinders. We now discuss possible generalizations of such global properties for other mani-
folds. As a start, let us take a symplectic φ : T2n → T2n and wonder how many fixed points
it can have. Evidently an irrational translation on T2 is a symplectic diffeomorphism with
no fixed point. This is not in contradiction with Arnold’s conjecture because such map does
not come from a Hamiltonian vector field on the torus. Arnold’s conjecture in the case of a
torus was established by Conley and Zehnder. The inequality (9.3) takes the following form.

Theorem 9.3 (Conley-Zehnder) Let φ : T2n → T2n be the time one map of a Hamiltonian
function H : T2n × R → R, and assume that H is 1-periodic in time. Then φ has at least
2n+ 1 many fixed points.

As in the case of cylinder, Theorem 9.3 is an immediate consequence of LS Theorem, if
φ possess a global generating function. Though in the case of a torus, we need a generating
function of Type II, that was defined in Chapter 8. In Proposition 9.1, we showed that a
generating function S(q,Q) of Type I always exists locally provided that ∂Q

∂p
(q0, p0) is non-

singular. Note that this condition fails for the identity. However generating function of Type
II exists trivially for identity. The following proposition can be proved as Proposition 9.1.

Proposition 9.6 Let Φ(q, p) = (Q,P ) be a symplectic diffeomorphism with

detQq(q
0, p0) ̸= 0.

Then there exist a neighborhood U of Q0 = Q(q0, p0) and p0, and a C1-function W : U → R
such that

(9.15) WQ = P, Wp = q.

We note that identity transformation has such a generating function withW (Q, p) = Q·p.
More generally, we may write Ŝ(Q, p) = Q · p− V (Q, p) with V now satisfying

(9.16) P − p = −VQ, Q− q = Vp,

which can be thought of as a discrete analog of a Hamiltonian system where V (Q, p) plays
the role of the Hamiltonian function. From LS Theorem and Proposition 9.6 we can readily
deduce
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Proposition 9.7 Let φ : T2n → T2n be a symplectic diffeomorphism which is a small per-
turbation of identity. Then φ has at least 2n+ 1 many fixed points.

As we have learned from Remark 9.1 any symplectic map coming from a Hamiltonian
system has a kind of generalized generating function in the sense of (9.14). The function L
that appeared in Proposition 9.4, should be regarded as a finite dimensional approximation
of A of (9.14). Motivated by Proposition 9.5, we formulate a definition for a generalization
of the generating functions.

Definition 9.1 Let φ : R2n → R2n be a symplectic diffeomorphism. We say that a map
u : R2n × RN → R is a generalized generating function (in short GGF) for φ if

(9.17) uξ(Q, p; ξ) = 0 ⇒ φ
(
Q+ up(Q, p; ξ), p

)
=
(
Q, p+ uQ(Q, p; ξ)

)
,

and there exists a function B(Q, p; ξ) that is a non-degenerate quadratic function in ξ, and
satisfy

(9.18) sup
Q,p,ξ

[∣∣u(Q, p; ξ)−B(Q, p; ξ)
∣∣+ ∣∣∇u(Q, p; ξ)−∇B(Q, p; ξ)

∣∣] <∞.

□

Proposition 9.8 Let φ = ϕH1 where H : R2n × R → R be a Hamiltonian function that is
1-periodic in all its arguments. Then φ possesses a GGF.

Proof Set tj = j/k, φj = ϕHtj−1,tj
, so that we can write φ = φ1 ◦ · · · ◦ φk. For k sufficiently

large, each φj has a Type II periodic generating function uj by Proposition 9.6. This means

φj
(
Q+ ujp(Q, p), p

)
=
(
Q, p+ ujQ(Q, p)

)
.

We now set ξ =
(
Q1, p1, Q2, p2, . . . , Qk−1, pk−1

)
, and define u by u(Q, p; ξ) = û(Q, p; ξ) +

B(Q, p; ξ), where

(9.19) û(Q, p; ξ) =
k∑
j=1

uj(Qj, pj−1), B(Q, p; ξ) =
k∑
j=1

(Qj −Qj−1) · pj−1,

where p0 = p,Qk = Q, and Q0 = 0. Since ujs are 1-periodic, the function ū is bounded in
C1 and (9.18) holds. On the other hand, if we write

qj−1 = Qj + ujp(Qj, pj−1), Pj = pj−1 + ujQ(Qj, pj−1),
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then φj(qj−1, pj−1) = (Qj, Pj), and

uQj
(Q, p; ξ) = pj−1 − pj + ujQ(Qj, pj−1) = Pj − pj,

upj−1
(Q, p; ξ) = Qj −Qj−1 + ujp(Qj, pj−1) = qj−1 −Qj−1.

Hence
uξ(Q, p; ξ) = 0 ⇒ φj(qj−1, pj−1) = (qj, pj),

for j = 1, . . . , k. This in turn implies (9.17) because φj = ϕHtj−1,tj
. □

Exercise 9.1(i) Consider the Billiard map in a circle. Determine the generating function.
Find periodic orbits and describe the remaining orbits.

(ii) Prove Proposition 9.2.

(iii) Consider the Billiard map in an ellipse. Show that the 2-periodic orbits correspond to
the reflection along the axes of symmetry. Show that the 2-periodic orbit associated with
the shorter axis of symmetry is a saddle point of the generating function. Hint: (q∗1, q

∗
2)

maximizers of S(q1, η(q1)) but is a local minimum for S(q∗1, q2). □

154



10 Pseudo-Holomorphic Curves and Gromov Width

In Chapters 5-8, we use the invariance (3.2) of the action A(γ) to construct various symplectic
capacities. For our constructions, we used the periodic orbits of the Hamiltonian systems
played in an essential way. In this chapter, we focus on the invariance if

∫
Γ
ω to analyze

symplectic maps. Our main tool will be the pseudo-holomorphic curves of Gromov. We give
two motivations for the relevance of such complex curves (or rather real surfaces):

1. Observe that if Γ = w(D) is a 2-dimensional surface with the parametrization w : D →
R2n for a planar domain D, then∫

Γ

ω̄ =

∫
D

ω̄(ws, wt) dsdt =

∫
D

J̄ws · wt dsdt.

This integral is simply −area(Γ) when n = 1. For n > 1, the integral
∫
Γ
ω is not of a definite

sign and does not represent any kind of size of the surface Γ. However, if w satisfies

(10.1) ws = J̄wt,

then ws · wt = 0, and

(10.2)

∫
Γ

(−ω̄) =
∫
D

|ws|2 dsdt =
∫
D

(
|ws|2|wt|2 − (ws · wt)2

)1/2
dsdt = area(Γ).

This means that for such surfaces, −
∫
Γ
ω̄ is indeed the area of Γ. If we write w = (u, v) with

u and v representing the position and momentum, then (10.1) reads as

us = vt, vs = −ut,

which are nothing other than Cauchy-Riemann equations. When (10.1) is satisfied, we say
that w is a holomorphic curve. Holomorphic curves are not preserved under a symplectic
change of coordinates. However, if φ ◦ ŵ = w, then

(10.3) ŵs = J(ŵ)ŵt,

where
J = (dφ)−1 ◦ J̄ ◦ dφ,

is an example of an almost complex structure and ŵ is called a J-holomorphic curve. Observe
that if we set ḡ(a, b) = a · b, and define a metric g = φ∗ḡ, then

(10.4) ω̄(a, b) = ω̄((dφ)xa, (dφ)xb) = ḡ(J̄(dφ)xa, (dφ)xb) = (φ∗ḡ)x(J(x)a, b).

We can now repeat our calculation in (10.2) to assert that if Γ̂ = ŵ(D), then∫
Γ

(−ω̄) = areag(Γ̂),
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where areag denotes the area with respect to the metric g.

2. Recall that if H(x, t) is a time dependent Hamiltonian function, then the critical points
of the functional

A(x) =

∫ 1

0

[
p · q̇ −H(x, t)

]
dt,

corresponds to the 1-periodic orbits of ẋ = J̄∇H(x, t). For example if H : T2n × R → R is
1-periodic in t, and if we regard A : C1(S1,R2n) → R, then the gradient of A with respect
to the L2-inner product is given by

∂A(x(·)) = −J̄ ẋ(·)−∇H(x(·), t).

Observe that the gradient with respect to H1/2-inner product, namely ∇A is related to ∂A
by the formula ∇A = I∂A. In fact the critical points of A corresponds to the fixed points
of the map ψ = ϕH1 and following an idea of Floer, we may study such critical points by
developing a Morse-type theory for A. Morse Theory may be developed by studying the
gradient flow

(10.5)
dw

ds
= −∂A(w).

Regarding w : R× S1 → R2n as a function of two variables s and t, (10.5) reads as

(10.6) ws = J̄wt +∇H(w, t).

This is very different from the corresponding

(10.7)
dw

ds
= −∇A(w) = −I∂A(w);

the right-hand side of (10.7) is an intergro-differential equation and is well-defined as an
ODE, whereas the equation (10.6) is an elliptic PDE and not well-posed as an initial-value
problem. Evidently, (10.6) is the same as (10.1) when H = 0. The elliptic PDE (10.1) is
well-posed for a prescribed w(∂D). □

Motivated by (10.4), let us give a general definition for almost complex structures. Let
M be a C1 manifold. By an almost complex structure on M , we mean a continuous x 7→ Jx
with Jx : TxM → TxM linear function satisfying J2

x = −id. The pair (M,J) is called an
almost complex manifold. If (M,ω) is symplectic, then we say (J, g) and ω are compatible if

(10.8) gx(a, b) = ωx(a, Jxb), a, b ∈ TxM

is a Riemannian metric on M . We write I(M,ω) for the compatible pairs (g, J). We also
set

G(M,ω) = {g : (g, J) ∈ I(M,ω)}, J (M,ω) = {J : (g, J) ∈ I(M,ω)}.
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Proposition 10.1 (i) Let (M,ω) be symplectic with a Riemannian metric ĝ. Then I(M,ω)
is nonempty.

(ii) If g ∈ G(M,ω) and dimM = 2n, then µ := (n!)−1ωn is the Riemannian volume form
associated with the Riemannian metric g.

Proof The main obsevation is that if A is a skew-symmetric matrix, and if A = SJ is its
polar decomposition with S symmetric, then orthogonal J inherits skew-symmetry from A
and satisfies J∗ = −J , J2 = I. To apply the polar decomposition, we may choose a reference
inner-product/metric.

Fix x. Both a 7→ ωx(a, ·) and a 7→ ĝx(a, ·) are linear isomorphisms between TxM and
(TxM)∗. Hence there exists a linear invertible Ax : TxM → TxM such that ωx(a, b) =
ĝx(Axa, b). Note that Ax is skew symmetric because

ĝ(A∗a, b) = ĝ(a,Ab) = ĝ(Ab, a) = ω(b, a) = −ω(a, b) = −ĝ(Aa, b).

In fact a candidate for J is simply the orthogonal matrix that appears in the polar de-
composition of A. More precisely, if we use the unique representation Ax = SxJx, with
Sx = (AxA

∗
x)

1/2 = (−A2
x)

1/2, and Jx orthogonal with respect to ĝx, then J ∈ J (M,ω). To
verify this, we build this polar decomposition directly. The idea is that since A is real and
skew-symmetric, its eigenvalues appear as ±iλ with λ real. Hence the eigenvalues of −A2 are
positive and of even multiplicities. In fact, the matrix B = A2 is negative definite, and if v is
an eigenvector of B associated with the eigenvalue −λ2 for some positive λ, then w = λ−1Av
is another eigenvector for B that is orthogonal to v:

ĝ(v, w) = λ−1ĝ(v,Av) = λ−1ω(v, v) = 0, Bw = λ−1ABv = −λAv = −λ2w.

We now describe S and J on {v, w}, and hence on the span of {v, w}:

Av = λw, Sv = λv, Jv = w,

Aw = −λv, Sw = λw, Jw = −v.

More generally, we can find an orthonormal basis {v1, . . . , v2n} and positive numbers λ1, . . . , λ2n
such that Bvi = −λ2i vi for each i. We can readily show that {wi = λ−1

i Avi : i = 1, . . . , 2n} is
also an orthonormal set and that Awi = −λivi, Bwi = λ2iwi. But since A is skew symmetric,
wi and vi are orthogonal eigenvectors of B associated with the same eigenvalue −λ2i . We
relabel our eigenvalues and eigenvectors so that Av2i = λiv2i−1 and Av2i−1 = −λiv2i for
i = 1, . . . n. We then define S and J by Sv2i = λiv2i, Sv2i−1 = λiv2i−1, Jv2i = v2i−1 and
Jv2i−1 = −v2i. It is straightforward to check that A = SJ , J2 = −id and J∗ = −J . We
also have

g(a, b) := ω(a, Jb) = g(Aa, Jb) = g(Sa, b).
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We are done because S > 0.

(ii) First we claim that there exists a local orthonormal frame for (M, ĝ) of the form En =
{e1, Je1, . . . , en, Jen}. This frame is constructed inductively; if we already have 2k many
vector fields Ek = {e1, Je1, . . . , en, Jek} with ĝ(ei, ej) = δij, ĝ(ei, Jej) = 0 for i, j = 1, . . . k,
then locally we can find a new vector field ek+1 which is orthogonal to vectors in Ek and
ĝ(ek+1, ek+1) = 1. We then use (3.14) and J2 = −id to deduce that Jek+1 is also orthogonal
to Ek and ek+1 and that ĝ(Jek+1, Jek+1) = 1.

From ω(ei, ej) = ω(Jei, Jej) = 0 and ω(ei, Jej) = δij, we can readily deduce

ωn(e1, Je1, . . . , en, Jen) = n!,

and this implies that µ is the Riemannian volume. □

In the prominent work [G], Gromov uses the J-Holomorphic curves to establish his non-
squeezing result, namely Theorem 6.2(i). The main ingredient for his proof is an existence
result:

Theorem 10.1 (Gromov) For every J ∈ J (R2n, ω̄) and every x0 ∈ Z2n(1), there exists a
J-holomorphic ŵ : D → Z2n(1) such that x0 ∈ ŵ(D), w(∂D) ⊂ ∂Z2n(1), and

(10.9)

∫
ŵ(D)

(−ω̄) = π.

Let us first see how Theorem 10.1 implies the non-squeezing property of symplectomorphisms.

Proof of Theorem 6.2(i) Let φ : R2n → R2n be a symplectomorphism such that φ(BR) ⊂
Z2n(1), where BR = {x : |x| ≤ R}. Let J be as in (10.3). By Theorem 10.1, we can find
ŵ : D → Z2n(1) such that φ(0) ∈ ŵ(D), and (10.9) is true. Let w = φ−1 ◦ ŵ, so that w solves
(10.1), 0 ∈ w(D), and

Area(w(D)) =
∫
w(D)

(−ω̄) =
∫
ŵ(D)

(−ω̄) = π,

by (10.9). On the other-hand by a classical theorem of Lelong, we must have

π = Area(w(D)) ≥ Area(BR) = πR2.

Thus, R ≤ 1. □

Before embarking on the proof of Theorem 10.1, let us develop some feel for the equation
(10.3). To ease the notation, let us write w for ŵ. Also, to avoid the occurring minus sign,
we take J ∈ J (R2n,−ω̄), so that instead of (10.3), we now have

(10.10) wt = J(w)ws.
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Note that now J as in (10.3) satisfies

(10.11) J = (φ′)−1iφ′,

where i = −J̄ is simply the multiplication by i, when we use the identification R2n = Cn.
We now give two interpretations for the equation (10.10).

1. In our first interpretation, we compare (10.10) with its equivalent formulation that we
obtain by multiplying both sides of (10.1) by J(w):

(10.12) wt = J(w)ws − ws = J(w)wt.

Regarding dw : TD → TR2n, i : TD → TD, and J : TR2n → TR2n, we may rewrite (10.12)
as

(10.13) dw ◦ i = J ◦ dw;

if we evaluate both sides of (10.13) at the vector fields ∂
∂s

and ∂
∂t
, we obtain the equations

of (10.12), because

i

(
∂

∂s

)
=

∂

∂t
, i

(
∂

∂t

)
= − ∂

∂s
.

The reader may compare (10.13) with (10.11) that may be written as

(10.14) i ◦ dφ = dφ ◦ J.

The advantage of the formulation (10.13) is that it has an obvious generalization to arbitrary
manifolds.

Definition 10.1 Let M be a manifold and J : TM → TM be an almost complex structure
i.e. J2 = −id.
(i) We say that w : D → M is a J-holomorphic curve if (10.3) is valid. We also define the
operator

(10.15) ∂̄Jw =
1

2

(
dw + J ◦ dw ◦ i

)
,

so that the equation (10.13) may be written as ∂̄Jw = 0.

(ii) We say that J is a complex structure if for every x ∈ M , we can find U ⊂ Cn and a
diffeomorphism φ : U →M such that x ∈ φ(U), and (10.14) is valid. □

2. Let us use complex-variable notation to write z = s+ it and z̄ = s− it. We also use the
notations

dz = ds+ idt, dz̄ = ds− idt,

∂

∂z
=

1

2

(
∂

∂s
− i

∂

∂t

)
,

∂

∂z̄
=

1

2

(
∂

∂s
+ i

∂

∂t

)
.
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By definition,
wt = i(wz − wz̄), ws = (wz + wz̄).

Hence, if i+ J is invertible, the (10.10) may be written as

(10.16) wz̄ = K(w)wz.

where
K(w) := (i+ J(w))−1(i− J(w)).

Proposition 10.2 If J ∈ J (R2n,−ω̄), then i+ J is invertible and ∥K∥ < 1. Moreover, K
is symmetric, and C-antilinear (the latter means that Ki = −iK).

Proof First observe that since J ∈ J (R2n,−ω̄), we know

(10.17) a ̸= 0 ⇒ (ia) · (Ja) = (−ω̄)(a, Ja) > 0.

To show that i + J is invertible, note that if to the contrary we can find a ̸= 0, such that
(i+ J)a = 0, then

(ia) · (Ja) = −|ia|2 < 0,

which contradicts (10.17).
To show that ∥K∥ < 1, it suffices to check that |b| < |a| whenever K(a) = b and a ̸= 0.

We have
Ka = b ⇔ (i− J)(a) = (i+ J)(b) ⇔ b− a = iJ(b+ a).

Clearly, if a+ b = 0, then a = b = 0. Now if a, a+ b ̸= 0, then by (10.17),

|b|2 − |a|2 = (b− a) · (b+ a) = (iJ)(b+ a) · (b+ a) = −
[
J(b+ a) · i(b+ a)

]
< 0,

as desired.
As for the C-antilinear property,

(10.18) (i+ J)−1(i− J)i = −i(i+ J)−1(i− J),

Observe,

(i+ J)(−i)(i+ J)−1(i− J) = (I − Ji)(i+ J)−1(i− J)

= −(J2 + Ji)(i+ J)−1(i− J)

= −J(i− J) = −Ji− I

= −Ji+ i2 = (i− J)i,

which implies (10.19).
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We may write K = (I−iJ)−1(I+iJ). on the other hand, since −i = GJ , for a symmetric
G, we learn that G = iJ is symmetric. This implies that K is symmetric. □

Remark 10.1 The equation (10.13), is equivalent to the classical Beltrami Equation when
n = 1. This equation is related to the theory of quasi-conformal maps and a generalization
of the Riemann mapping theorem. To explain this, first observe that (10.13) and (10.14) are
equivalent in the case of n = 1 by setting φ = w−1. As we showed in Example 2.2, the set
I(R2,−ω̄) consists of pairs (g, J), with g(a, b) = Ga · b, such that

(10.19) G =

[
α β
β γ

]
, J =

[
−β −γ
α β

]
,

with α, γ > 0 and αγ−β2 = 1. Now let us write φ(z) = u+ iv with z = s+ it, and evaluate
both sides of (10.14) at the vector fields ∂

∂s
and ∂

∂t
, with J as in (10.19). We obtain

iφs = −βφs + αφt, iφt = −γφs + βφt.

This is equivalent to φt = jφs for j = (β + i)/α = γ/(β − i). Equivalently,

(10.20) φz̄ = µ(z)φz, with µ =
i− j

i+ j
.

This equation is known as the Beltrami Equation, and resembles (10.16) because

|µ| =
∣∣∣∣β + (α− 1)i

β + (α + 1)i

∣∣∣∣ < 1,

by our assumption α > 0. We refer to Appendix D for more information about the Beltami
Equation.

As for the equation (10.16) in dimension 2, observe that when n = 1,

K =

[
−β −γ − 1
α + 1 β

]−1 [
β γ − 1

1− α −β

]
= (α + γ + 2)−1

[
β γ + 1

−α− 1 −β

] [
β γ − 1

1− α −β

]
= (α + γ + 2)−1

[
γ − α −2β
−2β α− γ

]
.

From this, we deduce that in fact the equation (10.16) can be written as

(10.21) wz̄ = m(w)w̄z,
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where m = (γ − α− 2βi)/(α + γ + 2). We note

|m|2 = (α + γ)2 − 4

(α + γ + 2)2
=
α + γ − 2

α + γ + 2
= 1− 4(α + γ + 2)−1 < 1.

□
As we discussed in Remark 10.1, the equation (10.16) is a multi-dimensional general-

ization of the classical Beltrami-equation. Ignoring the boundary condition requirements
of Theorem 10.2 we can use the classical transforms of Cauchy and Beurling to construct
solutions of equation (10.16). We define

(10.22) C(h)(z) = − 1

π

∫
D

h(ζ)

ζ − z
dsdt, B(h)(z) = 1

π
PV

∫
D

h(ζ)

(ζ − z)2
dsdt,

where PV stands for the principle value (see Appendix D). The main property of the Cauchy
Transform C is that C(h)z̄ = h and that its z derivative is the Buerling transform; C(h)z =
B(h). Moreover, by Caldron-Zygmund Theory, the operator B is bounded on Lp for every
p ∈ (1,∞). In fact B is an isometry on L2 and its norm C(p) on the Lp converges to 1 as
p→ 2. We refer to Theorem D.1 of Appendix D for more details.

Theorem 10.2 Assume that ∥K∥L∞ = c0 < 1. Let q1, . . . , qn : D → C be n holomorphic
functions. Then there exists p = p(c0) > 2 and a function w = (U1, . . . , Un) ∈ W 1,p,
Ui : D → C, of the form

Ui = C(ui) + qi, ui ∈ Lp(D),

that solves the equation (10.16) weakly.

Proof We use column vectors to write

w =

U1
...
Un

 , u =

u1...
un

 , q =

q1...
qn

 , q̂(w) = K(w)

q
′
1
...
q′n

 , B̂(u) =

B(u1)...
B(un)

 .
Using the definition of C and B, we can write (10.17) as

(10.23) wz̄ = u = K(w)B̂(u) + q̂(w).

We wish to invert the operator I −K(w)B̂ for a given vector w. Since B is an isometry on
L2, the operator of B̂ is also an isometry. Using Theorem D.1 of the Appendix, we can show
that for every p ∈ (1,∞), there exists a constant c(p) such that lim c(p) = 1 as p→ 2, and

∥B̂(u)∥Lp ≤ c(p)∥u∥Lp .
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From this we learn
∥A(w)B̂(u)∥Lp ≤ c(p)c0∥u∥Lp .

Choose p > 2 such that c(p)c0 < 1. For such p,∥∥∥(I − A(w)B̂
)−1

h
∥∥∥
Lp

≤
(
1− c(p)c0

)−1∥h∥Lp .

This in turn implies that if

D(w) =
(
I − A(w)B̂

)−1
(q̂(w)),

then
∥D(w)∥Lp ≤ c0

(
1− c(p)c0

)−1∥q̂∥Lp := c1(p).

By applying Theorem D.1 of Appendix

∥C ◦ D(w)∥W 1,p ≤ c2,

for some constant c2 = c2(p). Then rewrite (10.16) as

(10.24) w =
(
C ◦ D

)
(w) + q := E(w).

Hence w is a fixed point of the operator E . Set

ΓL =
{
w : ∥w∥L∞ ≤ L

}
.

We wish to show that E : ΓL → ΓL and it has a fixed point. As a preparation, we first bound
the nonlinear D. Since p > 2, we may apply Morrey Inequality to deduce

(10.25) ∥C ◦ D(w)∥C1−2/p ≤ c2(p)∥C ◦ D(w)∥W 1,p ≤ C(p)c1(p) = c3(p),

where Cα denotes the space of α-Hölder continuous functions. In particular

∥C ◦ D(w)∥L∞ ≤ c3(p).

Setting L = c3(p) + ∥q∥L∞ , we deduce that E(Lp) ⊆ ΓL. In particular, E maps ΓL into
itself. On the other hand, the bound (D.12) implies that the image of ΓL under E is in fact
relatively compact. This allows us to use the Schauder Fixed Point Theorem to deduce that
E has a fixed point. □

In this chapter, we will describe two approaches for establishing Theorem 10.1. In our
first approach, we will follow a work of Sukhov and Tumanov [ST] that treats (10.16) as a
generalization of the Beltrami Equation and use Cauchy and Beurling transforms to construct
solutions. (We refer to Appendix D for a thorough discussion of these transforms and their
use in solving Beltrami-type equations.) The main ingredient of the proof of Theorem 10.16
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a la [SK] is a variant of the Cauchy operator that is designed to solve the d-bar problem
with a boundary condition. More precisely, given a holomorphic function Q : D → C that is
nonzero inside D, we define

CQ(f)(z) = Q(z)
(
C(f/Q)(z) + z−1C(f/Q)(1/z̄)

)
(10.26)

=
Q(z)

2πi

∫∫
D

[
f(ζ)

Q(ζ)(ζ − z)
+

f(ζ)

Q(ζ)(zζ̄ − 1)

]
dζ ∧ dζ̄.

We note

(10.27) CQ(f) = QC(f/Q) + hQ,

for a function hQ that is holomorphic inside D. The type of Q we have in mind is

(10.28) Q(z) = a0

l∏
j=1

(z − aj)
αi ,

with a1, . . . , al ∈ ∂D distinct and α1, . . . , αl ∈ (0, 1]. We can take a branch of the holomorphic
Q that is defined on

ΩQ = C \ ∪αj<1{raj : r > 0}.
The following theorem of Monakhov guarantees that the operator CQ and BQ(f) =

(
CQ(f)

)
z

satisfy many properties of the Cauchy and Beurling Transforms.

Theorem 10.3 Let Q be as in (10.27). For every p ∈ (p1, p2) with

p1 = max
j

(1− αj/2)
−1, p2 = 2max

j
(1− αj)

−1,

the operators CQ : Lp(D) → W 1,p(D), and BQ : Lp(D) → Lp(D), are bounded.

In view of (10.27) and Theorem 10.2, we have

CQ(h)z̄ = h, CQ(h)z = B(h),

weakly. We note that when z ∈ D, then we can write

(10.29) CQ(f)(z) = Q(z)√
z

∫∫
D

[ √
zf(ζ)

Q(ζ)(ζ − z)
+

√
zf(ζ)

Q(ζ)(zζ̄ − 1)

]
dζ ∧ dζ̄
2πi

.

What we learn from this is that CQ(f)(z) is a real multiple of Q(z)/
√
z whenever |z| = 1.

Hence the boundary behavior of CQ(f) is tied to that of Q(z)/
√
z. It is this property of CQ

that we use later on in the proof of Theorem 10.1.
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Proof of Theorem 10.1 Step 1. Without loss of generality, we may assume that n = 2.
Also, the surface w we wish to construct may embed into a set that is sympletomorphic to
Z4(R) for some R. For our purposes, we choose T × C with T ⊂ C a triangle with vertices
±1 and i. We wish to find a transformation w = (U, V ) : D → C2 that solves (10.16) and
satisfies the following properties:

(i) U : D → T , with U(∂D) = ∂T , and V : D → C,

(ii) (u0, v0) ∈ w(D),

(iii) 2area(w(D)) = i
∫
D dU ∧ dŪ + dV ∧ dV̄ = 2.

Note that we switched from (10.9) to (iii) because area(T ) = 1. Pick a ∈ D. We search for
solutions of the form

U = C1(u) + q, V = C2(v)− C2(v)(a) + v0,

for u, v : D → C in Lp, and a holomorphic function q. The operators C1 and C2 are defined
as Ci(f) = CQi

(f), where

Q1(z) = e3iπ/4(z − 1)1/4(z + 1)1/4(z − i)1/2z−1/2, Q2(z) = z − 1.

We observe that Q2 maps ∂D to lines parallel to the side of T .
We claim

(10.30) z ∈ ∂D =⇒ C2(v) ∈ iR.
To see this, observe that if |z| = 1, then z = 1/z̄, and

CQ2

v(z) = (z − 1)C(v/Q)(z) + (z − 1)z̄ C(v/Q)(z) ∈ iR,
because (z − 1)z̄ = (1− z̄) = −z − 1. This prove (10.30). This in turn implies

(10.31)

∫
D
dV ∧ dV̄ = 0.

□

Exercise 10.1(i) Consider the form α = a(q) · dq + p · dq in R4. Use the proof of Proposi-
tion 10.1(i) to determine a (g, J) in I(R4, dα). Find φ such that −φ∗ω̄ = dα. Use this to
find another (g, J) in I(R4, dα).

(ii) Find J holomorphic curves for dα.

(iii) Show that for any n × n matrix Γ, there are two positive symmetric matrices S1 and
S2, and orthogonal matrix O such that Γ = S1O = OS2.

(iv) Let ω(a, b) = Ca · b be a symplectic form with

C =

[
0 Γ

−Γ∗ 0

]
.

Use the proof of Proposition 10.1(i) to determine a (g, J) in I(R2n, ω). □
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11 Arnold’s Conjecture and Floer Homology

In Chapter 9 we formulated Arnold’s Conjecture and described a strategy for tackling this
conjecture. Given a symplectic manifold (M,ω), we write Γ for the set of C1 loops x : S1 →
M . We also write Γ0 for the set of contractible loops, which is a connected component of
Γ that contains constant loops. We wish to define AH : Γ → R as in (9.5), and study its
critical points. As in Chapter 9, we assume that H : M × R → R is a C2 Hamiltonian
function that is 1-periodic in t. We set,

(11.1) AH(x) =

∫
w∗ω −

∫ 1

0

H(x(t), t) dt,

where w : D →M is an extension of x, i.e., w = x on ∂D = S1. To have AH well-defined, we
need to make sure that if w,w′ : D →M are two surfaces that extend x, then

(11.2) 0 =

∫
w(D)

ω −
∫
w′(D)

ω =

∫
w′′(S2)

ω.

where w′′ : S2 →M is a surface we obtain by gluing w and w′ across the boundary. Through-
out this chapter, we assume that (11.2) holds. Equivalently,

(11.3) [ω](u) = 0,

for every closed surface u : S2 →M . Note that (11.3) holds if the second fundamental group
π2(M) is trivial, or ω is exact. In particular (11.3) holds for any aspherical manifold (i.e.
πn(M) = 0 for n ≥ 2) such as torus.

Proposition 11.1 Assume (11.3) holds. Let U be an open subset of M such that Ū is
compact. Consider the map A : C1(S1; Ū) → R, given by

A(x) =

∫
S1
w∗ω,

where w is any extension of x. Then A has a continuous extension from C1(S1,M) to
H1(S1,M).

Proof When ω = dλ in U , then

A(x) =

∫
S1
λx(ẋ) dt.

Since (x, v) → λx(v) is continuous, A(x) is well-defined and continuous for x ∈ H1. In
general, we need to make sure that x can be extended to w : D → U , with∫

D
|dw|2 dtdθ ≤ c0

∫
S1

(
|x|2 + |ẋ|2

)
dt,
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for a universal constant c0. □
From now on, we assume that (11.1) holds. We wish to study the critical points of

AH : Γ0 → R. Given x ∈ Γ0, We may identify

TxΓ0 =
{
ξ : S1 → TM : ξ(t) ∈ Tx(t)M

}
.

Given ξ ∈ TxΓ0, and small δ > 0, we may define v : S1 × [0, δ] →M , so that

vs(t, 0) = ξ(t), v(t, 0) = x(t).

For example, ifM is equipped with a Riemannian metric g, we can set v(t, s) = expx(t)(sξ(t)),
where exp denotes the exponential map associated with g. Let us extend v(·, s) : S1 → M ,
to a surface w(·, s) : D →M . In other words, w : D× [0, δ] →M , with w = v on ∂D× [0, δ].
From ∫

D×[s1,s2]

w∗(dω) = 0,

and Stokes’ formula, we learn

(11.4)

∫
D
w(·, s2)∗ω −

∫
D
w(·, s1)∗ω +

∫ s2

s1

∫
S1
ωw(t,s)(wt, ws)(t, θ) dt dθ = 0.

This in turn implies

d

ds

[∫
D
w(·, s)∗ω

] ∣∣∣
s=0

= −
∫
S1
ωx(t)(ẋ(t), ξ(t)) dt.

From this we learn that the Gateau derivative of A is given by

(dAH)x(ξ) =−
∫
S1

[
ωx(t)(ẋ(t), ξ(t)) + (dH)x(t)(ξ(t), t)

]
dt

=−
∫
S1
ωx(t)

(
ẋ(t)−XH(x(t), t), ξ(t)

)
dt

If we take (g, J) ∈ I(M,ω), and define a metric on Γ by

⟨⟨ξ, η⟩⟩x =
∫ t

0

gx(t)(ξ(t), η(t)) dt,

then we can write

(dAH)x(ξ) = −
∫
S1
gx(t)

(
J(x(t))(ẋ(t)−XH(x(t))), ξ(t)

)
dt

= −⟨⟨J(x)
(
ẋ−XH(x)

)
, ξ⟩⟩x,
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or in short,
∂AH

(
x(·)

)
= −J(x)

(
ẋ−XH(x)

)
.

Clearly, critical points of AH correspond to the 1-periodic orbits of XH . The corresponding
gradient flow u̇ = ∂AH(u), takes the form

(11.5) us = −J(u)
(
ut −XH(u, t)

)
.

We assume that u : S1 × R →M is a C1 function. We may use the metric g to write

(dH)x(v) =: gx(∇H(x, t), v), XH(x, t) = J(x)∇H(x, t).

This yields an equivalent formulation of (11.5) as

(11.6) us + J(u)ut +∇H(u, t) = 0.

Remark 11.1(i) Let (M,α) be a contact manifold, and set

M̂ =M × R, α̂(x,θ)(v, τ) = eθαx(v), ω̂ = dα̂,

as in Chapter 3. If we choose the Hamiltonian function H = 1, Ĥ(x, θ) = eθ, then

AĤ(x̂) =

∫
S1
x̂∗α−

∫
S1
Ĥ(x̂) dt,

where x̂ : S1 → M × R. We may consider only those x̂ that lies on M = M × {0};
x̂(t) = (x(t), 0). For such x̂ we have AH(x̂) = Aα(x)− 1, where

Aα(x) =

∫
S1
x∗α =

∫
S1
αx(ẋ) dt.

Again by Stokes formula if w : S1 × [s1, s2] →M is a surface, then∫
S1
w(·, s2)∗α−

∫
S
w(·, s1)∗α = −

∫
S1×[s1,s2]

w∗dα,

which is (11.4) in our setting. From this we obtain

(dAα)x(ξ) =

∫
S1
(dα)x(ξ, ẋ) dt.

Note that if X is a vector field such that X = ξ on x, then we can also use Cartan’s formula
to assert

(dAα)x(ξ) =

∫
S1
x∗LXα =

∫
S1
x∗iXdα =

∫
S1
(dα)x(ξ, ẋ) dt.
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(ii) Using an idea of Gromov, we can regard the solution u of (11.4) as a pseudo-holomorphic
curve. We may regard u as a function u : R2 → M that is 1-periodic in t. We then define
û : S1 × R →M × R2, by û(z) = (u(z), z). The equation (11.21) can be rewritten as

(11.7) ûs + Ĵ(û)ut = 0,

where,

Ĵ(x̂)(v, α, β) = Ĵ(x, s, t)(v, α, β) :=
(
J(x)v + β∇H(x, t) + αJ(x)∇H(x, t),−β, α

)
,

so that
Ĵ(x̂)(v, 0, 1) =

(
J(x)v +∇H(x, t),−1, 0

)
.

Observe that
(
Ĵ
)2

= −id. □

Our hope is that the solutions of (11.6) can be used to find critical points of AH . Observe
that if u solves (11.6), and w : D× R → M is an extension of u, then we may use (11.3) to
assert∫

D
w(·, s2)∗ω −

∫
D
w(·, s1)∗ω = −

∫ s2

s1

∫
S1
ωw(t,s)(wt, ws)(t, θ) dt dθ

=

∫ s2

s1

∫
S1
gw(t,s)

(
wt(t, s), wt(t, s)−XH(w(t, s), t)

)
dt ds.

From this we can readily deduce

(11.8) AH

(
w(·, s2)

)
−AH

(
w(·, s1)

)
=

∫ s2

s1

∫
S1

∣∣wt(t, s)−XH(w(t, s), t))
∣∣2
w(t,s)

dt ds.

We define

(11.9) XH =

{
u ∈ C1(R× S1) →M : (11.5) holds, sup

s

∣∣AH(u(·, s))
∣∣ <∞

}
.

Note that if u ∈ XH , then

(11.10)

∫ ∞

−∞

∫
S1

∣∣ut(t, s)−XH(u(t, s), t))
∣∣2
u(t,s)

dt ds <∞

Theorem 11.1 Assume that H is a C2 function of compact support, and J is Lipschitz
continuous. Then the set XH is compact in W 2,p(S1 × R;M) for any p < ∞ (and as a
consequence in C1,a(S1 × R;M), for every a ∈ (0, 1)).
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Proof (Step 1) We first study the limit points of u(·, s), as s→ ±∞. We may embed M in
a Euclidean space RN (by Whitney’sembedding theorem, we can choose N = 2dimM). If
ḡ denotes the standard metric of RN , then by compactness of M , we can find a constant c1
such that

(11.11) ḡ(v, v) ≤ c1gx(v, v).

Let u ∈ XH , so that (11.9) holds. Choose a sequence sn → ∞ such that

(11.12) lim
n→∞

∫
S1

∣∣ut(t, sn)−XH(u(t, sn), t))
∣∣2
u(t,sn)

dt = 0.

Since H ∈ C1, we deduce

c2 = sup
n

∫
S1

∣∣ut(t, sn)∣∣2u(t,sn) dt <∞.

As a consequence of this, the compactness of M , and (11.11),∫
S1

∣∣ut(t, sn)∣∣2 dt ≤ c2c1, sup
n

sup
t

|u(t, sn)| <∞,

These bounds guarantee the boundedness of the sequence {u(·, sn)}n in C1/2. As a conse-
quence, we may choose a further subsequence (again denoted by sn) such that the uniform
limit

(11.13) lim
n→∞

u(t, sn) =: x+(t),

exists. From this and (11.11) we deduce

lim
n→∞

∫
S1

∣∣ut(t, sn)−XH(x
+(t), t)

∣∣2
u(t,sn)

dt = lim
n→∞

∫
S1

∣∣ut(t, sn)−XH(x
+(t), t)

∣∣2 dt = 0.

Hence u(·, sn) → x+(·) in H1. This, (11.12), and Proposition 11.1 imply

(11.14) lim
n→∞

AH(u(t, sn)) = AH(x
+).

This in turn implies

(11.15) sup
s

AH(u(·, s)) = AH(x
+) ≤ sup

{
AH(x) : x ∈ X̄H

}
=: c3 <∞.

where X̄H consists of x ∈ Γ0 such that ẋ(t) = XH(x(t), t). The finiteness of c3 follows from
the compactness of X̄H in H1, and the continuity of AH . In the same fashion, we can show

inf
s
AH(u(·, s)) ≥ inf

{
AH(x) : x ∈ X̄H

}
=: c4 > −∞.
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In summary there are universal constants c3 and c4 such that for every u ∈ XH , and every
s ∈ R,

(11.16) c4 ≤ AH(u(·, s)) ≤ c3.

(Step 2) We now find a universal constant c5 such that

(11.17) sup
u∈XH

sup
(t,s)∈S1×R

|∇u(t, s)| = c5 <∞.

Suppose to the contrary there exist sequences {(tn, sn)}n in S1 × R, and {un}n in XH , such
that sn → ∞, and

lim
n→∞

|∇un(tn, sn)| = ∞.

Note that if u ∈ XH , then its s-translate

τau(t, s) = u(t, s+ a),

is also in XH . Hence, we may assume that tn → t̄ ∈ S1, as n→ ∞, and sn = 0 for all n. To
ease the notation, let us write fn for |∇un|, and zn for (tn, 0). Pick a sequence εn > 0 such
that

(11.18) lim
n→∞

εnfn(zn) = ∞.

We claim that there exist sequences yn , and δn > 0 such that

|yn − zn| ≤ 2εn, δn ≤ εn, εnfn(zn) ≤ δnfn(yn),(11.19)

|z − yn| ≤ δn =⇒ fn(z) ≤ 2fn(yn).

To prove this, fix n, and set a0 = zn. Either the choice (δn, yn) = (εn, zn) satisfies (11.18),
or else we can find a1 such that

|a1 − a0| ≤ εn, fn(a1) > 2fn(a0).

Continuing this inductively, imagine that we can find a1, . . . , ak such that for ℓ = 1, . . . , k,

|aℓ − aℓ−1| ≤ 21−ℓεn, fn(aℓ) > 2fn(aℓ−1).

Then either we can choose (yn, δn) = (ak, 2
−kεn), or else there exists ak+1, such that

|ak+1 − ak| ≤ 2−kεn =⇒ fn(ak+1) > 2fn(ak).

If the existence of such ak does not terminate, then we have a sequence {ak}k∈Z+ such that

|ak+1 − ak| ≤ 2−kεn, fn(ak) > 2kfn(a0).
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This is impossible because if ak → a, then by the continuity of f , we must have fn(a) = ∞.
As a consequence, for each n, there exists (yn, δn) such that (11.19) holds.

(Step 3) For our purposes, we regard un = un(t, s) as a function from R2 into M that is
1-periodic in t. We also set Rn = |∇un(yn)|. We define wn : B(0, δnRn) →M , by

wn(z) = un
(
yn +R−1

n z
)
.

Observe that by (11.19), we know

δnRn ≥ εnfn(zn).

From this and (11.18) we learn

(11.20) lim
n→∞

δnRn = ∞.

Moreover by (11.19),

(11.21) |∇wn(0)| = 1, |∇wn(z)| ≤ 2,

for every z ∈ B(yn, δnRn). Furthermore, wn satisfies

(11.22) wns (t, s) + J(wn(t, s))wnt (t, s) + hn(t, s) = 0,

where hn(t, s) = R−1
n ∇H

(
wn(t, s), tn +R−1

n t
)
. Observe that by (11.16), (11.6) and (11.7),∫

B(0,δnRn)

|∇wn|2wn dz =

∫
B(yn,δn)

|∇un|2un dz

=

∫
B(yn,δn)

[
|unt |2un + |uns |2un

]
dz

=

∫
B(yn,δn)

[
|unt |2un + |unt −XH(u

n, t)|2un
]
dz

≤3

∫
B(yn,δn)

|unt −XH(u
n, t)|2un dz + 2max |XH | |B(yn, δn)|

≤3(c3 − c4) + 2max |XH | |B(yn, δn)|.

From this we deduce

(11.23)

∫
B(0,δnRn)

|∇wn|2wn dz ≤ c6,

for a constant c6.
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(Step 4) We wish to study the large n limit of wn. Let us simply write ∂ for a partial
differentiation operator, and write vn for ∂wn. (11.22) implies

(11.24) vns + Ĵn(ŵn)vnt = gn,

where gn = ∂
(
Ĵ(wn)

)
wn − ∂hn.] From J ∈ C1, H ∈ C2, and (11.21) we learn

sup
n

∥gn∥L∞ <∞.

From this and Theorem D.4 below we deduce

sup
n

∥vn∥W 1,p(B) <∞,

for every p > 1, and every bounded set B (in fact we have Dvn ∈ BMO(B)). This implies

sup
n

∥wn∥W 2,p(B) <∞.

This implies that we can choose a subsequence of wn that converges strongly to w in W 1,p
loc .

We have that w : R2 →M satisfies

(11.25) ws + J(w)wt = 0.

Moreover, from (11.23), and (11.21) we learn

(11.26) |∇w| ≤ 2, |∇w(0)| = 1, 0 < 2

∫
R2

w∗ω =

∫
R2

|∇w|2 dz ≤ c6.

(Step 5) Let us define the non-decreasing function f : [0,∞) → [0,∞)

f(R) =

∫
BR(0)

|∇w|2 dz.

This function is bounded by c6 by (11.26). On the other hand, if γR(θ) = w(Re2πiθ), then

f(∞) = 2π

∫ ∞

0

∫ 1

0

|∇w(Re2πiθ)|2R dθdR =

∫ ∞

0

g(R)(2πR)−1 dR <∞,

where

g(R) :=

∫ 1

0

|γ̇R(θ)|2 dθ.
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From f(∞) < ∞ we learn that there exists a sequence Rk → ∞, such that g(Rk) → 0 in
large k-limit. As a result,

(11.27) lim
k→∞

|γRk
(S1)| =

∫ 1

0

|γ̇Rk
(θ)| dθ ≤ lim

k→∞

√
g(Rk) = 0,

where |γ| represents the length of γ. In words,the length of the boundary curve ηk :=
γRk

(S1) = ∂w(BRk
(0)) shrinks to 0 in large k limit. Pick a point ak ∈ γRk

(S1), and take a
subsequence of ak such that ak → a. Since γRk

(S1) is shrinking, the curves γRk
(S1) lie in a

small neighborhood of a for a subsequence. We continue to write Rk for such a subsequence.
Consider the surface Γk := w(BRk

(0)). As k increases, the surface Γk grows, while its
boundary ηk tends to a point a. Take a local chart U that contains a and choose a 1-form α
such that ω = dα in U . For large k, the curve ηk = ∂Γk lies in U . We may choose a surface
Γ̂k in U such that ηk = ∂Γ̂k. We have∫

Γk

ω =

∫
Γ̂k

ω =

∫
Γ̂k

dα =

∫
ηk

α,

which implies ∫
w(R2)

ω = lim
k→∞

∫
Γk

ω = lim
k→∞

∫
ηk

α = 0.

This is absurd because the left-hand side is positive (which is consequence of ∇w(0) ̸= 0.
This completes the proof of (11.17).

(Step 6) We now use (11.17) to prove that for every p ∈ [1,∞), and every bounded set
U ⊂ S1 × R,

(11.28) sup
u∈XH

∥D2u∥Lp(U) <∞.

To see this, observe that if u is a solution of (11.6), and v = ∂u is a partial derivative of u,
then v satisfies

(11.29) vs + J̄vt = −∂(∇H(u, t))− (∂J̄)vt =: h,

where J̄ = J(u). Observe that from our assumptions on H and J , and (11.17), we learn

sup
u∈XH

sup
z∈S1×R

[
|J̄(z)|+ |∇J̄(z)|+ |h(z)|

]
<∞.

This, (11.29), and Theorem D.4 imply

(11.30) sup
u∈XH

∥∇v∥Lp(U) <∞,
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for every bounded set U , and every p ∈ [1,∞). By Morrey’s inequality, the bound (11.30)
implies

(11.31) CU := sup
u∈XH

∥∇u∥Ca(U) <∞,

for every a ∈ (0, 1). Observe that since u ∈ XH implies that τθu ∈ XH . Hence the constant
CU(k) of (11.31) for U(k) = S1×[k, k+1] is independent of k. From this, and the boundedness
of ∇u, we can readily deduce

(11.32) sup
u∈XH

∥∇u∥Ca(S1×R) <∞,

for every a ∈ (0, 1).

(Final Step) The bounds (11.17) and (11.32) imply the precompactness of XH . These bounds
also guarantees that if un is a sequence in XH , then it has a subsequence such that un → u,
and ∇un → ∇u locally uniformly. Clearly u solves (11.6). On the other hand,

lim
n→∞

AH(u
n(·, s)) = AH(u(·, s)),

for every s by Proposition 11.1. Since the bound (11.16) holds for each un, and n, the same
bound holds for u. This implies the closedness of the set XH . The proof is now complete.

□

Remark 11.2 If we assume that J ∈ Ck, and H ∈ Ck+1, then we can show

(11.33) sup
u∈XH

∥u∥Wk+1,p <∞.

□

We now focus on the existence of solutions to Floer’s equation (11.6). We first formulate
an approximation of (11.6) that is easier to study. We fix a large positive T ∈ R, and
consider a function u : ST → M, where ST := S1 × [−T, T ]. In other words, we replace the
infinite cylinder with a finite long cylinder so that we can use the standard elliptic theory
in bounded domains to show the existence and global regularity of u. We wish to assume
boundary conditions for u so that the action AH

(
u(·,±T )

)
is uniformly bounded in T . To

guarantee this, we assume that u(·,±T ) has a ±J-holomorphic extension to a disk. More
precisely, we assume that u solves (11.6) in the interior of ST , and there are

w± : D± →M,

such that D± are two copies of the standard disks, and

w±(e2πit) = u(t,±T ),
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and w± is a ±J-holomorphic curve. This means that w±(θ1, θ2) satisfies

(11.34) w±
θ2
± J(w±)w±

θ1
= 0,

in D±. By gluing the disks D± to the boundary of ∂ST , we obtain a capped cylinder that
will be denoted by ŜT . More concretely,

ŜT = ∂
(
D× [−T, T ]

)
, D± = D× {±T}.

We may use (u,w−, w+) to define a map û : ŜT →M , such that û = u on S1 × (−T, T ), and

û
(
ρe2πit,±T

)
= w±(ρe±2πit

)
.

Note that for gluing w± disks to the cylinder, we need to reverse the orientation of w−

Let us write BT for the set of continuous maps û : ŜT →M , û ∈ W 1,p(ŜT ,M), and define
Lt(û) such that for z ∈ ST ,(

LT (û)
)
z
:=
(
dû+ J (̂̂u)(du)j +∇H(û, t) ds− J(û)∇H(û, t) dt

)
z
,

where j(v) = −iv. Observe that for z ∈ ST ,

L(û)
(
∂

∂s

)
= us + J(u)ut +∇H(u, t),

L(û)
(
∂

∂t

)
= ut − J(u)us − J(u)∇H(u, t).

For z ∈ D±, we simply have (
L(û)

)
z
=
(
dû+ J(û)(dû)j

)
z
.

Observe that if η =
(
du+ J(u)(du)j

)
z
, and ζ =

(
∇H(u, t) ds− J(u)∇H(u, t) dt

)
z
, then

J(u(z))γj = J(u(z))
(
(du)z + J(u(z))(du)zj

)
j = J(u(z))(du)zj + (du)z = γ,

J(u(z))ζj = J(u(z))
(
∇H(u(z), t) ds− J(u(z))∇H(u(z), t) dt

)
j

= −J(u(z))
(
∇H(u(z), t) dt+ J(u(z))∇H(u(z), t) ds

)
= ζ.

We wish to find û such that LT (û) = 0.We will interpret L = LT as a section of a suitable
vector bundle π : E → B. Here B = BT := W 1,p(ŜT ;M), which is a Banach manifold with
respect to the Banach space V := W 1,p(ŜT ;R2d). We next define define the fiber Eû, for each
û ∈ B. The fiber Eû is the space of sections of a vector bundle Ωû that is associated with û.
The vector bundle Ωû is over the base ŜT . Indeed, for z ∈ ŜT , the fiber Ω

û
z consists of linear

maps of the form

β : TzŜT → Tû(z)M, such that J(û(z))βj = β.
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for every z ∈ ŜT \ S1 × {−T, T}. Observe that û ∈ BT := W 1,p(ŜT ;M) yields a pullback
bundle û∗TM which consists of pairs (z, v) such that z ∈ ŜT , and v ∈ Tu(z)M . We may
regard the fiber Eu as the space of anti-linear forms Ω0,1(u∗TM).

Let us define
X T
H =

{
û ∈ BT : LT (û) = 0

}
.

Theorem 11.2 (i) We have

sup
T>0

sup
û∈XT

H

sup
s∈(−T,T )

AH(u(·, s)) <∞,(11.35)

sup
T>0

sup
û∈XT

H

sup
z∈ST

|∇u(z)| <∞.(11.36)

Moreover, if ûT ∈ X T
H , for every T , and uT denotes the restriction of ûT to ST , then {uT :

T > 0} is precompact with respect to W 1,p
loc (S

T ,M), and its limit points belong to XH .

(ii) For every T > 0, and every a ∈M , there exists û ∈ X T
H such that u(0, 0) = a.

Proof(i) Since s 7→ AH(u(·, s)) is non-decreasing, it suffices to find upper bounds on
±AH(u(·,±T ). Evidently

(11.37) ±AH(u(·,±T )) ≤ max
x,t

|H(x, t)| ±
∫
w±(D)

ω.

On the other hand,

±
∫
w±(D)

ω = ±
∫
D
ω(w±

t , w
±
s ) dtds = ±

∫
D
ω
(
w±
t ,∓J(w±)w±

t

)
dtds

= −
∫
D
|w±

t |2w± dtds ≤ 0.

This and (11.37) imply (11.35). A repetition of the proof of (11.17) would yield (11.36). As
a result, we will have the analog of (11.28) :

(11.38) sup
T>T0

sup
û∈XT

H

∥D2u∥Lp(S1×(−T0,T0)) <∞,

for every p ∈ [1,∞). This in turn yields the analog of (11.32):

(11.39) sup
T>T0

sup
û∈XT

H

∥∇u∥Cα(S1×(−T0,T0)) <∞,

for α ∈ (0, 1). This bound gives the precompactness of the family {uT : T > 0}, and the
claim that any limit point of this family is in XH .
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(ii) (Step 1) For the existence of a solution to LT (U) = L(U) = 0, we use Theorem G.5 of
the Appendix. To apply this Theorem, let us define L(û, θ) = LT (û, θ) so that for z ∈ ST ,

L(û, θ)z =
(
dû+ J(û)(dû)j + θ

(
∇H(û, t) ds− J(û)∇H(û, t) dt

))
z
,

and for z ∈ D±, we simply have

L(û, θ)z =
(
dû+ J(û)(dû)j

)
z
, .

We write BT,a for the Banach manifold given by

BT,a =
{
û ∈ BT : u(0) = a

}
.

The projection π : BT,a → E is a vector bundle over BT,a. For each θ, we regard L(·, θ) :
BT,a → E , is a section. Let us define

X a,T,θ
H =

{
û ∈ W 1,p(ŜT ;M) : u(0) = a, LT (û, θ) = 0

}
,

so that
L−1(0) =

{
(û, θ) : û ∈ X a,T,θ

H

}
.

Observe that the bound (11.37) holds uniformly over θ ∈ [0, 1] as we replaceH with θH. From
this, we wish to argue that the bounds we deduce that (11.35) and (11.36) hold uniformly
over θ ∈ [0, 1] as we replace H with θH. This is indeed the case. For example, in our
bubbling-off argument, we now have θnH in place of H in (11.22), for a sequence θn ∈ [0, 1]
such that θn → θ̄ in large n-limit. Since the analogs of (11.35) and (11.36) hold uniformly
over θ ∈ [0, 1], we deduce that the analogs of (11.38) and (11.39) also hold uniformly over
θ ∈ [0, 1]. This in turn implies the compactness of L−1(0) In summary the condition (i) of
Theorem G.4 holds.

(Step 2) For condition (ii) of Theorem G.4, we claim that X a,T,0
H consists of a single element,

namely û(z) = a for all z ∈ ŜT . To see this, observe that when H = 0, and û : ŜT → M ,
then û is a J-holomorphic sphere, and must be constant. Indeed by (11.3),

0 =

∫
u(ST )∪ŵ−(D)∪w+(D)

ω.

Here ŵ− is w− with the orientation reversed so that ŵ− has an orientation compatible with
u Equivalently,

0 = −1

2

∫
ST

[
|us|2 + |ut|2

]
dtds+

∫
D

[
|∇w+|2 + |∇w−|2

]
(t, t′) dtdt′.

Hence u is a constant, and this constant must be a = u(0).
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(Step 3) We next focus on condition (iii) of Theorem G.4. We wish to study the fiberwise
differential

EûL(·, θ) : TûBT,a → Eû.

We have

TûBT,a =
{
ξ : ŜT → TM : ξ(z) ∈ Tû(z)M for z ∈ ŜT \ S1 × {−T, T}, ξ(0) = 0

}
.

For θ = 0, we wish to linearize L at the constant map û = a. Note

DaL : TaBT,a → Ea,

where TaBT,a =
{
ξ : ŜT → TaM : ξ(0) = 0

}
, and Ea consists of sections η : ŜT → Ωa, where

Ωa
z =

{
β : TzŜT → TaM : β is linear and J(a)βj = β

}
.

Given ξ ∈ TaBT,a, we simply have

(DaLT )ξ = dξ + J(a) ◦ dξ ◦ j ∈ Ea.

We wish to show that DaLT : TaB → Ea is an isomorphism. If dimM = d, then we may
represent TaM as Rd ⊕ J(a)Rd. Treating J(a)v as iv, we may identify TaM as Cd. To show
DaLT is surjective, we need to show that for every Lp function f : ŜT → Cd, we can find
ξ : ŜT → Cd in W 1,p such that

(11.40) ∂z̄ξ = ξt + iξs = f, ξ(0) = 0.

This has been shown in Theorem D.1 of Appendix D when the domain ŜT is replaced with
C. We now show how our Theorem D.1 can be used to prove the existence of ξ when the
domain is the Riemann Sphere C ∪ {∞}. To solve (11.39), we write f = g + h where
g(z) = f11(|z| ≤ 1), and h(z) = f(z)11(|z| > 1). Using the Cauchy’s operator (see Appendix
D), the function

ξ1(z) = C(f)(z) = − 1

π

∫
|ζ|≤1

f(ζ)

ζ − z
dtds, ζ = t+ is,

satisfies ∂z̄ξ
1 = g. It is not hard to see that ξ1(∞) = 0. So, ξ is well-defined on C ∪ {∞}.

Similarly, if τ(z) = z−1, then h ◦ τ is defined on B1(0), and ξ2 = C(ĥ) ◦ τ , for ĥ(z) =
−z2(h ◦ τ)(z), satisfies ∂z̄ξ2 = h. We finally set ξ = η − η(0), with η = ξ1 + ξ2 to solve
(11.39).

We now argue that (11.40) has a unique solution. Note that if ξ1 and ξ2 are two solutions,
then ζ = ξ1 − ξ2 is a holomorphic function with ζ(0) = 0, and ζ ′ ∈ Lp. We then use mean
value formula to deduce that ζ ′ = 0. This in turn implies that ζ = 0.

179



(Step 4) It remains to show that DuLT is Fredholm. Given ξ ∈ TuB, the corresponding
η = (DuLT )ξ satisfies η + J(u)ηj = 0. Locally, we may express η as ζ ds− J(u)ζ dt, where

ζ = ξs + J(u)ξt +
(
∇ξJ(u)

)
ut +∇ξ∇H(u, t).

Here and below, ∇ξ denotes the covariant derivative in ξ-direction. Since ξ ∈ W 1,p, J ∈ C1,
and H ∈ C2, the linear operator

ξ 7→
(
∇ξJ(u)

)
ut +∇ξ∇H(u, t),

is compact by Rellich’s theorem. Hence, it suffices to show

ξ 7→ F (ξ) := ξs + J(u)ξt,

is a Fredholm operator of index 0.
Let us select open sets

Ui ⊂ Ūi ⊂ U ′
i ⊂ Ū ′

i ⊂ U ′′
i ⊂ ŜT , i = 1, . . . , ℓ

such that each U ′′
i is a local chart, and

ŜT = ∪ℓi=1Ui.

Assuming M ⊂ RN , we consider the operator

Fi : W
1,p
0 (U ′′

i ,RN) → Lp(U ′′
i ,RN), Fi(ξ)(z) := ξs(z) + Ĵ(z)ξt(z),

where Ĵ(z) = J(u(z)). We will see later that the operator Fi is an isomorphism for every i
provided that the open sets U ′′

i is sufficiently small for every i. We then choose a C1 partition
of unity (χi : i = 1, . . . , ℓ) subordinate to {Ui : i = 1, . . . , ℓ}. We also choose C1-function
χ̂i : ŜT → R such that χ̂i(z) = 1, for z ∈ Ui, and χ̂(z) = 0 for z /∈ U ′′

i . Consider the operator

K(h) =
ℓ∑
i=1

χ̂iF
−1
i (hχi).

Note that hχi ∈ Lp(U ′′
i ), and F

−1
i (hχi) ∈ W 1,p(U ′′

i ). However, χ̂iF
−1
i (hχi) is regarded as a

function on ŜT . On the other hand,

F
(
F−1
i (hχi)

)
= hχi,

on U ′′
i . As a result,

F ◦ K(h) = h
ℓ∑
i=1

χ̂iχi +
ℓ∑
i=1

F (χ̂i)F
−1
i (hχi) =: h+Rh.
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To show that the Fredholm index of F is 0, it suffice to show that R : Lp(ŜT ) → Lp(ŜT ) is a
compact operator. Observe that since u ∈ W 1,p, and dim ŜT = 2, the function u is bounded.
On the other hand

∥F−1
i (hχi)∥W 1,p ≤ c0∥h∥Lp ,

for a constant c0. Rellich’s theorem can now be used to deduce the compactness of K.

(Final Step) It remains to show that each Fi is an isomorphism if the open set U ′′
i is sufficiently

small. Note that if zi ∈ U ′′
i , then Fi = F ′

i + F ′′
i , where

F ′
i (ξ) = ξs + Ĵ(zi)ξt.

By Morrey’s inequality,
∥u∥Cα ≤ c1∥u∥W 1,p ,

for α = 1− 2/p. Because of this, we have a bound

sup
i

sup
z∈U ′′

i

|Ĵ(x)− Ĵ(zi)| ≤ c2 sup
i
diam(U ′′

i )
α,

which is small if the sets U ′′
i , i = 1, . . . , ℓ are small. On the other hand we can show that F ′

i

is invertible for each i, and

∥F−1
i (h)∥W 1,p

0 (U ′′
i )

≤ c3∥h∥Lp(U ′′
i )
,

for a constant c3 that is independent of i, so long that the diameters of the sets U ′′
i , i = 1, . . . , ℓ

are uniformly bounded, and the boundaries of these sets are sufficiently nice. As a result, Fi
is small perturbation of F ′

i , and hence an isomorphism if the set U ′′
i is sufficiently small in

diameter for every i. In Appendix D we show that F ′
i is indeed an isomorphism. □

We are now ready to establish Arnold’s conjecture (9.3). For this, we need to apply LS
theory for our setting. First observe that we have a natural flow on XH that is defined by

Φθ : XH → XH , Φθ(u)(t, s) = u(t, s+ θ).

This flow is gradient-like in the following sense: If

V : XH → R, V(u) = AH(u(·, 0)),

then
d

dθ
V(Φθ(u)) =

d

dθ
AH(u(·, θ)) ≥ 0.

To apply LS theory to the flow Φθ, we need more:

Theorem 11.3 If s 7→ u(·, s) is nonconstant, then

(11.41)
d

dθ
V(Φθ(u)) > 0.
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Theorem 11.3 would allow us to have a generaliztion of LS theorem to assert the number
of 1-periodic orbit is at least Cℓ(XH). It remains to show

(11.42) Cℓ(XH) ≥ Cℓ(M).

To achieve this, consider the map

τ : XH →M, τ(u) = u(0, 0).

This map induces a map τ ∗ : H∗(M) → H∗(XH). If we can show that τ ∗ is injective, then
we can deduce (11.42).
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12 Spectral Invariant Metric

In Chapter 8, we studied the Hofer metric on the group of Hamiltonian diffeomorphism of
R2n. In this chapter we discuss the spectral metrics that were introduced and studied by
Viterbo [V] in the Euclidean setting. Their extensions to general symplectic manifolds were
carried out by Schwartz [S] and Oh [O].

Definition 12.1(i) Let (M,ω) be a closed symplectic manifold, and assume that [ω]|π2(M) =
0. As before, we write Γ = Γ(M) for the set of C1 functions x : S1 → M . We write H(M)
for the set of C2 Hamiltonian functions H :M × S → R. By the support of H we mean

Supp(H) =
{
x ∈M : dH(·, t)x ̸= 0 for some t ∈ S1

}
.

Note that if x /∈ Supp(H), then dH(·, t)y = 0 for y near x, and all t. Hence ϕHt (x) = x for
x /∈ Supp(H).

(ii) The action functional A : H(M) × Γ(M) → R is defined as A(H, x) = AH(x), where
AH is given by (9.5).

(iii) We define

D(M) =
{
ϕH := ϕ

Xω
H

1 : H ∈ H(M)
}
.

Given H ∈ H(M), its Hofer’s norm is defined by

∥H∥ =

∫ 1

0

(
max
x∈M

H(x, t)−min
x∈M

H(x, t)
)
dt.

The Hofer’s metric D on D(M) is defined by

D(φ, ψ) = inf{∥H −K∥ : φ = ϕH , ψ = ϕK
}
.

(iv) We write Crit(H) for the set of critical points of AH , and

σ(H) =
{
AH(x) : x ∈ Crit(H)

}
.

As we have seen before, Crit(H) consists 1-periodic solution of the Hamiltonian vector field
XH = Xω

H . □

Theorem 12.1 There exists a function

c : H∗(M) \ {0} ×H(M) → R,

such that the following properties hold:

183



(i) If ϕH = ϕK, then c(α,H) = c(α,K).

(ii) c(α,H) ∈ σ(H) for every (α,H) ∈ H∗(M) \ {0} ×H(M).

(iii) c(α ∧ β,H♯K) ≤ c(α,H) + c(β,K).

(iv) |c(α,H)− c(α,K)| ≤ ∥H −K∥.

(v) If H is independent of t, and Tmin(H) > 1 (equivalently T (H) < 1), then

(12.1) c(α,H) = cLS(α,H).

Definition 11.2(i) On account of property (i), we can also define

c : H∗(M) \ {0} × D(M) → R,

so that c(α, ϕH) = c(α,H).

(ii) We define a norm-like quantity on H(M) or D(M) by

γ(H) = γ(ϕH) = c(vM ,M)− c(11,M),

where vM represents the class of (normalized) volume form, and 11 is 0-form 1.

(iii) With the aid of γ, we define a capacity

cγ(A) = cγ(A;M) = sup
{
γ(φ) : φ(x) = x for x /∈ A

}
.

□

We now design a strategy for finding upper and lower bounds on γ(φ).

Proposition 12.1 Let H,K ∈ H(M) and U ⊆ M an open set such that H(x, t) =: h0(t)
for x ∈M \ U , and

(12.2) ϕK(U) ∩ U = ∅.

Then

Fix(ϕH ◦ ϕK) = Fix(ϕK ◦ ϕH) = Fix(ϕK),(12.3)

Crit(H♯K) = Crit(K♯H) = Crit(K),(12.4)

γ(ϕH ◦ ϕK) = γ(ϕK ◦ ϕH) = γ(ϕK).(12.5)
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Proof To ease the notation, we write φ = ϕH , ψ = ϕK . Since Supp(H) = U × S1, we have

(12.6) x /∈ U, t ∈ S1 =⇒ ϕHt (x) = x.

Because of (12.2), we have Fix(ψ) ∩ U = ∅. This and (12.6) imply

x ∈ Fix(ψ) =⇒ x = φ(x) = ψ(x) =⇒ x = (φ ◦ ψ)(x) = (ψ ◦ φ)(x).

As a result

(12.7) Fix(ψ) ⊆ Fix(ψ ◦ φ), F ix(φ ◦ ψ).

Observe that by (12.2), we have ψ(U) ⊂ U c, which implies that (φ ◦ ψ)(U) = ψ(U), and

(φ ◦ ψ)(U) ∩ U = ∅.

Hence we can use the analog of (12.7) to assert

(12.8) Fix(φ ◦ ψ) ⊆ Fix(φ−1 ◦ φ ◦ ψ) = Fix(ψ).

Moreover, since φ(U) = U , we also have

(ψ ◦ φ)(U) ∩ U = ∅.

Hence an analog of (12.7) can be used to write

Fix(ψ ◦ φ) ⊆ Fix(ψ ◦ φ ◦ φ−1) = Fix(ψ).

This, (12.8), and (12.7) imply (12.3).
We now turn our attention to (12.4). If Θ(·) ∈ Crit(K), then Θ(t) = ϕKt (a), for some

a ∈ Fix(ψ), and

ϕK♯Ht (a) = (ϕKt ◦ ϕHt )(a) = ϕKt (a), ϕH♯K(a) = (ϕH ◦ ϕK)(a) = ϕK(a),

because Fix(ψ) ∩ U = ∅, and ϕK(a) /∈ U . As a result,

(12.9) Crit(K) ⊆ Crit(H♯K), Crit(K♯H).

Conversely, if Θ(·) ∈ Crit(K♯H), then Θ(t) = ϕK♯Ht (a), for some a ∈ Fix(ϕK♯H) = Fix(ϕK),
and

ϕK(a) =
(
ϕK♯H ◦ (ϕH)−1

)
(a) = ϕK♯H(a),

because (ϕH)−1(a) = a which follows from a ∈ Fix(ψ) ⊂ U c. Hence

Crit(K♯H) ⊆ Crit(K).
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In the same fashion we can show

Crit(H♯K) ⊆ Crit(K).

From this and (12.9) we deduce (12.4).
Take a ∈ Fix(ψ). Clearly ϕKt (a) ∈ Fix(ψ). If we set

A :=
{
ϕKs (a) : s ∈ [0, 1]

}
⊂M \ U.

As a result,

(K♯H)(x, t) = K(x, t) +H
(
(ϕKt )

−1(x), t
)
= K(x, t) + h0(t),

(H♯K)(x, t) = H(x, t) +K
(
(ϕHt )

−1(x), t
)
= K(x, t) + h0(t),

for x ∈M \ U . From this we learn that for Θ(t) = ϕKt (a), for some a ∈ Fix(ψ),

(12.10) A(K♯H,Θ) = A(H♯K,Θ) = A(K,Θ)− h̄0.

where

h̄0 =

∫ 1

0

h0(t) dt.

From (12.10) we learn
σ(K♯H) = σ(H♯K) = σ(K)− h̄0.

Clearly we can replace H with sH, for s ∈ [0, 1]:

σ(K♯(sH)) = σ(sH)♯K) = σ(K)− sh̄0.

Fix α ∈ H∗(M). From Theorem 12.1(ii),

c(α,K♯(sH)) ∈ σ(K♯(sH)) = σ(K)− sh̄0.

By Theorem 12.1(iv), the map s 7→ c(α,K♯(sH))+sh̄0 is continuous, hence constant because
the set σ(K) is nowhere dense. From this we learn

c(α,K♯H) + h̄0 = c(α,K).

This in turn implies that γ(K♯H) = γ(K). In the same fashion we can show γ(H♯K) = γ(K).
□

Proposition 12.2 The following statements hold

(i) γ(φ) ≤ E(φ).
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(ii) γ(φ) = γ(τ−1φτ) for every sympletic diffeomorphism τ .

(iii) γ(φ ◦ ψ) ≤ γ(φ) + φ(ψ).

(iv) γ(φ) = γ(φ−1).

(v) γ(φ) ≤ 2e
(
Supp(φ)

)
, where Supp(φ) =

{
x : φ(x) ̸= x

}
.

(vi) For every open set U , we have cHZ(U) ≤ cγ(U) ≤ 2e(U).

Proof

(v) We claim

(12.11) φ = ϕH , Supp(H) ⊂ U, ψ(U) ∩ U = ∅ =⇒ γ(φ) ≤ 2γ(ψ).

Indeed by (12.5),

γ(φ) ≤ γ(φ ◦ ψ) + γ(ψ−1) = γ(ψ) + γ(ψ−1) = 2γ(ψ).

On the other hand if ψ = ϕK , then

γ(ψ) ≤ E(ψ) ≤ ∥K∥.

This and (12.9) implies (v).

(vi) The second inequality is equivalent to the claim

(12.12) Supp(φ) ⊆ U =⇒ γ(φ) ≤ 2e(U).

This follows from (v).
For first inequality it suffices to prove this: For every open set U ,

H independent of t, Supp(H) ⊆ U, Tmin(H) > 1 =⇒ ∥H∥ = γ(ϕH).

For such H, we apply Theorem 11.1(v) to assert

γ(ϕH) = γ(H) = c(11, H)− c(vM , H) = cLS(11, H)− cLS(vM , H) = maxH −minH = ∥H∥,

as desired. □

We continue with a variant of Proposition 12.2 that was used by Seyfaddini [S] to bound
γ from above.
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Proposition 12.3 Let g be a Riemannian metric on M , and write d : M ×M :→ [0,∞)
for the corresponding distance on M . Assume that K : M → R is a Hamiltonian function
with Tmin(K) > 1, and

(12.13) max
x

d(x, ϕH(x)) < inf
{
d(y, ϕK(y)) : y ∈ Supp(H)

}
.

Then

Fix
(
ϕH ◦ ϕK

)
= Fix

(
ϕK
)
,(12.14)

Crit(H♯K) = Crit(K),(12.15)

c(11, H) ≤ 2
(
maxK −minK

)
.(12.16)

Proof Since Tmin(K) > 1, we have

(12.17) Fix(ϕK) =
{
ϕK(x) = x

}
=
{
x : (dK)x = 0

}
.

Because of (12.13), the right-hand side of (12.13) is strictly positive. As a result,

(12.18) Fix(ϕK) ∩ Supp(H) = ∅.

This in turn implies

x ∈ Fix(ϕK) =⇒ x = ϕK(x) = ϕH(x) =⇒ x ∈ Fix
(
ϕH ◦ ϕK

)
.

For the converse, first we claim

(12.19) Fix
(
ϕH ◦ ϕK

)
∩ Supp(H) = ∅,

which is a consequence of (12.13), because

y ∈ Fix
(
ϕH ◦ϕK

)
∩Supp(H) =⇒ d(ϕK(y), y) = d

(
ϕK(y), (ϕH ◦ϕK)(y)

)
< d(y, ϕK(y)).

Here we have used

y ∈ Fix
(
ϕH ◦ ϕK

)
∩ Supp(H) =⇒ ϕK(y) ∈ Supp(H),

because if ϕK(y) /∈ Supp(H), then

ϕK(y) =
(
ϕH ◦ ϕK

)
(y) = y,

which contradicts y ∈ Supp(H) and the positivity of the right-hand side of (12.13). Using
(12.19), we can argue

x ∈ Fix
(
ϕH ◦ ϕK

)
=⇒ ϕK(x) =

(
(ϕH)−1 ◦ ϕH ◦ ϕK

)
(x) = (ϕH)−1(x) = x.
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This completes the proof of (12.14). As in the proof of Proposition 12.1, we can use (12.4)
to show (12.5).

For (12.16), we certainly have

c(11, H) ≤ c(11, H♯K) + c(11,−K),

and
c(11,−K) = maxK −minK,

by Theorem 12.1(v). As result, (12.12) would follow if we can show

(12.20) c(11, H♯K) ≤ maxK −minK.

Observe
Crit(K) =

{
Θ ∈ Γ(M) : Θ(t) = a, (dK)a = 0

}
.

From this and (12.5), we learn

σ(H♯K) =
{
AH♯K(Θ) : Θ ∈ Crit(K)

}
=
{
−K(a)− h0 : (dK)a = 0

}
,

where h0 =
∫ 1

0

∫
H(·, t) ωn. From this, we can readily deduce (12.20). □

Example 12.1 Assume that the support of φ is contained in the annulus

U = U(r1, r2) =
{
x ∈ R2d : r1 < |x| < r2

}
.

In other words, φ(x) = x if x /∈ U . For the Hamiltonian K we choose

K(x) = f(|x|),

for a nondecreasing function f : [0,∞) → R. Note that if h(r) = f ′(r)/r, then the corre-
sponding Hamiltonian ODE is

ẋ = h(|x|)Jx.

We write x = (z1, . . . , zd) ∈ Cd, and Jx = −(iz1, . . . , izd). For x = (ρ1e
iθ1 , . . . , ρde

iθd),

ϕKt (x) =
(
ρ1e

i(θ1−h(ρ)t), . . . , ρde
i(θd−h(ρ)t)

)
,

where ρ = |x| = (ρ21 + · · · + ρ2d)
1/2. Here we are using the fact that |x| is conserved. Hence

we can find a positive constant c0 such that

min
x∈U

|ψ(x)− x| ≥ c0 min
ρ∈[r1,r2]

[ρh(ρ)] = c0 min
ρ∈[r1,r2]

f ′(ρ).
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The period is T = 2π/h(ρ). So we need the condition h(ρ) < 2π for ρ ∈ [ρ1, ρ2]. So our
condition is

A := max
x∈U

|x− φ(x)| < c0 min
ρ∈[r1,r2]

f ′(ρ), max
ρ∈[r1,r2]

h(ρ) < 2π,

and we get the bound
c(H) ≤ 2(f(r2)− f(r1)).

For example, if we choose f linear with slope ℓ, we get

2πρ1 > ℓ > c−1
0 A =⇒ c(H) ≤ 2ℓ(r2 − r1).

In summary,
A < 2c0πρ1 =⇒ c(H) ≤ 2c−1

0 A(r2 − r1).

□
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A Vector Fields and Differential Forms

Lemma A.1 (De Rham) Let M be a compact connected orientable k-dimensional manifold
and let α be a k-form with

∫
M
α = 0. Then α is exact.

Proof Let {U1, . . . , Ur} be a finite cover of M with each Ui diffeomorphic to a simply
connected subset of Rk. To ease the notation, we assume that r = 2. Choose φ1 and φ2 with
φ1+φ2 = 1, φ1, φ2 ≥ 0, φ1, φ2 ∈ C1 and supp φi ⊆ Ui for i = 1, 2. We can readily construct
a k-form β such that supp β ⊆ U1∩U2 and

∫
M
β = 1. Define γ = φ1α−cβ with c =

∫
M
φ1α.

Then supp γ ⊆ U1 and
∫
U1
γ = 0. By Poincaré’s lemma, there exists a form γ̂ such that

dγ̂ = γ. Similarly, if τ = φ2α + cβ, then supp τ ⊆ U2 and
∫
U2
τ =

∫
M
(1 − φ1)α + cβ =∫

M
α = 0. Hence, we can apply Poincaré’s lemma to find τ̂ with dτ̂ = τ . We now have

d(γ̂ + τ̂) = φ1α− cβ + φ2α + cβ = α.

□

Lemma A.2 Let X be a C1 vector field of M and write ϕXt for its flow. If φ : N →M is a
diffeomorphism, then ψt = φ−1 ◦ ϕXt ◦ φ, is the flow of the vector field φ∗X := (dφ)−1X ◦ φ.

Proof We have

dψt
dt

(x) =
(
dφ−1

)
ϕXt ◦φ(x)

(
X ◦ ϕXt ◦ φ

)
(x) =

(
dφ−1

)
φ◦ψt(x)

(
X ◦ φ ◦ ψXt

)
(x)

= (dφ)−1
ψt(x)

(X ◦ φ) (ψt(x)) ,

which means
ψt = ϕ

(dφ)−1X◦φ
t .

□
The vector field φ∗X is called the pull-back of X. Also, if Y is a vector field on N , we

define its φ-push-forward by

(φ∗Y )(y) = (dφ)φ−1(y)Y
(
φ−1(y)

)
.

We define the Lie derivative of a vector field Y with respect to another vector field X by

(A.1) [X, Y ] = LXY := lim
t→0

t−1
((
ϕXt
)∗
Y − Y

)
.

Using (
ϕXt
)∗ (

ϕXs
)∗
Y =

(
ϕXs+t

)∗
Y,
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we can readily show

(A.2)
d

dt

(
ϕXt
)∗
Y = LX

(
ϕXt
)∗
Y =

(
ϕXt
)∗ LXY.

In particular Z(x, t) =
(
ϕXt
)∗
Y satisfies

Zt = [X,Z] = LXZ.

Lemma A.3 For every 1-form α and vector fields X and Y , we have

(A.3) dα(X, Y ) = LX
(
α(Y )

)
− LY

(
α(X)

)
− α

(
[X, Y ]

)
.

Proof To ease the notation, we write ϕt for ϕ
X
t . By definition

(ϕ∗
tα) (ϕ

∗
tY ) = α(Y ) ◦ ϕt.

We now differentiate both sides with respect to t and set t = 0. We obtain

(LXα) (Y ) + α
(
[X, Y ]

)
= LX

(
α(Y )

)
.

By Cartan’s formula, the left hand side equals

(iXdα) (Y ) + d
(
α(X)

)
(Y ) + α

(
[X, Y ]

)
= dα(X, Y ) + LY

(
α(X)

)
+ α

(
[X, Y ]

)
,

which implies (A.3). □
Given a sub-bundle ξ of TM of dimension m, we may wonder whether or not there exists

a foliation of M that consists of submanifolds N such that for each x ∈ N , we have TxN = ξx.
If such a foliation exists locally, we say that ξ is integrable. According to Frobenius Theorem
the sub-bundle ξ is integrable iff for every vector fields X, Y ∈ ξ, we have [X, Y ] ∈ ξ.

We are particularly interested in the case of ξx = kerαx, for a 1-form α. For example, if
M = Rk and α = u·dx, then ξx = u⊥ consists of vectors that are perpendicular to u. If k = 3,
D = B1(0) is the unit disk, and w : D →M parametrizes a surface with Txw(D) = u⊥, then
by Stokes’ theorem,

0 =

∫
w(γ)

α =

∫
w(Γ)

dα =

∫
Γ

(dα)w(s1,s2) (ws1(s1, s2), ws2(s1, s2)) ds1ds2

=

∫
Γ

[(ws1 × ws2) · (∇× u)(w)] ds1ds2.

for every open subset Γ ⊂ D with ∂Γ = γ. By varying Γ and using the assumption that u
is parallel to ws1 ×ws2 , we learn that (∇× u) · u ≡ 0. More generally we have the following
consequence of Lemma A.3.
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Lemma A.4 Let α be a non-degenerate 1-form on M and set ξ = kerα. The following
statements are equivalents:

(i) The sub-bundle ξ is integrable.

(ii) For every vector fields X, Y ∈ ξ, we have dα(X, Y ) = 0.

(iii) α ∧ dα = 0.

Proof The equivalence of (i) and (ii) is an immediate consequence of (A.3). We now show
that (ii) implies (iii). Assume (ii). Take any vector fields X, Y in ξ and any vector field R
such that α(R) = 1. Define π(v) = v− α(v)R so that πx is the R(x)-projection onto ξx. We
have

(α ∧ dα)(v1, v2, v3) = α(v1)dα(v2, v3)− α(v2)dα(v1, v3) + α(v3)dα(v1, v2)

= α(v1)
[
α(v2)dα(R, π(v3)) + α(v2)dα(π(v2), R)

]
− α(v2)

[
α(v1)dα(R, π(v3)) + α(v3)dα(π(v1), R)

]
+ α(v3)

[
α(v1)dα(R, π(v2)) + α(v2)dα(π(v1), R)

]
= 0,

which means that α ∧ dα = 0.
Conversely, if (iii) is true and X, Y are any two vector fields in ξ, then

0 = (α ∧ dα)(R,X, Y ) = α(R)dα(X, Y )− α(X)dα(R, Y ) + α(Y )dα(R,X) = dα(X, Y ),

as desired. □

B Sobolev Inequality

It is well-known that H1/2 is a subset of the space of functions of bounded mean oscillation
(BMO). In particular H1/2 ⊂ Lp for all p ≥ 2. We will first provide an elementary proof for
this when p < 3.

Lemma B.1 For every p ∈ [2, 3), there exists a constant c0 = c0(p) such that(∫ 1

0

|x(t)|p dt
)1/p

≤ c0(p)∥x∥.
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Proof We identify R2n with Cn and write −i for J̄ . Hence x(t) =
∑

k e
2πktJ̄xk can be

rewritten as
∑

k e
−2πktixk with xk ∈ Cn. Since it suffices to establish the inequality for each

component, we may assume without loss of generality that n = 1.
We now find an expression of ∥x∥ that involves the function x(·) directly and does not

involve its Fourier coefficients. We claim

(B.1)

∫ 2π

0

∫ 2π

0

|x(eiθ)− x(eiφ)|2

|eiθ − eiφ|2
dθdφ = 4π2

∑
k

|k||xk|2.

This follows from a direct calculation; the left-hand side equals∫ 2π

0

∫ 2π

0

|eiθ − eiφ|−2

∣∣∣∣∣∑
k

xke
−ikθ −

∑
k

xke
−ikφ

∣∣∣∣∣
2

dθdφ

=

∫ 2π

0

∫ 2π

0

|1− eiτ |−2

∣∣∣∣∣∑
k

xk(1− e−ikτ )e−ikθ

∣∣∣∣∣
2

dθdτ

= 2π

∫ 2π

0

|1− eiτ |−2
∑
k

|xk|2|1− e−ikτ |2dτ = (2π)2
∑
k

|k||xk|2,

because ∫ 2π

0

|1− e−ikτ |2

|1− eiτ |2
dτ =

∫ 2π

0

(e−i(k−1)τ + · · ·+ 1)(ei(k−1)τ + · · ·+ 1)dτ = 2π.

Let us write Λ(x) for the left-hand side of (B.1). To simplify the notation write y(θ) =
x(eiθ). We have that for constants c1 and c2,

(B.2)

∫ 2π

0

∫ 2π

0

|y(θ)− y(φ)|211(|θ − φ| < l−1)dθdφ ≤ c1l
−2Λ(x) = c2l

−2∥x∥2.

Given l ≥ 1, define zl(t) = l
∫ l−1

0
x(t+ α) dα. By (B.2),∫ 1

0

|x(t)− zl(t)|2dt =
∫ 1

0

∣∣∣∣∣l
∫ l−1

0

(x(t)− x(t+ α)) dα

∣∣∣∣∣
2

dt

≤ l

∫ 1

0

∫ l−1

0

|x(t)− x(t+ α)|2 dtdα

≤ c2l
−1∥x∥2.

From this we deduce that for every l ≥ 1,

x = zl + wl
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with
∥wl∥20 ≤ c2l

−1∥x∥2, ∥zl∥L∞ ≤ l∥x∥,

because

|zl(t)| ≤ l

∫ 1

0

|x(t)| dt ≤ l∥x∥0.

Hence we apply Chebyshev’s inequality to assert

|{t : |x(t)| > 2l∥x∥}| ≤ |{t : |wl(t)| > l∥x∥}| ≤ ∥wl∥20
l2∥x∥2

≤ c2l
−3,

whenever l ≥ 1. On the other hand∫ 1

0

|x(t)|p dt ≤ 1 +

∫ ∞

0

plp−1|{x > l}|dl

≤ 1 + c3∥x∥3
∫ ∞

1

plp−1l−3dl

= 1 + c4(p)∥x∥3

with c4(p) <∞ whenever p < 3. Finally, we replace x with λx, λ > 0 to deduce

∥x∥pLp ≤ λ−p + c4(p)λ
3−p∥x∥3.

Minimizing the right-hand side over λ > 0 yields the desired inequality. □

We define the BMO norm and seminorm [·]1/2 as follow,

∥y∥2∗ = sup
ε>0

sup
t

∫ 1

0

∫ 1

0

|y(t+ εθ)− y(t+ ετ)|2 dθdτ,

∥y∥2∗∗ = sup
ε>0

sup
t

∫ 1

0

∫ 1

0

|y(t+ εθ)− yε(t)|2 dθ,

[y]21/2 =

∫ 1

0

∫ 1

0

|y(t)− y(s)|2

|t− s|2
dsdt′

where

yε(t) =

∫ 1

0

y(t+ εθ) dθ.

Proposition B.1 We have

(B.3) ∥y∥∗∗ ≤ ∥y∥∗ ≤ [y]1/2.
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Proof We simply have,∫ 1

0

∫ 1

0

|y(t+ εθ)− y(t+ ετ)|2 dθdτ = ε−2

∫ t+ε

t

∫ t+ε

t

|y(θ)− y(τ)|2 dθdτ

≤
∫ t+ε

t

∫ t+ε

t

|y(θ)− y(τ)|2

|θ − τ |2
dθdτ

≤ [y]21/2,

as desired. □
By a celebrated inequality of John and Nirenburg, we can bound the Lp norm of a function

by its BMO norm.

C Degree Theory

We first review the classical Brouwer degree theory. Consider triplets (f, U, y) with U ⊆ Rd

open and bounded, f : Ū → Rd continuous and y /∈ f(∂U). We now would like to assign
an integer deg(f, U, y) to (f, U, y) that, in some sense, counts the solutions to the equation
f(x) = y, x ∈ U , with a sign. This degree satisfies the following properties:

(i) If V ⊆ U and f−1({y}) ⊆ V , then deg(f, V, y) = deg(f, U, y).

(ii) For a constant a, deg(f + a, U, y + a) = deg(f, U, y).

(iii) If U ∩V = ∅ and y /∈ f(∂U)∪f(∂V ), then deg(f, U ∪V, y) = deg(f, U, y)+deg(f, V, y).

(iv) If f : Ū × [0, 1] → Rd is continuous with y /∈ f(∂U, t) for every t ∈ [0, 1], then

deg(f(·, 1), U, y) = deg(f(·, 0), U, y).

(v) If deg(f, U, y) ̸= 0, then f(x) = y has a solution in U .

(vi) deg(id, B, 0) = 1 where B = {x : |x| < 1}.

It turns out that the above properties determine “deg” uniquely. Indeed one can show
that for any triplet as above, we can find (g, U, y) with g smooth and f and g homotopic.
As for g ∈ C1, deg is defined by

deg(g, U, y) =
∑

x∈f−1{y}

sgn(det g′(x)).

In the same fashion, we can define the degree of a continuous map between manifolds.
Given two compact manifolds M and N , and a C1 map f : N →M , we say x ∈ N is regular
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if dfx is invertible. We say x ∈M is a regular value if f−1{x} consists of regular points. By
inverse mapping theorem, it is not hard to show that if x is a regular value, then f−1{x} is
finite. For such a value we may define the degree by

(C.1) degx(f) =
∑

y∈f−1{x}

ϵy,

where ϵy = ±1 according to whether dfx preserves or reverses orientation. In the Euclidean
case ϵy = sgn det Dxf . The degree of a continuous f : N → M defined to be the degree of
a C1 function g : N → M that is sufficiently close to f . As we will see in Lemma C.1, this
is well-defined.

Lemma C.1 (i) If f : N → M is a C1 function and Ω is a volume form with Ω > 0,∫
M
Ω = 1, then for every regular value x ∈M ,

degx f =

∫
N

f ∗Ω.

(ii) The degree is invariant under homotopies consisting of C1-maps.

(iii) Any two C1-maps f, g : N → M that are sufficiently C0-close are homotopic via C1-
maps.

(iv) Let X be an orientable manifold with ∂X = N and let F : X → M be a continuous
map. Then the degree of f = F |N is zero.

Proof (i) Let x be a regular value and assume f−1{x} = {x1, . . . , xk}. Find an open
neighborhood V of x such that f−1(V ) = U1 ∪ · · · ∪ Uk with U1, . . . , Uk, open and disjoint,
xi ∈ Ui for i = 1, . . . , k, and f |Ui

: Ui → V a diffeomorphism for every i. We now take an
n-form α with support in V such that

∫
V
α = 1. By Lemma A.1, we may find an (n−1)-form

β such that Ω = α + dβ. We now have∫
N

f ∗Ω =

∫
N

f ∗α +

∫
N

df ∗β =

∫
N

f ∗α

=
k∑
i=1

∫
Ui

f ∗α =
k∑
i=1

ϵxi .

(ii) Clearly degree is C1-continuous and locally constant.

(iii) Put a Riemannian metric onM . Given x ∈ N , we may find a geodesic curve connecting
f(x) to g(x). We now define ψ(t, x) = γ(t; f(x), g(x)) where γ(t; a, b) is defined to be a point
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on the geodesic connecting a to b with γ(0; a, b) = a, γ(1; a, b) = b. This can be done
smoothly for a, b sufficiently close.

(iv) Let Ω be a volume form on M with
∫
M
Ω = 1, Ω > 0. We then have

deg(f) =

∫
N

f∗Ω =

∫
∂X

f∗Ω =

∫
X

d(F∗Ω) =

∫
X

F∗dΩ = 0.

□
The Leray–Schander Theory allows us to have a similar notion of degree for functions of

the form f = I + L : Ū → E with E a Banach space, U a bounded open subset of E , and L
a compact operator. Again we wish to define deg(f, U, y) provided that y /∈ f(∂U). To do
so, first we find a sequence Lm : Ū → E such that the range of Lm, denoted by Lm(Ū), is a
subset of finite dimensional space Em, and

lim
m→∞

sup
x∈Ū

∥Lm(x)− L(x)∥ = 0.

We then set

(C.2) deg(f, U, y) = deg(fm, Em ∩ U, y),

for large m, where fm = I + Lm : Em ∩ Ū → Em. For this to work, we need to check
that y /∈ fm(∂U) for sufficiently large m. By Exercise C(ii), the set f(∂U) is closed. Since
x /∈ f(∂U), we have dist.(x, f(∂U)) = δ > 0. Then we find m0 such that if m > m0, then
dist.(x, fm(∂U)) ≥ δ/2. Hence the right-hand side of (A.2) is well-defined by Lemma C.2
below.

Lemma C.2 Let U be an open bounded subset of Rn = Rn1⊕Rn2. Consider f(x) = x+L(x)
with L : Ū → Rn1, f : Ū → Rn. If y /∈ f(∂U) and y ∈ Rn1, then

deg(f, U, y) = deg(f |U1 , U1, y)

where U1 = U ∩ Rn1.

Proof We may assume f ∈ C1(U) and y = 0. Let us take two continuous functions φ1, φ2

with φi : Rni → R,
∫
φidyi = 1, for i = 1, 2, and both φ1, φ2 have support near 0. Set

φ(y1, y2) = φ1(y1)φ2(y2) and ω = φ(y1, y2)dy1dy2 is a volume form of total volume 1. We
then have

deg(f, U, y) =

∫
U

f ∗ω,

by Lemma A.1. But det(In +∇L) = det
(
In1 +

∂L
∂x1

)
. As a result,

deg(f, U, y) =

∫
φ1(x1 + L(x))φ2(x2) det

(
In1 +

∂L

∂x1

)
dx1dx2.
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We may send φ2 to δ0 to yield

deg(f, U, y) =

∫
φ1(x1 + L(x)) det

(
In1 +

∂L

∂x1

)
dx1

= deg(f |U1 , U1, 0).

□

Exercise C Let E be a Banach space and K : Ω → E be a compact operator with Ω a
bounded closed subset of X.

� (i) Show that K is a uniform limit of finite dimensional transformations. Hint: Cover

the compact set K(Ω) by finitely many open balls, and use a partition of unity.

� (ii) Show that I +K maps closed sets to closed sets.
□

D Cauchy and Beurling Transforms

A classical way of solving the Laplace and Poisson equation in an bounded open subset
of Rk with regular boundary is by first finding its Green’s function. That is a function
G : Ū × Ū → R, such that {

∆xG(x, y) = δy(dx), x ∈ U,

G(x, y) = 0, x ∈ ∂U.

Once such G is found, we then use Green’s identity to derive the following identity:

(D.1) u(x) =

∫
U

∆u(y) G(x, y) dy +

∫
∂U

u(y)
∂G

∂n
(x, y) dy,

where ∂G/∂n denotes the normal derivative of G. Once the Green’s function G and the
Poisson’s function ∂G/∂n are known, then we can use (D.1) to solve the PDE{

∆u(x) = f(x), x ∈ U,

u(x) = g(x), x ∈ ∂U.

for the given f and g. In C an analogous representation formula can be derived that in turn
can be used to solve the celebrated d-bar and Beltrami equations.
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Proposition D.1 (Cauchy-Pompeiu Formula) Let U ⊂ C a bounded domain with a bound-
ary that is positively oriented and parametrized by a curve γ. Then, for every C1 function
f : C → C,

f(z) =
1

2πi

∮
γ

f(ζ)

ζ − z
dζ +

1

2πi

∫∫
U

fζ̄(ζ)

ζ − z
dζ ∧ dζ̄,(D.2)

f(z) = − 1

2πi

∮
γ

f(ζ)

ζ̄ − z̄
dζ̄ +

1

2πi

∫∫
U

fζ(ζ)

ζ̄ − z̄
dζ ∧ dζ̄.

ProofWe only derive the first formula in (D.2) because the second identity can be established
by a verbatim argument. Write ζ = s+ it and pick any C1 function g = u+ iv. Note

i

2
(dζ ∧ dζ̄) = ds ∧ dt.

Using the Green’s formula,∮
γ

g(ζ)dζ =

∮
γ

(u ds− v dt) + i(u dt+ v ds) =

∫∫
U

[
− (ut + vs) + i(us − vt)

]
dsdt

= i

∫∫
U

[
(us − vt) + i(ut + vs)

]
dsdt = i

∫∫
U

(gs + igt) dsdt

= 2i

∫∫
U

gζ̄ dsdt.(D.3)

A more compact version of the above calculation is∮
γ

g(ζ)dζ =

∫∫
U

dg ∧ dζ =
∫∫

U

gζ̄ dζ̄ ∧ dζ = 2i

∫∫
U

gζ̄ dsdt.

We now take z ∈ U , choose ε > 0 so small that Bε(z) ⊂ U , set g(ζ) = f(ζ)/(ζ − z) and
replace U with U/Bε(z) in (D.3) to deduce

1

2πi

∮
|ζ−z|=ε

f(ζ)

ζ − z
dζ =

1

2πi

∮
γ

f(ζ)

ζ − z
dζ − 1

π

∫∫
U

fζ̄(ζ)

ζ − z
dsdt.

It remains to show that the right-hand side converges to f(z) as ε → 0. For this it suffices
to check

lim
ε→0

1

2πi

∮
|ζ−z|=ε

f(ζ)− f(z)

ζ − z
dζ = 0.

This is an immediate consequence of the Lipschitzness of f that implies the boundedness of
the integrand. □
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Given a C1 function h : Ū → C, we wish to find w : Ū → C such that wz̄ = h(z) in U .
Indeed if w is a solution, then by (D.2), w = C(h) + Γ(h), where the Cauchy operators Γ
and C are defined by

Γ(g) =
1

2πi

∫
γ

g(ζ)

ζ − z
dζ, C(h) = − 1

π

∫∫
U

h(ζ)

ζ − z
dsdt.

This means that a solution can be expressed as w = C(h) + q for a holomorphic function q.
Put this differently, what we learn from (D.2) is

(D.4)
∂

∂z̄
C(h) = h,

∂

∂z
C̄(h) = h,

where

C̄(h) = − 1

π

∫∫
U

h(ζ)

ζ̄ − z̄
dsdt.

With the aid of the Cauchy operator/transform C, we can also solve the Beltrami’s
equation

(D.5) φz̄ = µφz.

This is an elliptic PDE only if |µ(z)| < 1 for all z. We may set h = φz̄ and express φ as
φ = C(h) + q, for a holomorphic function q. Observe that if φ satisfies (D.5), then

h = φz̄ = µφz = µB(h) + µq′,

where B is the Beurling’s operator:

B(h) = ∂

∂z
C(h).

This means that the function h satisfies

(D.6) (I − µB)h = µq′.

In other words, for every holomorphic q, we first solve (D.6) for h and using this h = hq,
we have a solution for (D.5) in the form φ = q + C(hq). Note that q = 0 yields the trivial
solution φ = 0. For a nontrivial example, search for a solution of the form var = C(h) + 1,
where h solves

(I − µB)h = µ.

This or more generally (D.6) can be solve if ∥µB∥ < 1, for a suitable operator norm. As we
will see below, if we take the operator norm with respect to the L2 space, then ∥B∥ = 1 and
if supz ∥µ(z)∥ < 1, then we can invert I − µB and solve (D.6) in L2.
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The operator B is the complex-variable analog of the Hilbert Transform; from (D.4) we
can readily deduce

B(fz̄) = fz +Q,

for some holomorphic Q. It turns out that if we assume U = C and that f and its first
derivative vanish at infinity, then Q = 0 (because a bounded entire function is constant),
and we simply have B(fz̄) = fz. If we write

F(h)(η) = ĥ(η) =

∫
exp

(
2πiRe(zη̄)

)
h(z) dz ==

∫
exp

(
πi(zη̄ + z̄η)

)
h(z) dz,

for the Fourier Transform of h, then we have

F(fz)(η) = −iη̄
2
F(f)(η), F(fz̄)(η) = −iη

2
F(f)(η).

Hence

F(B(h)) = η̄

η
F(h)(η).

From this and Plancherel’s equation we deduce that

(D.7) ∥B(h)∥L2 = ∥h∥L2 .

In fact B is a singular operator that may be defined by

B(h)(z) = 1

π
PV

∫
h(ζ)

(ζ − z)2
dsdt = lim

ε→0

1

π

∫
|ζ−z|>ε

h(ζ)

(ζ − z)2
dsdt,

and is also bound on Lp for p ∈ (1,∞) by Calderon-Zygmund Theory.

Theorem D.1 Define the operators C and B on smooth functions by

(D.8) C(h)(z) = − 1

π

∫
D

h(ζ)

ζ − z
dsdt, B(h)(z) = 1

π
PV

∫
D

h(ζ)

(ζ − z)2
dsdt.

Then for every p ∈ (1,∞), there exists constants C(p) and C ′(p) such that limC ′(p) = 1 as
p→ 2, and

∥C(h)∥W 1,p ≤ C(p)∥h∥Lp , ∥B(h)∥Lp ≤ C ′(p)∥h∥Lp .

Writing C : Lp(C) → W 1,p(C) and B : Lp(C) → Lp(C) for their extensions, we have

C(h)z̄ = h, C(h)z = B(h),

weakly.

202



Remark D.1(i) Assuming that for some p0 > 2, there exists a constant c0 such that

∥B(h)∥Lp0 ≤ c0∥h∥Lp0 ,

for every h, then we can use (D.7) and Riesz-Thorin Interpolation Theorem to assert that if

1

pθ
=
θ

2
+

1− θ

p0
,

then
∥B(h)∥Lpθ ≤ c1−θ0 ∥h∥Lpθ .

This allows us to choose C ′(pθ) = c1−θ0 , for θ ∈ [0, 1], which enjoys the property

lim
p→2

C ′(p) = 1.

(ii) Clearly there are many solutions to (D.5). In fact if µ = 0, then (D.5) simply requires
that φ to be holomorphic and if we also specify φ(D), then we still have many solutions by
the Riemann Mapping Theorem. Even if µ is nonzero, we can still require φ(D) to be a
simply connected domain U ̸= C and solve (D.5) provided that ∥µ∥L∞ < 1. Indeed if φ is
any solution to (D.5) and φ(D) = V , then by the Riemann Mapping Theorem, we can find a
holomorphic function f : V → C such that f(V ) = U . Now φ̃ = f ◦ φ does the job because

φ̃z̄ = (f ′ ◦ φ)φz̄, φ̃z = (f ′ ◦ φ)φz.

This may be seen from

dφ̃ = fφ dφ+ fφ̄ dφ̄ = (f ′ ◦ φ) dφ = (f ′ ◦ φ)(φz dz + φz̄ dz̄).

(iii) Observe that if q,Q : D → C are two holomorphic functions with Q ̸= 0 anywhere
inside D, then f = QC(g/Q) + q would solve the equation fz̄ = g. □

After solving the Beltami Equation, we may wonder whether the solution φ of (D.5) is
a homeomorphism. One strategy for verifying the invertibility of φ is to derive an equation
for its inverse, verify its solvability, and show that the solution is indeed the inverse of φ. As
we have seen in Remark 10.1, the inverse w solves

(D.9) wz̄ = m(w)wz,

with |m| < 1.

Theorem D.2 Assume that ∥m∥L∞ = c0 < 1. Then there exists p = p(c0) > 2 and a
function w ∈ W 1,p that solves the equation (D.9) weakly.

203



Proof The method we described above would not work and need to be modified. Indeed if
we set v = wz̄, we certainly have w = C(v) + q for a holomorphic q. On the other hand

(D.10) v = m(w)B̄(v) +m(w)q′,

which cannot be solved as before because m depends on the unknown. To get around this,
observe that for given w, the operator I−m(w)B̄ is invertible because ∥m∥L∞ = c0 < 1. Let
us define

D(w) =
(
I −m(w)B̄

)−1(
m(w)q′

)
Then we use (D.10) to rewrite (D.9) as

(D.11) w =
(
C ◦ D

)
(w) + q := E(w).

Hence w is a fixed point of the operator E . To show that E has a fixed point, we first decide
on its domain of definition. Set

ΓL =
{
w : ∥w∥L∞ ≤ L

}
.

We wish to show that E : ΓL → ΓL and it has a fixed point. As a preparation, we first bound
the nonlinear D. Let C ′(p) be as in Theorem D.1. Choose p > 2 such that c0C

′(p) < 1. By
Theorem D.1, ∥∥∥(I −m(w)B̄

)−1
h
∥∥∥
Lp

≤
(
1− c0C

′(p)
)−1∥h∥Lp .

This in turn implies,

∥D(w)∥Lp ≤ c0
(
1− c0C

′(p)
)−1∥q′∥Lp := c1(p).

By applying Theorem D.1 again we learn

∥C ◦ D(w)∥W 1,p ≤ C(p)c1.

Since p > 2, we may apply Morrey Inequality to deduce

(D.12) ∥C ◦ D(w)∥C1−2/p ≤ c2(p)∥C ◦ D(w)∥W 1,p ≤ C(p)c1(p) = c3(p),

where Cα denotes the space of α-Hölder continuous functions. In particular

∥C ◦ D(w)∥L∞ ≤ c3(p).

Setting L = c3(p) + ∥q′∥L∞ , we deduce that E(Lp) ⊆ ΓL. In particular, E maps ΓL into
itself. On the other hand, the bound (D.12) implies that the image of ΓL under E is in fact
compact. This allows us to use the Schauder Fixed Point Theorem to deduce that E has a
fixed point. □

204



Remark D.1 Given h : D → C, consider

v(z) = (Ch)(z)− (Ch)(1/z)− 2iIm
(
(C(h)(1)

)
.

Note

(Ch)(1/z) = z

π

∫
D

h̄(ζ)

1− zζ̄
dsdt,

is holomorphic inside D. Hence
vz̄ = h,

in D. On the other hand, v(1) = 0, and

z ∈ ∂D =⇒ v(z) ∈ iR.

□

Remark D.2 By chain rule,

(h ◦ τ)z = (hz ◦ τ)kz + (hz̄ ◦ τ)(τ̄)z, (h ◦ τ)z̄ = (hz ◦ τ)τz̄ + (hz̄ ◦ τ)(τ̄)z̄.

As an example, when τ(z) = z−1,

(h ◦ τ)z̄ = −(z̄)−2(hz̄ ◦ τ).

Recall that if

h(z) := C(g)(z) = − 1

π

∫
C

g(ζ)

ζ − z
dsdt, ζ = s+ it,

we have ∂z̄h = g. Hence,
∂z̄(C(g) ◦ τ)(z) = −(z̄)−2 (g ◦ τ).

□

We continue with some local regularity estimates. Consider the multi-dimensional Bel-
trami equation

(D.13) uz̄(z) = µ(z)uz(z) + f(z),

where u, f : D → Cn, and µ : D → Cn×n satisfies

(D.14) sup
z∈D

∥µ(z)∥ = m < 1.

We assume that u ∈ W k,p, and we wish to obtain local estimates for u in terms of µ and f .
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Theorem D.3 assume that u satisfies (D.13), and (D.14) holds. Then for every r ∈ (0, 1),
and any p ≥ 2 such that C ′(p)m < 1, there exists a constant C ′′ = C ′′(r, p) such that

(D.15) ∥Du∥Lp(B) ≤ C ′′(∥u∥L1(B) + ∥f∥Lp(B)

)
,

where B = B0(r). More generally, for k ≥ 1, there exists a constant C ′′
k such that

(D.16) ∥Dku∥Lp(B) ≤ C ′′
k

(
∥u∥Lp(B) + ∥f∥Wk−1,p(B)∥µ∥Wk−1,∞(B)

)
.

Proposition D.2 For every r ∈ (0, 1), there exists a constant Ck(r) such that for every
holomorphic q : D → C,

(D.17) sup
z∈Br(0)

|q(k)(z)| ≤ Ck(r)∥q∥L1(D).

Proof Since q is harmonic, we have

q(z) =
1

πr20

∫
Br0 (z)

q(ζ) dζ,

for every z ∈ Br(0), and r0 = 1 − r, so that Br0(z) ⊂ D. From this it is clear that (D.15)
holds for k = 0. On the other hand, by Cauchy’s formula,

q(k)(z) =
(−1)kk!

2πi

∫
∂Br1 (0)

dζ

(ζ − z)k+1
,

where r1 ∈ (r, 1). From this, we learn that there exists a constant ck = ck(r1), such that

sup
z∈Br(0)

|q(k)(z)| ≤ ck∥q∥L∞(Br1 (0))
≤ ckC0(r1)∥q∥L1(D),

as desired. □

Proof of Theorem D.3 As before, if h = uz̄, then u = Ch+ q, for a holomorphic function
q. Let B = B(0, r0), with r0 < 1. Observe that since Ch = h ∗ ζ, for a kernel ζ ∈ L1(B), we
can readily show

(D.18) ∥Ch∥Lp(B) ≤ ∥ζ∥p−1
L1(B)∥h∥Lp(B),

for p ≥ 1. As a consequence

(D.19) ∥q∥Lp(B) ≤ ∥u∥Lp(B) + c1∥h∥Lp(B),
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for a constant c1 = c1(p). From this and (D.17) we learn

(D.20) ∥q(k)∥L∞(B) ≤ c(k)
(
∥u∥L1(B) + c1∥h∥L1(B)

)
,

for a constant c(k). This and Theorem D1 yield

∥uz∥Lp(B) =∥Bh+ q′∥Lp(B) ≤ ∥Bh∥Lp(B) + ∥q′∥Lp(B)

≤c2
(
∥h∥Lp(B) + ∥u∥L1(B)

)
,(D.21)

From this and uz̄ = h we learn,

(D.22) ∥Du∥Lp(B) ≤ c3
(
∥h∥Lp(B) + ∥u∥L1(B)

)
.

On the other hand, (D.13) can be written as

h =
(
I − µB

)−1
f.

We use Theorem D1 to assert,

∥h∥Lp(B) ≤
(
1− ∥µB∥Lp(B)

)−1∥f∥Lp(B) ≤
(
1− C ′(p)m

)−1∥f∥Lp(B),

for any p ≥ 2 such that
C ′(p)m < 1.

This and (D.22) yield (D.15)
If ∂ represents a partial differentiation operator, then applying ∂ to both sides of (D.13)

yields

(D.23) wz̄ = µwz + g,

where w = ∂u, and g = ∂f + (∂µ)u. Applying (D.20) to w yields

∥Dw∥Lp(B) ≤ c3
(
∥g∥Lp(B) + ∥w∥L1(B)

≤ c4
(
∥Df∥Lp(B) + ∥Du∥L1(B) + ∥u∥Lp(B) + ∥Dµ∥L∞(B)

)
.

This yields (D.16) for k = 2. Continuing inductively, we can readily establish (D.16). □

We can also deduce Theorem D.3 directly from Calderon-Zygmund Inequality using
Laplace operator as opposed to the Beurling operator. To explain this, use write z = s+ it,
and consider

(D.24) us(z) + J(z)ut(z) = g(z),

or equivalently

(D.25) ut(z)− J(z)us(z) = −(Jg)(z),

where u : D → R2n.
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Theorem D.4 Given open balls B′ and B with B̄′ ⊂ B, and p > 2, there exists a constant
C = C(p,B′, B) such that

(D.26) ∥u∥W 1,p(B) ≤ C∥J∥W 1,p(D)
(
∥g∥Lp(D) + ∥u∥Lp(D)

)
,

Proof (step 1) Differentiate (D.24) and (D.25) with respect to s and t respectively:

uss + (Jut)s = gs, utt − (Jus)t = −(Jg)t.

As a result,

∆u = gs − (Jut)s + (Jus)t − (Jg)t = gs + (Jtu)s − (Jsu)t − (Jg)t = div Y,

where Y = (g + Jtu,−Jsu− Jg). Choose w such that ∆w = Y , and

∆ div w = div Y, ∆(u− div w) = 0.

Given a closed ball B′ in the interior of B, we apply Calderon-Zygmund Theorem to assert
that for every r ∈ (1,∞),

(D.27) ∥w∥W 2,r(B′) ≤ c1∥Y ∥Lr(D).

For this we simply extend Y to R2n by setting Y = 0 outside D, and choose w = Y ∗ K,
where K is the kernel of ∆−1 (which is a constant multiple of |x|2−2n, when n > 1. Also

∥u− div w∥Lr(B′) ≤∥u∥Lr(B) + ∥ div w∥Lr(B) ≤ ∥u∥Lr(B) + c2∥ w∥W 1,r(B)

≤∥u∥Lr(B) + c3∥ Y ∥Lr(B).

Note that if ∆h = 0, then by mean-value property

∇h(x) =|Bθ(0)|−1

∫
Bθ(0)

∇h(x+ y) dy = |Bθ(0)|−1

∫
∂Bθ(0)

h(x+ y)
y

|y|
dy

=θ−1|B1(0)|−1

∫
∂B1(0)

h(x+ θy)
y

|y|
dy.

Hence

∇h(x) = ρ−1

∫ θ0+ρ

θ0

|Br(0)|−1

∫
∂Br(0)

h(x+ y)
y

|y|
dy dθ.

Using this, it is not hard to deduce

∥h∥W 1,r(B′) ≤ c4∥h∥Lr(B).
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Hence, for a given closed ball B′ in the interior of B,

∥u− div w∥W 1,r(B′) ≤ c5
(
∥u∥Lr(B) + ∥Y ∥Lr(B)

)
,

by Proposition D.4. From this and (D.27) we deduce

(D.28) ∥u∥W 1,r(B′) ≤ c5
(
∥u∥Lr(B) + ∥Y ∥Lr(B)

)
.

(Step 2) We next choose α, β > 1 such that α−1 + β−1 = 1. Observe that by Hölder’s
inequality, [∫

(FG)r dz

]1/r
≤
[∫

F rα dz

]1/(rα) [∫
Grβ dz

]1/(rβ)
.

Hence

(D.29) ∥Y ∥Lr(B) ≤ 2∥J∥L∞(B)∥ g∥Lr(B) + 2∥J∥W 1,rα(B)∥u∥Lrβ(B).

We choose (α, β) so that αr = p. Note that p > 2 implies that W 1,p dominates L∞-norm.
Also, if we write q for rβ, then

r−1 = p−1 + q−1,

and by (D.30) and (D.26),

(D.30) ∥u∥W 1,r(B′) ≤ c6∥J∥W 1,p(B)

(
∥g∥Lp(B) + ∥u∥Lq(B)

)
,

because r ≤ p. On the other hand, by Sobolev’s inequality,

∥u∥LQ(B′′) ≤ c7∥u∥W 1,r(B′),

where

Q−1 =

{
r−1 − 2−1, if r < 2,

0, if r ≥ 2.

In particular,

(D.31) ∥u∥LQ(B′′) ≤ c8∥J∥W 1,p(B)

(
∥g∥Lp(B) + ∥u∥Lq(B)

)
.

Note that the map q 7→ Q = Q(q), satisfies

Q−1 = q−1 +
(
p−1 − 2−1

)
,

so long as Q > 0. Since p > 2, or p−1 − 2−1 < 0, for each q, there exists ℓ ∈ N such that
Qℓ(q) = ∞ (or 1/Qℓ(q) = 0). In other words, we starts from (D.30) for the initial choice
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q = p, r = p/2, which yields Q(p)−1 =
(
2p−1 − 2−1

)+
. Then apply (??) for the choice Q(p).

We continue this till Q = ∞, which yields r = p. □

Fix a matrix J0 ∈ Rd×d, such that J2
0 = −I. For z = (s, t), we write

∂̄ = ∂z̄ = ∂s + J0∂t, ∂ = ∂z = ∂s − J0∂t.

Given a bounded open set U ⊂ R2 with C1 boundary, we write H1(U) = W 1,2(U) for the
Sobolev space of functions u : R2 → R2d with the norm ∥u∥L2(U) + ∥∇u∥L2(U). If C∞

0 (U)
denotes the set of smooth functions with compact support strictly inside U , then the closure
of C∞

0 (U) with respect toH1(U) is denoted by H1
0 (U). The space H

1
0 (U) represents the space

of u ∈ H1(U), which vanishes on ∂U . By the classical Poincare-Sobolev type inequality we
can show that there exists a constant c0 = c0(U) such that ∥u∥L2(U) ≤ c0∥∇u∥L2(U), for every
u ∈ H1

0 (U). Hence, the space H1
0 (U) can be equipped with an inner product

⟨u, v⟩ =
∫
U

∇u · ∇v dx,

which yields a norm that is equivalent to H1(U)-norm. The dual of H1
0 (U) is denoted by

H−1(U). The Laplace problem −∆u = f in U , with the boundary condition u = 0 on ∂U
can be solved for f ∈ H−1(U). As a weak formulation, we require that for every v ∈ H1

0 (U),

(D.32) ⟨u, v⟩ = ⟨f, v⟩,

where ⟨·, ·⟩on the write hand side represents the pairing betweenH1
0 (U), andH

−1(U). Indeed
the equation (D.32) has a unique solution by Riesz Representation Theorem. In other words

−∆ : H1
0 (U) → H−1(U),

is an isomorphism. We next examine the dbar problem

(D.33) ∂̄u = h,

in U , with u = 0 on ∂U . If we assume that h ∈ L2(U), then by applying −∂ to both sides
of (D.33) we deduce

−∆u = −∂h := f,

with f ∈ H−1(U). There exists a unique solution of this equation (or equivalently (D.33)
that is given by

u = ∆−1(∂h) =: ∂̄−1h,

which belongs to H1(U). This means that

∂̄−1 : L2(U) → H1
0 (U),
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is an isomorphism.
More generally, if r, r′ > 1 with

1

r
+

1

r′
= 1,

we write W−1,r′(U) for the dual of the Banach space W 1,r
0 .

Theorem D.5 The operator −∆ : W 1,p
0 → W−1,p′(U) is an isomorphism.

To prepare for the proof of Theorem D.5, we first define Campanato spaces. Let U ⊂ Rd

with a smooth boundary. Given λ > 0 and p ≥ 1, we set

∥u∥pCaλ,p(U)
= sup

x∈U
sup
r>0

r−λ
∫
U(x,r)

|u(y)− ux,r|p dy,

where U(x, r) = Br(x) ∩ U , and

ux,r = |U(x, r)|−1

∫
U(x,r)

u(y) dy.

We write Caλ,p(U) for the set of measurable maps u : U → R such that ∥u∥Caλ,p(U) <∞. We
can readily show that ∥·∥Caλ,p(U) is a semi-norm, and Caλ,p(U), modulo constants is a Banach
space. According to a theorem of Campanato, Cad+pα,p(U) is isomorphic to the Hölder space
Cα(U) for every α = 0. The space TCad,p is known as BMO (Bounded Mean Oscillation),
and is independent of p. The following generalization of Schauder estimate holds true:

Theorem D.6 For every λ ≥ d+2, there exists a constant C = C(U, λ) such that if u ∈ H1
0

satisfies −∇∆u = div f . Then

(D.34) ∥∇u∥Caλ,2(U) ≤ C∥f∥Caλ,2(U).

In particular, we have that if T (f) = ∇u, then

(D.35) ∥T (f)∥BMO(U) ≤ C∥f∥BMO(U) ≤ C∥f∥L∞(U).

Note that we also know

(D.36) ∥T (f)∥L2(U) ≤ ∥f∥L2(U).

According to Stampacchia’s intepolation theorem, we can interpolate and deduce that there
exists aconstant C(p) such that

(D.37) ∥T (f)∥Lp(U) ≤ C(p)∥f∥Lp(U).
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From this we can readily deduce Theorem D.5. Observe that if ∂̄u = f , then ∆u = ∂f .
Hence

∂̄−1 = ∂ ◦∆−1.

Hence
∥u∥W 1,p

0 (U) ≤ C(p)∥f∥Lp(U).

This implies that ∂̄ is an isomorphism between W 1,p
0 (U) and Lp(U), for every p ∈ [2,∞).

E Lusternik-Schnirelmann Theory

The purpose of the Lusternik-Schnirelmann (LS) Theory is finding a universal lower bound
for the number of the critical points of f :M → R. By “universal”, we mean a lower bound
that depends on M only.

Definition E1(i) Let M be a compact metric space. Its cuplength is defined by

cℓ(M) = min
{
k : ∃ contractible open sets U1, . . . , Uk with M = U1 ∪ · · · ∪ Uk

}
.

By a contractible U , we mean that the inclusion map j : U →M , is nullhomotopic.

(ii) For a closed smooth manifold M , we define

Cℓ(M) = min
{
k : ∃ closed forms α1, . . . , αk with degα1, . . . , degαk ≥ 1

and α1 ∧ · · · ∧ αk is exact
}

= max
{
k : ∃ closed forms β1, . . . , βk−1 with deg β1, . . . , deg βk−1 ≥ 1

and β1 ∧ · · · ∧ βk−1 is not exact
}
.

□

Proposition E.1 Let M be a closed smooth manifold. Then cℓ(M) = Cℓ(M).

Theorem E.1 LetM be a closed smooth manifold. Then for every C1 function H :M → R,

(E.1) ♯Crit(H) ≥ cℓ(M).

As the definitions of Cℓ(M) and cℓ(M) may suggest, there are two possible strategies to
tackle Theorem E.1: Using open covers or differential forms. We start with the former.

First Proof of Theorem E.1 Step 1. We wish to find a universal lower bound for the
number of the critical points of f : M → R. When M is a smooth manifold and f is C2,
the Minimax Principle of Theorem 7.3 suggests a way to achieve this: find a collection F of
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subsets ofM that is closed under the flow Φt, t > 0 of ∇f . (Here we are taking a Riemannian
metric g onM so that we can talk about ∇f). The only problem is that we do not want this
F to depend on f . This forces us to be more generous with sets inF . In fact we consider
collection that satisfy two properties:

(1) For every A ∈ F and every homeomorphism φ :M →M , we have that φ(A) ∈ F .

(2) For every A ∈ F , and B satisfying A ⊂ B, we have that B ∈ F .

We have two immediate consequences of (1) and (2).

� In view of Theorem 7.3, we have the following straightforward consequence of (1):
c(f,F), defined by

(E.2) c(f,F) = inf
A∈F

sup
x∈A

f(x),

is a critical value of f .

� For very continuous f :M → R,

(E.3) c(f,F) = inf
{
r : Mf (r) ∈ F

}
,

where Mf (r) = {x : f(x) ≤ r}.

To verify (E.3), call its right-hand side ĉ. Since supMf (r)
f ≤ r, we have c ≤ ĉ. For the

reverse inequality, pick a > c = c(f, F ) so that we can find A ∈ F with supA f < a. This
means that A ⊆Mf (a), and by (2), we have Mf (a) ∈ F . So, ĉ ≤ a, completing the proof of
(E.3).

We can readily construct examples of collections F for which (1) and (2) are true.
However, for proving Theorem E.1, we need to find collections Fk ⊂ Fk−1 ⊂ · · · ⊂ F1, for
which

(E.4) c1(f) := c(f,F1) < · · · < ck(f) := c(f,Fk).

We have an obvious candidates for F1 and Fk, namely

F1 =
{
A : A ⊆M

}
, Fk =

{
M
}
,

so that c1(f) = min f and ck(f) = max f . To develop an intuition for these collections, let
us set

i(A) = max
{
j : A ∈ Fj

}
,

so that instead of finding F1, . . . ,Fk, we search for a function i : 2M → N such that
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(1) A ⊆ B implies i(A) ≤ i(B),

(2) i(φ(A)) = i(A) for every homeomorphism φ.

We think of i(·) as a way of ranking subsets of M to measure their topological complexities.
Clearly i(M) = k.

Step 2. In addition to the conditions (1) and (2) of Step 1, we make three more requirements
on i (or equivalently Fk) to guarantee that cj(f)s are distinct. Namely

(3) i(A) = 1 for A finite.

(4) If i(A) = j, then there exits open set U ⊇ A with i(U) = i(A).

(5) i(A ∪B) ≤ i(A) + i(B).

We now claim that if there exists i : 2M → N such that (1)-(5) are valid, then

(E.5) ♯Crit(f) ≥ i(M).

To prove this, it suffices to show

(E.6) ♯Crit(f) <∞ ⇒ c1(f) < · · · < ck(f),

or equivalently

(E.7) cj(f) = cj+1(f) for some j < k ⇒ ♯Crit(f) = ∞.

To see this, assume that to the contrary ♯Crit(f) <∞ and

{x : f(x) = c} ∩ Crit(f) = {x1, . . . , xℓ} =: A0,

where c = cj(f) = cj+1(f). Let U0 be an open neighborhood of A0 with i(A0) = i(U0) = 1.
We may choose U0 so that

U0 ∩ Crit(f) = A0.

Now if Φ is the time-1 map of −∇f , then there exists ε > 0 such that

Φ
(
Mf (c+ ε) \ U0

)
⊆Mf (c− ε),

because
(
Mf (c+ ε) \ U0

)
∩ Crit(f) = ∅. As a result,

i
(
Mf (cj+1 + ε)

)
= i
(
Mf (c+ ε)

)
≤ i
(
Mf (c+ ε) \ U0

)
+ i
(
U0

)
= i
(
Mf (c+ ε) \ U0

)
+ 1

= i
(
Mf (c+ ε) \ U0

)
+ 1 = i

(
Φ
(
Mf (c+ ε) \ U0

))
+ 1

≤ i
(
Mf (c− ε)

)
+ 1 = i

(
Mf (cj − ε)

)
+ 1 < j + 1,
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which is impossible. Hence ♯Crit(f) <∞ cannot be true and (E.6) is true.

Final Step. We now would like to construct a function i : 2X → N for which (1)-(5) are
valid. Indeed

i(A) = min
{
k : ∃ contractible open sets U1, . . . , Uk with A ⊆ U1 ∪ · · · ∪ Uk

}
,

does the job. This and (E.5) complete the proof of (E.1) because for this choice of i, we
have i(M) = cℓ(M). □

From the first proof of (E.1) we learned that there is an axiomatic way of relating the
topological complexity of the underlying manifoldM to Crit(f) via the function i : 2M → N,
satisfying the conditions (1)-(5). Though this can be avoided; the following direct (and
rather nonconstructive) argument has its own merits.

Second Proof of Theorem E.1 Let f :M → R be a C2 function and write Φt for the flow
of −∇f , where ∇ is defined with respect to a fixed Riemannian metric on M . To establish
(E.1), we may assume that Crit(f) = {x1, . . . , xℓ} is finite. Note

lim
t→±∞

Φt(a) =: x±∞(a) ∈ Crit(f)

always exits. Pick contractible open neighborhood Vi of xi and observe

M = ∪t≥0 ∪ℓi=1 Φt(Vi).

By the compactness of M , we may find T > 0 such that

M = ∪t∈[0,T ] ∪ℓi=1 Φt(Vi).

Hence M = U1 ∪ · · · ∪ Uℓ, where

Ui = ∪t∈[0,T ]Φt(Vi).

Since each Vi is contractible relative to M , each Ui is also contractible relative to M . As a
result, cℓ(M) ≤ ℓ, by the definition. We are done. □

We now develop a new way of finding critical values of a function f associated with
certain forms that is very much the reason behind the definition Cℓ(M). To prepare for this,
we review some basic facts about relative de Rham cohomology.

Let M be a manifold and assume that N is a submanifold of M . Let us write Ωr(M) for
the space of r-forms on M and set

Ωr(M,N) = Ωr(M)⊕ Ωr−1(N),
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for the space of relative r-forms. We define an exterior differentiation operator

d̂ = d̂r : Ωr(M,N) → Ωr+1(M,N),

by the formula d̂(α, θ) = (dα, j∗α − dθ), where j : N → M is the inclusion map (so that j∗

is the restriction map). Clearly d̂ ◦ d̂ = 0. We define the space of closed and exact forms by

Zr(M) = ker dr+1, Br(M) = dr
(
Ωr(M)

)
,

Zr(M,N) = ker d̂r+1, Br(M,N) = dr
(
Ωr(M,N)

)
.

The (relative) de Rham cohomology classes are defined by

Hr(M) = Zr(M)/Br(M), Hr(M,N) = Zr(M,N)/Br(M,N).

Similarly, we write

H∗(M) =
∞⊕
r=0

Hr(M), H∗(M,N) =
∞⊕
r=0

Hr(M,N).

Remark E.1 Note that if (α, θ) ∈ Zr(M,N), then α ∈ Zr(M), and j∗α = dθ. In other
word, a form α is closed relative to N , if α is closed and its restriction to N is exact. Take
a neighborhood U of N in M such that N is a retract of U . Hence there exists a continuous
map h : U → N with h(a) = a for a ∈ N . Now take a continuous ζ : M → [0, 1] such that
ζ↾N = 1, ζ↾M\N = 0, and set τ = ζ

(
h∗θ
)
. We have

(α, θ)− d̂(τ, 0) = (α− dτ, θ − j∗τ) = (α− dτ, 0) =: (α′, 0),

with j∗α′ = j∗α − dj∗τ = j∗α − θ = 0. Hence if α comes from a closed form relative to N ,
then we can modify this form by means of subtracting an exact form and obtain a closed
form for which its N -restriction is 0. □

We now develop some techniques that would eventually yield the inequality

(E.8) ♯Crit(f) ≥ Cℓ(M).

This and Proposition E.1 imply Theorem E.1. Recall Mf (a) = {x : f(x) ≤ a}.

Theorem E.2 Pick a, b ∈ R with a < b and let f :M → R be a C2 function.

(i) If f has no critical value in [a, b], then H∗(Mf (b),Mf (a)
)
= 0.

(ii) For every nonzero α ∈ H∗(Mf (b),Mf (a)
)
, define

(E.9) cLS(f, α) = inf
{
s ∈ [a, b] : j∗sα ̸= 0

}
,

where js :Mf (s) ↪→Mf (b) is the inclusion map. Then the value cLS(f, α) is critical for f .
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Theorem E.2 guarantees the existence of critical points but for (E.9) we need to figure
under what condition different forms lead to distinct critical points.

Theorem E.3 Let 0 ̸= α ∈ H∗(Mf (b),Mf (a)
)
and β ∈ H∗(Mf (b)

)
with deg β ≥ 1.

(i) We have cLS(f, α ∧ β) ≥ cLS(f, α).

(ii) If c := cLS(f, α ∧ β) = cLS(f, α), then

♯
{
x : f(x) = c, (df)x = 0

}
= ∞.

Proof of (E.9) Let f : M → R be a C2 function with ♯Crit(f) < ∞. Take closed forms
β1, . . . , βk−1 such that deg βj ≥ 1 for j ∈ {1, . . . , k− 1}, and β1 ∧ · · · ∧ βk−1 is not exact. Set
cj = cLS(f, ηj), where η

′
js are defined by

η1 = 1, η2 = η1 ∧ β1 = β1, . . . , ηk = ηk−1 ∧ βk−1 = β1 ∧ · · · ∧ βk−1.

By Theorems E.2 and E.3, each cj is a critical value and c1 < · · · < ck, proving (E.9). □

F Morse Theory

Let M be a smooth manifold. Given a C2 function f :M → R, recall

Crit(f) = {x ∈M : (df)x = 0}.

Definition F1(i) Given v, w ∈ TxM , take a smooth curve γ = γv,w : (−1, 1)2 → M , such
that γs(0, 0) = v, γt(0, 0) = w, where γs and γt denote the partial derivatives of γ with
respect to the first and second arguments respectively. Given and x ∈ Crit(f), we define
Hess(f)x : TxM × TxM → R by

Hess(f)x(v, w) =
∂2

∂s∂t
(f ◦ γv,w) (0, 0).

Clearly the linear map Hess(f)x is symmetric.

(ii) We define the Morse index and the nullity of f at a critical point x by

indf (x) = ind(x) = max
{
dimV : V linear subspace of TxM,

(
Hess(f)x

)
↾V×V < 0

}
,

nf (x) = dim
{
v ∈ TxM : Hess(f)x(v, v) = 0

}
.

(iii) We say a function f :M → R is Morse if nf (x) = 0 for every x ∈ Crit(f).
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(iv) Given a C2 function f :M → R, we set

Critk(f) =
{
x ∈ Crit(f) : indf (x) = k

}
.

(v) We write Hk(M) for the k-th homology group of M . Its rank is called the k-th Betti
number and it is denoted by βk(M). □

Theorem F.1 (Morse) For any Morse function f :M → R,

♯
{
x : (df)x = 0, mx(f) = k

}
≥ βk(M).

Definition F2(i) Let (M, g) be a closed Riemannian manifold and let f :M → R. We write
∇f for the gradient of f with respect to g: (df)x(v) = g

(
v,∇f

)
. We also write ψt = ψft for

the flow of the vector field −∇f .
(ii) Given x, y ∈ Crit(f), we set

W s
x(f) : =

{
a ∈M : lim

t→∞
ψt(a) = x

}
W u
x (f) : =

{
a ∈M : lim

t→−∞
ψt(a) = x

}
M(x, y) : =W u

x (f) ∩W s
y (f) =

{
a ∈M : lim

t→∞
ψt(a) = y, lim

t→−∞
ψt(a) = x

}
.

Generically W u
x , W

s
x and M(x, y) are manifolds with

dimW u
x = ind(x), dimW s

x = dimM − ind(x), dimM(x, y) = ind(x)− ind(y).

(iii) The group (R,+) is acting on M(x, y) by ψt : M(x, y) → M(x, y). This action is free
(there is no fixed point), hence the quotient

M̂(x, y) =M(x, y)/R,

is also a manifold of dimension ind(x) − ind(y) − 1. When ind(x) − ind(y) = 1, one can
show that M(x, y) is compact, hence a finite set. We set m(x, y) = ♯M(x, y). We also write
m̄(x, y) ∈ Z2 for mod 2 representation of m(x, y). (When ind(x)−ind(y) > 1, the manifold
M(x, y) is not compact and may have boundary.)

(iv) We write Ck = Ck(f) for the Z2-span of Critk(f). This is a vector space of expressions
of the form ∑

z∈Critk(f)

tzz,

with tz ∈ Z2.
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(v) We define d : Ck → Ck−1 by

dx =
∑{

m̄(x, y)y : y ∈ Critk−1

}
,

for every x ∈ Critk(f). □

Example F1(i) Take M = T be the circle and h : T → R be the height function. Then
there are two critical points x0 and x1 of indices 0 and 1. The set M̂(x1, x0) consists of two
points, representing two semicircle going from x1 to x0.

(ii) Let h be as in Part (i), and define f : T2 → R by f(x, y) = h(x) + h(y). This function
has a max x2, a min x0, and two saddle points x1 and x̂1 of index 1. We have

m(x2, x1) = m(x2, x̂1) = m(x1, x0) = m(x̂1, x0) = 2.

On the other hand M̂(x2, x0) consists of four open intervals. The boundary points of these
intervals represent broken orbits (each a union of two orbits from x2 to x0 via either x1 or
x̂1. □

Proposition F.1 We have d2 = 0.

Proof For x ∈ Critk(f), we have

d2x =
∑{

m̄(x, y)m̄(y, z)z : y, z ∈ Crit(f), ind(x)− ind(y) = ind(y)− ind(x) = 1
}
.

The expression
∑

ym(x, y)m(y, z) represents the number of broken orbits from x to z, and
these orbits are in one-to-one correspondence with the boundary points of the one dimen-
sional manifold M̄(x, z). Since this number is even, we learn that m̄(x, y)m̄(y, z) = 0. □
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G Fredholm Theory

Definition G.1(i) Let V1 and V2 be two Banach spaces. We write L(V1, V2) for the space
of bounded linear maps L : V1 → V2.

(i) Given L ∈ L(V1, V2), we write N(L) and R(L) for the null space and the range of L
respectively. We say L is Fredholm if

dimN(L) <∞, codim R(L) = dim
(
V2/R(L)

)
<∞.

We set
ind L := dimN(L)− codim R(L),

for the index of L. The space of Fredholm operators is denoted by F(V1, V2).

(ii) We say that S is compact if the set S(B) is precompact in V2 for the unit ball B of V1.

(iii) Let K : V2 → V1 be a bounded linear operator. We say K is a semi-inverse of L if
S := KL − IV1 and S ′ := LK − IV2 are compact operators. Here IV is the identity map of
V . We say K is a pseudo-inverse if S and S ′ are of finite ranks. □

Theorem G.1 (i) A map L is Fredholm iff L has a pseudo-inverse (semi-inverse).

(ii) For any bounded linear compact map S : V → V , the map I + S is Fredholm with
ind(I + S) = 0..

(iii) If L is Fredholm, and S is compact, then L+S is also Fredholm with ind(L+S) = ind(L).

Proposition G.1 (i) For two Fredholm operators L1 and L2, we have ind(L1L2) = ind(L1)+
ind(L2).

(ii) If K is a semi-inverse of L, then ind(K) + ind(L) = 0.

Clearly (i) and Theorem G.1(ii) imply (ii).

Proposition G.2 Let L : V1 → V2 be a Fredholm map. Then there exists ε > 0 such that if
A : V1 → V2 is a linear map with ∥A∥ < ε, then L+ A is also a Fredholm map. Moreover

ind(L+ A) = ind(L).

220



Proof Let L be Fredholm, and let K be a pseudo-inverse of K. Hence

K(L+ A) = I +KA+ S,

for a finite rank operator S. Choose ε = ∥K∥−1, and assume that ∥A∥ < ε, so that (I+KA)−1

is well-defined. We have,

K̂(L+ A) := (I +KA)−1K(L+ A) = I + (I +KA)−1S =: I + Ŝ,

with Ŝ finite rank. Also observe

N(L+ A) ⊆ N
(
K̂(L+ A)

)
= N

(
I + Ŝ

)
,

which is of finite dimension because I + Ŝ is Fredholm. Similarly, since

(L+ A)K = I + AK + S ′,

for a finite rank operator S ′, we have

(L+ A)K̂ ′ := (L+ A)K(I + AK)−1 = I + S ′(I + AK)−1 =: I + Ŝ ′,

with S ′ finite rank. Hence

R
(
I + Ŝ ′) = R

(
(L+ A)K̂ ′) ⊂ R(L+ A).

As a result,
codimR(L+ A) ≤ codimR

(
I + Ŝ ′),

which is finite because Ŝ ′ is finite rank. As a result, L+ A is Fredholm.
Clealy (I +KA)−1 is Fredholm, because it is invertible. Hence K̂ is invertible. Observe

0 = ind(I + Ŝ) = ind(K̂) + ind(L+ A) = ind(K) + ind(L+ A).

As a result,
ind(L+ A) = −ind(K) = ind(L),

by Proposition G.1(ii). □

What we learn from Proposition G.1 is that the set F = F(V1, V2) is open, and that on
each (pathwise) connected component of F , the index is constant. We simply write F(V )
for F(V1, V2) when V = V1 = V2. In fact one can show that the set

Fn(V1, V2) =
{
L ∈ F(V1, V2) : ind(L) = n

}
,
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is pathwise connected for every n ∈ Z. Clearly, F0(V1, V2) consists of all invertible bounded
linear maps, and their compact perturbations.

We now focus on solvability problems of nonlinear equations. We first recall some basic
definitions, and classical results in finite dimension.

Definition G.2 Let M and N be to C1 manifolds, and let f : M → N be a C1 function.
We say x ∈ M is a regular point of f if (df)x : TxM → Tf(x)N is onto. We say x ∈ M is
critical if x is not regular. Note that dimN(df)x = dimM − dimN . We say y ∈ N is a
regular value if either y /∈ f(M), or every point in f−1(y) is regular. □

Theorem G.2 Let f be as in Definition G.2. Assume that f ∈ Ck, with k > dimM−dimN .

(i) (Sard) The set of regular values of f is of full measure (with respect to the volume
measure) in N .

(ii) The set of regular values of f is residual in N .

(iii) (Implicit Function Theorem) If y is a regular value, and f−1(y) is not empty, then
f−1(y) is a submanifold of dimension dimM − dimN , with Tx

(
f−1(y)) = N(df)x, for every

x ∈ f−1(y).

Proof(ii) Write C for the set of critical points, which is a closed set in M . Let {Ui : i ∈ N}
be a countable base of bounded open sets. Observe that the set C ∩ Ūi is compact. Since
f(C) is of 0 measure by part (i), the set N \ f

(
C ∩ Ūi

)
is open and dense in N . From this

we deduce that N \ f(C) is residual. □

Definition G.3 Let V be a Banach space. We say that U is a Banach manifold with respect
to V , if U is locally diffeomorphic to open subsets of V . Assume that U1 and U2 are two
C1 Banach manifolds with respect to V1 and V2, and G : U1 → U2 is a C1 function. We
then say that G is Fredholm, if (dG)x ∈ F(V1, V2) for every x ∈ U1. We write F(U1,U2) for
the set of C1 Fredholm maps. Regular points and values of G are defined as in the finite
dimension. □

Example G.1(i) Let V1 and V2 be two finite dimensional vector spaces, and let B : V1 → V2
be a linear map. Observe

ind(B) = dimN(B)− codimR(B) = dimN(B)− dimV2 + dim R(B) = dimV1 − dimV2,

where we have used the rank-nullity theorem for the last equality.

(ii) Let V, V1, V2 be a Banach spaces, with dimV1, dimV2 <∞. Consider the bounded linear
operator

L : V × V1 → V × V2, L(a, b) = (a,Aa+Bb),
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for linear A : V → V2, B : V1 → V2. We may write L = L0 + S, where L0(a, b) =
(a, 0), S(a, b) = (0, Aa+Bb). Evidently

N(L0) = V1, (V × V2)/R(L0) = V2.

Hence L0 is Fredholm with ind(L0) = dimV1 − dimV2. Since S is of finite rank, we learn
that L is Fredholm with ind(L) = dimV1 − dimV2. Note

N(L) = {0} ×N(B).

Also, using the isomorphism (a,Bb) 7→ (a,Aa+Bb), we learn

R(L) ≡ V ×R(B), (V × V2)/R(L) ≡ V2/R(B).

Hence
ind(L) = dimN(B)− codim R(B),

which is consistent with part (i).

(iii) Let V, V1, V2 be as in part (ii), and assume that U , U1, and U2 are manifolds with
respect to V , V1, and V2 respectively. Consider the C1 map G : U × U1 → U2, that is given
by G(x, y) = (x, f(x, y)). Observe

(dG)(x,y) : TxU × TyU1 → TxU × TyU2, (dG)(a, b) = (a,Aa+Bb),

where A = fx, B = fy represent the partial derivatives of f . By part (ii), the map G is
Fredholm of index

(G.1) ind(dG) = dimV1 − dimV2.

Observe that (x, y) is a regular point of G iff y is a regular point for f(x, ·). Also (x, z) is
a regular value for G if z is a regular value of f(x, ·). Moreover, we may use the implicit
function theorem to assert that if (x, z) is a regular value, and the set

G−1(x, z) =
{
(x, y) : f(x, y) = z

}
= {x} × f(x, ·)−1(z),

is a submanifold of dimension (G.1). □

Theorem G.3 Assume that U1 and U2 are Banach manifolds with respect to Banach spaces
W1 and W2. Assume that G ∈ F(U1,U2), and U1 is connected (so that ind(G) := ind(dG)x
is independent of x). Assume that G ∈ Ck for some k > ind(G).

(i) (Smale) The map G is locally proper. That is, if Z is compact in U2, and G(a) ∈ Z, then
G−1(Z) ∩ V is compact for some neighborhood V of a. Moreover, G is locally closed.

(ii) (Smale) Assume that W1 is second countable. Then the set of regular values of G is
residual in U2.

(iii) (Implicit Function Theorem) If y is a regular value, and G−1(y) is not empty, then
G−1(y) is a submanifold of dimension ind(G).
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Proof(i) Write C for the set of critical points of G. Fix a countable base of open sets
{Ωi : i ∈ N}. Pick a ∈ U1, and set L = (dG)a. Write V1 = N(L), V2 = W2/R(L). We may
represent W1 and W2 as V × V1 and V × V2, for a suitable Banach space V . We may regard
L : V × V1 → V × V2, with L(v, v1) = (K(v), 0), for an invertible K : V → V . Consider
local charts W1 and W2 for U1 and U2 such that a ∈ U1, and G(a) ∈ U2. Without loss of
generality, we may assume that W1 ⊂ V × V1, and W2 ⊂ V × V2, W1 ⊂ Ωi, for some i ∈ N,
and a = 0, G(a) = 0. Write G(x, y) = (g(x, y), h(x, y)). Recall that (dG)0 = L. Define
H(x, y) = (g(x, y), y). Since (dH)0 is invertible, we can invert H near 0. We then set

G′ := G ◦H−1 : W ′
1 → W ′

2, G′(x, y) = (x, f(x, y)),

with f = h ◦ H−1. Note that the map G′ is proper: If G′(xn, yn) is convergent, then xn
is convergent, and since {yn : n ∈ N is a subset of a bounded set, it has a convergent
subsequence. From this we learn that the restriction of G to W1 is proper. Similarly G′ is
closed: If A is closed in W1, then G

′(A) is closed. Indeed if (xn, h(xn, yn)) converges to (x, z),
for some sequence (xn, yn) ∈ A, then xn → x, and since yn belongs to a bounded subset of
the finite dimensional space V1, we may assume that yn → y. Since (x, y) ∈ A by closedness
of A, we are done.

(ii) We the repeat the proof of Theorem G.2(ii) to assert that the set U2 \ G(W̄1 ∩ C) is
open and dense.

(iii) Let y be a regular value. We wish to show that G−1(y) is a manifold of dimension
ind(G) if G−1(y) is nonempty. It suffices to verify this locally, which is a consequence of (i),
and Example G.1(i) □

Theorem G.4 Let U be a Banach manifold with respect to V , and let W be a Banach space.
Let F : U × [0, 1] → W , be a C2 function, and assume

(i) The set F−1(0) is compact in U × [0, 1].

(ii) The set F−1(0) ∩
(
U × {0}

)
= {x0} is a singleton.

(iii) The differential Fx(x0, 0) : V → W is invertible.

(iv) For every (x, θ) ∈ F−1(0), we have Fx(x, θ) ∈ F0(V,W ).

Then for every θ ∈ [0, 1], there exists x(θ) ∈ U such that F (x(θ), θ) = 0.

Proof (Step 1) Observe that for (x, θ) ∈ F−1(0),

L̂

[
v
r

]
= Lv + ra,
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where L̂ = DF (x, θ), L := Fx(x, θ) ∈ F0(V,W ), and a := Fθ(x, θ) ∈ W . There are two cases
to consider.

(1) If a ∈ R(L), then we can find b ∈ V such that Lb = −a. Hence

N(L̂) =
{
(rb+ v, r) : v ∈ N(L), r ∈ R

}
, R(L̂) = R(L).

Hence ind(L̂) = ind(L) + 1.

(2) If a /∈ R(L), then

N(L̂) =
{
(v, 0) : v ∈ N(L)

}
, R(L̂) = R(L)⊕ Ra.

Hence ind(L̂) = ind(L) + 1.
In summary, we always have ind(L̂) = 1, and L̂ ∈ F1(V,W ).

(Step 2) Let
U0 =

{
(x, θ) ∈ U × [0, 1] : DF (x, θ) ∈ F1(V,W )

}
.

Since F ∈ C1, we learn that U0 is an open neighborhood of F−1(0). For each y ∈ F−1(0), we
can find an open set U(y) ⊂ U0 such that the restriction of F to U(y) is closed (also proper).
By compactness of F−1(0), we find a finite collection U1, . . . ,U ℓ such that

F−1(0) ⊂ U1 ∪ · · · ∪ U ℓ =: V ,

and the restriction F j of F to each U j is closed. The set Rj of the regular values of F j is
residual in W . We write F̄ for the restriction of F to V . The map F̄ is Fredholm of index
1, and the set

R = R1 ∩ · · · ∩Rℓ,

of the regular values of F̄ is residual. Note that ∂V is closed, and since F̄ is closed, we learn
that F̄ (∂V) is a closed set. Clearly 0 /∈ F̄ (∂V). Set

r0 = inf
{
∥z∥ : z ∈ F̄ (∂V)

}
.

Also, we can find open U0 in U such that x0 ∈ U0, and the restriction of F (·, 0) to U0 is a
diffeomorphism. We set

r1 = inf{F (x, 0) : x ∈ U0}.

Now take y ∈ R, and assume that ∥y∥ < r1∧ r0. Then F̄−1(y) is a one-dimensional manifold
such that

F̄−1(y) ∩
(
U × {0}

)
=: {x̄(y)},

is a singleton, and
∂F̄−1(y) ⊂ U × {0, 1}.
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Since F̄−1(y) is a union of circles and line segments, there must be a subset Γ(y) of F̄−1(y)
that is homeomorphic to a line segment such that

Γ(y) ∩
(
U × {0}

)
=: {x̄(y)}.

By the connectedness of Γ(y), there exists x(y, θ) ∈ V such that F̄ (x(y, θ), θ) = y. Choose
yn as above so that yn → 0. Then by the properness of F̄ , we can find a subsequence of
x(yn, θ) that convergence. Its limit x(θ) satisfies F (x(θ), θ) = 0. □

We next state a generalization of Theorem G.4 that can be established in a similar fashion.
Let us assume that π : E → B is a vector bundle with B a Banach manifold with respect to
Banach space V , and E fibers are isomorphic to a Banach vector space W . Observe that if
S : B → E is a section is a C1-section, from π ◦ S = id we learn

(dπ)X(x) ◦ (dS)x = I : TxB → TxB,

where I denotes the identity. For example, when E = B × W , we simply have S(x) =
(x,X(x)), with X : B → W , and (dS)x =

(
I, (dX)x

)
. Because of this, we may define a

fiberwise differential of S, which is the analog of (dX)x. To do so, observe that T(x,v)E is
isomorphic to TxB×Ex, and let us write π̂x : T(x,v)E → Ex for the projection onto the second
component. Finally we define the fiberwise derivative

ExS := π̂x ◦ (dS)x : TxB → Ex.

Theorem G.5 Let G : B × [0, 1] → E, be a C2 function such that G(·, θ) is a section of E
for every θ ∈ [0, 1]. Assume

(i) The set G−1(0) is compact in B × [0, 1].

(ii) The set G−1(0) ∩
(
B × {0}

)
= {(x0, 0)} is a singleton.

(iii) The differential Ex0G(·, 0) : TxB → Ex0 is invertible.

(iv) For every (x, θ) ∈ G−1(0), we have ExG(·, θ) ∈ F0(TxB, Ex),

where 0 = 0E denotes the 0-section of E, and ExG(·, θ) denotes the fiberwise differential
ofG(·, θ). Then for every θ ∈ [0, 1], there exists x(θ) ∈ B such that F (x(θ), θ) = 0.

Observe that when E = B×W , we may write G(x, θ) = (x, F (x, θ)), we are in the setting
of Theorem G.4. We also recall that by a classical theorem of Kuiper, all vector bundles
over Hilbert spaces are trivial. This is also the case if W = Lp(Λ) for manifold Λ (see [Mi]).
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