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1 Introduction

Various phenomena in physics and biology, such as the formation of crystals and the spread
of infections are modeled by stochastic growth models. Many of such growth models are
macroscopically described by Hamilton-Jacobi partial differential equations. In these models,
a random interface separates regions associated with different phases and the interface can
be locally approximated by the graph of a solution to a HamiltonJacobi equation. Such
a solution gives us a macroscopic description of the interface. Microscopically though, the
interface is rough and fluctuates about the macroscopic solution. A central limit theorem
should provide us with a better description of the interface.

Perhaps the simplest example of a stochastic growth model is the Eden-Richardson model
that was studied in a biological context. In this model each lattice site i € Z? represents
the center of a cubical cell and the set A(t) denotes the union of the infected cells, where
a healthy cube outside A(t) becomes infected with a rate proportional to the number of
adjacent infected cells. Richardson shows that the set A(t) grows linearly int, and as € goes
to zero,

(1.1) eA(t/e) ~ {z e R: N(z) <t},

for a suitable norm N(-) associated with the model. The proof of Richardson’s theorem is
by now rather standard and follows from the celebrated Subadditive Ergodic Theorem. 1t is
conjectured that the error in the approximation (1.1) is of order 0(52/ 3). Put it differently
the fluctuation of set A(t) about the set {x € R? : N(z) < t} is of order O(¢/%). This
conjecture is expected to be true for a wide class of planar stochastic growth models and is
still wide open for Eden-Richardson model. There are few ezxactly solvable models for which
not only the conjecture has been established, a lot is known for the 0(52/ 3) correction term
in (1.1). In all these models the growth can only occur in one direction; this feature simplify
the geometry of the interface drastically. We now describe several models that include all
the exactly solvable examples. These examples will be examined thoroughly in subsequent
chapters. In all these examples the boundary of the growing set A is given by a graph of a
function h(x,t).

e As our first set models, we consider a family of growth models known as exclusion
processes with h : Z4 x [0, 00) — Z.

e As our second model, we discuss the celebrated Hammersley-Aldous-Diaconis (HAD)
process, where h : R? x [0,00) — Z. x € R%, t € [0,00), and h € Z.

e In the third model, our height function h : R% x [0, 00) — R satisfies a classical PDE
called Hamilton-Jacobi Equation (HJE) for which the Hamiltonian function is random.



1.1 Exclusion Processes

One of the simplest and most studied growth model is Simple Ezclusion Process (SEP). The
configuration space I' consists of the height functions h : Z — Z such that

0<h(i+1)—h(i) <1,

for all i € Z. With rate A € [0,1] (respectively 1 — \), each h(i) increases (respectively
decreases) by one unit provided that the resulting configuration does not leave the config-
uration space; otherwise the growth is suppressed. More precisely, the process h(i,t) is a
Markov process with the infinitesimal generator

(AF)(k) =>_ [(1 = NL(K" € D)(F(K') — F(k)) + AL(k; € T)(F(k;) — F(k))]

iE€EZ

where I : Z% — R is any cylindrical function (F(k) depends on finitely many k(i)’s) and
k', k; are defined by

RO =1 ip =i RO+ i =i
dd) {k(y‘) if j2i, "O {k(j) if G#i.

When A\ € {0,1}, we refer to the process h as the Totally Asymmetric Simple Exclusion
Process (TASEP).

Note that if we set v(i) =it € I, then k € T" iff k(j) — k(i) < v(j — ¢). More generally,
we may start from any nonnegative additive function v : Z% — Z, and define the state space

T(v)={h:Z" = Z: h(j) —h(i) <v(j—i) forall i,jeZ}.
By a v-exclusion process, we mean a Markov process with a generator of the form

(AF)(k) =) [(1 = MUK € T()(F(K) = F(k)) + AL(k € T(0))(F (k) — F(k))].

i€zd
Asin (1.1), we may define
he(x,t) = eh([z/e], t/e),
for (x,t) € R x [0,00). We are hoping to establish
(1.2) he(x,t) = u(w,t) + 2P Z (2, t) + o(e¥?),

where u is the macroscopic profile that satisfies a suitable Hamilton-Jacobi PDE, and 7 is
a suitable stochastic process that should be universal.
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When necessary, we write h(i,t) = h(i,t; k) for the process with the initial configuration
k,i.e., h(i,0; k) = k(7). Some of the important features of the process h(,t; k) are as follows:

(1) Any wv-exclusion process is monotone in the following sense: If k& < £/, then h(,t; k) <
h(-,t; k') for all t > 0.

(ii) When A = 1, any v-exclusion process is strongly monotone in the following sense:
(1.3) h(-,t;k\/k/) :h(',t;k)\/h(-,t; k’),
Likewise, when A = 0,

(1.4) h(~,t;k/\k/) :h(-,t;k)/\h(~,t; k'),

(iii) Assume that v(i) = i*, and d = 1 (the case of SEP), we have an explicit candidate for the
invariant measures. Given p € [0, 1], we may consider the random initial height function k”
that is specified with properties that k”(0) = 0, and (k”(i+1)—k*(i) : i € Z) are independent
with P(k?(i+1) — k(i) = 1) = p. Then this property persists at later times. In other words,
(h(i+1,t;k?)—h(i,t; k") : i € Z) are independent with P(h(i+1,¢; k?) —h(i, t; k) = 1) = p.
We note that by Donsker Invariance Principle,

kP () := ek’ ([z/e]) = pa + VeB,(z) + o(Ve),
where B,(x) is a Brownian motion with variance

EB,(x)* = p(1 — p).

(iv) When A = 0, and 0(i) = —v(—i), then v € I'(v), and h(i,t;0) = 0(¢). That is, the
height function o(-) does not change with time. If A € [0,1/2), we can construct an invariant
measure that coincides with the delta measure at 0(-) when A = 1. This invariant measure is
not translation invariant; in fact it is concentrated on the set of heights h € I'(v) such that
h < v, and for any such h,

)

) I 1= 2\ Sih@Hv(=)
. 125N =z b\

where z is the normalizing constant. Note that pg = d; if we interpret 0° = 1.
(v) When d = 1, there is a simple description of the dynamics of the height differences
n(i,t) = h(i +1,t) — h(i,t).

In particular, when v(i) = i, we may interpret 7(i,t) = 1 as the presence of a particle at
site . Similarly, the site 4 is vacant at time ¢ when 7(i,t) = 0. Hence n € {0,1}% at all
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times. We then have a Markovian particle system such that a particle jumps to the right/left
with rates A and 1 — X respectively. Though this jump is suppressed when the outcome is
not in our state space {0,1}2. Tt is also common to regard SEP as a Markov process with
state space {—1,1}%. The advantage of this interpretation is that some figures associated
with SEP would like nicer. After all if we linear interpret h : Z — 7Z with the convention
that when h(i + 1) — k(i) = £1 the graph of h has a piece of slope £, then with rate A
(respectively 1 — \) a A (respectively V) corner changes to a V (respectively A) corner.

(vi) When A = 0 and the initial height function is v, then there is a variational formula
for h(-,t;v) which is very useful. We only describe this variational formula in the case of
TASEP. For our purposes it is more convenient to consider the set

Aty = {(.9)+ § < h(i.50)},
and examine its growth as t increases. For a ¢ A(0), set
T(a)=inf{t: a € A(t)}.
Take a collection of independent unit mean exponential random variables
{6;;: v(i) <j}.

Then T'(a) is given by
¢

(1.6) sup {Z 0, 21=1(0,1),ze =a,zi41 — 2z €{(—1,0),(1, 1)} fori=1,...¢ — 1} :

i=1
(vii) Assume that A = 0. Let us write v(-; j) for a translation of v: v(i) = v(i — j). We also
set w(i,t;7) := h(i,t;v(-; ). Evidently for any k € I'(v), we have

KC) = inf {h() + o(5)}

When then use the strong monotonicity to write

(1.7) h(i,t; k) = irjlf{k(j) +w(i, t;5)}

1.2 Hammersley-Aldous-Diaconis (HAD) Process

HAD process is the analog of TASEP with the randomness now is coming from a Poisson
point process of intensity one in Rx (0, 00). The state space I" consists of functions h : R — Z
such that for a discrete set {x; : i € I} C R, we have

W(x) = Z O,



In words, h is nondecreasing that increases for one unit at points in a discrete subset of
R. If for example I = Z, and x;,_; < x; for all ¢ € Z, then x; jumps to a point y that
is selected uniformly from the interval (x;_1,x;). Let us write I" for the set of sequences
x = (z; : 1 € Z), such that

lim x; = £o0.
i—Foo

Then we regard HAD as a Markov process that is defined on I" or I, In the latter case the
generator is given by

ARG =Y [ (P~ Fex) dy

i€z v

where x*¥ is the configuration we get from x by moving the i-th particle z; to y. Similarly
for the process h(-,t) € I, we have a generator (with a slight abuse of notation, we use the

same notation)
i (k)

(AF) () =3 / (F(K)) — F(E)) dy.

iez Y vi-1(K)

where x;(k) is the u-th point of increase of k, and k™ is the height function we get from k
by increasing k by 1 over the interval (y, x;(k)]. Let us write h(-,¢; k) for the height function
at time t that initially is given by k. Similarly, we write x(¢;y) for the particle system
associated with A that is given by y initially. We now address several properties of the HAD
process:

(1) HAD process is strongly monotone:

h(x,t;k VK'Y = h(-, t; k) V h(-, t; k).

(ii) Given p > 0, write y” for a Poisson point process of density /intensity p. Then for every
t > 0, the particle configuration X(t; y") is again a Poisson point process with intensity p.

(iii) Let us write k” for a height function such that £°(0) = 0, and its increases occur exactly
at the points of y”. Given any a € R, the increase points of process t — h(a,t; k”) form a
Poisson point process of intensity p~!. Intuitively, this has to do with the fact that product
of the intensity measure p dx and p~! dt is the intensity measure dz dt of the Poisson point
process we started from.

(iv) Note that by the classical Law of Large Number and Donsker Invariance Principle,
kP(2/e) = pr + VEBy(x) + o(vVE),  eh(0,/esk?) = pla + VEBL(E) + 0(E),
where B, and B, are Brownian motions with

EB,(x) = ple|.  EB)(1) = p't



From this for sure we have
eh(x /e, t/e;k’) = px + p 't + o(1).

We can say more. Since the noise coming from the dynamics causes fluctuations of order
O(£%?), such fluctuations cannot be felt for corrections of order O(y/2). In fact the initial
fluctuations is transport with linear speed with time as the following formula indicates:

(1.8) eh(x/e,t/e; k") = pr + p~ 't + VeB,(x — p~2t) + 7 Z,(x,t) + o(c*?),

for a suitable stochastic process Z, that will be analyzed later. For now, let us write H(p) =
p~ ! and observe that the Brownian noise will be transported with speed that is nothing other
than H'(p). Observe that according to (1.8),

By(t) = B,(—p*t),
and this is consistent with the following calculation:
o2 _ _
]EBP(—p Qt) =pp 2t =p 't

It is worth mentioning that we may get rid of O(y/€) in (1.8) by choosing x = p~2t.

(v) In general, if initially
ek(z/e) = g(x) + o(*?),

then we expect

(1.9) eh(x/e,t/e; k) = u(x,t) + 3 Z(x,t) + o(e¥?),
where u solves a Hamilton-Jacobi PDE of the form

(1.10) w = H(u,), u(z,0)=g(x),

with H(p) = p~!. (Equivalently wu, = 1). One of the main goal of these notes is the
derivation of the correction term involving Z. As we will see later, we need to rescale the
correction term in order to produce an interesting stochastic process that is often referred to
as an Airy Process. Roughly speaking, the rescaled height function he(z,t) = ch(x/e,t/e)
satisfies

(1.11) he = H(hS) + O(e*/?).
If we accept this, then any correction of the form
BE(2,8) = u(, £) + VEB(z, £) + o(v/3),
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leads to an equation of the form
By = H'(uy)B,.

This equation has a solution of the form
B(z,t) = B,(z + H'(p)t) = B,(z — p*t),

provided that u(x,t) = px + p~'t, and initially B(x,0) = B,(z).

(vi) There is a candidate for the analog of v function of the exclusion process that we now
describe. Though our v function is defined for > 0 only. Imagine that v(z) = coll(z = o0)
with the interpretation that initially there is no particle in (0,00), and infinitely many
particles are lined up at co. Instantaneously these particles are rushed to finite points in
(0,00). The description of the particle trajectories xq(t) > xo(t) > ... (with z;(0) = oo
for all 7) is in order. For the first particle, find an up-left path X; = ((z1(¢),?) : ¢ > 0)
such that at each L corner there is a Poisson point, and there is no Poisson point between
the set {(x,t) coat = 0,2, > O} and X;. Inductively we define an up-left path X, =
((#n41(t),t) : ¢t > 0) such that at each L corner there is a Poisson point, and there is no
Poisson point between the set X,, and X, ;1. Once the family X, Xs,... are identified, we
then set a height function w : (0,00)* — Z by

w(z, t) = Zn][ (z € [za(t), Zpya(t)).

There is an obvious variational description for w. Indeed

w(z,t) = max {{: there exist Poisson points (z1,t1) < -+ < (z¢,t) in (0,2) x (0,)}.

(v) Let us write w(z, t; y) for the analog of w(x,t) where 0 is replaced with y € R; the height
function w(x,t;y) is defined for x > y and uses the Poisson points to the right of y. Using
the identity

k(z) = sup {k(y) + v(z —y)},

y<z

and the strong monotonicity we deduce

(1.12) h(z,t; k) = sup {k(y) + w(z, t;y)}.

y<z

This is the analog of (1.2) for HAD model.



1.3 Stochastic Hamilton-Jacobi Equation

As our microscopic model we may use a Hamilton-Jacobi equation. More precisely, we
assume that the microscopic height function h : R% x [0, 00) — R satisfies

hi+ H(z,t,h,) =0, h(xz,0)=Ek,

for a Hamiltonian function H : R x R x R? — R that is selected according to a probability
measure that is stationary and ergodic with respect to the spatial and temporal translations:

TosH(z,t,p) = H(x +a,t + s,p).

Example 1.1 As a classical example, consider
Lo

where V' is selected according to probability measure that is 7-invariant and ergodic. as an
example of V, pick a smooth function W : R x R — R of compact support and set

Vi, t)=> W —x,t—t),
where {(z;,t;) : i € I} is a Poisson point process of intensity one. Another classical example

Viz,t) = Zvi(x)B@-@),

where V;’s are periodic functions, and B; are independent Brownian motions. [l
Again, we are interested in h°(x,t) = ch(x/e,t/¢e), that now satisfies

h; + H(z/e,t/e, k) = 0.

Let us write h(z,t; k) for the solution with initial data k. Here are some of the features
the growth model h:
(i) The process h is monotone: If k < k', then h(x,t; k) < h(x, t; k).

(ii) When H (z,t,p) is convex in p, then the process h is strongly monotone: h(x,t;kAEk') =
h(x,t; k) A h(x,t; k"). Similarly, when H(x,t,p) is concave in p, then process h is strongly
monotone: h(x,t;kVE') = h(z,t;k) vV h(z,t; k).

(iii) When H(z,t,p) is convex in p, then there is a variational description for solutions:
t
b i) =t {ou(0) + [ L(5)5.3(5)) dss € (0.1 B).ot0) = o .
0
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where L is the Legendre Transform of H:

L(l’,t,’(]) = sup (p’U - H(Jf,t,p))
p

Similarly, when H(z,t,p) is concave in p, then

h(z,t; k) = sup {g(y(o)) +/0 L(y(s).5,9(s)) ds: y € C*([0,1,R?), (1) = w} ,

where )
L(z,t,v) = inf (p v — H(x,t,p)).

p

1.4 KPZ Equation

KPZ equation is a stochastic PDE that is used to study the fluctuations of a stochastic
interface. The KPZ equation can be used as a model of a stochastic height function: We
assume that the height function h : R x [0, 00) — R satisfies the KPZ equation

1
hi = haw + Ehi + &

We write £(z,t) for the space time white noise. In other words, £ is Gaussian distribution
with

E&(x,1)E(y, s) = do(x —y)do(t —s),  E§(2)&(y) = do(z —y).
To explain this further, let us write D, = D(R¥) for the space of smooth functions of compact

support in R¥, then £ : D, — R is a bounded linear map such that for each J € Ds, the
random variable £(J) is a Gaussian random variable with E£(J) = 0, and

EE(J)? = /J(x,t)2 dzdt.
Note that since delta function J, satisfies the scaling relation
(AN Lo (z /N t/N) = 8oz, 1),
we deduce that the white noise £ enjoys the following scaling:
(AN) 12 (/N t/N) =P E(,t).

We use this to examine the scaling behavior of KPZ equation: If we set

z 1
he(z,t) =h (2, =, ).
o ==n (25
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with «a, 8 > 0, then [° satisfies

h; = %e%"‘_ﬂ (h;)2 +*Phe, + e Stig,

Observe that if a + § = 2, then we have
1 o
(1.13) he = 5(h;)2 +e%he, + &3 5L,

If a € (1/3,2) and B = 2 — a, then the coefficients of the second order term and the white
noise both go to 0 in small € limit and we expect that h®* — h with h satisfying

(1.14) hy = =h2.

As it turns our (1.14) does not posses a classical solutions even when the initial data is
smooth, and the question is what we mean by a solution. As we will see, the appropriate
notion of solution we need very much depends on the value of o. Let us examine two special
cases:

e When o = 1, we can ignore the white noise contribution and we will have a viscosity
solution with a solution given by Hopf-Lax-Oleinik formula

(1.15) h(z,t) = sgp (h(y, 0) — (m;—ty>2> :

e When a = 1/2, then h is not a viscosity solution and since the coefficient of white noise
is now e/* which is the square root of the coefficient of the second order term, the
white noise contribution cannot be ignored; in some sense a ghost of the white noise,
called white ghost in these notes will survive. In other words, most likely the limiting
h would satisfy

1- A
(1.16) b= She +¢,

where é is our white ghost. We do not know about the exact nature of é . In fact we
have a candidate for the analog of (1.15) (see [CQR]), namely

o (x —y)? ,
y
where A(x,y;t) is an Airy sheet for each ¢. Indeed (z,y) — A(z,y;t) has the same law
as
(L Y
teA <t2/3’ t2/3> ’

where A(z,y) := A(z,y;1). We refer to the (1.17) as KPZ Fized Point.
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We still need to explain why KPZ equation is relevant for our growth models. So far we
know that may stochastic growth models can be described by a Hamilton-Jacobi PDE as the
first approximation. An error of order 0(52/ 3) must be taken into account as we examine
the fluctuations of the microscopic height function about the macroscopic height function
given by (1.10). Roughly the rescaled microscopic height function h°(z,t) = eh(z/e,t/e) is
expected to satisfies

(1.18) hi = H(hy) +ea(hs)y(hs), + €€,

with & a white noise, and a,7 : R, R possibly nonlinear functions with a,~ > 0. Let us
explain this in the case of SEP: If we take a smooth function J of compact support and look

/J( Vhe (z,t) do = & ZJ (ei)h(i, t/e) =: Qt),

dQ = A dt + dM,

ZEZ (L= Nn(@)(1 = n(i — 1)) = An(i — 1)(1 = n(i))] J ()
1—2)\5277 n(i —1))J(ci +gAZ i) — (i — 1)]J(<i)

_5277 (i —1))J (e —eAZ ((i +1))]n(i)

~ / [H (B (2, 1) + MiE,] J (@) der,

where H(p) = (1 — 2X\)p(1 — p). On the other hand for the Martingale term we have (see
Exercise (v) of Chapter 2),

EM(t)* = Eg—l/o Z (1= M(i, )(1 = (i —1,8)) + An(i — 1,8)(1 — (i, )] (2 (e0))” ds

A EQ/H(ha(x,s))Jz(x) ds.

These formal approximation confirms the formula (1.18) provided that we allow a possibly
inhomogeneous white noise &, and in the case of exclusion process, we simply have ay = \ a
constant function. (The function a and A have physical interpretations that we do not discuss
here and in the case of exclusion process, a(p) = Ap(1—p), and A\(p) = plog p+(1—p) log(1—p)
is the entropy.)
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In models like SEP and HAD, we know that the equilibrium states correspond to solutions
of the form

(1.19) he(x,t) = xp + tH'(p) + /2 B(x,t) + o('/?),

with  — B(z,t) a Brownian motion for each t. This explain why the choice of & = 1/2 in
(1.13) should play a special role. More generally, if we take any solution of the form

he(x,t) = xp 4+ tH'(p) + e ws (, 1) + o(e'/?),

then w® solves

1
wi = H' (p)w: + 581/2H//(p) (wfc)2 + ed(p)wi, + &% 4+ 0(e),
where d(p) = a(p)N(p). We can get ride of the term H'(p)wS by a linear translation: The
function

W (z,t) = w(z — H'(p)t, t),

satisfies 1
a5 = S P H (p) (d5)" + ed(p)is, + %€ + O),

where &'(z,t) = &(x — ct,t), with ¢ = H'(p) is again a white noise. To have a non-trivial
limit, we consider
u(x,t) = 0 (v,e 7).

The function u® satisfies

1
uf == SH"(p)(d5)" + £ d(p)is, + ¢ + O ().
We may wonder whether or not the small € limit of u® exists. If this limit exists and is
denoted by h it is expected to satisfy the KPZ fixed point:
7 1 " 7,2
In fact (1.21) implies that if x + h(x,0) is a Brownian motion, then z +— h(z,t) is also a
Brownian motion of the same diffusion coefficient. That is, the Wiener measure is invariant.
This peculiar feature of fixed point KPZ confirms our earlier assertion that h cannot be a
viscosity solution: According to a classical result of Groenboom, an initial Brownian motion
for the viscosity solution of (1.14) becomes a piecewise quadratics function instantaneously!
From the above discussion we formulate a scaling law that is one of the main air of these

notes: Suppose that we have a stochastic growth model in dimension one associated with
macroscopic PDE w, = H(u,). Assume that initially

€T _
lim /2 <5h ([—] ,0) — xp) = h(zx,0).

€

e—0
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Then at later times

(1.20) lime1/2 (5h ([f - ”;#] #) — (xp — te" 2 (pH'(p) — H@)))) = Az, 1),

e—0 g

with h satisfying the KPZ fixed point.

1.5 Stochastic PDE

As we mentioned earlier the fluctuation of the interface in two dimensional growth models
are governed by a stochastic PDE known as KPZ equation. This is subsection we give a
quick review of stochastic PDEs in general.

We write &(x,t) for the space time white noise and & for the space white noise. In other
words, both £ and ¢ are Gaussian distributions with

E&(x,1)E(y, ) = do(x — y)do(t —5),  E&(2)&(y) = do(x —y).

To explain this further, let us write Dy, = D(R¥) for the space of smooth functions of compact
support in R¥, then ¢ : Dyy; — R is a bounded linear map such that for each J € D, the
random variable £(J) is a Gaussian random variable with E¢(J) = 0, and

E&(J)? = / J(x,)? dudt.

The definition of ¢ is similar.

Definition 1.1 Given a distribution v € D), we write [u] = v if

x t
eu | =, —= | =P u(x, ).
(2.5) =" vt

O

Example 1.2 For the space-time white noise we have [§] = —(d +2)/2, and for the space
white noise we have [{] = —d/2. To see the latter, observe that if do(x,t) = do(t)do(z), then

r t
€7d72(50 (—, g) = 50(1’,t)

£

From this we can readily deduce that [£] = —(d + 2)/2. O
Our goal is to make sense of various SPDEs that appear in statistical mechanics. To
make sense of these equation, we need to study the regularity of their solutions. To figure
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out what is the best regularity we can hope for, we first search for stochastically self similar
solutions (SSS). By this we mean a solution u for which

W (2,1) = e7u (f ! ) ,

g g2

is also solution. We call v the scaling exponent of the SPDE. For our regularity question,
we use spaces C* with the following properties:

e When « € (0, 1), the space C* is set of local a-H’older continuous functions.

e When a € (k,k+1) for k € N, the set C® consists of C* function with all k-th derivative
in CoF,

e The space C! is the Caldron-Zygmund space and is slightly larger and the space of
locally Lipschitz functions.

Definition 1.2(i) We set |(z,t)| = |2| + v/t. Note that |(z/e,t/e?)| = |(z,1)|/¢.

(ii) We write B = B, for the space of C" functions ¢ such that the support of ¢ is contained
in B(0,1), and |D%| <1 for a with |a| < k. Given ¢ € B, we set

/ /
YW —d—2 -z -1
=\ .
(iii) For a > 0, we write C® for the space of functions u such that

/u(go;\)dm < e,

for every ¢ € B with

for every polynomial P of degree [a]. The constant ¢ is independent of ¢ and z so long as z
is in a bounded set.

(iv) For oo < 0, we write C* for the space of distribution u such that
u(p?) < ex?,

for every ¢ € B. The constant ¢ is independent of ¢ and z so long as z is in a bounded
set. U

If we have a random process u(x), a standard way to show that u € C* for some o € R
is the following generalization of Kolmogorov Theorem.
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Theorem 1.1 Let u € D'(R¥) be a random distribution with
1
(1.21) [E|u(e)|]” < e,

for a constant c that is independent p € B and z so long as z is in a bounded domain. Then
there is a version of u € CP for B = a —p/d. In particular, if (1.21) is true for every p > 1,
then u € C* .

Corollary 1.1 Suppose that u € LP(P) for every p > 1. If [u] = «, then u € C* .

Proof For every p > 1,

1

[E |u(@)["])7 = X [E]u(p)["]? = ex®.

We now describe four examples of SPDEs:

(1) (Stochastic Heat Equation) The SHE in R? is the PDE
(1.22) up = Au + &,

where u : R? x [0,00) — R and £ is the space-time white noise. We can readily find the
scaling exponent of solutions. Suppose that SSS for SHE is . We note that if we have a
solution with [u] = «, then [u] = o — 2, and [Au] = o — 2. This exponent must match
(€] = —(d + 2)/3. Hence SSS for SHE is & = 1 — d/2. From this we expect that a solution
to SHE to be in C“~. Based on this heuristic reasoning, we expect u to be a function only
when d = 1.

(2) Given k € N, consider
(1.23) w = Au+u 4 €.

The main challenge for making sense of (1.22) is the term u* when d > 2 because we expect
u to be a distribution. To understand better the role of the nonlinearity, let us for now
pretend that we already know how to make sense of u*. Now if [u] = « as in (1), then we
expect [u*] = ka. as we will learn later, it is much easier to treat (1.22), when u* has a
better regularity that the white noise. That is

d d
E(1-2) >-2-1.
(1-3)>
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Equivalently, d < 2(k 4 1)/(k — 1). If this is the case, then we say that (1.23) is subcritical.
For example, when k = 3, then d < 4 is subcritical.

(3) (Anderson Model) Consider
(1.24) w = Au + ué.

Here the main challenge comes from the product term u&. The point is that if we assume
u € C* , then since £ € C~0/27 we can make sense of the product only if a > 6/2. If

we instead look at u; = Au+ &, we get a = 2 — %. Even for this «, we end up with the

restriction d < 2. We will see later that d < 4 is subcritical.

(4) (One dimensional SHE on a manifold) In local coordinates
(1.25) uy = ub, + T (wulul + 0j&.

is subcritical. Since the dimension is one, we expect v € CY? . This makes the term
Iy (w)uuy highly singular, O
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2 Markov Processes

Our models v-exclusion and HAD processes are examples of continuous time Markov pro-
cesses. In this Chapter we give an overview of such processes. We always consider Feller
Processes (x(t) : ¢ € [0,00)) with state space E that is locally compact and separable com-
plete metric space. The process z(t) is always right continuous with left limit; the existence
of such realization is standard and can be guaranteed under some general conditions on the
transition probability or the infinitesimal generator of x.

Given a Borel set A C E, z € E, and t > 0, the transition function p;(z, A) denotes
the probability that x(tf) € A, conditioned that the starting point is 2(0) = z. We write
Cy(FE) for the space of bounded continuous functions f : E — R. We also write Cy(FE) for
f € Cy(E) that vanishes at infinity. We define linear operators T; : t > 0 by

T5(e) = [ ple,dy) ) = B0 1 (o),
for every f € Cy(E). By Feller property we mean that T, f € Cy(F) and
ImT, f = f,

for every f € Cy(E). The Markov property means that T, o Ty, = T, for all s,¢ > 0. The
infinitesimal generator of the process z(-) is an operator £ : Dom — Cy(E), that is defined
as

(2.1) Lf=lim (Tif - f).

Here denotes the set of f € Cy(E) for which the limit in (2.1) exists, and is dense subset of
Co(E). From the semigroup property, we can readily show that if f € Dom, then T, f € Dom
for all t > 0. On the other hand, from the identity

W (Tonf —Tf) =T, (W (Tuf — f)) = (TW(TLf) — Tof).
As a result

(2:2) ST = LT.f=TiLf

When state space isFE is finite, the (2.2) is an ODE, and we may regard T; and £ as matrices
and we simply have T; = e'*. In fact writing u(x,t) = T f(x), then u is the unique solution
to the initial value problem

up = Lu, u(z,0) = f(z).

The equation (2.2) is known as Kolmogorov Backward Equation. The dual of (2.2) is a
evolution equation for the distribution of the process x(t). More precisely, assume that x(0)
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is selected randomly according to a probability measure p°. Then at later time the law of z(t)
is a probability measure p! = T;u® that satisfies the following identity for every f € Cy(E):

B f(a(t) i= [ (B0 fa(0)] #(do) = [ Tif(e) (o) = [ 1 o'

When f € Dom, we may differentiate both sides with respect to t to assert

/ fd(%/f) — [1ien wiin) = [ cf = [ 5 a(en)

In short,

d t *x t
(2'3) % _'CN-

We say a probability measure v is invariant if T;v = 0. In view of (2.3), a measure v is
invariant if £*v = 0, or equivalently
/ Lfdv=0,

for every f € Dom. It is often more convenient to choose a core Dom’ C Dom for the
generator £. This means that for every f € Dom, we can find a sequence f, € Dom’ such
that

lim f,=f, lim £f, = Lf.

n—oo

We say an invariant measure v is reversible, if

/fﬁg du:/gﬁf dv,

Example 2.1(i) When E is countable, the generator takes the form

Lf(x) = clx,y)(fy) - f(x)),

yeER

for all f,g € Dom’'.

for a suitable ¢ : E x E' — [0,00). We think of ¢(z,y) as the rate of a jump from state = to
state y. The time it takes to jump from x to y is an exponential random variable and ¢(z, y)
is the exponential parameter of this variable. With a slight abuse of notation, we write p(z)
for p{z}). Clearly

[ £5 =Y man) (1) - 1)

zyeE
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where m(z,y) = c(x,y)pu(z). As an immediate consequence

(24) L) =) [ely, @)uly) — ez, y)u()].

yerR

From this or the previous display it is clear that if m(x,y) is symmetric i.e.,

(2.5) p(z)e(z,y) = u(y)e(y, ),

then p is invariant. In fact such an invariant measure is reversible:

26) &)=~ [ 1Lgdn=— [9£5 dv =3 3" mlz) (1) - F@) (ol0) - 9la).

zyek

The way to think about (2.5) is that we have a detailed balance: 1 is invariant even when
the dynamics is restricted to jumps from x to y and back.

(ii) In the case of a diffusion, £ is a second order elliptic operator. For a d-dimensional
Brownian motion £ = %A. In the case of a Compound Poisson process, the generator is

£hw) = [ (faty) = 1) tay)

More generally, if z(-) is a one dimensional Lévy process with Lévy measure ¢, then L is a
Pseudo Differential operator of the form

Cf(x) = / (Fla+1) — F() — 1(ly] < Dy f'(x)) Ldy).

Given f € Dom, we may use integrated form of (2.2) to write

Re)=a [ F(®) / Chz }

for every a € E and (s,t) with 0 < s < t. As a result, if we take any bounded continuous
F:E¥ 3R and any s; < --- < s, < s, then by Markov property

EF (2(s1), ... a(s1) [f(z(t)) — fa(s)) - / Lf((6)) d@]
— EF(a(s1), .., 2(s)) E"=" [f(ae(t)) — fa(s)) - / Lf((6)) d@] —0.

20



As a result, the process

My(t) = f(x(t)) = f(2(0)) —/ Lf(x(0)) a6,

0

is a martingale with respect to the o-algebras (]—"t ot > O), where F; is the o-algebra
generated from {z(#) : 6 < t}. In the same fashion we can show that for any f : £ x[0,7] —
R that is C' in ¢ and f(-,t) € Dom, the process

(2.7) My (t) = f(a(t),t) = f((0),0) - /Ot(ae +L)[(x(8),6) df,

is a Martingale. We end this section with an application of such martingales:

Example 2.2(i) Assume that E is countable, let U be a subset of E and set
r=inf{t>0: z(t) ¢ U}.

We wish to evaluate P*©=Y(r > t z(t) = a). For this, we find a function u(z,s) =
u(z, s;a,t); (x,s) € E x [0,t] that solves the following equation

us(x,s) + Lu(z,s) =0, s<t,
u(z,t) = 1(z = a),
u(z,s) =0, s<t,x¢U.

Then M(s) :== u(z(s A7), s A7) is a Martingale. As a result,
u(y,0;a,t) = E*O=YA1(0) = B2O=YM(t A T) = Ew(o):yu(x(t AT),tAT)
= Ew(o):yu(x(t), t)ll(T > 1) = PeO0=y (7’ > t,x(t) = a).

We can easily express u in terms of the fundamental solution of the equation (2.2) in the
domain U. More precisely if w(z,t) = w(z,t;a) is the unique solution of

wy(z,t) = Lw(z,t), t>0,

w(x,0) = 1(z = a),

w(zx,t) =0, t>0, x¢U,
then u(z, s;a,t) = w(z,t — s;a), and u(y,0;a,t) = w(y, t;a).

In the case of a diffusion in RY, we may take an open subset U C R?, and examine the
law x(t) provided that it never leave U up to time ¢. Then

POV (3(t) € da,t < 7) = w(z, t;y) da,
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where w(z,t) = w(z, t;y) solves

wy(z,t) = Lw(x,t), t>0,
(2.8) w(z,0) = §,(dx),
w(zx,t) =0, t>0, x € 0U.

(ii) Let U be any bounded domain in E and let g : E — R be a continuous function. Set
T=1y=inf{t>0: z(t) ¢ U}.
We wish to solve the equation

Lo(z) =0, xe€l,
v(z) =g(z), =z e€dl,

If v is a solution, then M(t) := v(z(¢ A 7)) is a martingale. As a result,
v(z) = E*O=M(0) = E*O=" M (1) = E"O="g(2(7)),

which expresses the desired solution in terms of the boundary data g. As an example,
take A C U and choose g(z) = 1(z € A). Then the corresponding v has the following
interpretation:

v(z) = P07 (2(1) € A).

U

Given T € (0,00] and a € E, we write D = D,([0,7], E) for the set of z(-) in the

Skorohod space D([0,T], E), such that z(0) = a. Recall that F; denotes the o-algebra

generated by (z(s) : s € [0,¢]). The Markov process z(-) may be regarded as a probability

measure P* on the set D}. We wish to study other Markov processes with laws absolutely
continuous with respect to P*. Note that if Q* < P, and

_ APy
CdQ% 1’
then the process M(t) is a non-negative martingale. We can readily construct positive

martingales that can be used to construct a family of Markov process associated with a
given Markov process. The key to this construction is the F Feynman-Kac Formula.

M(t)

Theorem 2.1 Given a Markov process z(-) with generator L, and a bounded continuous
function V : E — R, define

TY f(z) = E*O= f(g(t)) elo V() ds,
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Then for any f € D,

(2.9) %va TV Ly f,

where Ly f = Lf+Vf.
Proof Given h > 0,

TV, f(z) = E"O= f(z(t+ h)) elo”" Vi) d

IE“)f (t+h))

(h)
= E*© fo (2(s)) (1+th (h)) (f(z(t)) +hLf(x(t) + o(h))
=7}Vf(x)+hﬂvﬁvf+o( )-

Corollary 2.1 For every positive f € D, the process
Ni(t) = flw()) e o 7 ) @,

s a martingale.

Proof Observe that if we choose V.= —Lf/f, then Ly f = 0. For this choice of V' we have
that for every t,

T f@) = f(@),
by (2.9). Using this we can assert
E(N(t) | Fs) =E ( Fla(t)) e V) & 7,
— i Vas) ds gt )(f( (1)) i V() >
- efé' V) & f(p(1)) = N(E),

whenever t < t. O

Remark 2.1 More generally, if f: E x R — Ris C! in ¢, then

STV 1) =TV 0+ L)1)
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and the process

t (Os+L)f

(210) Ny(t) = fae), )8 5 w00 &

is a martingale. 0
As we mentioned earlier, we may wonder what does the measure

(2.11) dQ7 = f(a)"'N¢(T) dPF,

represent.

Theorem 2.2 The measure Q% defined in (2.11) is the law of a Markov process with a
generator of the form
Efg = M — gﬁ.
f f
We sketch the proof in Exercise (v) and (vi). We may also allow the function f to
depend on time and use the martingale Ny of (2.10) in the definition of Q in (2.11):

(2.12) dQ} = f(a,0)""Ny(T) dPF,

The resulting process is again Markov but possibly inhomogeneous with a time dependent
generator £, := £/,

Remark 2.2 Note that for the definition of Q and the martingale, we need to assume that
f > 0. This requirement can be relaxed: When f € Dom is not positive, then we may set

U={z: f()>0}, 7=inf{t>0: z(t) ¢ U},
then we can still talk about the martingale
Nyt A7) = flalt nr)) e 577 F e o
O

A particular important special case is when f € Dom satisfies Lf = 0. The corresponding
Q measure is known as Doob h-transform. The measure Q now takes the form

(2.13) dQ% = f(a)™' f((T)) dP5.
More generally, if we take a time dependent f that satisfies

((9t + ﬁ)f =0,
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then the corresponding process takes the form
(2.14) 405 = f(a,0)™ f(a(T),T) dP%.
The corresponding generator is

L L L ¢
ﬁf(g): (59)_gff: (§Q)+%

Here are some important examples.
Example 2.3(i) Let U be any bounded domain in £ with E countable. Set
T=1y=inf{t>0: z(t) ¢ U}.

Let z(-) be a Markov process in E with generator £. Pick T' > 0 and write Py for law of the
process z(+) in the interval [0,7]. We wish to study the measure

Qr(A) =Pr(A|T<7)=P4(A; T <7)/PH(T <7), A€ Fr.
Consider the martingale M(t) = h(z(t A7), T — t A7) with h satisfying

h: = Lh, t>0, zelU
h(z,0) =1 rel
h(z,t) =0 t>0, zedlU.

We claim

dQr = h(z(0), 7)™ h(x(T AT),T —T A7) dPr
= h(x(0),T)"" h(x(T),0) I(T < 7)dPr
= h(x(0),T)"" (T < 7) dPy.

To verify this, it suffices to show
ha,T) =PiO=(T < 7).
Indeed using the P-martingale M,
PO < 1) = E*O=0 M(T A7) = E“O= M(0) = h(a,T).

The relationship between h and w of Example 2.2(i) is that in the discrete setting,

h(z,t) = Z w(z,t;a).

acU
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Likewise, when F = R? and z(-) is a diffusion,
h(z,t) = / w(z,t;a) da.
U

(ii) Let us assume that the generator £ is symmetric with respect to a measure m(dz). In
this case we may solve the equation u; = Lu by finding the eigenvalues and eigenfunctions
of L. When U is bounded, then the point spectrum of £ consists of eigenvalues

0< A <A<

We choose an orthonormal basis for L?(m) consisting of the corresponding eigenfunctions
wy, W, ..., with

w; =0 on OU,

for each i. For the sake of definiteness, let us assume that x(-) is a diffusion and that m is
the Lebesgue measure. Since for any f € L?(m) we can write

sz ) [ i) ) do

we learn

= Z w;(y)w; ()

This in turn implies that the solution w of (2.8) is of the form

e i) = 3 o))

This means that the function A takes the form

ch w; ( with ci:/wi(y) dy.
U

We wish to calculate
Qx = lim Qr,
T—o0

for the measure Qr of part (i). If this limit exists, we interpret Q, as the probability law of
the process z(-) conditioned to stay in U forever. Indeed for any pair (¢,7) with 0 <t < T,

[ (1), T =)
a0 = [
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for any A € F;. Hence, for determining Q.,, we need to calculate

. h(x, T —1)
lim ——=
T=oo h(y,T)

For this, let us assume that the smallest eigenvalue \; is of multiplicity one. Assuming this,

we calculate N
lim Wz, T —t) _ lim e M Ty, (z) _ e wi ()
T—oo  h(y,T) Tooo e~ MTw(y) wi(y)

From this we learn (1))
dQu| =Mt UL gp|
Q| = Lm0y Tl

This means that we have a Doob transform associated with the function k(z,t) = wy(x)+A;t.
The corresponding generator is

Loof =wi' (L4 M) (wif).

When U is unbounded, we need to understand the behavior of x(-) at co. This is closely
related to the Martin boundary of U. Martin boundary points can be studied by looking at
the boundary point of the convex set

{h:U—>R: h=0 on OU, h>0 in U}.

2.1 Duality

Assume that z(-) and y(-) are two Markov processes with state spaces £ and E’ and gener-
ators £, and L, respectively. Given a function H : E' x E' — R, we say that the processes
x(+) and y(-) are dual with respect to H if the following conditions are true:

(i) H(-,y) (respectively H(x,-)) is in the domain of the definition of £, (respectively L,)
for every y € E' (respectively = € F).

(ii) For every (z,y) € E x E',
(2.15) E* 0= H(x(t),y) = EYO H(z,y(t)).
The following criterion gives us a practical way of verifying (2.15).
Theorem 2.3 Assume that (i) is true. Then (ii) is true iff

(2.16) (LH(-y)(x) = (L,H (z,-)) ().
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Proof Write T, = e“* and T, = e'“v for semigroup associated with the processes x(+) and
y(-). Assume that (2.16) holds. Write u(x,y,t) and a(z,y,t) for the left and right hand side
of (2.15) respectively. Evidently

w = Lyu, u=Lyu, u(zr,y0) =1u(zyt)=H(zy).
By uniqueness of the solutions for the same initial data, we are done if we can show
(2.17) = Lu.
Here is the proof of (2.17):
ig(,y,t) = BV L, H(w,y(t) = B0V L, H(x,y(t))

= / LoH(x,y') Py, dy) = Lo / H(z,y") pily, dy)

= Lyi(z,y, 1),
where pi(y, dy’) = P(y(t) € dy’ | y(0) = ). O

Exercises

(i) Let v : Z* — Z be a nonnegative subadditive function with v(0) = 0 and v(4) +v(—i) > 0
for all ¢ # 0. Recall (i) = —v(—i). Show that v,o € I'(v) and that v* € T'(v) iff ¢ = 0.
Moreover v;, 9 ¢ T'(v) for all i € Z.

(ii) Write A, for the generator of the height differences n € E = {0,1}% in the case of SEP,
and write v for the equilibrium measure associated with density p. Show

/ FArg dvf = / g A f A",

for any pair of functions f,g: E — R that depend on finitely many (n(i) : i € Z).

(iii) Write Ay for the generator of height function h of the v-exclusion process. Recall the
measure fy that was defined in (1.5). Show

/ F AN di = / 0 ANS dun,

for any pair of functions f, ¢ : I'(v) — R that depend on finitely many (h(i) : i € Z).

(iv) Let us write A for the generator of process associated with the gap between particle
in HAD process: If z; = x; — x;41, then the dynamics of z = (zi S Z) € (0,00)% is
Markovian with generator

AF(z) =Y /0 " (F(2) - F(2) da,

i€EZ
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where z¢ is the configuration we obtain from z by changing z; and z;41 to z; —a and z;41 +a,
and leaving other z; unchanged. Show that the product of exponential measures Ae ™% dz; :
1 € Z is invariant for A and find the adjoint of A with respect to this measure.

(v) Suppose that we have a probability measure P on Dy such that for every f € D, the
process N(t) is a martingale. From this deduce that the processes

My(t) = Fla(t) = 1(a(0) - [ £f((6)) ab,
M) = My = [ (£ =2020)(a(0) db.

are martingales. (Hint: Use martingales (Nes @ A € R). )
(vi) Let Q% be as in (2.10). Show that for very g € D, the process

tﬁfg

Nyg(t) = gla(t))e o "a" e ds.

is a martingale with respect to Q7.

(vii) Let £ be the generator of Markov process on a coutable state £ with jump rate c¢(x,y)
as in Example 2.1(i). Given any bounded positive f : E — R, the process associated with
L/ of Theorem 2.2 is a Markov process with jump rate ¢/(z,y). Determine ¢/.

(viii) Let x(-) be a standard Brownian motion in R with generator Lf = 271 f”. For any
C? function h(z,t), determine £". Given y € R and T > 0, define h: R x [0,7] — R by

(z—y)?

Wz, t) = 2n(T — t))~/2 e 20 |

Determine the generator £ in this case and interpret the corresponding Markov process.
O
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3 Determinantal Processes

In Chapter 2 we discussed some basic properties of Markov processes. In this chapter we
explore dterminantal processes that will play central role in our study of TASEP in Chapters
5 and 6, and also for other exactly solvable models. We will show in Chapter 5 below that in
fact TASEP is an example of a determinantal process. As a preparation we give an overview
of determinantal processes in this chapter.

Let X be a discrete (countable) set and write X = 2% for the set of subsets of X. By a
Point process in X, we mean a probability measure P on X'. In other words, a set x € X' is
selected according to the law P. The set X is equipped with the o-field generated by sets of
the form {X ceX: AC X} with A € X. Any point processes in X is uniquely determined
by its correlation functions py : X* — R,k € N; each p, is a symmetric function that is
defined by

PE(T1s s ) :P({$17--~7$k} QX)a
for any distinct xy, ..., 2, € X. Note that if f : X* — R is any bounded function, then
E Z f(xlv"'axk)]l ({mlw":mk}gx) = Z f(xh"'7xk)pk(x17”'axk)a
T1FF T T1FF g

where x1 # --- # x;, means that xy,...,x; are distinct. Another useful probability is the
Janossy density that is defined by

Jea(zy, ..., xx) :IED(AHX: {xl,...,xk}),

for every A € X. Given a finite set A with §A = ¢, we have

l—k

1
(31) pk(xh"'axk) :ZF Z Jk-i—r,A(xlu'"7xk7y17"‘ay7‘)7
r=1 yl,...,yréA
for every distinct zq,..., 2, € A. From this, it is not hard to deduce
=
(32) Jk,A(«Tl;---,xk) :Z T! Z pk+T(ac1,...,xk,yl,...,yr),
r=0 y17-~~,y7‘€A

for every distinct xq,...,x € A.
We also use the compact notation

pla)=P(aCx), Jala)=P(xNA=a).
We can then write

(3.3) pla)= > Jab), Ja@)= Y (~1)Tp(b),

aCbCA aCbCA
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for every a C A. Here we are writing |a| for the cardinality of the set a.

Example 3.1(i) As a simple example, imagine that the variables (]1(90 €Ex): reX ) are
independent with P(z € x) = py(x). Then

p@)=]]m@. Ja@=]]r@ [] @-n®).

aca aca beA\a

(ii) As a simple example, choose f = 1 4 to obtain

E (ANx) = Zpl(x).
TEA
O
Given a symmetric function K : X x X — R, we say a Point process P is determinantal
with correlation kernel K, if

pr(x1, ..., x)) = det [K(a:i,a:j)]k

ij=1
for any distinct 1, ...,z € X. Note that the right-hand side is symmetric by the definition
of a determinant. It is useful to think of K as a matrix for which the rows and columns are
labeled by the elements of X:

K=Kx= [K(m,y)}mvyex.
Then we may write p(a) = ]P’(a C x) = det K,, where K, denotes the restriction of K to
a x a. If we regard K as a matrix, then it matters how we labels points in a. Though
relabeling columns and rows would not affect det K,. Regarding K as an operator acting

on (?(X), then K, corresponds to acting the operator on functions with support in a. With
the latter interpretation, it wouldn’t matter how points in a are labeled.

Remark 3.1(i) Note that if K(x,y) = p1(x)L(z = y), we recover the independent point
process of Example 3.1(i). However in general for a distinct pair z,y € X,

P({z,y} € x) = K(z,2)K(y,y) — K(z,y)* < K(z,2)K(y,y) = P({z} € x)P({y} C x),

whenever K(z,y) # 0. This means that if the matrix K is not diagonal, then the pair
correlation is negative i.e., the interaction between particles is repulsive.

(ii) If K is the correlation function and X : X — R is a function, then the kernel K* defined
by
E(a,y) = Ma) 7 K (2, )M (),
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is also a correlation kernel for the same determinantal process because for any a C X,

det [K’\(a:, y)}wea = det [K(m, y)}wea H Az H Ay det K(x ,y)]x’yEa.

rea yea

Note that if
Kaf(@) = 3" KM@ ), Maf(z) = A@)f(@),

yeX

then Ky = M, 'KCM,. In other words, we obtain the operator K from K by conjugating K
with the multiplication operator M. O

The following elementary calculation will be used in several occasions below.

Lemma 3.1 (i) Let A= A; = [aij]ijel and B = By = [bij]ijel be two matices. Then for
any K C I 7 7

(3.4) det(A+ B) = Z det (xpnrrA+ xrB),

I'CrI

where the (i, j)-th entry of xpB is 1(i € I')b;;.

(ii) Let B be as in part(i), and write 1; for the identity matriz [6;].

iel” Then for any
KclI

(3.5) det (xe +B) = > detBy.

KCIr'cr

Proof(i) Write S; for the set of permutations of the set I. We have

det(A+B) = > e(o) [ [ (tiot) + biew) = D_ (@)D ] iy []biewy

oEST i€l ogEST I'CI el\I' iel’
— Z Z H é I )aw 2 + ]]_(Z € ] )buj(l))

I'CI o€eSy el
= Zdet (X]\[/A + X[/B).

I'cl
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(ii) We have

det (Lgee + M) = Y 2(0) [] (Gion 10 ¢ K) + minis)

o€ST el
= Z Z H w(z K)) Hmia(i)
oeSy I'CI iel\I’ i€l
:Ze Z H(SZUZ Hmzaz
oceSy KCI'CI iel\I' iel’
— Zé‘(o‘) Z ]]-(U|I\I’ :Zd) Hmw(i)
oeSy KCI'CI iel’
= Z Z e(7) Hm”(i) = Z det M.
KCI'CI 7€Sy iel’ KCI'CI
[l
When X is not a finite set, and assuming
(3.6) 1K= K(x,y)* < oo,
z,yeX

sometime it is useful to think of K as an operator K : £>(X) — ¢*(X), that is defined by

= K(z,9)f(y)

yeX

We may write this an integral operator that is an example of a Hilbert-Schmidt operator.
In fact

Proposition 3.1 (i) Let P be determinantal with a kernel K. For any function u : X — R
of finite support,

(3.7) E J](1—u(x)) = det (1 — uK),

TEX

where (uK)(z,y) = u(x)K(x,y). Moreover when u > 0, we may define
(w2 Ku'?) (2,y) = u"?(2) K (2, y)u' 2 (y).
In terms of u'/2Ku'/?,

det (1 — uK) = det (1 — (uM/2Kul?)).
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(ii) Let A be a finite subset of X. We have P(Xﬁ A= (Z)) = det (]lA — KA). More generally,
if Ay, ..., Ag are disjoints finite subsets of X, then the probability

(3.8) P(xN Ay =r, ..., [x "N A =1y),
18 given by
(_1)Z§:1 i 82?:1 i

3.9 det (14 — 21Ky, — - — 2z K

(3.9) [, O og (La = 21K, ala)|
fOT’A:AlL_JUAk

(iii) For every a C A,

(310) JA(a) = (_1)|a| det (HA\a - KA) = det (XA\a(]l — K)A + XaKA>7

where xa(z) = I(z € a).
(iv) Assume that a C A. If K, is invertible, then

Ja(a) =det Ka det (L) .,

and if W4 — K 4 is invertible, then
JA(E[) = det (]1A — KA> det La,

where L =Ly = (1y — Ka) 7' Ka = (14 — Ka)™' — L4

(v) If K is of trace class, then in part (ii) we may choose a set A that is not finite.

Proof(i) Using (3.12) and (3.11),

EJ[a-u@)=1+>_(-D"E > JJul)

TEX n>1 {xl ,,,,, xn}gx =1

=> (-1 <Hu(a)) det K,

aCX aca

=) (1) det(ukK)a = det (1 — uK).

aCXx

(ii) By choosing u = 14 in (3.13) we learn

P(xNA=0)=det (ly — (1aK1,)) =det (14— Ka).
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More generally, if we choose
k

U= E zill 4,

i=1
in (3.6), we obtain

k
E H (Z(l — z) 14, (z) + ]lX\A(x)> =det (I — 21 K4, — - — 2 Ka,).

TEX =1

We then apply the differential operator that appears in (3.9) and evaluate both sides at
z1 = --- = 2z, = 1. For example, when £ = 1, we differentiate both sides with respect to
2z = z1; the left-hand side yields

— Z]E H (1= 2)Ta(z) + Ix\a(2))1(a e xNA),
acX TEX,THa
which is —P(|x N Al =1) at z = 1.
(iii) From (3.5) and (3.4),
Ja@)= Y (1P det Ky, = (1) Y det(—K)y

aCbCA aCbCA
= (=1)Rdet (Laa — Ka),
for every a C A. Alternatively, let us set
K(z,y) = K(z,y)l(z € A\ a) — K(z,y)1l(z €a), or in short K = xaaK — Xxa K.
Then for b with a C b C A,
(—1)lP7al det Ky, = (—1)Pdet Ky, = det (— K),.

As a result,

JA(a) = Z (—1)|b|_‘a|Kb = Z det(—f()b = det (ﬂA\a — KA)

aCbCA aCbCA
= det (XA\a(]l - K)A + XaKA>-
(iv) By (3.10),
JA(a) = det (XA\a(]l — K)A + XaKA) = det KA det (XA\a(]l — K)AKZI + Xa>,
= det K4 det (xaal ™' + Xa) = det(L — K)4 det (L77) ,,

Ja(a) = det (xava(l — K)a+ xaKa) =det(1L — K)4 det (Xava + Xa(lla — Ka) ' Ka)
= det(ll — K)4 det (Xa\a+ Xal) =det(L — K)4 det L.
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O

We now construct some examples of determinantal processes. In the first two examples
the probability of a configuration is given by a determinant and a configuration (restricted
to a finite set when X is infinite) can have a varying cardinality. In the remaining examples,
the cardinality of all configurations is fixed though the probability of a configuration is the
determinant of the product of two matrices of a special form.

Example 3.2(i) Assume that X is finite and let L : X x X — R be a symmetric function
such that, regarding L as a matrix, we have det L, > 0 for every nonempty a C X. (This
condition is certainly true if L is positive definite.) We define a point process on X by

(3.11) P(x =a) = det(1 + L)™' det L.

for every a € X. By Lemma 3.1, (3.18) is a probability measure. We now claim that the
probability measure P given by (3.11) is determinantal with correlation kernel

(3.12) K=LI+L)'=1-1+L)"
Indeed, by (3.5)

p(a) =det(L+ L)™' > det Ly =det(l+ L)™' det (Lae + L)

aCbCX
=det (1 + L)™' (Lac + L)) =det (1 — K) Lae + K) = det (Lo + K1)
Ka 0]
= det [Kac,a Ilac:| = det Kj,

as desired. Here we have used the decomposition X = a U a‘ to express the matrix K in a

block form
Ko  Kaae
K= fenl.

Alternatively we may use a generalization of Cramer’s formula (see Example A1(ii) below)
to verify p(a) = det K,: For K as in (3.11),

det Ko =Y (=1)Pl det (1 + L)), =det(L+ L)™' > (1) det (1 + L),,

bCa bCa
=det(IL+ L) Y (=P D" det L,
bCa cChbe
=det(l1+ L)~ ZdetL Z Pl I(bCa\c)
cCX
=det(l + L)~ ZdetL I(a\c=0)=pa).
cCX
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Here for the first and third equality we used (3.5); for the second equality we used (A.7)
below in the form
det (A_l)a = (det A)™' det Aue;

for the fifth equality we used the fact that if a’ = a\ ¢ # (), then

|a’| 1

b k=0
(ii) More generally, we choose any set Xy C X and define a point process y in the set X,
by the formula

det LaUXS

. _ _ _ c cc - "0
(3.13) Pxy(y = a) = P(x =aU Xj|X; € x) = - — (x, + L)

Note that Py, = P for Xy = X. We now claim that Px, is a determinantal process in X
with the correlation kernel K : Xy x Xg — R, that is given by

(3.14) R=ty-((1n+0)7") .

As in part (i), we may use (3.12) and (A.7) to assert that for any a C X,

det Ko =" (—=1)"! det ((IlXO + L)‘1>b

bCa

= det (Lx, + L)' Y (=1 det (Lx, + L),,

bCa
=det (Ix, + L) Y (=DP 3T det Lo
bCa X§CcChbe
=det (L, + L) > det L Z DP (b Cale)
X§CcelX
— det (]1X0 + L)_1 Z det L. Il(a\c = (Z))
X5CcCX

=det (Iy,+L) > detLe

aUX§CeCX

Z det Lyeup = Px,(a Cy),

aCbCXy

= det (I, + L)

as desired. Note that if we write

LXO LXO,XS
- )
LXS,XO LXg
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and assume that L, I x, + Lx,, Lxg are invertible, then by (A.9) of Appendix B,
-1

Li=(lx,—K) " — 1y, = (((nXO + L)1>XO) ~ 1y,

-1
= Lx, = Lxo x5 Lxe Lixg.xo-

(By approximation, we can show that this formula is valid whenever Ly, is invertible.) As a

result, the process y is also of the type we defined in (i), with the kernel L playing the role
of L:

det L
P =a)= — > ——.
xly =2) det (Ly, + L)

There is also a variational description for L: For every v € (*(Xy),

Lv-v= inf L(v+w)-(v+uw).
wel2(X§)

This is a straightforward consequence of the identity
Lv+w)- - (v+w)=Lx, v-v+ Lxs w-w+ Lx, x¢ v-w+ Lxgx, w-v.

We may regard PP as a Gibbs measure with possibly long correlation. Its potential functions
are simply given by X
U(a| X§) = —logdet La,

where L = L(- | X§) is defined as above.

(iii) For our next example, construct a determinantal process that is defined on
X,={a€cX: |a|=n}.

First we construct a point process with the following recipe: we take a measure y : X —

[0,00) and two families of functions ¢;,1; : X — R,i € N and define a probability measure

n

P(x={21,...,2,}) = Z " det [gbi(xj)}ij:l [¢i(xj>]ij:1 H ()

(3.15) = 77 det [K (2,2)] _, [ wlws).

=1

where Z is the normalizing constant, and
(3.16) K(x,y) =) oia)ti(y).
i=1
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Here we are using (det A)(det B) = det(A*B) for the second equality in (3.15). The normal-
izing constant is easily calculated:

n

Z=@) 3 del IED]TACH W | VICS

= ()™ EE; E(U)E(T)lj[1 ;{qba(i)(%)%(w(wi) puls)
SCApIEC HE;(qb 2t @) (a)
APy e<m-1>ﬁ 3 e rae)
-3 ew)ﬁ >~ o) ),

In summary -

(3.17) Z = det { / i1, dﬂ} :jl .

Note that P(x = a) is still given by a determinant as in (i), except that the support of P is
now X,. A natural question is whether or not P is a determinantal process. Note that the
expression

(3.18) P({z1,..., 2} C x),

equals

n

Z7 =R > det i)y, i)t T w)

Tht1seTn€X i=k+1
=z [(n_ k)'}_l Z [H¢U(] Zj w’r(]) L5 ] [ H Z (boz Z; 2/}7-( xz) ( z)
0,TESn i=k+1z;,€X

To have a more tractable expression, we assume the families {gzﬁ, D1 E N} and {% :1€eN }
are biorthogonal with respect to pu:

(3.19) > dil@)y(x) p(x) = 6.

zeX

39



Under this assumption, Z = 1 and (3.18) equals

(=11 elo)e() [H qsc,(j)(xj)zpr(j)(xj)] Lo=7 on {k+1,...,n}).

o,TESy j=1

For any pair (o,7) € S,, with o(i) = 7(i), for i > k, we have

{0(1), . ,J(k‘)} = {7’(1), e ,T(k:)} = {al, NI S

with 1 <oy < -+ <ap <n. As a result

P({r.mycx) = Y Y @) [H%wu)(xj)w%,m(mj)

1< <-<ar<n o/, 7'€Sy j=1
k

(320) = Z det [¢az (xj)} ;l:1 det [wal (xJ')]j,l:l'

1< <<ar<n

If we write
n

A= [Cbi(-f”j)]zj:p b= [wi(xj)]i,jzl’
then by Cauchy-Binet (see (A.5)), we know that
N = AT(A"B) = (ATA)" (A" B).

In particular
det Cy = det Caq = Y _ det Ap, det By,
bely
This applied to (3.20) yields

P({z1,..., 25} Cx) = det [K(.Ti,$j)]k

ij=1"

(iv) Let us assume that P is still given by (3.15) with no biorthogonality assumption. We
may hope to find ¢1,...,¢, and ¥y,...,1, such that

éiespan {¢17"'7¢n}a ’@iesp&n {wl>"'7172n}7

for every i, and (¢;, V;) = &;;, where (-,-) denotes the inner product of L(y). If this is the
case, then there are coeflicients A = [aij]n . and B = [bij}?]’:l such that

1,J

ng' = Zaz’j%; 1&1 = Zbiﬂ/fj-
j=1 j=t
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Writing A™! = [a ;j]nj and B~ = [b); }n ,» and observing
v) =Y dipdp(n;),  Vil;) =Y bitu(a),
we may write

P(x = {z1.....2,}) = (Zdet Adet B) " det [i(x,)] !, [du(z)]},_, H ()

= 771 det [K(a:i,xj)}ijzl H,u(dxi),

where

) =Y dil@)di(y)

=1

Note that since the pair (QAS, z@) is biorthogonal, we learn that Z =1, or Zdet Adet B = 1.
Moreover
= (¢, ¥y) Z Ay (i o) = Z a3, bj,
k

This means that the matrix C' = [¢;;] satisfies

n

[djk]?,k:1 = (Cil>* = A*B, or djk = Zazjbik.

i=1

This allows us to express K in terms of ¢ and :

(321) Z Q5 lk¢] Z djk¢j )
ijk=1 j.k=1

This expression however is hard to use in practice when n is large because it involves the
inverse of the matrix C.

(v) In the previous example, we could have assumed that u = 1 for the price of replacing

the pair (¢;, ;) with (\/ft ¢i, /It ;). Let us assume that the family {¢;};2,, {¢s}_, are as
in part (iv) and that ¢ = 1. We now claim that the example of part (iv) can be recast as

a conditional determinantal example as in (ii). To explain this, augment the set X to

X={1,...,n}uX=[nUX.
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Define L : X x X — R as follows

®a(b) if a€(n], beX,
L(a,b) = < y(a) if beln], aeX,
0 otherwise.

Expressing L as a matrix, set

¢ = [¢i(x)] (i,2)E[n]x X’ V= [¢i($)](i,x)e[n]xx>

0 &
L= .
Note that since ® and W are not square matrices, it is natural to augment X to X and
consider the matrix L as above that is a square matrix. Given a C X,

_ 0 Pin)a
Lavin) = [(‘I’[n],a)* 0 ]

then

Or as a function,
Laup ¢ (U [n]) x (aU[n]) = R,

given by
®q(b) if a€n], bea,
Laup(a,b) = ¢ () if beln|, a€a,
0 otherwise.

Let us consider a point process x in X with
P(x =a) =det (Ix + L) det Lap,

as in part (ii). We claim that this is the same point process we studied in part (iv) with
pu(x) =1 for all x € X. To see this, first we argue that if |a] # n then P(x = a) = 0. For
this it suffices to show that the matrix Lap, is never invertible whenever |a| # n. Indeed if

v
Layn) [w] =0,

with v € R, w € R/ then

*
a,[n

(I)[n],aw = O, }U = O,

42



and one of these linear equations are under-determined whenever |a| # n. Moreover when

la| = n, with a = {ay,...,a,}, then the determinant of Ly, is calculated as
P 0
det Laup = (—1)" det [ .2 *}
o 0 (Vpla)

(-1)” det [qbi(aj)}zjzl det [¢i(aj)]zj:1,

which yields (3.15) after a normalization. Recall that the correlation kernel K is given by
(3.14). According to our calculation, K is also given by (3.21). It is instructive to see that
(3.14) yields (3.21). For this, we first need to invert

0 &
(322) Iy+ L= |:‘IJ* ]1)(:| .

Observe that if dU* =: C = [Cij]?jzl’ then

Cij = Z Gi(w) () = (P, ¥;),

rzeX

which is exactly what we had in part (iv). To invert 1x + L, observe

a a
a5 = [3].
means ®b = o’ and U*a+b = b'. Multiplying the second equation by ® implies Ca+a’ = ®b'.

This in turn yields a = C~'®¥ — C~'a’. From this, we can readily deduce

—C! C-1o }

—1
(3.23) (Lx+1L) = [xp*(]l Ix — U*C~1d

As a result
K=tx—((x+L)7") =1x— (1x—w'Co) = vco,
which is exactly what we had in (3.21). Observe that if ® = C~'® with

o1 by
o=|:|, o=|:
On S

9

then R R
QU* =1y, & € span{ds,...,on},
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for every i € [n].

(vi) As our next example, we discuss a determinantal process that was studied by Eynard-
Mehta. Assume X = X; U--- U Xy, and set

X(n)={x: |[xNX;|=n for i=1,...,N}.
Given functions ¢;,¢; : X7 = R, i =1,...,n, and
WX, x X — R, i=1,...,n—1,
we consider a probability measure on X'(n) such that
(XﬂXl {Zl,...,Z}L},...,XﬂXN:{Z{V,...,Zi\/}),
equals
N—1

(3.24) Z7' det [¢;(= det [W k“))}” L det [1h;(z )}” .

=1 %, j
k=1
Here Z is the normalizing constant, and we are assuming that the above expression is non-
negative. The interpretation is that the collection the sequence z!,. .., 2" is described by an
initial law for 2!, a Markovian kernel W* (z", z”l), and a final (conditional) law for the last
state zV. Note that P is as part (iii) or (iv) when N = 1. We now follow Borodin-Rains
[BR] to show that P is determinantal and it can be formulated as in part (ii). As in (iv),
we set X = {1,...,n} U X, and consider a matrix L : X x X — R defined by

®q(b) if a€ln], be Xy,
L(a.b) = —W"(a,b) if a€ Xy, b€ Xpyr, k=1,...,N—1,
’ y(a) if beln], ae Xy,
0 otherwise.

Expressing L as a matrix, we have

(0 & 0 0 0 |

0 0 —-W! 0 0
L= L

0O 0 0 0 Wh-1

T* 0 0 0 0 |
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Given a; C X1,...,ay C Xy,

0 D)o 0 0 0
0 0 — ;ha? 0 0
La1U-~UaNU[n] =
0 0 0 0 ... —Wa{\;—_lhaN
| (Vpgay)” O 0 0 ... 0 |

Let us consider a point process x in X with

P(xNX;=ay,...,xN Xy =ay)=det (]lX + L)_1 det La,u...uayun]s
as in part (ii). We claim that this is the same point process we defined by (3.24). To see
this, first we argue that if |a;| # n for some ¢ = 1,..., N, then ]P’(x =aU--- UaN) = 0. For

this it suffices to show that if a = a; U---Uay, the then the matrix Ly, is never invertible
unless |a;| = -+ - = |ay| = n. Indeed if

LaU[n] € =0,

with v € R”, w € R2v! and e € Rl for i =1,..., N — 1, then
(3.25) Ppjaw =0, Vg 0=0, Wk ek =0,

ag,ar41

for k = 1,...,N — 1. Clearly if |agy1| > |ag|, then the last equation in (3.25) is under-
determined and has non-zero solution. So for the invertibility of Ly, we must have

la;| > [ag| > -+ > |an].

On the other hand, if |a;| > n, the first equation in (3.25) is under-determined. Hence the
invertibility of Layp, forces n > |a;|. Finally if |ay| < n, then the second equation in (3.25)
is under-determined. Thus the invertibility of L, implies

Under this assumption, let us write a; = {a’i, - ,aﬁ}. Then the determinant of Ly is
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calculated as

(Dpjay, 0 0 ... 0
0 Wi, 0 0
det Lap = (=1)™V TNV det | - SR . :
0 0 0 ... Wi 0
|0 0 0 ... 0 (Vpan) |
N-1

= (—1) 0 et (@), T det [WH(ak 57, det [wi(a)]7
k=1

which yields (3.25) after a normalization. Observe that if
M :=oWw?h. w1y

then the normalizing constant Z in (3.24) is simply det M.
To find the correlation kernel K, we first need to invert

[0 @ 0o 0 ... 0 0

0 1y, —W' 0 0 0
Ix+L=1|: : SO : :

0 0 0 0 ... ly,, —WN!

0 0o 0 ... 0 Ix,. |

To invert this matrix, we first write it as

0 A
(3.26) ]lX+L_{B* D},
where
A=[® 0 0], B=]0 0 V],

Iy, -W' 0 . 0 0
3.27 D=1|: i 1
(8:27) 0 0 0 ... ly,, —WN!

0O 0 0 ... 0 lx,

Note that if we replace D with the identity matrix, then (3.25) becomes (3.22) and we already
know that the inverse is given by (3.23). On the other hand,

I, 0 ][0 A1 [ o A
0 D7'||B* D|” |D'B* 1y
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is of the form (3.22) with inverse

—-C! CtA
D7'B*C~! 1y - D 'B*CtA|’

with C = AD~1B*. This in turn implies

0o Al [ —c! c1A 1 0
B* D| ~ |D7'B'C™' 1x-D'B*C'A|l |0 D

ot C-1AD-!
(3.28) = [D—lB*C—l D1 — D—IB*C—lAD—l} '
As a result
(3.29) R=1y— ((nX + L)ﬂ) 1y — D't DB CIAD,
X

For this, we need to find D~!. Observe that since D = Ilx — E with EV = 0, we have
D'=1x+E+E*+ -+ E""

We may write E = [§;41,;W’) 7];\;:17 with the entry (i, ) representing a matrix of size |X;| x
| X;|. We can then write

E" = [5i+r7jW[i,i+r)]j\]j:17 where W[/L'J'Jrr) = WiWH_l e Wi—i_r_l.
This leads to
Ix, Wpaa Whpsy .. Win-y Wi
(830) D= T SN IS N 78
O O 0 e ]1XN—1 W[N—l,N)
0 0 0 . 0 Ix,
Moreover
0
C=AD7'B*=[® Wy Wi ] ol = Wy m ¥ =M
W*
0 0 0 0
B'C'A=BM"'A= (M1® 0 0] = : ,
0 0 . 0
v U*M~1d 0 0
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where the last matrix is regarded as N x N matrix with (7, j)-th block of size | X;| x |Xj.
If we write D™ = [Rij]évjzl with again (i, j)-th block of size |X;| x |Xj|, we learn that the
(i, 7)-th block of D™'B*M~tAD~" of the form

RiNU*M ' ®Ry; = Wi \yU* M OW)y ),
with the convention that Wy ;) = lx,. Finally
K=D"'B*M'AD™ - W.
Its (4, j)-th block is given by
Kij = Wiy UM oWy 5 — Wi, 16 < j).

We note that for every i € [N], the point process z' = x N X; is also a determinantal process
with correlation kernel

Ky = Wiy U M1 0Wy 9,
with M = ®Wy vy P*. Writing
Dy =Wy, U =W;nVPr,

we realize that M = ®; U7, and
Hence the law of z is of the type that appeared in part (i). More generally,
}?ij = \I/Z(Milq)j — W[Z’J)H(Z < j)
Assume that W is invertible for all i and set
Wiy == Wi,

for i > j so that Wj; ;yW[;;) = 1. We then always have
ij = Wi (K55 — 100 < 7).

(vii) Let us assume that n = 1 in (vii), W* = P, and X; = X for all i. The configuration
x = (z1,...,2x5) € XV is roughly the state of Markov chain with Markovian kernel P(z,y),
initial distribution related to ¢, and some conditioning at time N that is related to :

N-—1
]P)( ) zZ" gbxl prmxz-‘rl
=1
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We assume that P, ¢, > 0, and

Y Py =1, Y oy =1,

yeX yeX

for every x. Then the (i, j)-th block of the correlation function K is now given by

Rylwy) = MY PV (a,a)(@)d(0) P (b,y) — PP (2, y) (i < j)

a,beX
= M (PN (2) (P71 (y) — PP () (i < ),

where M = Z is the normalizing constant:

M=27=oPV'0" = Y P¥(a,b)¢(a)i(b).

a,beX
Note that if P is invertible, then
Kij = Pj_i(ij — I]_(l < ]))
To see this, write f; = PY~"0* and g; = ®P~!, so that
Ky=M"1fi@g,— P~ < j)= P~ [M' P(f;®g;) — 1(i < j)]
=P M (P fi®g) — (i < j)].

On the other hand, o o . ,
P f = PRIPNT = PN =

as desired.

We now consider two special cases. For our first case, we assume that ¢ = 1, so that P
is simply the law of a Markov chain of size NV with kernel P and initial law ¢. In this case

PrU* =1, M =1, and K;; simplifies to

Kij(z,y) = (6P (y) — P77 (2, y)1(i < j).

For our second special case, we choose ¢(z) = I(z = @) and ¢(y) = L(y = b). Then
P represents a Markov chain that is conditioned to start from a initially, and arrive at b at

time N. Now the normalizing constant is
M =27 =P " '(a,b),
and I?ij takes the form
Kij(w,y) = 271 PY7i(a,b) P (ay) = P ()L < ).
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(viii) We describe a determinantal process that is very much related to TASEP (see Chapter
5) and was studied by Borodin et al. [BFPS]. We assume there are countable sets X7, ..., Xx
and a collection of functions
Wr: Xex X1 =R, k=1,...,N—1,
’inXi—>R, @Z}Z‘SXN—>]R, i=1,...,N.
Consider a point process z that lives in the set
X=X U---UXy,
such that z N X; = 2% with 2' = {2{,..., 2/}, |z'| =i and
N-1

(3.31) P(z) = Z7" v (z)) H det @y (2", 25 det [v;(2))]

N
1,j=1’

where Z is the normalizing constant, and ®,(z*, 25*1) is a (k + 1) x (k + 1) matrix that we

obtain from the matrix [Wk (zf, ZJ]'CH)Le[k],je[kH} by adding a row (say as the last row) of

the form

Va1 (Z7) o= [ (Z17), e (201) -

We now claim that the point process given by (3.28) can be recast as part (ii). For this, we
set X = [N]U X and define L : X x X — R as follows

k+1

dai Vi(D) if ac[N],beX;, i=1,...,N
L(a,b) = ~W*(a,b) it ae Xy, be Xpq, k=1,...,N -1,
7 Vi(a) if be[N], a€ Xy,
0 otherwise.

Expressing L as a matrix, we have

[0 EB' E* E* ... EN
o 0 —-wt o ... 0
L=1]: : : : )
0 0 0 0o ... —Wwh-!
0 0 0 ... 0 |
where U = [@/}i(:ﬂ)}iem sEXy and F; has only its i-th row nonzero. Given a' C X;,...,a"¥ C
XN7
[ 0 Bya Eme By Einjav |
0 0 — ;17a2 0 . 0
La1U-~~UaNU[N] = : : : " " :
0 0 0 0 ... —wii.~
| (Unpav)” 0 0 0o ... 0 |
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Let us consider a point process z in X with
(332) ]P)/ (Z ﬂ X1 — al, P ,Z ﬂ XN = aN) = det (]1X + L)il det LalLJ"'UaNU[N]?

as in part (ii). We claim that this is the same point process we defined by (3.31). To see
this, first we argue that if |a’| # i for some ¢ = 1,..., N, then P(a' U---Ua’) = 0. For this
it suffices to show that if a =a' U---Ua", then the matrix Lan) is never invertible unless
|a’| =i for alli =1,..., N. Indeed if

with v € RY, and ¢! € R for i = 1,..., N, then
(3.33) Z Elya€ = Wi g€ =0 Why v =0,

for k =1,..., N — 1. Note that the last equation is under-determined unless [a"| > N. If
we write _
= (nb): bea’)e R,
then the first equation in (3.33) means that ¢’ - e’ = 0 for i = 1,...,N. For i = 1, the
equation c!-e! = 0 is under-determined unless |a| < 1. Moreover, for k = 1,..., N — 1, pair
of equations
ck:-‘rl i ak:-i—l — O, Wkk’ak+1ek+1 — O,

a

is a system of |a*|+1 equations, and this system is under-determined unless [a*™| < |a*|+1.
From this and |a'| < 1 we deduce |a*] < k for k = 1,...,N. This, and |a"| > N yields
|la¥| = N. From this and |a**!| < |a¥| + 1, and a backward induction (starting from
k = N) we can readily show that |a*| = k for k = 1,...,N. In summary, P'(z) = 0
unless |z N X;| = |a*| = k. Assuming this, we now examine det L, n. Let us write
a® = (2f,...,2f). Observe that E' = ~;(2}). Also observe that the second row is the vector
(0,0,72(2%),72(23),0,...,0). We place this row below ~W2 . and drop the minus sign.
This action turn the matrix —W? to ®,(a',a?). Similarly place the k-th below —W:kvakﬂ
and drop the minus sign. From all these actions we deduce

0 1(21) 0 0 ... 0
0 0 @y(a',a?) 0 . 0
det LaIU---UaNU[N] - :l: det : . :
0 0 0 0 Py_i(a¥t aV)
(Tinjav)” O 0 0 0 |



This matches P except for the normalizing constant. To find the correlation kernel K, we
first need to invert

[0 E' E?2 E3 ... EN-1 EN
0 Ly, —W' 0 ... 0 0 0 4
0 0 0 0 lx, , —WN-!
0 0 0 0 lx,

where D is as in (3.27), and
A=[E' E* ... EN], B=[0 ... 0 ¥].
Then (Ly + L)_1 is given by (3.28) with C'= AD~!B*. This in turn implies
K=1y-D"'+D'BCAD™".

as in (3.29) with D7! as in (3.30). Observe

ADT' = [E' E'Wpoy + B ... SNEWN + EV]
W[LN)\IJ* W[l,N)
W[gyN)\I/* W[2,N)
Win_1,n)¥* Win-1,n)
I s | i Win.n i

where we use the convention Wj;;) = 1x,. On the other hand,

(3.34) C = AD™'B* = AB* = Ay U™,
As a result,
(3.35) K=TWCA-W, Kj=WnUC A —1(i < )W,

where K;; : X; x X; — R denotes the (i,)-th block of K. Here I' : X x Xy — R,
C :[N] x[N] - Risan N x N matrix, A; : [N] x X; - R, and A : [N] x X — R, so that
the right-hand side of the first display is from X x X to R. In practice, the main challenge
comes from inverting C' (compare with part (vi) and (v)), or more specifically, evaluating

CI)]' = C_lAj : [N] X Xj — R.
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Note that for sure we have
DU = CTTANT = C7IC = 1.
In other words @y is a left inverse of W*. O

We continue with some general facts about determinantal processes. The following result
is due to Shirai and Takahashi [TH]:

Proposition 3.2 Assume that K : X x X — R is symmetric with 0 < K < 1. Then there
18 a unique determinantal process with correlation kernel K.

Proof (Step 1.) Let M, M’ : Ax A — R be two symmetric matrices such that MM' = M'M,
and M, M’ > 0. We then claim that for every a C A,

(3.36) det (xa\aM' + xaM) > 0.
By continuity, it suffices to establish (3.36) when M > 0. Indeed

det (xa\aM' + xaM) = det M det (xa\aM'M ™" + xalla) = det M det (M/Mfl)A\a.

On the other hand, since M’ > 0, M > 0, and
M/M—l — M—I/QM/M—I/Q Z 07

we deduce that det (M’M '), which in turn implies (3.36).

A\a’

(Step 2.) Fix a nonempty finite set A C X. Motivated by (3.10), we define P4 : 24 — R by
the formula

Pa(a) = det (xava(l — K)a + XaKa).
From (3.36) we learn that P4(a) > 0. Moreover, by (3.4),

Z]P)A —det (H—K)A—FKA):l

aCA

As a result, P4 is a probability measure. On the other hand, we may use (3.10) to assert
that for any ¢ C A,

PA(ai Cga) :Z Z (—1)Pl-lal g, = Z 1)Pl=lel iy Z 1)lel- Ia\]l CCaCb)

cCa aCbCA cCbCA
= > (PR, Y (—p = Y ()P R, 1(b\ ¢ = 0) = K.
cCbCA a’Cb\c cCbCA
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Hence P4 is the law of a determinantal process with correlation kernel K 4.

(Step 3.) We are done if we can verify the consistency for the family (P4 : A C X). Indeed
if a C A C A, then the restriction of P4 to A yields a determinantal process with kernel
K 4 which coincide with P4. OJ

In fact Proposition 3.2 is closely related to Example 3.2(i). Given a determinantal process

with correlation kernel K, we may wonder whether or not it is as in Example 3.2(i) for some
L:X x X — R. In view of (3.12), we may try to find L for which (3.12) holds:

(3.37) L=(1-K)'-1=(1-K)'K.

This is certainly well-defined if 1 — K is invertible. In particular whenever K < 1 holds.
If we assume that 0 < K < 1, then the corresponding determinantal process is a Gibbs
measure (possibly with long correlation) as was observed by Shirai and Takahashi [TH].
Roughly speaking, we need to calculate

P(x =aU{y}) Y P(xNY =(aU{y})NY)

P(x=a) vox PxNY=any)
where Y is a finite subset of X that increases. O
When K is symmetric and 0 < K < 1, then we may use the eigenvalues A\ > Ay > ...
and the corresponding eigenfunctions ¢y, ¢s,... to express
(3.38) K(z,y) = Z Nidi(z)dily) = Z )\z‘(¢z‘ ® ¢i) (2, y),
i=1 i=1
D dilw)gy(x) = (i = j),
zeX

where n = |X]| is the size of the space X. It was observe by Hough et al. [HKPV] that
the total number of particles have a simple description in terms of the eigenvalues: If we
write (1, (o, - . ., for a sequence of Bernoulli random variables (i.e., with values in {0, 1}) with
P(¢; = 1) = \;, then N = |x| has the same distribution as ) . (;. In particular, if K is the
correlation kernel for a determinantal process such that N is fixed and deterministic, then
we much have that there are exactly N many eigenvalues 1, and the remaining eigenvalues
are 0. In this case, (3.38) becomes

(339)  K(zy) = ¢i@)oily), Y éil@)s(x) =1 =), ij€{l,.... N}

zeX

In short
K =90, OO* = ISR
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where ¢ = [qﬁl(x)] ()€ [N] X X This means that the kernel K is associated with the projection

operator onto the span of the eigenfunctions ¢y, ..., ¢y, and

P(x) = (det [@(mj)]fj:l)z

The projection operator K is uniquely determined from its range Iy = span{¢i, ..., on}.
In other words, if X is a discrete set and L*(X) is the set of functions f : X — R and
equipped with the inner product

(f.9) =) f(x)g(x),

then there is a one-to-one correspondence between determinantal point processes with sym-
metric kernel of exactly N particles, and N-dimensional linear subspaces of L*(X). Given

such a subspace, any orthonormal basis {¢1,...,dn}, yields a representation as in (3.39).
Let us write Pyy for the corresponding probability measure and x = {xy,..., 2y} for the cor-
responding determinantal process. It is worth mentioning that x = (xy, ..., xy)-coordinate

of the N-vector ¢1 A --- A ¢y is exactly
(1 A Aon)(x) = det [¢i(x5)].
Hence Pri(x) = (¢1 A+ A dn) (%)%

Proposition 3.3 Given distinct point a := {ay,...,ax} C X, with 0 < k < N, and an
N-dimensional linear subspace 11 = Iy = {qbl, e ,¢N}, we have

(3.40) IP’H( - lacC X) =Py,
where 11 is the orthogonal complement of

Hk: = Spa’n{K('acLl)? s 7K(‘7ak)} = {717 s 77]@}7
with K as in (3.39).

Proof Given x, let us write

where 0,(b) = 1(a = b). Obviously
From this and Gram’s identity (A.6),

Py (x) = det [K (z;,7,)]

. det [<%’7ﬁ'>}§j:1 = }71 A /\7N|2 = |H<59E1 A A H(SmN}Q.
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Let IIy_; = Iy N~y Also write Ky_; for the orthogonal projection onto Ily_;. Set
(; = Kn_17;. Evidently,

NAVRAN AN =71 AGQA - AlN.
From this and Gram’s identity, we deduce

A
0

"71/\'72/\"'/\'7N|2:|’71/\C2/\"'/\CN‘2

0
= det { |71|2} = |71 [2 det A,

where A = [(¢, Cjﬂi\;_:ll On the other hand, since

G =Ky = KN—lKN(Sxi = KN—l(Sxia

we learn o
det A = det [KN,l(a:i, xj)hjzl
As we fix zy and vary xy_1,...,z;, we deduce that the process {x1,...,zy_1} is a point

process associated with the linear subspace [Iy_1 = IIy_1(zx). In summary

(341) PH(X) = |’71|2 ]P)HN—l(IN) ({ZE17 e ,lL‘N_l}) = ]P)H(QIN € X)]P)HN—l(xN) ({l’l, e ,ZEN_l}) .

This implies (3.40) when k& = 1. The general case can be established by an induction on
k. O

So far we have assumed that K is symmetric. For a non-symmetric K, we may use
left and right eigenfunctions to guarantee biorthogonality. More precisely, we search for a
collection of pairs ((gzﬁz-, i) i=1,... ,n) such that

Koy = Xigi, oK = Nt

The point is that if \; # \;, then (¢;,1;) = 0. We may try to find a representations of K as

(3.42) K = Z Ai(6: @),
> dilw)y(x) = (i = j).

In the case of a constant size N for the configuration, the analog of (3.39) is

N

i=1 zeX
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This is exactly our example Example 3,2(iii). The operator K is a projection onto Iy, the
span of ¢y, ..., ¢n. Let us also define Iy := span{iy, ... ,¢¥n}: For every f € L*(X),

Kfelly, (f—-Kf) LI,
K elly,  (f—fK)LIy.

In fact the operator K = Ky is uniquely defined by the the property:
fel*X) = Kfelly, fKeclly,

Note that the second condition is equivalent to (f — K f) L ITy.) As a consequence if
N

(3.44) Mcll, Wcll = Kagp Knw = Knw Kqg = K.
and we write K and K for the corresponding projection, then
Observe
(KE)wy) = 3 K@ 2K S e

i,5=1 =z

= > oi@)ily) = Ka.y).

Also observe

ZK(x,x):N

In fact the operator K is determined uniquely by the two N-dimensional subspaces IIy and
IT’y. Once they are given, we then select a basis {¢1, ..., ¢y} for Iy, and find ¥4, ...,y €
IT%y such that the second equation in (3.40) is true. This specifies ¢y, ...,y uniquely. We
write Py for the corresponding determinantal process.

The following construction of the corresponding point process x gives a Gibbsian flavor
to such determinantal process:

Step 1. Pick a point # = z according to the probability measure N 'K (z, z).
Step 2. Take the complement of v,(z) = K(z,x,) in Iy:
My ={felly: f—melly}.
Define Ky _; as the ¥-projection onto Iy _;.
Step 3. Pick xx_; according to (N — 1) 'Ky _(z, z).

Step 4. Continue inductively to construct the sequence zy, ..., x;. 0
The above algorithm produces the desired determinantal process because of the following
generalization of Proposition 3.3.
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Proposition 3.4 Given distinct point a := {ay,...,ax} C X, with 0 < k < N, and an
N-dimensional linear subspaces

M=1Iy={¢1,....on}, W' =Ly={¢r,....,0n}
we have
(3.45) Pr(- |acCx)="Pgi
where T1 and is a suitable complement of

Hk = Span{K('aal)’ SR ,K(‘,U,k)} = {r}/h s 77]&’}’
with K as in (3.39).

Proof Given x, let us define v; = 6, K, v, = KJ,,. We certainly have

<7177] Z <Z ¢r Z; ¢r ) (Z Qbr 1/17«/ X ) = K(I‘Z,l’j)

T r'=1

From this and Gram’s identity (A.6),

N N
Pri(x) = det [K (x;, xj)}m.:l = det [<%’7;'>L,j:1 = (YA ANV A YD

Set
Oy_y =1y N(vy)*s, Iy, =1y Nay.

We also define K_; for the projection associated with the pair (HN_l, H’N_l). We now set
G=Kn_17i= Kn_1KN0,; = Kn_104,, G =7Kn-1=7%Kn 1Ky =0, Kn_1,
where we have used (3.44) for the third equalities. Evidently,
NAVA - AYN=nAGA AN, YAV A AV =T AN Ay
From this and Gram’s identity, we deduce
(MARA - AWNAABA AN =AYV A AN AG A Aly)

/
= det {wlb%) SJ = |y1|* det A,

where A = [(¢, C’ﬂ . On the other hand,

N-1
1,j=1

det A = det [KN_1(96‘¢, x])}
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As we fix zx and vary xy_1,..., 21, we deduce that the process {z1,...,zx_1} is a point
process associated with the pair of linear subspaces (ILy_q,IIy_,) = (ILy_1(zn), Iy_; (zn)).
In summary

(3.46) Pry .y, (%) = (v, M) Py en)ary @ex) {2155 2n1))
=P, (25 € %) PHN_I(xN),H;V_l(xN) ({z1, .., 2N-1}).

This implies (3.44) when k& = 1. The general case can be established by an induction on
k. O

Exercise
(i) Verify (3.3).

(ii) In Example 3.2(vi) consider the following scenario:

o X, = 27 is the set of even integers for ¢ even, and X; = 2Z+1 is the set of odd integers
for ¢ odd.

° Xi:{(zl,...,zn)eX[L: zl<~-<zn}.
o All W* = P are equal with P(a,b) =p_1(b=a—1)+p,U(b=1a+1).

o ¢i(r) =1(zr = q;) and ¢;(y) = L(y = b;) for some (ay,...,a,) € & and (by,...,b,) €
Xy .

Given z = (zl,...,zN), with z' = (24,...,2)) € X, i € [N], 2 = a,z" = b, set

=7 Hdet Hl)Lk .

(1) Show that if det [P(z%, ,ﬁfl)} , # 0, then

det [P( H—l HP H—l 7

]kl ]’J

and PP is the law of n walks that are conditioned on non-intersecting, and z' = a, z"¥ = b.

(2) Show that the corresponding M is [PN~!(a;, bj)}szl.

(3) Show that for each 7 € [N], the point process z’ is determinantal with correlation kernel

N
Ki(z,y) = Y PY7(2,b) M~ (b, a) P (as, y).
r,s=1
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(4) Conclude that the point process z is of the same type that appeared in Example 3.2(v)
—i N i N

for @ = [PV (x,br)}?“:1 and ¥ = [P 1(ozs,y)}s:l.

(iii) Let X be a discrete set. Assume that x1,29,...,2,,... is a Markov chain in X with

initial distribution 7, and transition matrix P : X x X — R. Assume that this Markov
chain does not visit any point twice so that the matrix

Q=> P
k=1
is finite. Let x = {z, : n € N} be a realization of the above Markov chain. Express the

correlation function of x in terms of () and show that x is determinantal with correlation
kernel

K(z,y) = m(z) + (7Q)(z) — Q(y, v).
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4 SEP and Bethe Ansatz

Totally Asymmetric Exclusion Process (TASEP) is a particle system on Z that belongs to
KPZ universality class. It is an exactly solvable model and has been used to obtain various
information about solutions to KPZ equation. For a finite TASEP with exactly N particles,
we may choose the state space

EN:{X:(l‘l,...,SL’N>€ZN: x1<~~<xN}.

The process x(t) is a Markov process with the infinitesimal generator

Lf(x)= Z ]l(Xi € EN) (f(Xi) - f(X))7

%

where x; denotes the state we obtain from x by moving the i-the particle from its location x;
to the new location x;+1. It is also useful to think of x; as the height above i so that the lattice
function ¢ — x; is a strictly increasing function. The height differences (;(t) := x;11(t) —z;(t)
evolve as a Markov process and is an example of a family of particle systems known as Zero
Range Processes. TASEP is exactly solvable because there is a rather simple explicit formula
for its tansition probability that was derived by Schiitz. This derivation is based on a useful
trick known as Bethe Ansatz that by initiated by Bethe for some classical models in quantum
mechanics. To explain this, let us write P(x,t¢;y) = P(x,t) for the probability of x(t) = x,
conditioned that x(0) = y. Then P, as a function of (x,t) solves the forward equation

(4.1) P,(x,t) = L*P(x,t) = Z 1(x' € Ex) (P(x',t) — P(x,t)),

where x’ denotes the state we obtain from x by moving the i-th particle from its location x;
to its new location z; — 1. The proof of (4.1) is a consequence of the identity

> Z L2+ 1< 241) f(x:) P(x) = ) Z 1(wi < 2 — 1) f(x)P(x").

Let us define
Df(z) = f(z—1) = f(z).

We also write D; f(x) when we apply D on the i-th variable x;. According to Bethe Ansatz,
there is an extension Q : Z¥ x [0,00) — R of P: Ey x [0,00) — R, such that Q solves the
free equation

N
(4.2) Q=) DiQ:=DQ,
=1
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subject to the boundary equation
(4.3) x € By, x'¢ Exy = D;Q(x,t)=0,
for every i € {2,..., N}. In other words,

Q(..,oi—Lizy,....t) =Q(...,x, x4, .., 1),

whenever (...,2; —1,2;,...) € Ey. The point is that when the boundary condition (4.3) is
satisfied, it is harmless to add

]1(%' = Tjy1 — 1) (Q(Xi+1a t) - Q(X> t))’

to the right-hand side of (4.1), because it is 0 when x € Ey. Indeed if @ satisfies (4.2) and
(4.3), then P, the restriction of @) to Ey, satisfies (4.1). Indeed for every x € Ey,

P(x,t) = Qi(x,t) = DQ(x,t) = Z D;iQ(x,t)

1(x' € Ex))DiQ(x,t) + Y _1(x' ¢ Ex))DiQ(x, 1)

1 i=1

-

(2

-

1(x' € Ex))D;P(x,t) = L*P(x,1).

(2

Here we used (4.3) to assert that each summand in the second sum on second line is zero.

In summary, we now need to solve the free equation (4.2) for the price of some boundary
conditions given by (4.3). Schiitz found an explicit formula for (4.2)-(4.3). We arrive at this
formula in 3 stages:

(i) We first ignore the boundary equation and derive an explicit formula for solutions to
the free equation (4.2).

(ii) We replace the boundary condition (4.3) with a simpler boundary equation, namely
we kill (t) as it exits E. This has the same flavor as Example 1.3 and we derive an
explicit formula for its solution.

(iii) What we really have in (4.3) is a Neumann-type boundary condition. After all by
suppressing jumps that would take x outside Ey, the configuration stays inside Ey for
all time. We modify our formula in (ii) to satisfy the requirement (4.3).

Remark 4.1 It is worth mentioning that when we have to solve u; = Lu in a domain U
with some boundary condition, we first find eigenvalues and eigenfunctions of £ in U and
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use them to to write down an expression for u. When U is bounded (or the dimension is
finite), then we only need to consider the point spectrum of £. When £ is symmetric, we

have a discrete set of eigenvalues \; < --- < A\; < ..., and the corresponding eigenfunctions
can be chosen to form an orthonormal basis. However, since the set Ey is unbounded, we
are really dealing with the continuous spectrum. 0

(i) We first solve the free equation:

p(x,0) = I(x =y);

The solution of (4.4) is simply given by

(4.4) {Pt(& t) =Dp(x,t), >0,

d

(4.5) p(x.t) = [[ plwi — i, 0),

=1

where p(z,t) solves

(4.6)

pt(x,t):p(l’—l,t)—p<x,t>, t>07
p(z,0) = 1L(x = 0).

We already know what the solution is because x4 (t) is simply a Poisson process:

tl’
p(z,t) = = e "i(x >0).
x!
We may also solve (4.6) with the aid of Fourier series: Indeed if

o0

p(z,t) = Y plx,t)2",

T=—00

then
th(Z,t) = (Z - 1)¢(Z7t)a SD(ZaO) - 17
which leads to the identity ¢(z,t) = e!*~1). As a result,

27 )
plt) = (2m)! / eI g = (2mi) ]{ st g,
0 |2|=1

where the last integral is a contour integration over the unit circle |z| = 1. This circle may
be replaced with any positively oriented contour v about the origin. In summary;,

(4.7) p(z,t) = (27ri)_1jl{z_x_16t(z_l) dz.

v
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solves (4.6) for any positive contour  with 0 inside . More generally, if

(4.8) {pt@% B =plx— 1) —pla,t), >0,
p(z,0) = p°(2),

then

w =i 2

where

P(2) =Y p(w)z".

€L

Alternatively, we may solve (4.9) by separation of variables. For any z € C\ {0}, the
function x — 27" is an eigenfunction of D associated with the eigenvalue z — 1. Similarly

the function
N
Zq
[1="
i=1

is an eigenfunction for the operator D = ). D;, associated with the eigenvalue

D (- 1).

=1

Hence z~%e!*~Y solves (4.8) with initial condition z=®. On the other hand the eigenfunctions
satisfy

(2mi) ! é 21 s — (3 = 0),

which explains why (4.7) is true. O

(ii) We next search for a solution R of (4.2) for which the boundary condition (4.3) is
replaced with zero Dirichlet boundary condition:

(410) X € EN, Ti1 =T; — R(X,t) =0.
Recall that by Example 2.2(i), we may interpret R as
R(x,t) = P*O=¥(a(s) € Ey for all s € [0,t], a(t) =x),

where a(-) is the random walk generated by the generator D.
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For a start, let us assume that N = 2. The solution we found in (i), namely p(xy, z2,t) =
p(x1 — y1,t)p(xe — yo,t), does not satisfy the boundary condition (4.9) because

p(x1,21,t) = p(z1 — y1, )p(w1 — Y2, t) # 0.
Now imagine that we can find a function g(z1,x2,t) such that solves (4.2), and have the
following initial and boundary conditions:
q(r1,71,t) = p(w1, 21,t),  q(21,22,0) =0,
whenever 1 < x9, and t > 0. Then
R(z1,x9,t) = p(x1, 29, 1) — g1, T2, 1),

does the job. In fact for ¢ we may choose

q(x1, 2, t) = p(x1, T2, 6 Y2, 1) = p(@1 — Yo, £)p(22 — 11, 1),

because y; < yo which implies that (z1,x2) # (y1,y2), whenever 1 < z5. In summary, when
N = 2, we simply have

3
R(z1,w2,t) = p(z1 — yr, )p(x2 — o, 1) — p(w1 — yo, )p(2 — y1, 1) = det [p(z; — y;, )]} .

Now it is easy to guess the form of R for general N:

N

= e(o)p(x.t;oy) = det [p(z; — Ui )]y

where the summation is over the permutations of {1,..., N}, and oy = (ya(l), .. ,yU(N)).
Indeed R solves the free equation (4.2) because each p(x,t;oy) is a solution; it satisfies the
initial condition because when = € Ey and ¢ is not identity, then oy ¢ Ey, and we have

p(x,0;0y) = I(x = oy) = 0;

and it satisfies the boundary condition because when x; = x;,1, we have two equal columns
in the matrix det [p(z; — yj, t)]ivjzl.

The formula we have obtained for R is due to Karlin and McGregor. It is worth men-
tioning that there is nothing special about random walk in our formula for R; we could have
replaced p(z — y,t) with any kernel p(z,y,t) of a Markov process in Z and derive the above
formula for the probability of non intersection up to time t¢.

We may use our representation (4.7) to write

R(x,1) = (2mi) f ]{det N LD gy de

7]1
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—zi+y;—1
%

. —z;+y;—1 .
instead of z: "%, However the function

Note that we could have used z g

det [zj_m#yj_l]fj:l;

has the advantage to be an eigenfunction of D in domain Fy with 0 boundary condition.
The corresponding eigenvalue is again ) _,(z — 1). OJ

(iii) We now turn to the equation (4.2) with boundary condition (4.3). We first focus on the
case N = 2. If we try p(zy,xs,t), it fails the boundary equation as before. We may search
for a solution Q(x1,xs,t) of the form

_get | P =ynt) g (@ = ys,)

1 — Y1, )p(xe — Yo, t) — q (21 — Yo, t)q (22 — 1, t
P(l n )p<2 92) Q(l Y2 )Q(2 ?/1) q+(x2—y17t) p(xg—y2,t)

9

for function ¢© with the following properties:
e ¢F solves (4.7).
e Either ¢~ (21 — y2,0) =0, or ¢" (22 — y1,0) = 0, whenever x; < x.
o Q(x,z,t) =Q(x,x + 1,t).

The latter means

d%{ﬂm—mi)q(x—miq:dm{ p(x —y1,t) q(%—wi)}
¢ (x—w,t) plx—yat) ¢ (z+1—y,t) pla+1—yot)|’

Equivalently

det p(e =y, 1) ¢ (z —ya,1) —0.
gt +1—=y,t) —q (@ =y, t) plx+1—yst)—px—ys,t)

We may achieve this by choosing ¢* so that

pla,t) = =(¢"(a+ 1,t) —q*(a,t)), ¢ (a,t) = —(pla+1,t) = p(a,t)).

(The minus sign in the definition of ¢* is selected to avoid a minus sign in (4.14) below.)
We may define (pn(x, t): ne€ Z) by the requirements:

(4.11) po=p, Pu(@,t) =—(porr(z + 1,8) = pps1(z,t)).

In terms of p,’s we have ¢& = py4, and

po(x1 —y1,t) p_1(x1 — Y2, t)
412 29, ) = det
( ) Qo z2.1) © pi(z2 —y1,t)  po(x2 — Yo, t)
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Starting from py = p, and using (4.11), we certainly have
(4.13) pon(z,t) = (2mi)~" f 21— 2 Y g,
Y

for n > 0. (Here v is any positive contour that includes 0 and 1.) Moreover, once p, is
determined for n > 0, then we may define p,, .1 by

(4.14) o1 (,1) an Y.t

This and (4.7) yield
(4.15) po(x,t) = (2%@)_1%2_”_1(1 — 27 et gz,
v

for n > 0. In comparison with (4.14) we deduce that (4.15) is true for all n € Z.
Motivated by (4.13), we set

N

(416) Q(X7 t) = det [pz—](xz — Y, t)} ij=1"
We may use our representation (4.7) to write
. AN N
(4.17) Q(x,t) = (2mi)~ j{ 7{ det mﬁyﬂ ( - zj_l)]ﬂ} et =1z Hdz]
ij=1 ,
7j=1

Observe that the function
N

w(x) = w(x;y,z) = det [ Tre (1 - zj_l)jz]i’j:l,
is an eigenfunction of D in domain Ey with Neumann boundary condition (4.3). The
corresponding eigenvalue is again  ;(z; — 1).
Theorem 4.1 (Schiitz) Let x(t) be the standard TASEP. Then for every y,x € Ey,
P(x(t) = x|x(0) = y) = Q(x, ;).

Proof (Step 1.) To show that Q(x,t) = Q(x,t;y) solves (4.2), it simply use the fact that
that p, satisfies (4.5). For the boundary condition, take any x with x; 1 + 1 = x;. Then

D;iQ(x,t) = det P — t)]j-v:l [pizj(@i —y; — 1,t) — pij(2s — yj, t)]jv:l
= det BE [pl (i — yy,t)];v . [pZ i — Yy — 1,t)};.\7:1 ]
= det o [pz —j—1 xz 1= ij } [pz —j—1 xz 1= yjat)}jvzl :| = 07
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as desired. Alternatively, we may directly verify the boundary conditions for the eigenfunc-
tion w: If ;1 + 1 = x;, then D;w(x) equals

j j i1 J J J i1

det [ B [Zfzi_1+yj—1(1 _ Z'l)j—i+1:|N |:(Z‘—$i+yj . Zfzi+y,7—1) (1 o 211)j—i]N B }

= det { .. [z-_xi’ﬁyj_l(l — z-*l)j_iﬂ] " [zj_x#yj (1 — z;l)j_iﬂ} " .. ] =0.

J J j=1 j=1

(Step3.) For the initial condition, we need figure out how each p, behaves initially. From
po(z,0) = L(x = 0), (4.11), and an induction on n, it is not hard to show

(4.18) r<-n or >0 = p_,(r,00=0, and p_,(—n,0)=(-1)",
for every n > 0. On the other hand, with the aid of (4.14) and induction on n we can show
(4.19) >0 = pp(z,0)=0,

for every n > 0.

We wish to show that if Q(x,0) # 0, then x =y and Q(y,0) = 1. If x; —y; > 0, then
x;—y1 > 0 for all ¢, and this implies the first column is 0 by (4.18), contradicting Q)(x, 0) # 0.
On the other hand, if z; — y; < —1, then x; — y; < —i, which in turn implies that the first
row is zero by (4.18), contradicting again Q(x,0) # 0. As a result, x; = y;. We also have
pi(z; —y1,0) = 0 for ¢ > 1. This implies

N
Q(x,0) = det [pi_j(xi -, O)L,j:T
We are now in a position to apply the above argument to x5 < --- < zy and yo < -+ - < yn
to deduce that 9 = y,. Continuing this manner, we deduce that x =y. O

We now turn to general SEP. Recall that the jump rates to the right and left are given
by A and 1 — \. Let us define an operator D : Z® — Z® by

Df(x) = (1 =N (f(x+1) = f(@) + A(f(z — 1) = f(2)).

This operator is the adjoint of the underlying random walk in SEP. We also write lA), f(x)
when we apply D on the ¢-th variable x;. Set

N
i=1

As before let us write P(x,t;y) for the probability of x(¢) = x provided that x(0) =y. We
wish to find a function Q(x,t;y) that extends P to Z~. As before, Q solves the free equation

(4.20) Q. = DQ,
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such that if x € Ey, and z;_1 + 1 = z;, for some ¢ € {2,..., N}, then
(421) )\Q( L1, X5 — 1, t) + (1 - )\)Q( L1 1,.%‘2‘, t) — Q( ey L1, Xy, t) =0.
We wish to derive an explicit formula for (). We prepare for this derivation in three steps:

(i) For z € C\ {0}, the operator D has an eigenfunction of the form 2% corresponding to
the eigenvalue e(z) = Az + (1 — \)z~! — 1. The equation

{pt(a:,t) = ﬁp(a:,t), t>0,

(4.22) p(z,0) = 1(x = 0).

has an explicit solution of the form
(4.23) p(z,t) = (27mi) " j{leete(’z) dz.
g

solves (4.22) for any positive contour ~ that encloses 0.

(ii) We make an ansatz that the solution @ of (4.20), with boundary condition (4.21) takes
the form

N
(4.24) (27ri)_NZ ]{ . .jI{ZA(J zZ Hza St Hee 2tdz;,
o Y 7 o =1

where z = (z1,...,2y), and the summation is over the permutations of {1,..., N}. In the
case of TASEP, we simply have e(z) = z — 1 and

H 1—20(1 i.
=1

We wish to find A(c,z) for general SEP. We start with the case N = 2. There are two
permutations id = (1,2), and 0 = (2,1), assuming that A(id,z) = 1, and simply writing
A(o,z) = A(z) = A, our candidate for the eigenfunction reads as
Zl—w1+y1—122—332+y2—1 + Azl—w2+y1—lz2—w1+y2—1 — Zzln 1232 1(21—331Z2—$2 + AZI—mZQ—zl)
= T (e, 1),
We would like to choose A so that the eigenfunction w satisfies the boundary condition:

O0=(1—-MNw+1,z+1)+  w(z,z) —w(z,z+ 1)
:(1_)\)( l—a; 1 —a: 1+Az—x 1 —a: 1) +/\(Zl—z22 —|—A21x —a:)
— 2] 2y U — AT 1 257

=" T T MA+ Doz + (1= A)(A+1) — Az — ).
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This leads to the choice
(]_ — )\) — 21+ )\2’122

(]_ — /\) — 29 + )\2’1227

A= —

which coincides with what we had when A = 1. We also note that the corresponding solution
() now takes the form

Q(x1,29,t) = p(x1 — Y1, )p(T2 — Y2, 1) — (21 — Y2, T2 — Y1, 1),
with ¢ a solution to the free equation that has no longer a product form.

(iii) We now turn to the general case. Our candidate for the eigenfunction is now

G(x)=G(xy,z ZA o,% H fﬁy"(” !

We wish to choose the coefficients A(o,z) so that the boundary condition
Here z; + 1 = x;41, and (4.26) holds if

_ f:l:fl z—1 —z—1 T —x —x
0 _(1 - /\) (Alz (7) U(z+1) + A2ZO’ z+1) o(i) ) + )\(Alza(z 0(z+1) + AQZU(i+1)ZU(i))

— Az iy — A2% ) et

:Z;(:g)_lz (i+1) ()‘(Al + A2)zo (i) Zo(i+1) T (1 — A) (A1 + A2) — A1zo(i41) — AZZU(Z'))7

where A; = A(o,z), and Ay = A(70,z), with 7,0 is the permutation we get from o by
interchanging o (i) with o (i + 1). This equation means

é _ _)‘ — Zo(i+n) t (1 - )‘)Za(i)za(i-i-l)
Ay A= Zo(i) T (1 - A)zo(i)zo(zﬁrl) '

To satisfy this, we may choose

[Tie; (A = 2ot + (1= N)zo(i)20(5))

Theorem 4.2 (Tracy-Widom) The function Q given by (4.24) with A as in (4.26) satisfies
(4.20) and (4.21).

(4.26) A(o,z) = ¢(0o)

70



Exercise

(i) Define h : RY — R by

h(x) = H (x; — ;) = det [xf_l]?szl,

1<i<j<N
write hy(x) for the corresponding h where instead of 21, ..., zy, weuse 1, ..., Tg_1, Tht1,---, TN-
Show
N N
hix) = (=) Y (=1)Fa)  hy(x), Y (=D)faphi(x) =0,
k=1 k=1

forr=0,1,..., N — 2. Use this and an induction on N to show that Ah =0 and Dh = 0.
When N = 2, determine the processes associated with D" and A”.

(ii) Given o € (0,1), define a discrete time Markov chain on Z" such that (z;(t) : i €
{1,...,N}) are independent, and

P(z;(1) = z|2z;(0) =y) = (1 —a)l(z =y) + all(z =y + 1).

Write
Tf(y) = EXO7 f(x(1)).
Show that Th = h for h as in part (i). O
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5 TASEP as a Determinantal Process

In Chapter 4 we learned that the distribution of x(¢) can be expressed as a determinant
in the case of TASEP. We now would like to show that in fact TASEP is a determinantal
process. This means that even

P{{ai,...,ar} C {z1(t),...,an(t)}},

can be expressed as determinant for any aq,...,ay € Z with a1 < --- < a;. Our interest in
such probabilities stems from the fact that we are ultimately looking for the certain scaling
behavior of x as N — oco. To achieve this, we need some preparations. Let us relabel our
particles from right to left; we set

A

Ti = TN41—i; Yi = YN+1—i-

This new labeling is particularly advantageous if we have infinitely many particles that are
bounded above and we wish to approximate it by a finite configuration. Our first result is
due to Borodin er al. [BFPS] and can be established with the aid of determinantal process
we studied in Example 3.2(viii). In Theorem 5.1 we show that the point process X is
determinantal. Note that X is a point process of size N in Z. Once a set a C Z with |a| = N
is specified, we label the points of a in a decreasing order to recover Ty > Ty > --+ > Iy.
However we would rather think of x as a point process in [N] x Z. The point is that when

we evaluate
P ({(ni,a1),..., (g, )} C {1, 21(2)),..., (N,zn(¢)}),

we have more information by specifying the labels of our k particles.

Theorem 5.1 For each t, the law of the process X(t) of a TASEP is determinantal with
correlation kernel K(t) = K : ([N] x Z)2 — R, given by

J
K((i,2), (G,9) = =& (2,916 < 5) + ) i(@)ei(v),
k=1
where ¢(z,y) = L(z > y), i(r) = (=) "pr_i(x— i, 1), and @l(-) is a polynomial of degree
at most j such that ‘ A
>_eh@i(@) = 1k =0),

TEZ

for all k, ¢ € [j] and every j € N.

It is worth mentioning that the very form of K is compatible with our expectation as
formulated in (3.46). We first use an idea of Sasamoto to rewrite Schiitz’ formula in a more
suggestive way. The only ingredient for Sasamoto’s derivation is (4.14). Let us write

EN:{(zl,...,zN)EZN: z1>--->zN}.
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By slight abuse of notation, we write P(x,t) for P(x,t) as we switched to X.
Recall

po(Zn —dn,t) .. pnsr(En — 1.t
P(x,t) = det : :
py-1 (21— gn,t) oo poldr—Gu,t)
by applying (4.14) twice to the last row, and once to the penultimate row, we obtain
pO(Zl — YN, ) s P- N+1(Z1 =1, )
G PGH= DD et pyy(Fgnt) o poaled it
25228221 25>23 pN_g(Zg’ — QN,t) con o po(28 =t
pN—3( 25— gn,t) ... poa(Z — i, t).

Here the first sum is over (22, z3), the second sum is over z35, and we have written 2% for Z;.
Note that if 22 < z3, then we have

2 < 25 < 25, zi§z§<z§,
which is symmetric in (23, z3). This means that we can swap 23 with 23 and the set trlplet
(22,25, 23) on which the summation is performed is not changed. However swapping 25
with 23 is equivalent to swapping the last row with the penultimate row, which result in
changing sign of the Corresponding determinant. From this we learn that the contribution
of those triplets (23, 23, 23) with 25 < 23 to the sum is zero. As a result, we may restrict the

summation in (5.1) to those triplets (22, z3, z3) such that
(5.2) Zs >z >, 28>z >z
When N = 3, we now have a representation of the form

pO(Zl ?J?nt) p- 1(21 yg,t) p- 2( - ?31775)
P(x,1) Z det | po(25 — gs,t) p- 1(2’1 Jo,t)  po(23 — G1,t)
2€GT5(x) po(28 — G5,t) po1(2 —Us.t) poa(2d —Gn,t).
Here GT3(x) is the set of (23,25, 23) such that (4.2) holds, and 2% = #; for i = 1,2,3. The
inequalities in (5.2) are related to the celebrated Gelfand-Tsetlin pattern.
More generally, we define

GTN:{(z?: 1<i<j<N)eZ -z

2

N(N+1)

D2l < 2N <2y for (i,n) with 1§i<n§N}

For N > 3, we repeat the above procedure to obtain

Po(Zl yN,t) P—N+1(2{V—§1,t)
P(x.t) = det : - :
0 zeC%(f() pO(Z%—I_QNvt) cee P- N+1( i\ ?)1,?5)
N A
p()(ZN_yNat) cee P- N—i—l(zN ylat)a
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where the summation is over (zf c1l<i<j< N) and

GInx)={z€GIy: 2 =%; fori=1,...,N}.
In short,
. N
(5.3) P = Y det [pl S =y, )] .
2€GTN (X) =
Note that if 2% = (zf, cee z,’i), then 2* € Ej,. The configurations z*~! and z* are interlaced:
Foric {1,...,k—1}, wehave 2F < 2! < zF .. If this is the case, we simply write zF7! < zF.

Remark 5.1(i) As our first reaction to (5.3), we may wonder whether or not there is Markov
process z(t) such that its marginal x(t) = (2{(¢),..., 2" (¢)) is a TASEP. The most natural
candidate for the evolution of the triangular array z(t) is as follows: Each z; has a rate one
Poisson Clock for its jumping times to the right, with these clocks all independent. However
the jump of 2% is suppressed whenever zF+1 = zk ! and when the jump of 2¥ is materialized,

all particles with
k+r k+1 _ _k
Rigr T T Rl T R

are pushed to jump as well. For example the generator for N = 2 looks like
EF(zf,z%,zg) :ﬂ(zl +1< Z1) [F(zl +1 zl,zz) — F(zf,z%,zg)}
+ Il(zl < 22) [ (zl,zl +1 22) — F(zf,zll,zg)]
+ Il(zl = 22) [F(zl,zl +1,22+ 1) — F(zf, z},zg)}
+ [F(zf,z%, zg + 1) — F(z%,z%, zg)] .

The triangular array process z(t) = (zf(t) : 1< j <k, 1<k<N) enjoys the following
properties:

e The left side (z{ ci=1,... ,N) is evolved as a TASEP.

e The right side (z} ci=1,...,N ) is evolved as a pushed collection of random walks.

When a particle 2! is jumping to the right, any other particle Zg ,Jj > 1, that shares the
same site as z! jumps with it.

(ii) Given a = (ay,...,ay) € Eg, we can show

N-1 \ !
(5.4) H{ze Gy : 2z} =a forz'zl,...]\/'}:< j!) A

Jj=1
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where

Ay(@) = ] (a—aj) 1(acEy).

1<i<j<N

It turns out that the function h = Ay satisfies Dh = 0. The restriction of Ay to Ey is
a positive “harmonic” function with zero boundary condition. This function is very much
related to the (Martin) boundary point co of Ey. The Ax-Doob transform of Dy (with
generator ]D)ﬁN is the Markov process we get from the independent walks that are conditioned
on never meeting in finite time (reaching the boundary oo at time o).

(iii) Borodin and Ferrari show that if z initially starts from a packed configuration (i.e.,

2zl = —j—1+1i,1 <i<j < N), the dynamics of its marginal x = z; = (2,...,2") is
the Dy-Doob transform of free particles. This Markov process is known as Charlier process.
The same applies if we take any horizontal line 2% = (zf s =1,..., k:); it is Ag-Doob

transform of the free walk in E,. Moreover, the pair (zk, zkil) is an example of intertwined

processes. In fact once the law of z*(¢) is known, then we can determine the law of 2*~1(¢)
in a Markovian fashion. The Markov kernel is given by

_ Ak—1(2k71) _
A£71(2k7zk 1) = (k — 1)!Wﬂ(zk 1S zk)
Let us define
(Tk 1f Zf -t AZ 1 7 _1)'

Sh—1

We also write Dy, for the generator of the free motion in Ej and (i) for the configuration
we get from z* by moving the i-th particle to the right. For 2* € E},

O 1) () =Y Y () A = (0 (40, ) - A ()

i=1 k-1 )

Sy YA MO (1 ) a4 24

=1 Zk 1

k A k \ k=1, ko1yy Dno1 (25 k k-1
(T D) =3 3 () - p() Ay oy

SIS MUERT BVERIES et SR

To establish Theorem 5.1, it suffice to show that the process z is determinantal.
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Theorem 5.2 The point process z = (2',...,2V) is determinantal in X = X; U--- U Xy
with X1 = --- = Xy = Z and each 2z a point process in X; for i € [N]. The correlation
kernel K : X x X — R has (4, j)-th block K;; : X; x X; — R of the form

(5.5) Kij = —¢'1(i < j) 4+ U} ;®;,
with ®;,V, ; : [j] X Z — R, where

\Iji,j(k’x) = ¢2(I)’ (I)j(k’x) = SOZ(:E)’

with ¢ and ¢ as in Theorem 5.1.

Proof Observe i

Il(zk =< zk“) = det [11 (zf > zf’l)} ,

ij=1

k+1

provided that 2z < 2F, 2F € By, and we set z,’jﬂ = 00. Using this, we can show

k+1

(5.6) (z € GTy) = H det [ 2F > zkH)] :

3,j=1

provided that 2 < - < 2} ' A
If we write Ayn(x ) for the set of triangular array ( 7.1<1<5< N) such that z{ = z;
for j=1,..., N, then by (5.6),

det [pr (N —p0)]

3,j=1

k+1

(5.7) Z H det [ 2F > zkﬂ)]

Z7j:
ZEAN )

where Ay (x) is the set z € Y/

such that 2¢ = &; for i =1,..., N. Observe

N N

det [p1 i(& y],t)] = (=D)TI det [(_1) Tpij (2 yj,t)}

4,j=1 i,j=1

_ (_1\N(N-1)/2+|N/2] _1\N—J.,. N ) N
= (-1 et [(~1) Fpyn (2 —nerpt)]
N

= det [(— )] Dj— N( y],t)]“ )

tj=1
because N(N —1)/2+ | N/2] is always even. From this and (5.7) we deduce

N

det v ()] .

4,7=1

k+1

(5.8) -y Hdet[ o2 |

7‘:1
2eAN(R) k=1 J
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where :
o(x,y) = oz —y) =Wz >y), (@)= (=1""pj_n(z —§;,1).
This is very much an example of the point process we examined in Example 3.2(viii) with
XIZZXsza Wk($,y):¢<$,y), ’)/Z(I) =1
Recall

271

1 —n
pul(z,t) = — ]{z_x_l(l — 2z et 4z
v

with v any positive contour including 0 and 1. In fact for n < 0, z = 1 is no longer a pole,
and we may choose 7 any positive contour that includes 0. Recall that for all n, we have

Prsa(w,t) =Y paly,t

y>x
However, for n < 0, we also have
(59) pn+1 xz, t an yv
y<z

Regarding p,, = pn(-,t) : Z — R as a function on Z, (5.9) means

OPn = ~Dnt1s O Dap1 = —Pn,
where ¢~ = D, is simply the operator

Dy f(z) = fle+1) = f(z).
To take advantage of this, let us write
Pi(a) = (=1 piale — g5,1), W= Wf(l')]je[k],wez-

Clearly,
(5.10) zk = ¢ = [W( )}zel,je[k]'

As we demonstrated in Chapter 3, the probability measure P is determinantal with correla-
tion kernel that is given by K as in (3.35). In other words

N *v—1 7
(5.11) K=[K],,,=TUC A=W,
where K, ; : X; x X; — R is the (7, j)-th block of the matrix K. From (3.34),
(5.12) Kij = —1(i < )¢/ 7" + VU CIA;.
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with & = \I]N = \I/N’N, C = CN = AN‘II*, and

J
Aj - Z Ek(ﬁ]ik.
k=1
Here we have used the fact that W ;) = ¢~ because all Wk’s are equal to ¢. Note that by
(5.10),
(5.13) NI = NI = U
On the other-hand, for p(x) = 1(z > 1), we can inductively derive

(x—1)...(z—k+1)
(k—1)!

P (2) = I(z > k),

because

dDly-1. (y—k+1)=k" (x—1)...(z—k),

that can be verified by induction on z. From this we deduce

(514 oo = (") aez e,

We now turn to A;. First observe
Ek(z,x) = 0y ll(ax > ) = dipp(ag, ),

where aj, = 2}, ,. Even though aj = oo, we would rather think of it as a fixed finite point.
After all we only need to calculate det Ljnj, for a finite configuration z; for such a finite
configuration any sufficiently large ax can serve as zj,,. After this interpretation, we take
n € [N] and = € Z, and observe

(ZE%J 'f) S b e )

k=1 y
(5.15) =1(1 <n<j) ¢ " an, x).

Observe that each A;(n,-) is a polynomial of degree j — n.
If we define A [l x Z = R by A, i(n,x) = ¢ "(a,, z), then

A = {/ﬂ .
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This implies

(A9 5) (n,m) = (1 <n <) Y& " (an, y) ¥ y(y,m)

)
< NV n(an, m)
S j)(_l)m_n+1pm—n+1(an - @m t)'

1
I

1<n
1<n

In particular

N

n,m=1"

(5.16) C=Cyn=[(-1)"""prns1(an — Gim, t)]

Recall

T

t
p0($7t) = ;]1(37 Z O)a pk—l(l‘7t) :pk(x7t) _pk(;E + ]-7t)

From this we learn
E<0 = pg(oo,t)=0.

Since we may send a, to infinity, we learn that the matrix Cy is upper-triangular. From
this and Cramer’s formula for Cy' we learn that C' is also upper-triangular.

_|Cn Ch 1 |RBu R
C“{o 022,]’ ¢ _{0 Rzm}

with Ry; and Cj; matrices of size j X j, and Ryy and Chy matrices of size (N — j) X (N — j).
As a result Ry, = Cfll, and

~

i [Ru Ri)[A)]  [ont A
CAJ_{O R22H0 B

We may write C; for C1;. Indeed if we switch from N to j, then the matrix C}; is the
corresponding C-matrix. From all this we learn

g =i | TN
with C;! Kj : 4] X Z — R. Observe
\I,ZN = [\DZ]’ *] )
with ¥, ; : Z x [j] = R. From this we deduce
. N x =1 N
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If we write

(518) (I)j = Cil Kj,

J
then (5.17) can be written as
(5.19) Ky = —1(i < )/ + 670D,

with & satisfying
©;0; = 1p).
We set '
o (z) == P,(k, x).
From (5.15) and (5.18) we learn that each ¢ (z;j) is a polynomial of degree at most j — k
because the matrix Cj_l is upper triangular.We may write

(05,9;) () = > Wik, 2)®;(k,y) = > h(2)eh(y).
k=1 k=1

In summary

(5.20) Kij(z,y) = —1(i < j)¢’ " (z,y) + kil/};i(x)wi(y)?

with i

(5.21) Z; o (x)p () = O,

for every k, ¢ € [n] and n € N. 0

We now introduce some notations that would help us to simplify(5.19). Let us write
Dyf(z) = £(f(z £1) — f(2)).
Observe that ¢! =D, , D = —ID_, and recall
V(@) = (=1 Pl — G, 1).
Now writing Py(z,y;t) = pr(x — y,t) and regard it as a kernel /operator, we have
(=1)"¢"" Py = Py,

Hence

V() = (0" " Po) (2, )
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On the other hand,
P, (x,g}k) = (etm%k)(x) = (etDégk)(x).

As a result,
(522) wk (bk n t]D)(Sy t]D) k— n(sym

because kernels associated with ¢*~" and e’ depend on z—v and convolution is commutative.
This suggests defining ©,, : Z x [n] — R such that ¥* = ¢?O,,, and

O, = [¢" " (x|

:vEZ,kE[n]‘
Recall that ¢~ = D,. We wish to find ®,, that is a left inverse of ¥*. For this, we find H,

so that (bn = Hne_t]D)a with Hn = [h;ﬂ ke[n],xEZ;

(5.23) Z W (y)e ™ (y, @), Zsok yin)e'™ (y, ).
This means that now H, satisfies H,©, = 1), or more explicitly,
Oke =Y hi(@)d" " (@, 9e) = (hid"™") (Ge)-

tD

We note that the operator e ' = P~ the inverse of e!” is well-defined:

eth,y:et I(x > y) =: R(x —vy), e_th,y: I(x >y
@)= T ez y) = Bl =y, Py =c 1@y
Indeed,
~ v (=t -1 .
(R R_y)(z) = =1(x=0)+ Lz > 0) ()~ (t — )" = L(z = 0).
(-l
We wish to find (h : k € [n]) with the following properties:
(1) (hio"™)(9e) = L(k = 0);
(2) hy is a polynomial of degree at most n — k.
Note that since (gb’l)* = —D_ = D is a discrete differentiation, the requirement (2) is

equivalent to the assertion that D"*A? is a constant. This constant must be 1 because
(D”_kh};) (g)k) =1, by (1). In other words,

D" *hy =1,
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for k € [n]. To determine A}, we use the requirement (1). More precisely, we fix k and n,
and determine uniquely the polynomial h} of degree n — k such that the following n — &
conditions are satisfied:

(5.24) D"FpR =1, (Dn—’f-lhg) (k+1) =0, (D" *2R0) (Ghr2) =0, ..., hi(Ga) =0.

This can be achieved inductively in the following fashion: If for some integer ¢ € [k, n), the
function g, := D" *h? is determined, then we find g, := D" “"1h? by solving

Dget1 = 9o, Gor1(Pes1) = 0.

(The second condition also follows from (1) because ¢ + 1 > k.) We may display the
dependence of A} on y by writing hZ(~; yg+1), where y}!, | = (Z)k+1, - ,yjn). Because of this,
we may also write V;(z,y;y7,) or simply V;(z,y;y) for Vj(z,y). Note that A} = g, and

(5.25) W (§) = 0.
provided that & < n. By (5.24), we also know
(5.26) hy = 1.
We can now express our correlation kernel in terms of © and H:
Kij = Kij(t) = ¢ (K — 1(i < j)), Kj; =€ Ve ™.
where ‘
j

Vi(z,y) = (0;H;) (x,y) = > ¢ (, )i, (y).

k=1

Observe that since ¢ and e commute, we always have

(5.27) Ki(t) = e Vige ™.
Evidently
dK;:(t d
) _ 4 (0,79) = 2 (DY, ~ V, D)
In other words,
dK;;
(5.28) o = DI — KyD.

Since D and ¢* commute, we have
DV;; — VyD = ¢’ (DV; — V;D).
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By the definition of 7,
Dhi (Z/; k41 - - - 7@3‘) = hi_l (y; Ukt1s - - - 7193‘—1)-
Since (¢7!)" =D, We have
BV = Vi1,
We now study V = K(0), which has
Vij = Kij(0) = ¢ (Kj; — 1(i < j)) = ¢/ (V; — (i < j)),
for its (7, 7)-th block. Also note that for j < n,
Vij =" Vo " = L(i < j)¢

This means that V and K are determined from V.
Needless to say that V should serve as a correlation kernel for a point process that is
concentrated on a single configuration, namely y. We will verify this directly.

Theorem 5.3 (i) The operatorV is the correlation function of the trivial point process that
is concentrated on the single configuration y.

(ii) For each r, the operator 0,Vy is rank-one. Moreover

(529) Qr"i_l:grfl? 1 §T<N - VN(may;yr) :VN(-T,y;S’)-

(iii) The function Viy(x,y;y) satisfies DyViy = [D, Vi ].
As a preparation, we explore some of the properties of the polynomials hi. We define
Taf<x> = f(l’ + CL), 7A-aF(y) = F(Tay)a

where 7,y =y —a = (1 —a,...,ynv —a). We also set

A -

B(9) = B (s 05) = BL0:9).
To ease the notation, we also define
0,F(3) = F(5) ~ F(3).
Proposition 5.1 The following statements are true:
Q) DR (v Dkgrs -5 05) = R (Y Dgrs - -5 G ), forr € {1,..., 5 — k}.
(i) 7 (y;9) = 1 (7).
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(iii) We have

‘ hzil(gr_'_1;gk+17'"7@T*1)h¥(y;g7'+17"'Jgj) k+1 <T<j7
(5.30) Ol (y;y) = —.h{cﬂ(y; Ukt2,-- -5 Uj5) kE+1=r,
RN+ LGy s G5o1) r=].

(iv) h‘i satisfies the Neumann boundary conditions: If §._1 = 4. + 1, and r > k + 1, then
o.hl = 0.

(v) We have the following (anti)duality relationship
(5.31) Dyl (y;9) = i (y:§) = Iy + 1;9).

Proof (i) and (ii) follow from the definition and the elementary identity 7,0 = Dr,.

(iii) We only verify (5.30) when k+1 < r < j. Set g(y) = h.(y;¥,) — hlL(y; ¥). We certainly
have A ’ . ’
DV g =0, D" (k) =DV g (Gkan) = - =D g (Gm1) = 0.

This inductively implies
Dy = DI hlg = Dik-2g — ... =PIy —
Hence ¢ = D""¢ is a constant, and ¢’ = ¢ !¢ satisfies
D¢ =1, Dj_r_lgl(@rﬂ) == Dg,(ﬂj—l) =g (@g)
Hence ¢’ = h{. On the other hand,
¢ = hi(y; ) = hi(y; ¥) = hi(Grs 7) — D (95 y) = hig(r3 37)

= hql;@hyv") - hZ@T + 1?5’?’) = Dhql;@r + 1 yr) = hzil(@r +1; S’r)
=h (0 + 1),

as desired.
(iv) Clearly, if §,_1 = ¢ + 1, and r > k + 1, then

h?l@r +1;y) = h}:l@rfl;ﬁkﬂ, ooy Up1) =0,
by the definition 27 ~'. This and (5.30) imply 9,h], = 0.

(v) Define
Try - (gk—i-l - 17"'7@7’ - 17?)T+1""’@j)'
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Note that (TTy)T = T,_1y. Hence by (5.30) and part (ii),

hi (y, Trfly) - hi (y, Try) = hql;il (gr; Try) hi(y, S’)
=0 G — G — 1o O — G — DR (43 y)
=0 (0 + 1Y) (YY) = Ol (v53)-

By summing over r = k4 1,..., 7, we arrive at
(5.32) Dhi(y;¥) = hi.(y:9) = hi.(y; 1y),
which is equivalent to (5.31). O

Proof of Theorem 5.3(i) (Step 1)The main ingredient for the proof is the following:

N ¢ (@, ) Ui > j), y = Ui
5.33 V((2,2), (J = Vij(z,y) = L . A
(5.33) ((1,2),(G,v)) (z,9) {_W (i< i), z<i
First note that by (5.26)
(5.34) Vila,y) =) ¢" (@, g) Zcbk g (y) + 1w = g5).
k=1

Let us write (7f)(x) = f(z + 1) so that 7' =D, = 7 — 1. We certainly have
¢ ) (
o) = L0 ()t = o0 () uw =+ o)
=i s=0
From this and (5.14) we learn
(5.35) reZ,r—a<r = ¢ (x,a)=0.

We claim that Vj(z,y) = 0 for z < g;. To see this observe that if < g;, then for every
ke [j],
TGk =2 =Y+ Y — Y <k—J,
which leads to ¢*7(z, g;) = 0 by (5.34). This and (5.34) imply that V;(z,y) = 0. Moreover,
using (5.14), and

&V (x,y) quﬂ (z,a)Vi(a,y) = Y ¢ (z,a)Vj(a,y),
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we deduce
(5.36) r<g = ¢ Vi(z,y) =0,
because z < g; and a > g; imply x —a < 9, —y; < j —i.

Using (5.25) and (5.34),

This and (5.34) lead to

(5.37) Vi(w,y) =W >3 #y) Y ¢ (@, i)hi(y) + Lz = gy),
fe—=
(¢'~V)) (z, 35) ZW z,a)Vi(a, ;) = ¢ (x,9;).

AS a consequence,
(5.38) Vij(z, ;) = (¢/7V;) (@, 95) — & (2, 9,)1(i < j) = ¢ (2, §;)1(i > j).

(Step 2.) Given ay,...,ay € Z, let us define v : [N] x Z — R by u(i,z) = 1(x < a;). We
use Proposition 3.1(iii) to assert

(5.39) P(i1 > ar,..., &y > ay) = det (1 — K),
where
K((i.2), Gy ) = K((02), (G 9) (006, 2)u (1, ) = Kiy(0) (@, 9) (e < as,y < a;).

Note that since the sequence (9?:Z © i €N ]) is decreasing , we may replace the sequence
(a; : i € [N]) with (@} : i € [N]), for a; = max(a; : j > i). Hence, we may assume that
ay; > --- > ay without loss of generality. Under this assumption, we wish to show that the

right-hand side of (5.36) is
ﬂ(gl > Ay, ... ,QN > (IN) = ]1(5’ c a).

To prove this, first assume y ¢ a. This means that ¢; < a; for some j € [N]. Without
loss of generality, we assume that j is the largest such index. Under such circumstances, the
(4,9;)-th column of K is the vector

(V;j(x,gjj)]l(x <a;): 1 €[N],z € Z) = (gzﬁj_i(x,g)j)]l(i >jx<a): i €[N,ze€ Z).
Observe that if ¢/ ~*(x,9;) # 0, then
9 <yi+j—i<uw
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by (5.35). As a result
But since j is the largest possible index for which ; < a;, we learn

(Vij(z, ) L(z < a;) : i € [N,z € Z) = (¢/ (2,9;)L(i = j,x < ;) : i € [N],z € Z)
= (L(z=g;, i=j): i €[N,z €Z).

As a result, the matrix 1 — K has a 0 column. In particular,
yéa — det(]l—le):o.

We now turn to the case y € a, which means that §; > a; for all i € [N]. Let us write
V;; for the (i, j)-th block of IC. Then by (5.36),

As a consequence, the matrix K is strictly lower triangular. This implies that det(1 —16) =1,
as desired.

Proof of (ii) Clearly if » > j, then 0,V; = 0. On the other hand, if » < j, then by
Proposition 5.1(iii),

r—1

0.V () () = 6" (@, 90)0hi (y:5) + (&7 (2,5 + 1) = &7 (@.4,)) Bl ()

= " (, Gy (G + 1 &)) h(y: )

+ (07 (@ g + 1) = ¢ (@, 50) W3 )
= fl(z9)h(v: ),
where
r—1
Fi(wy) =" (@, g+ 1) — 6" (@, 90) + > " (@, go)h (G + 1Y),
k=1
Note that if §, + 1 = §,_1, then b '(§, + 1;¥) = A}, ' (§,_1;¥) = 0, whenever k < r — 1.
Thus,
Ggr+1l=9_1 and 1<r<j = Vi(y,)—V;(y) =0,
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as desired.
Proof of (iii) Since D(z,y) =1l(y=2—1)—L(y=2) =Lz =y+ 1) — 1(y = z),
(D‘/J o VJ]D))<I7:U) = VJ(‘I - 17y> - Vj(x7y) o (‘G(*Tﬂy + 1) - V;(I,y))

Note
J

Vi(r = Ly) = Vi(z,y) = Y (6" (@ = 1,0) — ¢ (2, 91)) B (v)

r=1
=D (¢ (@ g+ 1) = ¢ (2, g + 1)) h(y),
r=1
Vilw,y+1) = Vi(z,y) = Y 6" (@, 00) (M (y+ 1;3) — hl(1;9)).
k=1

On the other hand, DyV; = € + {2y, with

j r—1
Q=YY " () (W (v 97) — hl(y; 9))
r=1 k=1
i1 . J . .
=> ¢, on) Y (h(v;30) — by ¥))
k=1 r=k+1
j—1

== > ¢ @, 0) (W (y + L7l 19) — b (v )
k=1

— (Vi(z,y +1) = Vi(z,9)),

QQ:Z(¢T j(xayT+l)_¢T ]< ))h]<y7 )
r=1

=Vj(z — 1,y) — Vj(=,y).

Here we used (5.31) for the fourth equality. This completes the proof.

If we set
F(y,t) =P(x(t) > a | %(0) =y),
then
dF . . . .
(5.40) S Wt) = LE(y. ), F(3,0) = I(y > a).
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On the other hand, we have a candidate for F' with the aid of our determinantal formula:
(5.41) F(y,t) == det (1 — K(3,1)),

where R
K(y.t) = KF, t)x =eV(F)e Px,
where x((,2), (j,y)) = 1(z > a;,y > a;). It is instructive to verify this directly.

Theorem 5.4 The function F', given by (5.41) satisfies (5.40).

Proof Set G(y,t) = (1 — /E)‘l. From the elementary identity
det(A+0B) = det A(1 40 tr(A™'B) + 0(5%)),

we deduce

(5.42) £, 1) = = F(§) tr (G0 R0

= —F(y) tr (G(3.1) (DK, 1) — K, 6)D)x) .

On the other hand, by Theorem 5.3(ii), the kernel K(y,t) satisfies the same boundary
condition as in (5.29) because V satisfies (5.29). This in turn implies the function F' also
satisfies the same boundary condition. Hence we can replace £ with D = >~ D} in (5.40),
where D acts on x, only. Let us write

K((i,2), (7,9): 9. t) = K((i,2), (4, y); ¥, 1) = a"((i,2);5,8) @V ((4,y); ¥, 1),

because D KC is a rank-one matrix. Observe that for a matrix A and vectors a, b, we always
have

det(A+a®b) =det A det (1 + A'a®b) =det A det (1 + (A'a) @ b)
=detA Y det((A'a) @b) =detA Y det((A'a) @b)

le[=1

= (det A) (A'a-b) = (det A) tr(A"a®b).

As a result

LF(3,1) =DF(g,t) =Y [det (]1 —K@,t) - (K3 t) — K3, t))) — det (11 — K, t)) ]

r

:Z[det (n—/%(y,t)—a’“(yr, ) @V (yr, 1) ) det (“ ’E(y’t)”

}jw a"(§7.8) @V (3,,1) X) = —F(3) tr(G(3,)DK(3.t)).
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We are done if we can show
(5.43) tr (G, )(DK(y.1) - K(3,)D) ) == tr(G(3,)DR(F, 1)),
This is an immediate consequence of Theorem 5.3. 0

Remark 5.2 From the proof of Theorem 5.4, we learn this: If K(z,y;y,t) = K(y,t) satisfies
e Ki(y,t) = DK(y,t).
e D,K(y,t) is a rank-one matrix for each i,
then F' given by (5.41) satisfies (5.40). O
Example 5.1 When y; =¢+r fori =k,..., 7, then
Wy ¥) = B kst - 05) = (G — K7 (W = o) (4 = D) - (v — 8)-
Indeed A}t (y;¥) = 1, and
Dhy(y;9) = M.(y — 1;3) = h.(y; 9)
= (@ = 06) =B Y = Ges1) (W — Grr2) - (Y — F—1)
= (y:9),
which implies our claim. 0]

Remark 5.3 We now try to justify the form of the kernel V or K. Our discussion in Chapter 4
suggests a representation of the form (3.43) for the correlation kernel when the total number

of particles is fixed and equals N. In other setting we are cosidering an extended kernel
V:X? 5 R, where X = [N] x X, X =7, and

Vii(z,y) = V((6,2), (,9) = Y ouli,2) (i y) =Y di(a)hi(y).

1M

However what we really have is of the form

&

Vig(x,y) = V((i,2), () = Y di(@)hi(y) — (i < j)¢' " (x,y),

k=1

where ¢ (r) = ¢*~(x, J;). To understand what is is going on, observe
Vil = ¢, — L(i < )¢’ "'d] = ¢, — 1(i < j)d, = L(j < 9)g;,
WiViy = hi — 16 < W6 = b — (i < j)hi = 1(j < i)}]
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For the second equality on the second line we have used Proposition 5.1(i): If ¢ < j, then

Wo™ = (¢*) Rl =Dl = hi,  or  hi¢/ i =i

Exercise

(i) Derive (5.6).
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6 Scaling Limits for TASEP and KPZ Fixed Point

In Section 1.4 of Introduction, we formulated a scaling limit (1.22) that should be for any
stochastic growth model in dimension 2. The determinantal formula of Chapter 5 for TASEP
allows us to establish this scaling limit for TASEP. In fact since the determinantal formulation
of Chapter 5 is for the particle location (as opposed to the height function), it is more
convenient to establish such a scaling limit for particle locations. It is worth mentioning
that the particle system x(t) is an example of a Zero Range Process (ZRP). The relationship
between h and x is that the map h +— z(h) and x — h(z) is

h(x(i)) — h(2(0)) = i.

From this, it is not hard to see that if

o=t ([Z].0). vtnr =t ([4.5).

then u(v(a, t),t) = a. As for the macroscopic equation, if

~

w = H(ug), v = H(vg),

then using H(p) = —p(1 — p), u,v, = 1, and u; + u,v, = 0, we obtain

Note,
H'(p)=p~2 Lip):=pH'(p)—H(p)=2p"" =1, H"(p)=—-2p""

In particular, for p = 2, we have L(2) = 0, H'(2) = 47", and H"(2) = —4~'. According to
our formulation (1.22) we expect

7 T X (0 f) o Tim e—1/2 a__t |ty
(6.1) h(a,t) = ll_I)I[l)X (a,t) == 21_1)1(1)5 (51: (L 463/2] ’53/2> 2a) ,
to be a solution to the KPZ fixed point
(6.2) hi + 871 h2 = 0.

For each p > 1 ZRP has an invariant measure that can be interpreted as a random walk
with geometric jump law. In other words we have an i.i.d sequence (xiﬂ —x;: 1€ Z) with

I/p(IZ’Jrl — X; = ]{7) = pil(l — pil)kil ]1(]{7 Z 1)
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This invariant measure is particularly simple when p = 2. In this case, we think of (x; : i € Z)
as a Markov process process with

(6.3) V(inﬂ =y ‘ Ty = J:) = I/(l’n_H =z ‘ Ty = y) =2""1(x > y).

Recall that by Remark 3.1(ii), we may conjugate a correlation kernel of a determinantal
process by a function A(x) to obtain another correlation kernel for the same process. The
form of (6.3) (keeping in mind that for our scaling formulation we have chosen p = 2)
suggests that we conjugate our kernel of Theorem 5.1 by the function A(z) = 2*. Note that
if K1 and K, are two operators associated with kernels K; and K, then

(KiK>)* = K} K3,

Hence conjugating the kernel K with A is equivalent to conjugating both ¢ and ¥. We write
¢ for the \-conjugation of ¢. Observe

~

Pz, y) =2""1(z > y),

which is (6.3) and can be regarded as the jump kernel of a walk. In view of the scaling
formulation (6.1), we wish to rewrite the correlation kernel in terms of macroscopic time
T, macroscopic locations X and Y, and macroscopic labels a and b. This means that in
Theorem 5.1, we have

t=eT, = [e7la - 4_15_3/2T}, j=[e"b— 4_18_3/2T],
(6.4) r=2"ta+e 12X, y=2c""b+e 1Y
Let us first examine the first term on the right-hand side of (5.5): Since j > ¢ means that
b>a,and j —i=e1(b—a), we wish to analyze ¢*, for k = re~!,r > 0 and after a change

of variable (z,y) — (X,Y) as in (6.4). Note that if (6; : ¢ € N) is a sequence of iid positive
random variables with 6; = n € N occurring with probability 27", then

Or+ o Oer) = 2re 7 + 22712 B(r) + 0(e77),

where B(r) is a standard Brownian motion. (This is a consequence of the classical Donsker
Invariance Principle, though we only need CLT for (6.5) below.) Now take any bounded
continuous f : R — R. We certainly have

gl/? Z e~1/2g (b-a) (2era+e2X,y) f (€Y% (y — 2e7'D)) = Ef (X +2Y2B(b—a)) + o(1),
YEZ

in small £ limit; the left-hand side is the expected value of f(Y) for a walk that starts at
time 4 from the location z = 2 'a + ¢7'/2X, and lands at y = 276 + ¢~'/2Y at time j.
Our convergence is an immediate consequence of CLT. In summary, weakly

(6.5) lim e V2 G5 0D (2e7 g 4 e V2X 267 4 e V2Y) = 0P (XY,
e—
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with
e=V(XY) = (4n(b—a)) M2 exp (— (X — Y)?/(41)).

The convergence (6.5) is also true locally uniformly in (X,Y’). To see this, recall that
explicitely

k—1

We may use this and Stirling’s formula to establish (6.5).
We now turn our attention to the operator/matrix

U = [Un(@)] gepoez = (€707 (%, 05) ] ke ez -

After conjugation with 2* we get

=2 (7T ey n,

{I\lj = [e’tﬁ)‘ a’“’j (x, g, )}

9
keljl,z€Z

with D_ the conjugation of D_. Observe that ¢=! = D, and &5‘1 is ]IA))Jr, the conjugation of
D, . Indeed

(Daf)(z) = £27°(f(z £ 1)2°F — f(2)2°) = £(25 f(x £ 1) — f(x)).
Hence R R
Dy =id+2D;, D_=-2""(D_+id).
Our strategy for the derivation of (6.1) is as follows:

Theorem 6.1 Given macroscopic parameters (X,Y,a,b,T), define microscopic parameters
(x,y,1,7,t) as in (6.1). Then

(6.6) lim e 2K ((4, %), (j,y); t) = lim e V2K (x,y;t) = Kou(X, Y5 T),
e—>

e—0

where K will be defined below.

To get a feel for K, write

sz — etD‘/ije_tD — et]D)¢j—i (‘/] o ]].("L < j))e_tD
=P (¢ )¢ Te P — 1(i < )¢’

~

We already know the limit of the last time by (6.5). We next examine the operator etD- ot

94



Proposition 6.1 Fot T > 0, we have

(6.7) lim e~1/2 (6_253%@* 55_453%> ( i + Y ) = P TT(X,Y),

e—0 51/27 e 51/2

If we write V, for the contribution coming from (¢=7V;¢/, we end up with a candidate
for K of the form

(6.8) Koy =" 60V ed+50" _ (g < b)e®9%”,

Before embarking on the proof we make some conventions and comments, and give a
heuristic proof of (6.7).

(i) So far we have used the same notation for an operator an its kernel. This is a extension
of the common convention that we identify a linear operator with its matrix representation
in finite dimension. We now push this convention further in the case of a convolution.
More precisely, when the kernel A(z,y) of an operator depends on x — y, then we write
A(z,y) = A(z —y). Our convention allows us to write

Discrete Setting: (Af)(z) =Y Az, 9)f(y) = > _ AW)f(x —y) = (A f)(z),

yEZL YyEZL
Continuous Setting: (Af)(z) = / A(z,y) f(y) dy = / A(y)f(z —y) dy = (A= f)(x),
for a convolution operator. The next thing to address is the effect of our spatial rescaling.
Given a kernel A(z,y) = A(x — y), let us write
(SFA)(X,Y) = 5’1/214(8’1/2)(, 5’1/2}/).

Observe that in continuous setting

(STA) f(X) = / e PAEETAY) (X —Y) dY = / Al f(X — %) dy.

(ii) Next we clarify what we really mean by (6.6) because both Dy and $ are operators on
Z. Asin (4.9), we may represent the kernel ¢*(x,y) = ¢**(x —y) by a contour integral. Here
we also write ¢(z) = 1(z > 0) and ¢** we mean the k-fold convolution of ¢ by itself. Note

that since
Z d(y)2¥ = z(1 —2)7 1,

YEL

we have

Sty = 21— o) "

YEL
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By Fourier inversion
1
¢ () = 5— 1 - 2) T de,
211 C1(0)
where C(0) denotes the circle of radius 1 about the origin. So far we know this is true for
k € N. But we also have

Y oy = 1-2) =2 1,

where ¢7'(y) = I(y = —1) — 1(y = 0) is the kernel of the operator ¢~' = D, . Hence it is
true for k € Z. (Note that 27 is an eigenfunction of the operator ¢*, with the corresponding
eigenvalue 2¥(1 — 2)7%.) When k is negative, 2 = 1 is no longer a pole and we can deform
the circle C to any positive contour that includes 0. In other words, for any integer k < 0,

1
<k —o—1( -1 —k
) = g I
or equivalently
1
k = — —(z—y)-1(,-1 _ 1 —k dz.
)= g I ) s
We may also conjugate our operators with A(z) = 2%. The outcome is
-~ 1
(6.9) (bk(x, y) = 5 f 9r—y ,—(e—y)—1 (Zfl _ 1)7k dz,
2l
for any integer k£ < 0. In the same manner we arrive at
- ~ 1
(6.10) (6_%(ld+D’) ¢k> (z,y) = 5= 7{2x_yz_(x_y)_1zk(1 —z) ke gz
2mi J,
Equivalently
~ 1
(6.11) (e*%D* ab’“) (z,y) = 5= f{ D P e P § B e GV P
2 J,

(iii) We now provide a heuristic proof of (6.6) when a = 0. Observe that since
¢t =id+2D,,

we may formally write
- ~ o1 1
o—271e7¥/2TD_ o1 1e=8/27 _ exp [2—15—3/2T (—]D + 5 log (z’d + 2D+))} :
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We now apply S° to both sides. This turns the operator Dy to D% = S°D, with

(DS.1)(X) = £(F(X £72) = F(X)).

Since these operators are of order O(¢'/?), we may write
€ 1 . € e 5 e)2 4 €3 2
—D_+§log(zd+2ﬂ)+):]D>+—]D)_—(}D)+) +§(D+) —i—O(e )

On the other hand, the expression

(23 -0 - (02" + 3 @3)") 1),

equals to
FX +Y2) + (X =) —2f(X) — [f(X +2e"2) = 2f (X +¥?) + f(X)]
%[f (X +3¢%) = 3f(X +2¢%) 4 3f(X + /%) = f(X)]
=ef"(X) — (ef"(X) + 2 f"(X)) + é53/2f’”(X) + 0(e?)

3
:3_163/2f”/(X) + 0(52)‘

(iv) The kernel of the right-hand side of (6.6) can be expressed as the Airy function. Origi-
nally the Airy function was defined as a solution of the simple ODE y"(z) = zy(z). We may
attempt to find a solution by Fourier Transform, or more generally as

_ / f(2)e = dz,

for a suitable of a function f and a path v : (a_,a;) — C. Observe

V@)= afe) = [ A5z [ 1) de

= f(y(a-))e ™) — f(y(ay))e ) +/(22f(z) — f'(2))e™ dz,

v

which is zero if f'(z) = 22f(2) and f(y(ax))e (%) = 0. We choose f(z) = 2%/3, and a~
suitable points at co so that
y(z) = /ez3/3‘” dz.
v
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For this we require
623/37232

lim = 0.
zZ—ra+

By choosing a. different points at oo, we may get different solutions. Indeed if z = re®,

then

3/9__ 3 —
e /3—zx r° cos(30)—xr cos 0 N 0’

=€

provided that » — oo and cos(36) remains negative. A simple choice would be this: take
the union two half lines emanating from the origin that make angles +7/3 for the positive
r-axis. We orient this v as ooe /% — 0 — ooe’™3. Given such a path ~, and after a
renormalization, we define the Airy function by

1
Ai(z) = -— / 32 (.
Y

21

In fact we may even choose 6 = 37/2, though we will not have a convergence of the integral
and we need to take an improper integral. When 6 = 7 /2, the integral is over the imaginary
axis and we arrive at

1 ¢ 3 1 03 1
; — 2% /3—zx — —i(r®/3+rz) _ 3
Ai(x) 5 /_Z e dz el dr = — /0 cos (r*/3 +ra) dr

= lim ! cos (r*/3 +ra) dr.
0

a—o0 T

Airy function may be used to determine the kernel of the operator ¢/?”: The function

_/etzS/S—sz(z) dZ,

) = 55
:

solves the PDE u; = 3~ ,,, for any bounded measurable function f with the initial condition

1
= 2—m/€_zxf(2) dz
2

If we choose v to be the imaginary axis, we obtain

u(z,0)

u(z,0) = / e £ (i€) d = / e g €) dE = §(x).

—00

Hence by choosing

g(§) = u(§,0) = / e~ 2 (2, 0) du,

—0o0
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we have the following expression: If u°(x) = u(z,0), then
u(z,t) = 30 (z) = (A" % u)(z),

with ) )
t T As i _ tz3/3—z2z
Al(z) = t1/3AZ <t1/3> =5 /76 dz.

O

Proof of Proposition 6.1 Since all the operators that appear on the left-hand side of (6.6)
are convolution operators, we may set X = 0 in (6.6) and evaluate the following limit

1 1
lim X. = lim -— f 129 e R (] )R gy i j{ 2P
e—0 e—0 271 . e—0 271 .

with 7 a circle about the origin of radius 1/2, and

_2a Y . T _a T
veetar TToan VT
F(z) = —zlog2+ (k—x —1)logz — klog(l — 2) +t(z — 1/2).

We now change variables z = 271 (1 — w,) := 271(1 — '/2w) to write

1 1
X.=—— ¢ =™ qu,
27 )y 2

1

where ~/ is a positively oriented circle of center e~/ and radius ¢~/2, and

G(w) =log2+ (k —z — 1)log (1 — w.) — klog (1 + w.) — 27 tw,

:10g2—log(1—w5) —El%log(l—wg) —glog (1—w§)

T1 14w, T
4e3/2 Ogl—ws DR

=log2 + w. + O(sw) +Yw+ 0(51/211)) + aw® + O(5w4) +Tw? /6 + 0(51/2w4)
=:log2+ H.(w) =log2 + Yw + aw® + Tw®/6 + 0(51/2(w4 +1)),

+

because L+ 5 5
log - Zi — 2w, = gwg +O(wl) = 553/210 + O(gw?).
As a result,
1
X, = — M=) .
211

,y/
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for a function H.(w) such that for each w € C,
lim H.(w) = Yw + aw® + Tw? /6.
e—
We now write ' = 7' U, where +/ is the set w = re? € ~ such that 0 ¢ [—7/6,7/6]. After

reversing the orientation in +" and deforming 7’ to two lines through the origin with angles
+7/3 that lie inside 7/, it is not hard to show

lim_—l.f M=) gy = L% oY wtaw +Tw? /6 dw,
e—0 271 o 27 g

with C' the union of oriented half lines (ooe*i”/ 3 O] and [O, oo™/ 3). To complete the proof,
it remains to show

1
(6.12) lim —7{ =) duy = 0.
,Y//

e—0 271
For w = re? € 4", we have 6 € [—m/6,7/6]. Since for z = 271,

eV =Py =1-22=1-¢"= (1 —cosa) —isina,

j{ M) quy = 51/27{(3F(z) dz,
v ¥

where 4 represents the part of the circle v for which

we deduce

1-— in?(a/2
tan (7/2 — ) = cot 0 = Lo —QM = —tan(a/2),
sin « sin «

for some 6 € [—7/6,7/6]. Hence argz = o € [27/3,47/3], on 4. On the other hand,
’eF(z)| =RF(z) = —zlog2 — (k—z —1)log2 — klog |l — z| + 27" ¢(cosa — 1)
=log2 — k[log2 + 27" log(5/4 — cos )] +27"t(cosa — 1)
=log2 — 2 'klog(5 — 4cosa) + 2 't (cosa — 1)
=log2 — 2 'klog (1 +4(1 —cosa)) + 2 "t(cosa — 1)
=log2 — (2k +27"t)(1 — cosa) + k((cosa — 1),
where
((a) = 2a — 27 log(1 + 4a),
which is a positive function if @ > 0. On the other hand 2k 4+ 27't = 2ae~!, and for T > 0,

—Fk is positive and of order e73/2. As a result, there exists a positive constant ¢, such that

e =1log2 — 2ae™' (1 — cosa) + k((cos e — 1) > —coe ™2,
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for small e. This completes the proof of (6.12). O

Exercise

(i) Suppose that 7 is a white noise in RY. Show that its Fourier transform # is also a white

noise. When 7 : T — R is a white noise on the d-dimensional torus T¢, describe its Fourier
expansion.

(ii) Consider the PDE u; = uy4,. Show that if w is initially a white, then it is a white noise
at later times.
(iii) Use
1 _
©*F(z) = —% =) " dz,
Cr(0)

o

to show that if kK = —n for some n € N, then

@) =1k <z < 0)(—1)k“’”(_k)-

—XT
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7 Multiline and Multiclass Processes

Definition 7.1(i) Let us write 2 for the set of discrete subsets of R x (0,00) that are
unbounded in both coordinates. We also write X for unbounded discrete subsets of R such
that if (a,s), (b,t) are two distinct points in w € Q, then a # b and s # t. We write
X = (ml tiE Z) for members of X, and assume

m z; = Fo0.

T, < ZTijtq, li
i—+oo

for every i € Z. We write X for the set of non-crossing paths
x(-) = (zi(-): 1 €Z):[0,00) = X,

such that each x;(-) is an up-left left-continuous path which stays constant in between jumps
to the left.

(ii) We define @~ : X x Q@ — X with the following rule: If &~ (x,w) = x(-), then each
time an w = (a,t) € w point shows up between z;_1(t) and z;(¢), then z;(¢t) jumps to a,
i.e., z;(t+) = a. We also write & (t)(x,w) = ¢~ (x,w)(t) = x(¢). Think of x(¢) as a point
process in R with initial configuration x = x(0). Note that each x; path has an w point on
every of its L corners. We also define A~ : X x Q — Q, where A~ (x,w) = w is the set of all
— corners:

W = {(;(t),t) : either (z;(t),t) €w, or (z;(t+),1) €w, t e R, i€ Z}.

Note that by convention, if (x;(t),t) = w € w, then z;(t+) = x;(t) and we do include such a
point in @. Similarly, we define @ : X x Q — X with the following rule: If ®*(x,w) = x(-),
then each time an w = (a,t) € w point shows up between z;(t) and x;,1(t), then x;(t) jumps
to a, i.e., x;(t+) = a. In the same fashion, we define A*.

(iii) We define @, : X™ x Q@ — X in the following manner:
®,(x', . x"w) = (%), .., x (1),

means that inductively,

w, =W, Xn(') =0 (Xn7w”)’
wno1 = A(x",w,), X)) =0 (x" wno),
w; = A(X2,w2), Xl(') = ¢ (Xl,wl).

We think of X (t) = (x!(t),...,x™(t)) as a multiline process with initial condition

(x'(0),...,x™(0)) = X = (x',...,x").
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In the same fashion, we define ®;f.

(iv) The process x(t) = x*(t) = ®(x,w) is random once we put a probability measure P
on Q. If P is a Poisson point process of intensity one, then ®~(x,w) is HAD process as was
defined in Chapter 1. We refer to ®*(x,w) as the reverse HAD process. More generally, we
refer to the multiline @ (x,w) as PSF process after the work of Priahofer-Sphon [PS] and P.
L. Ferrari [F]. We refer to @, (x,w) as the reverse PSF process. In our presentation, we have
followed P.A. Ferrari and Martin [FM2]. O

The multiline process can be used to explore the monotonicity properties of HAD process.
PSF process is a Markov process with the generator

A F(R) = / (F(I;R) - F(R)) da,

R

where J X is the configuration we obtain from X by performing n many particle movements:
e For the first movement, find 27 € x™ such that a € (27 _;, 2} ). Move 27 to a.

e For the second movement, find xfn__ll € x"! such that a7 ¢ (95?”__1171 2 '], Move

? Vip—1

n—1 n
x; o tox .

e Inductively repeat the above operation n times till a particle z; € x' such that a7, €

1 17 ; 2
(acil_l, a:il} is moved to xj,.

Similarly the reverse PSF process has a generator of the form
AFF) = [(FUFT) - F())
R

where J;" 7 is the configuration we obtain from ? by performing n many particle movements:
e For the first movement, find y}, € y' such that b € (y;,,y} ,,). Move y} to b.
e For the second movement, find y2, € y? such that y} € [y?,v2 ). Move 42 to y} .

e Inductively repeat the above operation n times till a particle y;' € y™ such that
yz;ll € [y?n,yﬁﬁl) is moved to ylnnill

The following result of Cator and Groeneboom [CG] supports the relevance of the mul-
tiline process:

Theorem 7.1 . Assume that x is independent of w, and that x is a Poisson point process
of intensity p > 0, and w is a Poisson point process of intensity one. Then @ = A*(x,w) is
also a Poisson point process of intensity one.
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Now imagine that X and w are independent with w distributed according to a Poisson
point process of intensity one, and X selected according to

PP = PPl X vPn, Pls-eespn >0,

where v” represents a Poisson point process in R of intensity p. Then by Theorem 7.1, each
x'(t) is a stationary HAD process for i = 1,...,n. P. A. Ferrari and Martin [FM2] show
that in fact v#'»-f is an invariant measure for the process X (t).

Theorem 7.2 The adjoint A~* of the operator A~ with respect to the measure vP*Pr s
AT, the generator of the reverse PSF process. In particular, the measure vPP is invariant
for PSF process for every py,...,pn > 0.

Proof Let us write v for v*?f», We wish to show
/w?mqwmywn:/f@mwa?pwyy

for bounded continuous F,G : X™ — R. For this, it suffice to show

//G F(J;X) v d?da_// G(JY) v(dX)db.

This is basically achieved by making a change of variable J X = ? We may express the
left-hand side as a sum over integrals of the form

n 1 . n+1 -1 1
/Rda/n dz} ... .dz; 1(a=: = apt < <wp < <)

[Tovesn (u(ot b)) [ #(0%) G(R)F(=").

k=1

where ' is the measure v conditioned that x* has a particle at location z¥ , and no particle

in the interval (z f}:f, fk) Now as we make a change of variable X* = ?, and rename
_ n+1 n n—I1 1 n n—1 1 0o _ .
a_xin+17 in? infla"wxila as yjnuyjnflv"'uyjluyjo_ b?

we arrive at
/%/d%mwﬂ@%%ﬁ<m<%<%=®
]R n

Hpkexp (e (vl —571)) /ﬁ’(d7) G(Yy)F(Y),
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where 7/ is the measure v conditioned that y* has a particle at location yfk and no particle

in the interval (yf;ll,yjkk) We are done. 0J
We next construct a multiclass processes. The idea of the multiclass process is related to
the monotonicity of the operator ®~:

Proposition 7.1 Ifx Cy, then ®(t)(x,w) C O(t)(y,w).

The proof of this Proposition is elementary and omitted. This Proposition allows us to
define the multiclass process associated with HAD process.

Definition 7.2(i) We write
Xn:{(xl,...,xn) e X": XICXQC---CX”}.

We define R : X,, — X" by R(Xl,...,Xn) = (zl,...,z”), where z! = x!, and z* = x*\ x*!
fork=2,...,n.

(i) We define @, : X,, x Q — X, by
@f(xl, e ,X”,w) = ((ID(xl,w), e ,CID(X",w)).

(iii) We define the multiclass operator ¥, : X" x Q@ — &A™, by
V(7 ,w) = RO (R™'Z,w).

We refer to

Z(t) = VE(Z,w)(t) = RVI(1)(R'Z,w),

as the multiclass process. ([l

Remark 7.1 For multiclass process, it is more convenient to consider the state space
Z={Z=(x,m): x€X, me (0,00)%}.

In other words the i-th particle of coordinates z; = (z;, m;) has a location x; € R and a class
m; > 0, where particles of lower classes have higher priority for jumping. We then define
Zt) =& (7,0}) (t) to be a trajectory of a multiclass process. What we have in mind is
that if we set

x" = {z;: (x;,m;) € Z(t), m; < m},

then x™(t) = &~ (x™(0),w) evolves as HAD process for every m > 0. We may write

R'Z = (xm tm > O).
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For w = (yo,t) € w, a particle of coordinate 3y shows up at time ¢. When this happen we
consider all particles that are to the right of y. For example, if Z = (x,m) withx = (x;: i €
Z), and x; 1 < yo < x;, then we can find a unique sequence i; =i < iy < -+ < i;, such that
the following conditions hold: m;, > m;, > --- > m,,, and if j € (i,,4,41), then m; > m; .
We now change the configuration 7(15) to Kyo7 that is defined by the following recipe:
Replace (xi,, mi, ), (Tiy, Miy) - -+ (T4, M) With (yo, muy )y (Tigs My ) - -+, (4, My, ). In other
words, if we write y; = ;,, nj = m;;, then

(1,92, Uk) — (Yo, Y25 - -5 Uk, (my, ma,...,my) — (Mg, My, ..., My_1).

O

Using an idea of Angle [A], we construct invariant measure for multiclass process. For
our presentation we follow [FM2] to use queuing interpretation for Angle collapsing process.

Definition 7.3(i) We first define collapsing process for periodic configuration. Write X (per)
for set of 1-periodic x € X. In other words, x € X(per) means that ;x = x where 7x
denotes the set we get from x by adding 1 to elements of x. Now given two x,y € X (per)
with

xN[0,1)| < |ynio,1)],

we define Dt (x,y) € X(per) to be the unique configuration z with the following two prop-
erties:

(7.1) zCy, [xn0,1)]=]zn[0,1)],
and for every a € z, there exists b < a such that
|[b,a] N x| >|b,a] Nyl

Similarly, we define D~ (x,y) € X (per) to be the unique configuration z for which (7.1) is
true, and and for every a € z, there exists b < a such that

|la,b] N x| > |[a,b] Nyl

(ii) Let x,y € X be two stationary processes with intensities m and m'. Assume that
m < m'. We may approximate x and y with f-periodic configurations x, and y,. By
Ergodic Theorem we have

%N 1[0,0)] < |yen[0,0)],

for sufficiently large ¢, almost surely. We then define z, = D(x,y,). Finally we set

z = D+(X7 y) - ZE}%D+(Xfay€)a
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with satisfies the following two properties: z C y, and for every a € z, there exists b < a
such that

(7.2) |[b,a] N x| > |[b,a] Nyl

We write D, : X? — X, for
Dy (x,y) = (D(x,5),¥).

We define D~ and Dj is a similar fashion.

(iii) Given X = (x!,...,x"), we define
DE(RX) =7 = (x',...,x") € X,,
in the following manner:

7" — Xn’ anl — Di (anl7xn)’

7 D (2 x x) o D (D (0 ),

zt = Di(xl, e ,x”) = Di(D(xl, e ,X”_l),xn).
O

Remark 7.2(i) The following interpretation of z = D*(x,y) was given in [PM]. We think
of x as the set of times at which a costumer arrive at a queue. We think of y as the set of
times at which service is provided to costumers. The set z is the departure times at which a
costumer is received service and departs the queue, whereas y \ z is the set of unused service
times. When inequality (7.2) is true, then for sure b is a departure time because the number
of costumers arriving during [a, b] is at least the number of services available during the same
period. Alternatively, we may use the points of x and y to define a process ¢ : R — N*,
which represents the length of the queue. More precisely at each occurrence of x € x, the
function ¢ increases by 1 i.e., ¢(x+) = q(x) + 1, and at each occurrence of y, the function
q decreases by 1, provided that g(z) > 0. When x and y are Poisson point processes of
intensity p; and ps, then ¢ is a birth-death process with the birth and death rates p; and
p2 respectively. We may then define DT (x,y) to be the set at which ¢ decreases. A similar
interpretation can be given for D~.
It is worth mentioning that D is monotone in the first argument:

(7.3) x Cx — D*(xX',y) C D*(x,y).
(ii) More generally we have a queuing interpretation for D (? — Z that involves n — 1
many queues. For this, we provide a queuing interpretation for DT (x!,x2,...,x"). We
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think of points in x! as the arrival times for costumers, and x2,...,x" as the services times
for queues 1,2,...,n — 1, respectively. As a costumer departs the first queue, it enters the
second queue to receive service some time later at a moment in x3. This process continues
until the costumer receives service in the n — 1-th queue. The departure times from the last
queue are the members of the set z" = DT (x!,x?,...,x"). O

Our next result is due to P. A. Ferrari and James; it establishes a connection between
the multiline and multiclass processes.

Theorem 7.3 We have d* (Drf (?),w) = D* (CIDi (?,w)) In particular, for every p1, ..., pn,
the measure D (V'Dl""’p”) 1s invariant for the multi-class process.

Proof Note that &+ preserves the order but the multiline operator ®* does not. We basically
need to prove this: If X € X,, and y € R, then

(7.4) D,J;X=L,X.

In other words, for a sequence of ordered X = (Xl, X ) we perform a multi-jump as a
Poisson point (y,t) occurs at y. This multi-jump may mess up the order, i.e., J.° X may not
be in X,,. We restore the order by applying D, to J X. The outcome commde with the
multiclass jump L, that is related to K, of Remark 7. 1

L,X = R'K,RX.

We first verify (7.4) when n = 2. Recall that x! C x2. Choose a; € x! and ay € x* 50
that y < as < a; and (y,a;) Nx* = for i = 1,2. There are two cases to consider:
(i) (C’ase a = a; = ay) We have Jy_? = (x!, (x2\{a}) U{y}) = (x',%?), and after matching
a; of x' with y of X%, we arrive at Dy(x',%x?) = (x',%?), where x' = (x'\ {a}) U {y}.
Evidently L*? = (X1 )22)
(11) (Case ay > ay) We have J X = (X x%), where x? = (x*\ {a2}) U {y}, and x' =
(x'\ {a1}) U{as}. After rnatchlng ap of X' with y of X2, we arrive at Dy (x',%%) = (y,%?),
where y = (x'\ {a1}) U{y}. Evidently Ly_? = (y,%%).

We now turn to the general n. Recall that x! C --- C x". Choose a; € x' so that
y=% <a, <a, 1 <--<a;and (y,a;) Nx* =0 fori=1,...,n. Choose 1 <ny <ny <

- < ng = n so that

Yo <Y1 :=Qpy =" =011 < Y2 1= Ay, = " = 0py_,—1 < Y3 = Qp,_,

:...<yk::an1:---:a1,
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Note that J, X = (%!,...,%"), where

= (O ) Ufod, o et ke
X"t = (x\ {yo}) U}, ... kM= xmerd

X" = (x"\ {ye}) U{ye-1},
After matching the points
Yk G)A(la e U Ef{nk_la e 1 652”_17 Yo Ef{na

we arrive at
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A Exterior Algebra and Cauchy-Binet Formula
Given a vector space V, its r-fold exterior power A"V is a vector space consisting of
NV = {Ul/\"'/\UTZ Ul,...,UTEV}.

What we have in mind is that the r-vector v; A --- A v, represents the r-dimensional linear
subspace that is spanned by vectors vy,...,v,.. By convention, v; A --- Av, =0 if vy,... v,
are not linearly independent. The wedge product is characterized by two properties: it is
multilinear and alternative. By the former we mean that for all scalers ¢ and ¢/,

(cor + V) Avg A~ Ao =c(vgr Avg A= Av) + (V] Aug A+ Aw,).

By the latter we mean that interchanging two vectors in @ = v; A --- A v, changes the sign
of a. If {ey,...,eq} is a basis for V| then

{€iriig, iy =€y N Nej o Gy <o <y},

is a basis for A"V. In particular dim A"V = (f) If

for coefficients vj € R, and j =1,...,r, then

viA Ay = E vt e A Ney

1< < <ipr<d

where

Yt = Z 5(0)1}1‘”” o™ = det [U;’“r

j7k:1'
UGST‘

In fact we may use (A.1) as our definition of the wedge product. To have a compact notation,
write

M=[v], iel={1,...,d}, jeJ={1...r}h

j
Let us write I, for the set of subsets a = {i1,...,i,} €T with iy <--- <i,. We then set

r

Ma ;= [vi'k]j,kzv

j €a =€y N---Ne;,

for any a € Iy. Then (A.1) can be written as

(A.1) UIA"'/\UTIZdetMa?J €a.

aGfk

110



To appreciate the role of exterior algebra in differential geometry, observe that if P(vy, ..., vy)

denotes a parallelepiped formed from vectors vq,...,v,, then det M, ; is the signed -
dimensional volume of the projection of det M, ; on the linear span of e;,...,e;.. As a
consequence
1/2
(A.2) vl/\---/\vT’ = Z(detMaJ)2 ,
aEfk
is nothing other than the r-dimensional volume of P(vy, ..., vy).

Let V and V' be two vector spaces and assume that A : V' — V' is a linear transformation.
We define
NA:NV = NV,
by
(/\T A)(vl A Avp) = (Av) A= A (Awy).

We continue with a list of straightforward properties of r-vectors.

Proposition A.1 (i) Let A: V' — V be a linear transformation. Assume that {eq,. .., eq}
and {e, ... e} are bases for V and V' respectively. If A is represented by a d x d' matriz
with respect to the above bases, then the transformation A" A is represented by a (f) X (‘fj)
matriz we obtain by taking the determinants of all v X r submatrices of A.

(iii) If V, V', V" are three vector spaces and A : V' — V, B : V" — V', are linear, then
/\T(A o B) = (/\’” Ao /\’"B). If A is invertible, then N"A™! = (/\T A)_l. If V and V' are
inner product spaces and A* : V' — V is the transpose of A, then N"A* = (/\’” A)*.

Proof(i) If we write

d
o’ = Ae; = Zaijei,
i=1
then
(AA) (), A---Ne ) = (A ) A+ N (A€, ) =a* A Na.
Given two sets a = {iy,...,4,.} and b = {jy1,..., .}, with i3 < --+ < i, and j; < --+ < j,,
we write

Aap = [aisjt]z,t:r
We now use (A.1) to write
(A.3) (A’"A)e{D = Z det Aap €a,

acl,
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as desired.

(ii) The proof follows from the definition of A”A. O
Given a d x d’ matrix A, we may write

(A.4) ATA = [det Agp)

(a,b)el, xI’

where I, (respectively I’) denotes the set of subsets a of I = {1,...,d} (respectively I’ =
{1,...,d'}) with |a] = r. On account of Proposition A1, we have

(A.5) (A"(AB)),, = det(AB)a, = Y det Ay det Bep, (a,b) € I, x I,

cel?.
for any matrices A and B of sizes d x d’ and d’ x d”. This identity is known as Cauchy-Binet
Formula.

Example A1(i) Assume that vy,...,v, € R? with r € {1,...,d}. Let A be a d x r matrix

with rows vy,...,v,. Then A"A is a column vector in R() that is exactly the expression
d

(A.1) or (A.2), if we identify A"R? with R("). The identity

AT(A"A) = (A7A*) (ATA) = (ATA)" (A" 4),

(A.6) det [v; - ’Uj Z det A ; = [vi A=+ Awl?,

aelr
by (A.1). Here J ={1,...,r}.

(ii) We now derive a generalization of Cramer’s formula for the inverse of a square matrix.
Let A be a d x d matrix. Set I = {1,...k} and assume that 1 <r < k. We claim that for
any b,c € [,

(A7) det (A7), = (—1)*™F¢) (det A)~! det (Acene ),

bc
where b =1\b, c*=1\ c and
((b) = i.
icb
This is the classical Cramer’s formula when r = 1. To prove (A.7), write b = {i1,...,4,},
and ¢ = {j1,...,7,} with iy <--- <4, and j; <--- < j,. Observe that by (A.3)

(A’” (A /\ epe = Z det 1 acba \ Ebe = det (A’l) ep N epe.

aeI

bc
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We now apply AYA to both sides. The left-side yields

[(AA)A" (A ee] A (AT A)epe = e A (A7 A)ene = ea A S (det Ape)ea
acl,
= (det Acene ) €c A €ce.
The right-hand side yields
det (A_l)bc(det A) ep A épe.

From this we deduce

(det Acepe) = £ det (A_l)bc (det A).

To figure out the sign, observe that in the expression
ep N\ epe = €5 N+ ANe; N epe,

we need 7, — r adjacent swapping to move e; to its original place in e; A --- A eq. Hence
ep N epe = (—1)”(b)el A Neg

for
nb)=i+ -+ —(1+---+7r).

Similarly
e N €ee = (—1)’7(‘:)61 A~ A eg.

This completes the proof of (A.7).
(iii) Let A: (aU {y})2 — R be a symmetric matrix. Then

det A

(A.8) dot A, Aly.y) — Y (Aa) "' (b.a)Ala, y) Ay, b).

Label points in a U {y} so that y is labeled |a] + 1. By expanding the determinant with
respect to the last row we obtain

det A = A(y,y) det Ay + Y _(=1)""** A(y, b) det A",

bea

where A is the matrix that we obtain from A by deleting the last row and the b-th column.
We now expand det A with respect to the last column:

det A =" (=1)""1* A(a, y) det A,

aca
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where A% is the matrix that we obtain from A, by deleting the a-th row and the b-th column.
As a result
det A = A(y,y)det A, — Z (1) A(a, y)A(y, b) det A%,

a,bea

This and Cramer’s rule imply (A.8). O

If (-,-) is an inner product on the vector space V', then we equip A"V with the inner
product

(i A Ao, V) A ALy = det [(u;, v;.ﬂ;j:l.

By Example A1, the quantity

r

Jor A s Av | = (1 A Ay, vr A Ay = det [(vg,05)]

ij=1

represents the r-dimensional volume of the parallelepiped generated by vectors vy, ..., v,.
Proposition A.2 (i) If (-,-) is an inner product on the vector space V, and {e1,...,eq}
is an orthonormal basis for V', then the set {eil ANovNeg o 1< < -0 < ir} 1S an

orthonormal basis for \"V'.

(ii) Suppose that V' is an inner product space of dimension d, and A : V' — V is a symmetric
linear transformation. If {ey,... ,eq} is an orthonormal basis consisting of eigenvectors,
associated with eigenvalues \y < --- < Ay, then the set {eil AN Ne, o 1< <00 <

z',,} 1s an orthonormal basis consisting of eigenvectors of A" A associated with eigenvalues
{li .. L, 1<iy<--- <ip}.

We end this chapter with a useful matrix identity.

Proposition A.3 Consider the matrices A € Mat(d x d),D € Mat(d' x d'), B € Mat(d x
d),C € Mat(d x d), and set
A B
B [ 4 D] |

If E is symmetric and positive definite, so are A and D. If E, A and D are invertible, so
are G=A—BD™C and H= D — CA™'B. Moreover

(A.9) Bl = { ¢ _G_IBD_l} .

_HlCA™'  H

Proof Note )
E [:c} = [{} —  Arx+By=2, Cx+Dy=y.
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In particular, y = D'y’ — D~'Cx, which in turn implies that Gx + BD~ 'y = 2’. This
implies the entries for the first row in £~!. n the same fashion, we derive CA~'2'+ Hy = 1/,
as desired. The first claim follows from

Em : m — Aa-a+2Bb-a+ Db-b.

For the second claim observe

O

B Trace Class Operators and Fredholm Determinant
In this chapter we review some basic facts about bounded operator on Hilbert spaces.

(i) Let H be a separable Hilbert space with inner product (-, -) and norm || -||. For a bounded
linear operator K : H — H, we write ||| for its norm:

Il = sup [IK(F)-

We write B(H) for the set of such operators which is a Banach algebra with respect to the
above norm. We say that IC is of finite rank if the dimension of its range is finite. We
write By(H) for the set of finite rank operators. The topological closure of By(H) in B(H)
is denoted by B.(#). This set coincides with the set of compact operators. In other words
a linear operator K € B.(H) iff it maps bounded closed sets onto compact subsets of H.
One can show that if K € B.(H), then K* € B.(H). The spectrum of a compact operator
is countable with the only possible accumulation point at 0. Any non-zero point in the
spectrum is an eigenvalue of finite multiplicity.

(ii) Fix an orthonormal basis {e, : n € I} of H. We write By(H) for the set of Hilbert-
Schmidt operators: K € By(H) iff

KI5 = IKeill* =D (K K)es, e5) < o0.

el el

Note

2 2
< (ZI(%@M ||/C€n||> < [lzll* 113
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Hence ||| < ||K||2- In fact we may define an inner product on By(H) by
(KK = (Kei, Kles) < oo

i€l
One can show that this inner product is independent of the choice of the orthonormal basis.
Let us assume that H is infinite dimensional and write N for . If we set

n

Ka(f) = (K(f), ees,

=1

then KC,, € By(H), and
1K = Kallz = lIKeil|* — 0,

>n
as n — oo. This implies that Bo(H) C By(#H) and that By(H) is dense in By(H) with respect
to the Hilbert-Schmidt topology.

Note that for I € By(H), we know that K£*K is a symmetric compact operator. Hence by
Spectral Theorem, there exists an orthonormal basis {e, : n € I'} consisting of eigenvectors
of |[K|? := K*K. In other words if r; > ry > -+ > 0 are the eigenvalues of |K| (they are
called the singular values of K), then |K|%e, = rZe,, and

I3 = .

n

If K is symmetric as well and A1, Ag, ... are its eigenvalues, then ||KC[|3 = >° 2. In this case,
we may apply the Spectral Theorem to write

Here {e,}, is an orthonormal basis with Ke, = \,e,, e, ® e, is defined by (e, ® e,)x =
(x, en)en, and the convergence occurs with respect to the Hilbert-Schmidt norm:

2
= IlF o,

2 n>N

IC—Z)\nen@)en

n<N

as N — oo.

(iii) For our purposes, we need to make sense of det(id 4+ K), known as the Fredholm de-
terminant of an operator C. This is possible for any trace class operator: an operator such
that

1Kl = Z((/C*/C)l/Qen,en) < o00.

nel
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The set of trace class operators is denote by B;(H). Evidently any trace class operator is
Hilbert-Schmidt. Indeed in terms of the singular values of IC, we have

Kl =Y (KK Pen, en) = Y1,

nel nel

provided that {e, : n € I} consists of eigenvectors of |K|. If K is self-adjoint and positive,

then eigenvalues Ay > Ay > ... of K are positive, and we obtain
Il = Z)\n < 00.
neN

Then for the determinant of 1 4+ K we have a natural candidate

(B.2) det(1 4+ K) = H(1 + Ap) < eXntn

neN

that is finite.

(iv) As a classical example, let u be a o-finite measure on X and choose H = L*(u). In
particular H = (?(X) when X is countable and p is the counting measure. Given any
K: X x X — R with K € L*(u x 1), define the operator

/K:vy p(dy).

The operator K is Hilbert-Schmidt because for any orthonormal basis {¢, : n € N},

DY / ( / K (@, )én(y) u(dy))2 p(d)

/ SOt ) ) ) = [ Gy 1) = 1K By

If K(z,y) = K(z,y) (or in the case of a complex-valued K, assume K(x,y) = K(y,x)), the
operator K is compact and symmetric. By Spectral Theorem, we can find an orthonormal
basis {¢, : n € N}, consisting of eigenfunctions of KC: K¢,, = \,¢,. By Spectral Theorem

)= [ e s0) ) = Jim 3 ( 00100 i) o))

= lim | Ky(z,v)f(y) p(dy),

N—o0



where Kn(z,y) = ), <n A®n(7)Pn(y). On the other hand

N—oo

with the convergence occurring in L?(u x p). Indeed if we set

(¢n ® gbn) (x, y) = ¢n(x)¢n(y)7

(¢n ROp: nE N) consists of mutually orthogonal functions in L?(p x p), that allows us to
make sense of K because

K122, = D Al < 00,

and )
1K = Kl 720, = D Al =0,

n>N
as N — oo. Since

Kf(x) = / K (2.9 (y) nldy) = / R (e.9)f(y) n(dy),

for every f € L*(u), we deduce that K = K 1 x p-almost everywhere. In summary,

(B'S) K(w,y) = Z)‘nqzsn(x)qbn(y)7

p x p-almost everywhere, with right-hand side converging in L?(u x p).

(v) If X is countable and p is the counting measure, then a symmetric kernel K : X x X — R
is Hilbert-Schmidt iff

(B.4) > K (2, y) < oo

Moreover, if {¢, : n € N} is an orthonormal basis consisting of eigenfunctions of the
associated K, then for every z,y € X, we have (B.3). Assume that the operator K is
non-negative so that the eigenvalues satisfy A, > 0. Then using (B.3),

S K0 = Y Y ) = X
rxeX zeX n n
Hence such K is in the trace class iff

(B.5) Y K(z,x)’ < 0.

rzeX
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