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1 Introduction

The majority of the fundamental processes of our natural world are described by differential
equations. Some examples are the vibration of solids, the flow of fluids, the formation of
crystals, the spread of infections, the diffusion of chemicals, the structure of molecules, etc.
These examples are responsible for our interest in partial differential equations (PDE) such
as Hamilton-Jacobi equation, Euler equation, Navier-Stokes equation, Diffusion equation,
Wave equation and Korteweg-deVries equation. As the primary goal of the course, I discuss
some of the above equations and explain some mathematical tools that are needed to solve
them. I also use these equation as an excuse to introduce students to some basic questions
in fluid mechanics and statistical physics.

As a warm-up for some of the challenging equations of the fluid mechanics such as Navier-
Stokes equation, let us consider a diffusion equation

(1.1) ut = α∆u,

where u(x, t) represents the density function of a chemical substance in a motionless fluid.
Alternatively, we may regard u(x, t) as the temperature of a d dimentional body Ω. Here x is a
point in the domain Ω, and t represents the time. From our interpretation, clearly (1.1) must
be solved subject to initial and boundary conditions. Our experience with linear equations
(such as ODEs) suggests expressing the solutions of (1.1) in terms of the eigenvalues and
eigenfunctions of the operator ∆ in the domain Ω. More specifically, we wish to express a
solution as (a possibly infinite) linear combination of eigenfunctions. This leads to the Fourier
expansion of a solution when Ω is a rectangular domain. We may express the solution as
an integral operator that acts on the initial data, and has a kernel that can be expanded
as an infinite series of weighted eigenfunctions. With the aid of this integral operator, we
can solved the equation (1.1) when sources are added. In analogy with the linear ODES, we
may formally write u(x, t) = (eαt∆g)(x), where g = u(x, 0) is the initial data. Analogously
the operator (−∆)−1 =

∫∞
0
et∆ dt is an integral operator with a kernel that is known as the

Green’s function of the domain Ω.
Our method of eigenfunction expansion of solutions can be used to treat any PDE of the

form ut = Lu where L is a suitable operator. For example, Lu = α∆u+ V u would yield an
important extension of (1.1), where V (x) is a potential function. In the same manner the
solutions to the Schrodinger equation

(1.2) i~ψt = − ~2

2m
∆ψ + V ψ,

can be represented.
The diffusion phenomenon occurs because the particles of the chemical substance are

bombarded by the fluid molecules. One may attempt to write some differential equations for
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the motion of the particles, but such system of equations are impractical to solve because
of the size of the system. Instead, we may use statistical mechanics to model the motion of
typical particles. For (1.1), a Brownian motion describes the evolution of a typical particle
statistically.

As our next model, we consider

(1.3) ut + |ux|2 + V = α∆u,

which is an example of viscous Hamilton-Jacobi equation. When α = 0, the equation (1.2)
is a simple model of the growth of a crystal (with the graph of u representing the outer
boundary of the crystal). When α > 0, we may apply the so-called Hope-Cole transform to
turn (1.3) to a variant of (1.1), namely

(1.4) Zt = α∆Z + cV Z,

where c = (2α)−1. Kac found a probablistic representation for the solutions of (1.2) that has
the same flavor as Feynman’s path integral in quantum mechanics, and involves a killed Brow-
nian motion when the potential V is nonnegative. Sending α→ 0 in Feynman-Kac formula
yields a variational representation of solutions of the corresponding (inviscid) Hamilton-
Jacobi equation

(1.5) ut + |ux|2 + V = 0.

The equation (1.5) may be differentiated to yield inviscid Burgers equation

(1.6) ρt + ρρx = f,

where f = −Vx is the external force. Our variational formula for u can be used to represent ρ.
An important feature of the equation is the occurrence of shock discontinuity and rarefaction
waves. Regarding ρ as the mass density, we may regard (1.6) as a model for a simple fluid with
a single conservation law. More generally, we will discuss the fundamental equations of fluid
mechanics such as Euler and Navier-Stokes equations. When the fluid is incompressible,
namely when the mass density is constant, we have a simpler PDE which is rich enough
to exhibit turbulence. Euler equation is an hyperbolic system of conservation laws. We
will briefly a systematic scheme for solving Riemann Problem for a system of conservation
laws. The scheme will be examined for the equation of fluids and a PDE that is used in
chromatography.

As we mentioned before, we use differential equations to model many phenomena in na-
ture. If a phenomenon of interest exhibit certain symmetries, we expect to have the same
symmetry for the corresponding differential equation. We can take advantage symmetries
in two ways: finding conservation laws for our equation, and constructing self-similar solu-
tions. A former can be done in a systematic way; a theorem of Nother gives us a recipe for
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constructing a conservation law associated with a symmetry of the underlying equation. As
an example, consider Hamiltonian ODEs of classical mechanics:

(1.7) q̇ = Hp(q, p, t), ṗ = −Hp(q, p, t).

Here q ∈ Rd represents the positions, p ∈ Rd represents the momenta, and H is the total
energy, and is known as the Hamiltonian function. It turns out that if there is enough
conserved quantities, namely d many conservation laws, then the equation (1.7) is completely
integrable. Newton discovered that the two body problem (like Newton’s equation for the
motion of the sun and earth) is completely integrable. This is no longer the case for the N
body problem when N > 2. It turns our that some nonlinear PDEs are infinite dimensional
examples of completely integrable systems. As an example, we will discuss Korteweg-de
Vries (KdV) equation

(1.8) Vt − 6V Vx + Vxxx = 0,

which models the motion of waves along a canal. Indeed this PDE is completely integrable,
and possess very stable traveling wave solutions known as solitons. The PDE (1.8) is closely
related to the Schrodinger operator

Lψ = −ψ′′ + V ψ,

where the potential V is a solution of (1.8). The equation (1.8) can be written as a Lax
equation

(1.9) Lt = [P ,L],

for a suitable operator L. The pair of (P , )̧ is an example of a Lax pair that would allow us
to use the spectral data associated with L to completely integrate the equation (1.8).

Burgers formulated (1.6) as a toy model for turbulence. Euler equation is a system of
conservation laws governing inviscid fluids. Writing

ρ : Rd × [0, T ]→ R, u = (u1, . . . , ud) : Rd × [0, T ]→ Rd, e : Rd × [0, T ]→ R,

for the density, velocity and internal energy, Euler equation reads as

ρt +∇ · (ρu) = 0,(1.10)

ut +∇(ρu⊗ u) +∇P (ρ, e) = 0,

(ρE)t +∇ ·
(
(E + P (ρ, e))u

)
= 0,

where P (ρ, e) is the pressure, and E = 1
2
|u|2 + e is the total energy. (In the middle equation,

∇ is regarded as a row vector.) When ρ is constant, the first two equations can be written
as

(1.11) ut + (u · ∇)u+∇P = 0, ∇ · u = 0.
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Here we are using the fact that the j-th component of the vector ∇(u⊗ u) is given by∑
i

(uiuj)xi = (∇ · u)uj +
∑
i

uiujxi = (u · ∇)uj.

Note that in (1.10), the pressure is given as a function of (ρ, e). However (1.11) is a system
of d+ 1 equations of d+ 1 unknowns u1, . . . , ud, P .

5



2 Laplace Operator

In this chapter, we mostly focus on the spectral properties of the Laplace operator. This in
turn can be used to solve the diffusion equation (1.4), and the Schrodinger equation (1.2).
As we mentioned in the introduction, the equations (1.2) or (1.4) must be solved subject
to an initial condition u(x, 0) = g (or in the case of (1.2), we require ψ(x, 0) = g(x)).
Additionally we need a boundary condition that comes in three flavors: Given a function
h : ∂Ω× [0, T ]→ R,

(i) (Dirichlet Condition) u(x, t) = h(x, t) for (x, t) ∈ ∂Ω× [0, T ].

(ii) (Neumann Condition) ∂u
∂n

(x, t) := ux(x, t) · n(x) = h(x, t) for (x, t) ∈ ∂Ω× [0, T ], where
n(x) is the outer unit normal at x.

(iii) (Robin Condition) a(x)u(x, t)+ ∂u
∂n

(x, t) = h(x, t) for (x, t) ∈ ∂Ω× [0, T ]. Here a : ∂Ω→
R is a given function.

When h = 0, we say that we have a homogeneous boundary condition. Physically speak-
ing, a homogeneous boundary condition means that we have closed system in the case of
the diffusion equation (or the body Ω is insulated along the boundary ∂Ω in the case of the
heat equation). It turns out that when we boundary condition is not homogeneous, we can
replace it with a homogeneous boundary condition for the price of producing an external
force. As we will see later in this chapter, the external force can be taken care of with a trick
known as the Duhammel Principle.

We now assume that we have a homogeneous boundary condition. This is a very conve-
nient assumption because the set of solution with homogeneous is a vector space i.e., it is
closed under addition and scalar multiplication. This makes the equation (??) or (1.2) par-
ticularly tractable because we can build new solutions from a family of solutions by taking
linear combinations.

As the first step, let use ignore the initial condition, and search for special solution of
say (1.1) of the form

u(x, t) = X(x)T (t).

Substituting this into (1.1) yields

T ′(t)

αT (t)
=

∆X(x)

X(x)
.

This is possible only if both sides are equal to a constant, say −λ. From this we learn that
if there exists a function X(x) and a constant λ such that

(2.1) −∆X(x) = λX(x),

then
u(x, t) = e−αλtX(x),
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satisfies (1.1). The same idea works when we have a potential V (x) which is independent
of t, or if we consider the Schrodinger equation. In the latter case, if we have a function
φ : Ω→ R, and a constant µ ∈ R such that

Hφ = − ~2

2m
∆φ+ V φ = µφ,

then

(2.2) ψ(x, t) = exp

(
1

i~
µt

)
φ(x),

is a solution of (1.2).
To get a feel for the equation (2.1), let us discuss a concrete example.

Example 2.1 Assume that Ω is a rectangular domain of the form

Ω =
d∏
j=1

(0, `j),

with `1, . . . , `j > 0. In this case we may separate variables and search for an eigenfunction
of the form

X(x1, . . . , xd) =
d∏
j=1

Xj(xj),

where Xj : [0, `j]→ R, for j = 1, . . . , d. Note that if X satisfies (2.1), then

−
d∑
j=1

X ′′(xj)

X(xj)
= λ.

This is possible only if there are constants `1, . . . , `d such that `1 + · · ·+ `d = `, and

(2.3)
X ′′(xj)

X(xj)
= λj,

for j = 1, . . . , d. For the sake of definiteness, let us assume a homogeneous Dirichlet boundary
condition i.e., Xj(0) = Xj(`j) = 0. Then (2.3) has a non-trivial unique solution only if
`j = k2

j > 0, and the solution is

Xj(xj) = sin
πkjxj
`j

.

In summary, given positive integers k1, . . . , kd, the function

X(x1, . . . , xd) =
d∏
j=1

sin
πkjxj
`j

,
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is an eigenfunction associated with the eigenvalue

(2.4) λ = π2

d∑
j=1

(
kj
`j

)2

.

The spectrum of ∆ consists of λ of the above form, and, as it turns out, there is no other
eigenvalue. When d = 1, all eigenvalues are simple (of multiplicity 1). This is no longer the
case when d ≥ 2. For example when d = 2, and `1 = `2 = π, then the list of eigenvalues
is 2, 5, 5, 8, 10, 10, . . . . Note that the eigenvalue 5 is of multiplicity 2 because there are two
ways to write 5 as a sum of two squares, namely 12 + 22, and 22 + 12.

In the case of homogeneous Neumann boundary condition, the eigenvalues are still of
the form (2.4), except that our condition on the integer kj is kj ≥ 0. The corresponding
eigenfunctions are

X̂(x1, . . . , xd) =
d∏
j=1

cos
πkjxj
`j

.

The lowest eigenvalue is 0, associated with the eigenfunction 1. The list of eigenvalues is
0, 1, 1, 2, 4, 4, 5, 8, 9, 9, . . . . �

Except for some simple domains, it is not possible to find the eigenvalues and eigenfunc-
tions explicitly. However for every bounded domain with nice boundary, we can show that
the set of eigenvalues is always discrete and all the multiplicities are finite. The modern proof
of these facts for the Laplace operator (or more generally any elliptic operator) involves the
Fredholm Theory of compact operators, and can be found in Evans [E]. On account of this
general and important fact, we may write λ1 ≤ λ2 ≤ · · · ≤ λn ≤ . . . (with multiplicities) for
the (ordered) set of eigenvalues. The corresponding (non-trivial) eigenfunctions are denoted
by w1, w2, . . . , wn, . . . . From our previous discussions we deduce that for any set of constants
c1, c2, . . . , the function

u(x, t) :=
∞∑
n=1

cne
−αλntwn(x),

is a solution provided that the sum converges in C2-sense. This solution would satisfy our
initial condition if

(2.5) g(x) =
∞∑
n=1

cnwn(x).

In order to succeed in our task, we need to examine the following problem. Given an initial
data g, can we find constants cn such that (2.5)?

Before tackling this question, we need to explore some basic properties of eigenvalues and
eigenfunctions.
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Definition 2.1(i) We write Ck for the space of functions h : Ω → R such that h ∈ Ck,
and one of our homogeneous boundary conditions is satisfied. When needed we display the
type of boundary condition we have in our notation for Ck. More specifically, we write Ck

D

(respectively Ck
N) for Ck when we have a homogeneous Dirichlet (respectively Neumann)

boundary condition. Similarly, we write CkR for Ck when we have a homogeneous Robin
boundary condition.

(ii) We define an inner product (and its corresponding norm) by

〈h1, h2〉 =

∫
Ω

h1(x)h2(x) dx, ‖h‖ := 〈h, h〉1/2.

We write h1 ⊥ h2, when 〈h1, h2〉 = 0. �

Recall that by the Divergence Theorem,

(2.6)

∫
Ω

div F dx =

∫
∂Ω

F · n dS,

where dS denotes the surface integration on ∂Ω. For two C1 functions w and v, we may
choose F = w∇v to deduce

(2.7)

∫
Ω

w∆v dx = −
∫

Ω

∇w · ∇v dx+

∫
∂Ω

w
∂v

∂n
dS.

Proposition 2.1 (i) The operator ∆ : C2 → C0 is symmetric.

(ii) For every w ∈ C2
D ∪ C2

N , we have 〈∆w,w〉 ≤ 0. Similarly if u ∈ C2
R with a ≥ 0 in the

Robin condition, then 〈∆w,w〉 ≤ 0.

(iii) If −∆v = λv, −∆w = µw, and µ 6= λ, then v ⊥ w.

Proof (i)-(ii) By (2.7),

v, w ∈ C2
D or v, w ∈ C2

N =⇒
∫

Ω

w∆v dx = −
∫

Ω

∇w · ∇v dx,(2.8)

v, w ∈ C2
R =⇒

∫
Ω

w∆v dx = −
∫

Ω

∇w · ∇v dx−
∫
∂Ω

avw dS,(2.9)

The operator ∆ is symmetric because the right-hand side is symmetric. Moreover the right-
hand side is non-positive when v = w.

(iii) By symmetry,
−λ〈v, w〉 = 〈∆v, w〉 = 〈v,∆w〉 = −µ〈v, w〉.

Hence 〈v, w〉 = 0 because λ 6= µ. �
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Proposition 2.2 The set of eignfunctions {wn : n ∈ N} can be chosen to be an orthonormal
set.

Proof Note that the eigenspace

En = {w ∈ C2 : −∆w = λnw},

is finite dimensional, and has an orthonormal basis. We are done, because En ⊥ Em whenever
λn 6= λm. �

Note that if (2.5) holds, with {wn : n ∈ N} as in Proposition 2.2, we can take the inner
product of both side with respect to wm to deduce that cm = 〈g, wm〉. The expansion (2.5)
can be written as

(2.10) g =
∞∑
n=1

〈g, wn〉wn.

We say that the orthonormal set {wn : n ∈ N} is complete if (2.10) holds for every g ∈ L2(Ω),
with the series on the right-hand side convergent with respect the L2-norm, namely ‖ · ‖ of
Definition 2.1. To prepare for the proof of the completeness, we first provide a variational
expression for the eigenvalues in the case of Dirichlet or Neumann boundary condition. To
motivate our formula, observe that if (2.10) holds, then

‖g‖2 =

〈∑
n

cnwn,
∑
n

cnwn

〉
=
∞∑
n=1

c2
n,

‖∇g‖2 =

〈∑
n

cn∇wn,
∑
n

cn∇wn

〉
=
∑
n,m

cncm〈∇wn,∇wm〉

= −
∑
n,m

cncm〈wn,∆wm〉 =
∑
n,m

cncmλm〈wn, wm〉 =
∞∑
n=1

c2
nλn.

From this, it is not hard to deduce that if (2.9) is valid for every L2-function, then

(2.11) λ1 = inf

{
‖∇w‖2

‖w‖2
: w ∈ C2, w 6= 0

}
.

In a similar fashion we can derive a variational expression for any λn. Thought we do not
know yet that (2.10) is true. To prove (2.10) we first verify (2.11) and its generalization for
any other eigenvalues. We then use these formulas to verify the validity of (2.9).
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Proposition 2.3 Assume either Dirichlet, or Neumann homogeneous boundary condition.
Then the formula (2.10) holds true. Moreover, for each n ∈ N, n > 1,

λn = inf

{
‖∇w‖2

‖w‖2
: w ∈ C2, w 6= 0, w ⊥ w1, . . . , wn−1

}
(2.12)

= inf
{
‖∇w‖2 : w ∈ C2, ‖w‖ = 1, w ⊥ w1, . . . , wn−1

}
.

Proof We give a partial proof by assuming that a classical minimizer exists. The proof of the
existence uses a classical result of Rellich, namely any sequence hn with ‖∇hn‖ uniformely
bounded, has a subsequence that converges strongly in L2(Ω). For our variational problem
(??), we may assume ‖hn‖ = 1, so that any limit point w̄ of ‖hn}n∈N satisfies ‖w̄‖ = 1 (and
hence nonzero).

We present the proof when n > 1 because the proof of n = 1 is similar. Assume that
there exists a function w̄ such that the infimum is achieved at w̄ ∈ C2. This means that
w̄ ⊥ w1, . . . , wn, and for any v ∈ C2, v ⊥ w1, . . . , wn, we have

ϕ(t) :=
‖∇(w + tv)‖2

‖w + tv‖2
≤ ϕ(0),

for every t ∈ R. As a result

0 = ϕ̇(0) = 2
〈∇w̄,∇v〉
‖w̄‖2

−2
‖∇w̄‖2

‖w̄‖2

〈w̄, v〉
‖w̄‖2

= −2
〈∆w̄, v〉
‖w̄‖2

−2
‖∇w̄‖2

‖w̄‖2

〈w̄, v〉
‖w̄‖2

= −2
〈∆w̄ − λ̄w̄, v〉
‖w̄‖2

,

where λ̄ denotes the right-hand side of (2.12) (the minimum value). As a result,

v ∈ C2, v ⊥ w1, . . . , wn−1 =⇒ 〈∆w̄ + λ̄w̄, v〉 = 0.

Since w̄ ⊥ w1, . . . , wn−1, we also have

〈∆w̄ + λ̄w̄, wj〉 = 〈∆w̄, wj〉 = 〈w̄,∆wj〉 = −λj〈w̄, wj〉 = 0,

for j = 1, . . . , n − 1. As a result ∆w̄ + λ̄w = 0. In other words, w̄ is an eigenfunction and
the corresponding eigenvalue is λ̄. This in turn implies that λ̄ ≥ λn. On the other hand

λ̄ ≤ ‖∇wn‖
2

‖wn‖2
= λn.

This completes the proof. �

We are now ready to establish (2.9).

Theorem 2.1 Assume either Dirichlet, or Neumann homogeneous boundary condition. Then
the formula (2.9) holds true for every g ∈ C1.
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Proof Let us write

Rn = g −
n−1∑
m=1

cmwm.

We wish to show ‖Rn‖ → 0 in large n limit. Since Rn ⊥ w1, . . . , wn−1, we use (2.12) to
assert

‖Rn‖2 ≤ λ−1
n ‖∇Rn‖2

which would go to 0 if we can show that supn ‖∇Rn‖ < ∞, and λn → ∞ as n → ∞. The
latter will be established later in this chapter after we learn how to compare the eigenvalues
of the domain of Ω with a rectangular domain Ω′ that contains Ω.

It remains to find a uniform bound on ‖∇Rn‖. Evidently

∇Rn = ∇g −
n−1∑
m=1

cm∇wm.

Observe that the set {∇wn : n ∈ N} is an orthogonal set. Indeed,

〈∇wj,∇wk〉 = −〈wj,∆wk〉 = λk〈wj, wk〉 = λkδjk.

As a result,

‖∇Rn‖2 =

∥∥∥∥∥∇g −
n−1∑
m=1

cm∇wm

∥∥∥∥∥
2

= ‖∇g‖2 − 2

〈
∇g,

n−1∑
m=1

cm∇wm

〉
+

n−1∑
m=1

c2
mλm ≤ ‖∇g‖2,

because〈
∇g,

n−1∑
m=1

cm∇wm

〉
= −

〈
g,

n−1∑
m=1

cm∆wm

〉
=

n−1∑
m=1

cmλm〈g, wm〉 =
n−1∑
m=1

c2
mλm.

This completes the proof. �

We now turn our attention to the proof of λn →∞ in large n limit. First let us comment
that a variational expression for an eigenvalue is desirable because in general no explicit
formula can be found for λn. Our formula (2.12) does not serve our purposes because the
eigenfunctions are not known in general. The following maximin principle of Courant and
Hilbert provides us with a better alternative.

Proposition 2.4 Assume either Dirichlet, or Neumann homogeneous boundary condition.
Then for n > 1,

(2.13) λn = max
v1,...,vn−1

λn(v1, . . . , vn−1),
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where

(2.14) λn(v1, . . . , vn−1) := inf

{
‖∇w‖2

‖w‖2
: w ∈ C2, w ⊥ v1, . . . , vn−1

}
.

(Here the maximum is over continuous or even square integrable functions and we do not
assume any boundary conditions.)

Proof Let us write λ̄ for the right-hand side of (2.13). We certainly have λn ≤ λ̄ by
Proposition 2.3. On the other hand, given v = (v1, . . . , vn−1) ∈ C2, choose α = (α1, . . . , αn) 6=
0 so that

w :=
n∑
j=1

αjwj ⊥ v1, . . . , vn−1.

Such a nonzero α exists because α satisfies a system of n− 1 linear equations. We have

λn(v1, . . . , vn) ≤ ‖∇w‖
2

‖w‖2
=
〈−∆w,w〉
‖w‖2

=

∑n
j=1 λjα

2
j∑n

j=1 α
2
j

≤ λn.

This being true for every such v implies that λ̄ ≤ λn, completing the proof of (2.13). �

It is straightforward to show

(2.15) λn = max

{
‖∇w‖2

‖w‖2
: w ∈ span{w1, . . . wn}, w 6= 0

}
.

We can use this to find a minimax principle for the eigenvalues:

Proposition 2.5 Assume either Dirichlet, or Neumann homogeneous boundary condition.
Then for n > 1,

(2.16) λn = min
v1,...,vn∈C

λ̂n(v1, . . . , vn−1),

where

λ̂n(v1, . . . , vn) := sup

{
‖∇w‖2

‖w‖2
: w ∈ span{v1, . . . , vn}, w 6= 0

}
.

(Here the minimum is over continuous functions satisfying the corresponding boundary con-
ditions.)
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Proof Let us write λ̄ for the right-hand side of (2.16). We certainly have λn ≥ λ̄ by (2.15).
On the other hand, given v = (v1, . . . , vn−1) ∈ C, choose α = (α1, . . . , αn) 6= 0 so that

w̄ :=
n∑
j=1

αjvj ⊥ w1, . . . , wn−1.

Such a nonzero α exists because α satisfies a system of n− 1 linear equations. We have

λ̂n(v1, . . . , vn) ≥ ‖∇w̄‖
2

‖w̄‖2
≥ inf

{
‖∇w‖2

‖w‖2
: w ⊥ w1, . . . , wn−1, w 6= 0

}
= λn.

Since this is true for every choices of v1, . . . , vn−1 ∈ C, we deduce that λ̄ ≥ λn. �

To display the dependence on the domain, let us write λn(Ω) for the n-th eigenvalue. To
emphasis on the type of boundary conditions we have, we may write λDn (Ω) and λNn (Ω) for the
eigenvalues with the Dirichlet and Neumann homogeneous boundary conditions respectively.
As we know from experience, a longer string (or a larger drum-head) plays lower notes. The
next result is a mathematical justification of this fact.

Proposition 2.6 If Ω ⊂ Ω′, then λDn (Ω) ≥ λDn (Ω′).

Proof Given a function w ∈ C2
D(Ω), define ŵ : Ω′ → R by

(2.17) w′(x) = w(x) 11(x ∈ Ω),

so that w′ = 0 on O′ \ Ω. This function is not necessarily twice differentiable on ∂O, but
it is always continuous (in fact w′ is weakly differentiable with ∇w ∈ L2(O′)). Since such
functions can be approximated by smooth functions in the norm ‖w‖ + ‖∇w‖, we may
use them in our variational representation of eigenvalues. We write Ĉ(Ω,Ω′) for the set of
function w′ as in (2.17). We can now use (2.13) to assert

λn(Ω′) = sup
v′1,...,v

′
n−1

inf

{
‖∇w′‖2

‖w′‖2
: w′ ∈ C2

D(Ω), w′ 6= 0, w′ ⊥ v′1, . . . , v
′
n−1

}
≤ sup

v′1,...,v
′
n−1

inf

{
‖∇w′‖2

‖w′‖2
: w′ ∈ C(Ω,Ω′), w′ 6= 0, w′ ⊥ v′1, . . . , v

′
n−1

}
(2.18)

Let us write v1, . . . , vn−1 and w for the restrictions of v′1, . . . , v
′
n−1 and w′ to the set Ω. Since

w′ ∈ C(Ω,Ω′), w′ ⊥ v′1, . . . , v
′
n−1 =⇒ w′ ⊥ v′1, . . . , v

′
n−1, ‖w‖ = ‖w′‖, ‖∇w‖ = ‖∇w′‖,

we deduce that the right-hand side of (2.18) is simply λn(Ω), as desired. �
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Remark 1.1(i) As we discussed in the proof of Proposition 2.4, we can allow the trial
function to be weakly differentiable with a square integrable derivative. The set of such
functions is denoted by H1(Ω) and this is in some sense the largest set of functions w for
which ‖w‖ and ‖∇w‖ are well-defined. To satisfy the homogeneous Dirichlet condition, we
need to assume that the trace of w on ∂Ω is zero. The set of such functions is denoted
by H1

0 (Ω). Alternatively, w ∈ H1
0 (Ω) if w can be approximated (with respect to the norm

‖w‖+‖∇w‖) by smooth functions that vanish near the boundary. In summary we can write

(2.19) λDn (v1, . . . , vn−1) := inf

{
‖∇w‖2

‖w‖2
: w ∈ H1

0 (Ω), w 6= 0, w ⊥ v1, . . . , vn−1

}
.

As for the Neumann boundary condition, we can drop the assumption ∂u/∂n = 0 and write

λNn (Ω) = inf

{
‖∇w‖2

‖w‖2
: w ∈ H1(Ω), w 6= 0, w ⊥ w1, . . . , wn−1

}
,(2.20)

= max
v1,...,vn−1

inf

{
‖∇w‖2

‖w‖2
: w ∈ H1(Ω), w 6= 0, w ⊥ v1, . . . , vn−1

}
.(2.21)

The proof of these formulas are left as an exercise. From comparing (2.21) with (2.13) we
learn

(2.22) λNn (Ω) ≤ λDn (Ω).

�

As an immediate consequence of Proposition 2.4, we learn that λDn (Ω) → ∞ in large n
limit because we can choose two rectangular domains D−, and D+ such that D− ⊂ Ω ⊂ D+,
and λDn (D−) ≥ λDn (Ω) ≥ λDn (D+). We wish to find the asymptotic behavior of λn. For this,
let us define

ND(N)(λ) = ]
{
n : λD(N)

n ≤ λ
}
.

Let us take a closer look at the eigenvalues of rectangular domains.

Example 2.2 Let Ω be as in Example 2.1. From (2.4) we learn

ND(λ) = ]ED(λ) := ]

{
k = (k1, . . . , kd) ∈ Nd :

d∑
j=1

(
kj
`j

)2

≤ λ

π2

}
.

In other words, k ∈ ED(λ) iff k is an integer lies in Q, the first quadrant of an ellipsoid with
radii π−1`j

√
λ. Such an integer k is a corner of the cube

∏
j[kj − 1, kj] that fully lies in Q.

Hence

(2.23) ND(λ) ≤ V ol(Q) = 2−dωd

d∏
j=1

`j
√
λ

π
= (2π)−d ωd λ

d/2 V ol(Ω),
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where ωd is the volume of the unit ball in dimension d. On the other hand, if

Q− =

{
x = (x1, . . . , xd) ∈ (0,∞)d :

d∑
j=1

(
xj + 1

`j

)2

≤ λ

π2

}
,

then

(2.24) V ol(Q−) ≤ ND(λ).

From this and (2.23) we can readily deduce

(2.25) lim
λ→∞

λ−d/2ND(λ) = (2π)−d ωd V ol(Ω) =: cd(Ω).

�

Hermann Weyl in 1911 discovered that (2.25) is true for every bounded domain. He also
conjectured the following asymptotic expansions:

ND(λ) = (2π)−d ωd V old(Ω)λd/2 − 4−1(2π)−d+1 ωd−1 λ
(d−1)/2 V old−1(∂Ω) + o

(
λ(d−1)/2

)
,

NN(λ) = (2π)−d ωd V old(Ω)λd/2 + 4−1(2π)−d+1 ωd−1 λ
(d−1)/2 V old−1(∂Ω) + o

(
λ(d−1)/2

)
.

Theorem 2.2 Let Ω be a bounded domain with C1 boundary. Then (2.25) holds.

Proof (Step 1) Assume that Ω = Ω1∪· · ·∪Ωk is a partition of Ω into k many subdomains. We
assume that each Ωj has a C1 boundary. Let us we write λDj,n for the n-th Dirichlet eigenvalue
of the subdomain Ωj, and arrange all λDj,n in a non-decreasing order µD1 ≤ µD2 ≤ . . . . We

also write ŵD1 , ŵ
D
2 , . . . for the corresponding eigenfunctions. We then define Ĉ to be the set

of functions u ∈ H1
0 (Ω) such that uj = u11Ωj ∈ H1

j (Ωj), for every j ∈ {1, . . . , k}. In other
words, u ∈ H1(Ω), and vanishes on the boundaries of all the subdomains. As before we can
show

(2.26) µDn = inf

{
‖∇w‖2

‖w‖2
: w ∈ Ĉ, w 6= 0, w ⊥ ŵD1 , . . . , ŵ

D
n−1

}
.

Here

(2.27) ‖∇w‖2 =
k∑
j=1

∫
Ωj

|∇w‖2 dx.

The formula (2.26) can be established is just the same way we proved (2.12). Indeed if w̄ is

a minimizer of (2.26), and we consider ϕ(t) = ‖∇(w̄+ tv)‖2/‖w̄+ tv‖2, for a function v ∈ Ĉ,
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then ϕ′(0) = 0 yields 〈(∆w̄ + λ̄w̄), v〉 = 0 because as we perform an integration by parts in
each subdomain, there would be no boundary contribution. Here λ̄ denotes the right-hand
side of (2.26). Without loss of generality, we may assume that ‖w̄‖ = 1. Observe that if
w̄j = w̄11Ωj , then using the elementary inequality

min
j

aj
bj
≤
∑

j aj∑
j bj

, aj, bj > 0,

we have
‖∇w̄‖2

‖w̄‖2
=

∑
j ‖∇w̄j‖2∑
j ‖wj‖2

≥ min

{
‖∇w̄j‖2

‖w̄j‖2
: w̄j 6= 0

}
.

This means that if the minimum on the left-hand side is achieved at j̄ ∈ {1, . . . , n− 1}, then
w̄j̄ is also a minimizer (and that the inequality must be an equality). Because of this we
may assume that the minimizer w̄ satisfies w̄ = w̄11Ωj̄ for some j̄. From w̄ ⊥ ŵD1 , . . . , ŵ

D
n−1,

we can readily deduce that λ̄ ≥ µn. The proof of λ̄ ≤ µn follows from choosing w = ŵDn for
our trial function. This completes the proof of (2.26).

A repetition of the proof of Proposition 2.4 yields

(2.28) µDn = max
v1,...,vn−1

inf

{
‖∇w‖2

‖w‖2
: w ∈ Ĉ, w 6= 0, w ⊥ v1, . . . , vn−1

}
.

(Step 2) Similarly, let us define Ĉ ′ to be the set of functions u such that uj = u11Ωj ∈ H1(Ωj)
for every j ∈ {1, . . . , k}. In other words, u is in H1 in each subdomain, but is allowed
to be discontinuous across the boundary of subdomains. Let us we write λNj,n for the n-th
Neumann eigenvalue of the subdomain Ωj, and arrange all λNj,n in a non-decreasing order
µN1 ≤ µN2 ≤ . . . . We also write ŵN1 , ŵ

N
2 , . . . for the corresponding eigenfunctions. We claim

(2.29) µNn = inf

{
‖∇w‖2

‖w‖2
: w ∈ Ĉ ′, w 6= 0, w ⊥ ŵN1 , . . . , ŵ

N
n−1

}
.

Again ‖∇w‖2 is defined by (2.27). Let us write w̄ for a minimizer in (2.29), and λ̄ for the
right-hand side of (2.29). A repetition of the proof of (2.20) yields ∆w̄ + λ̄w̄ = 0 strictly
inside each subdomain, and that ∂w̄/∂n = 0 on the boundary of each subdomain. As in
Step 1, we can argue that there exists k such that w̄11Ωk is also a minimizer. We can now
repeat our reasoning in Step 1 to complete the proof of (2.29). Similarly, we can show

(2.30) µNn = max
v1,...,vn−1

inf

{
‖∇w‖2

‖w‖2
: w ∈ C̃, w ⊥ v1, . . . , vn−1

}
.

From (2.30), (2.28), and (2.22) we deduce

(2.31) µNn ≤ λNn ≤ λDn ≤ µDn .
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(Final Step) Define

N̂D(λ) = ]
{
n : µDn ≤ λ

}
, N̂N(λ) = ]

{
n : µNn ≤ λ

}
.

From (2.31) we learn

N̂D(λ) ≤ ND(λ) ≤ NN(λ) ≤ N̂N(λ).

On the other hand if we write ND(N)
i (λ) for the eigenvalue counting number of the domain

Ωi, then it is not hard to see

N̂D(N)(λ) =
k∑
j=1

ND(N)
j (λ),

which in turn implies

(2.32) lim
λ→∞

λ−d/2N̂D(N)(λ) = lim
λ→∞

k∑
j=1

λ−d/2ND(N)
j (λ).

From this we can readily derive (2.25) when Ω is a finite union of rectangular domains. Since
we can find a sequence of domains Ω±n such that each Ω±n is a union of rectangular domains,
and

Ω−n ⊂ Ω ⊂ Ω+
n , lim

n→∞
V ol
(
Ω+
n \ Ω−n

)
,

we are done. �

Corollary 2.1 Let Ω be as in Theorem 2.2. Then

lim
n→∞

n−2/dλn(Ω) = cd(Ω)−2/d.

Proof The function N (λ) is a piecewise constant function with jumps at µ1 < µ2 < · · · <
µn < . . . , where µj is the j-th distinct eigenvalue, and N (µj+)−N (µj−) is the multiplicity
of µj. Given c± with c− < cd(Ω) < c+, we have

c−λ
d/2 ≤ N (λ) ≤ c+λ

d/2,

for sufficiently large λ. This implies

(n/c+)−d/2 ≤ N−1(n) ≤ (n/c−)−d/2,

for sufficiently large n. This completes the proof, because N−1 = n = λn for n ∈ N, and we
can send c± to cd(Ω). �
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Remark 2.1(i) In 1966, Marc Kac raised the following question: Is the domain Ω determined
up to isometries from the its Dirichlet or Neumann eigenvalues λn(Ω)? It turns out that the
answer is no in general. However the eigenvalues do provide many goemetric information
about Ω. It is conjectured that under some additional assumptions on Ω, we should be able
to determine Ω fully from its spectrum. Let us discuss some reformulation of Kac’s question.
Observe that the Laplace transform of the counting function N is simply∫ ∞

0

e−tλN (λ) dλ =

∫ ∞
0

e−tλ
∞∑
n=1

11(λn ≤ λ) dλ =
∞∑
n=1

∫ ∞
λn

e−tλ dλ

= t−1

∞∑
n=1

e−tλn = t−1Tr
(
et∆
)
.

On the other hand ∫
λd/2 e−tλ dλ = t−1− d

2 Γ

(
d

2
+ 1

)
,∫

λ(d−1)/2 e−tλ dλ = t−1− d−1
2 Γ

(
d− 1

2
+ 1

)
,

where for example

Γ

(
d

2
+ 1

)
=

{
k! if d = 2k,
(2k+2)!
4k(k+1)!

√
π if d = 2k + 1.

This suggests an expansion

(2.33) Tr
(
et∆
)

= t−
d
2

∞∑
k=0

akt
k/2,

for small t > 0.

(ii) The variational techniques we have developed work also when we add a potential to −∆.
For example, if V : Ω→ R is a continuous function, and L is the operator

Lw = −α∆w + V w,

then under either Dirichlet or Neumann boundary condition, we have

〈Lw,w〉 = ‖∇w‖2 + 〈V w,w〉.

Again we write λ1 ≤ dots ≤ λn ≤ . . . for the eigenvalues and w1, w2, . . . , wn, . . . and
eigenfunctions:

Lwn = λnwn, ‖wn‖ = 1.
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With a verbatim argument we can show

λn = inf

{
‖∇w‖2 + 〈V w,w〉

‖w‖2
: w ∈ C2, w ⊥ w1, . . . , wn−1

}
.

Note that the operator L is symmetric, but not necessarily positive unless V ≥ 0. �

2.1 Fundamental solution

The diffusion (1.1) in the domain Ω has a solution of the form

u(x, t) =
∞∑
n=1

e−αλnt〈g, wn〉wn(x),

where g(x) = u(x, 0) is the initial condition. This can be rewritten as

(2.34) u(x, t) =

∫
Ω

S(x, y, t)g(y) dy, where S(x, y, t) =
∞∑
n=1

e−αλntwn(x)wn(y).

We refer to S as the fundamental solution. In fact S solves the diffusion equation in x for
each y (or the other way around) so long as t > 0:

(2.35) St = α∆xS.

Since u(x, t)→ g(x) as t→∞, we interpret this as

lim
t→0

S(x, y, t) = δy(x), or S(x, y, 0) = δy(x).

With the aid of S we can solve (1.1) with an external force:

(2.36) ut = α∆u+ f, u(x, 0) = g,

By Duhamel’s formula

(2.37) u(x, t) =

∫
Ω

S(x, y, t)g(y) dy +

∫ t

0

∫
Ω

S(x, y, t− s)f(y, s) dyds.

We now ready to treat inhomogeneous boundary conditions. For example if we require

u(x, t) = h(x, t), t ≥ 0, x ∈ ∂Ω,

then we search for a C2 function H : Ω × [0,∞) → R such that the restriction of H to the
boundary coincides with h. Then the function w = u−H satisfies a homogeneous Dirichlet
boundary condition, and solves

wt = α∆w + f̂ , w(x, 0) = ĝ,

where f̂ = f − (Ht − α∆H), and ĝ(x) = g(x)−H(x, 0).
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2.2 Brownian motion

When the domain Ω is Rd, we can explicitly determine the fundamental solution. To find S,
observe that if u satisfies (1.1) in Rd, and c > 0 is a scalar, then w(x, t) = u(cx, c2t) is also a
solution. This suggests looking for a scaling invariant solution of the form u(x, t) = ϕ

(
x/
√
t).

Let us first assume that d = 1. Substituting such a function u in (1.1) yields

− x

2t3/2
ϕ′
( x

t1/2

)
=
α

t
ϕ′′
( x

t1/2

)
, or − rϕ′(r) = 2αϕ′′(r).

This leads to a solution of the form

w(x, t) =

∫ x/
√
t

0

e−
r2

4α dr.

Observe

w(x, 0) =

{√
απ, x > 0,

−
√
απ, x < 0.

We wish to find a solution with δ0 for initial data. Since a constant multiple of wx is also a
solution, we arrive at

S̄(x, 0, t) =
1

2
√
απ

wx(x, t) =
1

2
√
απt

e−
x2

4αt ,

for the fundamental solution. We can extend this to higher dimensions, and by translation
to any y:

(2.38) S̄(x, y, t) = (4πtα)−d/2 e−
|x−y|2

4αt .

We note that x 7→ S̄(x, y, t) can serve as a probability density because∫
S̄(x, y, t) dy = 1.

Indeed we may regard x 7→ S̄(x, y, t) as the probability density of the location of a particle
that is suspended in a motionless fluid. The particle is initially located at x and reaches y at
time t. Its motion comes from kicks it receives from the fluid particles. A simple mathemati-
cal model for its motion was proposed by Einstein in 1905 and is known as Brownian motion.
(It was also developed by Bachelier in his 1900 thesis to model the stock market fluctua-
tions.) The first rigorous construction of a Brownian motion was carried out by Wiener in
1920’s. By a Brownian motion or Wiener process B(t), we mean a probability measure P on
the set of continuous path B : [0,∞)→ Rd with the following properties:
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� B(0) = 0 and P(B(t) ∈ A) =
∫
A
S̄(0, y, t) dy for α = 1/2.

� The process B̂(t) = B(t + s) − B(s), t ≥ 0 is again a Brownian motion that is
independent of

(
B(θ) : θ ∈ [0, s]

)
.

Given a Brownian motion, we may write

u(x, t) = E g
(
x+
√

2α B(t)
)
,

where E denotes the expectation with respect to P. Moreover, we can readily calculate the
finite dimensional density of

(
B(t1), . . . , B(tk)

)
for 0 = t0 < t1 < · · · < tk = T . Indeed if(

B(t1), B(t2), . . . , B(tk)
)

= (x1, x2, . . . , xk),

then (
B(t1), B(t2)−B(t1), . . . , B(tk)−B(tk−1)

)
= (x1, x2 − x1, . . . , xk − xk−1),

and by the aforementioned properties of Brownian motion,

Ef
(
B(t1), . . . , B(tk)

)
=

∫
f(x1, . . . , xk) Z(t1, . . . , tk)

−1 exp

[
−1

2

k∑
j=1

|xj − xj−1|2

tj − tj−1

]
k∏
j=1

dxj,

where

Z(t1, . . . , tk) =
k∏
j=1

(
2π(tj − tj−1)

)1/2
.

If we write
(
y(t) : t ∈ [0, T ]

)
for the (polygonal) path that interpolates linearly between

points
(0, B(0)), (t1, B(t1)), . . . , (tk, B(tk)),

then the exponent can be written as

−1

2

∫ T

0

|ẏ(s)|2 ds.

We are tempted to choose finer and finer grid for [0, T ], and hope to have a limit for our
formula as maxj(tj − tj−1) tends to 0. If we succeed, we would have a representation of the
Wiener measure in the interval [0, T ] in the form

(2.39) Z([0, T ])−1 exp

[
−1

2

∫ T

0

|Ḃ(s)|2 ds
] ∏

s∈[0,T ]

dB(s).
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Unfortunately such a limit does not exist, and various terms that appear in (2.39) are not
mathematically well-defined. Nonetheless, if we think of the diffusion equation

(2.40) ut(x, t) =
1

2
∆u(x, t) + V (x)u(x, t), u(x, 0) = g(x),

as the Euclidean analog of the Schrodinger equation, then a possible candidate for the
solution would be

u(x, t) =

∫
g(x+B(t)) Z([0, t])−1 exp

[
−
∫ t

0

(
1

2
|Ḃ(s)|2 − V (x+B(s))

)
ds

] ∏
s∈[0,T ]

dB(s).

Motivated by this we have the following representation of solution that is known as Feynmann-
Kac Formula.

Theorem 2.3 Assume that V and g are bounded continuous functions.Then the solution of
(2.40) can be represented as

(2.41) u(x, t) = E g(x+B(t)) e
∫ t
0 V (x+B(s)) ds.

Proof (Step 1) We wish to show that u given by (??) satisfies (2.40). Let us first assume
that g, V ∈ C2 with bounded second derivative. This would guarentee that u ∈ C2 because
we can differentiate inside the expectation.

Give h > 0, set B̂(t) = B(t+ h)−B(h). Observe

u(x, t+ h) =E g
(
x+B(t+ h)

)
e
∫ t+h
0 V (x+B(s)) ds

=E g
(
x+B(h) + B̂(t)

)
e
∫ t
0 V (x+B(h)+B̂(s)) ds e

∫ h
0 V (x+B(s)) ds

=E u
(
x+B(h), t

)
e
∫ h
0 V (x+B(s)) ds

=E u
(
x+B(h), t

) (
1 +

∫ h

0

V
(
x+B(s)

)
ds

)
+O(h2)

=E u
(
x+B(h), t

)
+ (1 + hV (x)) + o(h)

=E u
(
x+B(h), t

)
+ hV (x)u(x, t) + o(h)

=u(x, t) + 2−1h∆u(x, t) + hV (x)u(x, t) + o(h).

Hence u given by (2.41) satisfies (2.40).

(Step 2) We now replace the differentiability assumption on (g, V ). Choose a sequence
(gn, V n) ∈ C2 with bounded derivatives such that (gn, V n) → (g, V ) locally uniformly. We
write un for the corresponding u as we replace g and V in (2.41) with gn and V n. Evidently
un → u pointwise. By Step 1

unt =
1

2
∆un + V nun, un(x, 0) = gn(x).
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We may use Duhamel’s formula to write

un(x, t) =

∫
S̄(x, y, t)gn(y) dy +

∫ t

0

∫
S̄(x, y, t− s)(V nun)(y, s) dy,

where S is given in (2.38). We can pass to the limit to deduce

u(x, t) =

∫
S̄(x, y, t)g(y) dy +

∫ t

0

∫
S̄(x, y, t− s)(V u)(y, s) dy.

This in turn implies that u satisfies (2.40). (We only calculated the right derivative, but
this is good enough to show that u is weakly differentiable, and since its weak derivative is
continuous, u is classically differentiable.) �

2.3 Green’s function

Given a domain Ω, the kernel G of the operator ∆−1 is known as the Green’s function. We
can use our eigenvalues and eigenfunctions to find an explicit expression for G:

(2.42) −∆−1(x, y) = GD(x, y) =
∞∑
n=1

(λDn )−1wDn (x)wDn (y).

This is an immediate consequence of −∆−1wn = λ−1
n wn. The question of convergence of

the series in (2.42) is subtle we do not address it here. Note that by (2.25) we know that
λ−1
n behaves like a constant multiple of n−2/d, which converges rather slowly to zero when
d is large. Assuming Dirichlet boundary condition, the Green’s function G = GD can be
specified by

(2.43)

{
−∆yG

D(x, y) = δx(y), y ∈ Ω,

GD(x, y) = 0, y ∈ ∂Ω.

We now apply (2.7) to assert that for any C2 function u,

(2.44) u(x) = −
∫

Ω

GD(x, y) ∆u(y) dy −
∫
∂Ω

∂GD

∂n
(x, y)u(y) dS(y).

The kernel −∂GD/∂n is known as Poisson kernel. With the aid of (2.44) we can solve the
problem

(2.45)

{
−∆u = f, in Ω,

u = h, in ∂Ω.
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Assuming Neumann boundary condition, the Green’s function G = GN is defind by

(2.46) GN(x, y) =
∞∑
n=2

(λNn )−1wNn (x)wNn (y).

Note that the sum avoids the first eigenvalue λN1 = 0. Observe

−∆yG
N(x, y) =

∞∑
n=2

wNn (x)wNn (y) = δx(y)− 1.

Hence GN can be specified by

(2.47)

{
−∆yG

N(x, y) = δx(y)− 1, y ∈ Ω,
∂GN

∂n
(x, y) = 0, y ∈ ∂Ω.

Applying (2.7) again yields,

(2.48) u(x) = −
∫

Ω

GN(x, y) ∆u(y) dy +

∫
Ω

u(y) dy +

∫
∂Ω

GN(x, y)
∂u

∂n
(y) dS(y).

With the aid of (2.48) we can solve the problem

(2.49)

{
−∆u = f, in Ω,

∂u
∂n

= h, in ∂Ω.

For this problem to have a solution, we need

(2.50)

∫
Ω

f dx+

∫
∂Ω

h dS = 0.

Also note that if u is a solution to (2.51), then u+ c is also a solution for any constant c. To
have a unique solution, we may require that

∫
Ω
u(y) dy = 0.

When Ω = Rd, by translation invariance of the domain and ∆, the corresponding Green’s
function Ḡ satisfies Ḡ(x, y) = Ḡ(0, y − x). When d ≥ 3, we may find the Green’s function
by integrating the fundamental solution (2.38) in t:

Ḡ(x) :=Ḡ(0, x) = −∆−1(0, x) =

∫ ∞
0

S̄(0, x, t)dt =

∫ ∞
0

(4πt)−d/2e−
|x|2
4t dt

=
1

4πd/2

∫ ∞
0

θ
d
2
−2 e−θ|x|

2

dθ =
1

4πd/2

∫ ∞
0

θ
d
2
−2 e−θ dθ |x|2−d

=
Γ(d/2− 1)

4πd/2
|x|2−d =

Γ(d/2)

2(d− 2)πd/2
|x|2−d =

1

d(d− 2)ωd
|x|2−d =: cd|x|2−d.
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We can verify this directly. It is straightforward to check that ∆Ḡ = 0 off of the origin. On
the other hand, we can use the integrability of Ḡ near the origin to assert that for every
smooth ϕ of compact support,∫

Ḡ∆ϕ dx = lim
δ→0

∫
|x|>δ

Ḡ∆ϕ dx = lim
δ→0

[∫
|x|>δ

ϕ∆Ḡ dx+

∫
|x|=δ

(
∂ϕ

∂n
Ḡ− ∂Ḡ

∂n
ϕ

)
dS

]
= − lim

δ→0

∫
|x|=δ

∂Ḡ

∂n
ϕ dS = −ϕ(0) lim

δ→0

∫
|x|=δ

∂Ḡ

∂n
dS.

From

∇Ḡ(x) = −(d− 2)cd|x|−dx,
∂Ḡ

∂n
(x) = (d− 2)cd|x|1−d,

we deduce

(2.51)

∫
|x|=δ

∂Ḡ

∂n
dS = 1,

because dωd is the surface area of a sphere of radius 1. When d = 2,

(2.52) Ḡ(x) = − 1

2π
log |x|,

because Ḡ satisfies ∆Ḡ = 0 off of the origin, and (2.51) holds. In summary,∫
(−∆ϕ)Ḡ dy = ϕ(0),

for any smooth ϕ of compact support. This is exactly (2.48) for u = ϕ, and can be interpreted
as saying that −∆Ḡ = δ0 weakly.

Remark 2.2 According Coulomb’s law the (potential) energy associated with a charge
density ρ(x) (in dimension 3) is given by

V (x) =
1

4ε0π

∫
ρ(y)

|x− y|
dy =

1

ε0

∫
Ḡ(x, y)ρ(y) dy,

where ε0 is the electric constant. Hence the electric field E is given by

E(x) = −∇V (x) = − 1

4ε0π

∫
ρ(y)

x− y
|x− y|3

dy.

As a consequence we have the Gauss’ law ∇ · E = −∆V = ε−1
0 ρ. �
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On account of (2.44) and (2.48), we can solve the problems (2.45) and (2.51), provided
that the corresponding Green’s functions are known. In practice, no explicit formula for
the Green’s function is available. Since ∆(G− Ḡ) = 0, G− Ḡ is a harmonic motion and is
smooth. This implies that the type of singularity G has near the diagonal is the same as Ḡ.
Note also that by (2.7)

(2.53) u(x) = −
∫

Ω

Ḡ(x, y) ∆u(y) dy −
∫
∂Ω

∂Ḡ

∂n
(x, y)u(y) dS(y) +

∫
∂Ω

Ḡ(x, y)
∂u

∂n
(y) dS(y).

Motivated by this, let us set

w(x) = Γv(x) =: −
∫
∂Ω

∂Ḡ

∂n
(x, y)v(y) dS(y),

for a given function v. This is the analog of Cauchy’s integral in complex analysis and
∆w = 0 off of ∂Ω. We way wonder whether the operator Γ can be used to solve (2.51) for
f = 0. For this we need to examine the behavior of w(x) as x approaches a point a ∈ ∂Ω
within Ω. We note that the function w may not be continuous on ∂Ω. For the limiting
behavior of w at a, we need to the evaluate the total integral of the kernel that appears on
the right-hand side of (2.53).

Lemma 2.1 (Gauss Lemma)

(2.54) −
∫
∂Ω

∂Ḡ

∂n
(x, y) dS(y) =

1

2
11
(
x ∈ ∂Ω

)
+ 11

(
x ∈ Ω

)
.

Proof Note that by Gauss divergence formula∫
∂Ω

∂Ḡ

∂n
(x, y) dS(y) =

∫
∂Bδ(x)∩Ω

∂Ḡ

∂n
(x, y) dS(y),

because ∆yḠ(x, y) = 0 in Ω \Bδ(x). This implies (2.54) when x ∈ Ω by (??). In the case of
x ∈ ∂Ω, we can show

lim
δ→0

∫
∂Bδ(x)∩Ω

∂Ḡ

∂n
(x, y) dS(y) =

1

2
,

because for δ small, the domain of integration is almost half of ∂Bδ(x). �

Theorem 2.4 Let v be a continuous function. Then

(2.55) lim
x∈Ω→a

(Γv)(x) =
1

2
v(a) + (Γv)(a),

for every a ∈ ∂Ω.
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Proof For x ∈ Ω, we use (2.54) to write,

(Γv)(x)− 1

2
v(a)− (Γv)(a) = −

∫
∂Ω

[
∂Ḡ

∂n
(x, y)− ∂Ḡ

∂n
(a, y)

] (
v(y)− v(a)

)
dS(y)

=:

∫
A(x, y) dS(y).

We write this integral as I(δ) + II(δ), with I representing the integral of A over ∂Ω∩Bδ(a).
We use the continuity of v to show that I(δ) is small δ. For II(δ), we are δ-away from the
singularity of G and use the continuity of Γ to show that II(δ) is small whenever |x− a| is
small. �

The formula (2.55) offers a strategy for solving (2.45) when f = 0. The solution can be
expressed as u = Γv for

v =

(
1

2
id+ Γ

)−1

h.

This strategy can be carried out to prove the existence of a solution by taking advantage of
the compactness of the operator Γ.

2.4 Exercise

(i) Determine the radial part of the operator ∆ in dimension d. In other words, find ∆f ,
where f(x) = ϕ(|x|).
(ii) When d = 2, determine the Laplace operator in polar coordinates.

(iii) When d = 2, and Ω is the disc {x : |x| ≤ a}, find eigenvalues and eigenfunctions of
∆ for the homogeneous Dirichlet boundary conditions. (Hint: The eigenfunctions are not
explicit and satisfy ODEs known as Bessel’s differential equations.)

(iv) Assume Robin homogeneous boundary condition with a ≥ 0. Then for each n ∈ N,
n > 1,

λn = inf

{
‖∇w‖2 +M(w)

‖w‖2
: w ∈ C2, w ⊥ w1, . . . , wn−1

}
,

where

M(w) =

∫
∂Ω

aw2 dS.

(Remark: As in the proof of (2.11), assume that a minimizer exists. The condition a ≥ 0
may be used to guarantee the existence of a minimizer.)

(v) Verify (2.20). (Hint: Repeat the proof of Proposition 2.3 for v ∈ C2 and v ⊥ w1, . . . , wn−1.
If we additionally assume that v vanishes on ∂Ω, then we deduce ∆w̄ + λ̄w = 0 inside Ω.
Then choose v that does not vanish on boundary to deduce that ∂w̄/∂n = 0 on ∂Ω.)
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(vi) Verify (2.24).

(vii) Show that (2.25) holds when λD(Ω) is replaced with λN(Ω), and Ω is a rectangular
domain.

(viii) Show∣∣ND(λ)− (2π)−d ωd V old(Ω)λd/2
∣∣ ≤ 2−1(2π)−d+1 ωd−1 λ

(d−1)/2 V old−1(∂Ω),

for a rectangular Ω as in Example 2.2. (Hint: Bound V ol(Q)− V ol(Q−)).

(ix) Show that
∫
wNn dx = 0 for n > 1. Use this to verify∫

Ω

SN(x, y, t) dy = 1,

where SN denotes the fundamental solution of the diffusion equation when we have Neumann
condition.

(x) Check directly that u given by (2.37) satisfies (2.36).

(xi) Assume that u : Rd → R is a uniformly positive twice continuously differentiable
function such that ∆u is bounded. Show

u(x) = E u(x+B(t)) e−
∫ t
0

∆u
2u

(x+B(s)) ds,

for every t ≥ 0. (The assumptions on u guarantee that the right-hand side is well-defined.)

(xii) For G given by (2.42), show∫
Ω×Ω

G(x, y)2 dxdy =
∞∑
n=1

λ−2
n .

When this is finite? (Hint: Use Theorem 2.2.)

(xiii) When ∫
|x|≤1

Ḡ(x)2 dx <∞?

Explain why your answer coincides with your answer in (xii).

(xiv) In the case of the upper half space

Ω =
{

(x1, . . . , xd) ∈ Rd : xd > 0
}
,

show
GD(x, y) = Ḡ(x− y)− Ḡ(x− ȳ),
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where y = (y1, . . . , yd−1, yd), ȳ = (y1, . . . , yd−1,−yd).

(xv) Assume that u : Ω× [0,∞)→ R solves the wave equation

utt = c2uxx, x ∈ Ω, t > 0,

subject to the initial conditions

u(x, 0) = f(x), ut(x, 0) = g(x), x ∈ Ω,

and the Dirichlet boundary condition u(x, t) = 0, for x ∈ ∂Ω. Use the eigenvalues and
eigenfunctions of −∆ in the domain Ω to represent the solution in terms of its initial data.
(Hint: First ignore initial conditions and separate variables to find solutions of the form
u(x, t) = T (t)X(x).)

(xvi) Consider the wave equation in R:

utt(x, t) = c2uxx(x, t) + h(x, t), x ∈ R, t > 0,

with the initial conditions u(x, 0) = f(x), u(t(x, 0) = g(x). Directly show that u given by

u(x, t) =
1

2

(
f(x+ ct) + f(x− ct)

)
+

1

2c

∫ x+ct

x−ct
g(y) dy +

1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)
h(y, s) dyds,

is a solution.
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3 Schrodinger Operator

For our purposes, we wish to analyze the spectrum of L = −∆ + V . As we will see later, if
V vanishes sufficiently fast at ∞, then we always have σess(L) = [0,∞), and that σd(L) ⊂
(−∞, 0) is a finite set (possibly empty). Let us first discuss some examples.

Example 3.1(i) Let X = L2(Rd), and L = −∆, with Dom(L) = H2(Rd). We claim that
σ(L) = σess(L) = [0,∞). Note that for every k ∈ Rd, we have L(wk) = 4π2|k|2wk, where
wk(x) = e2πik·x. But wk /∈ L2(Rd). Nonetheless the presence of such wk prevents the operator
∆ + |k|2 to be invertible. To explain this, let us use the Fourier Transform

f̂(ξ) = F(f)(ξ) =

∫
e−2πix·ξf(ξ) dξ, ǧ(x) = F−1(f)(x) =

∫
e2πix·ξg(x) dx.

Define fn = ǧn, where
gn(ξ) = (2πn)d/2e−n

2|ξ−k|2 .

We claim
‖fn‖ = 1, lim

n→∞
‖(∆ + 4π2|k|2)fn‖ = 0, fn ⇀ 0.

Indeed ‖fn‖2 = ‖gn‖2 = 1, and

‖(∆ + 4π2|k|2)fn‖2 = 16π4(2πn)d/2
∫

(|ξ|2 − |k|2)2e−n
2|ξ−k|2 dξ

= 16π4(2π)d/2n−d/2
∫

(|k + n−1ξ|2 − |k|2)2e−|ξ|
2

dξ → 0,

in large n limit.
Also if −(∆ + λ)u = w, then

ŵ(ξ) = (4π2|ξ|2 − λ)û(ξ),

which leads to

−(∆ + λ)−1w = K ∗ w, where K̂(ξ) = (4π2|ξ|2 − λ)−1 =: L(ξ).

Note that K̂ is well-defined and analytic if λ 6∈ [0,∞). Moreover,

K(x) =Ľ(x) =

∫
(4π2|ξ|2 − λ)−1e2πix·ξ dξ =

∫ ∞
0

∫
e2πix·ξ−t(4π2|ξ|2−λ) dξ dt

=

∫ ∞
0

etλ−
|x|2
4t

∫
e2πix·ξ−4π2|ξ|2t+ |x|

2

4t dξ dt =

∫ ∞
0

etλ−
|x|2
4t

∫
et|2πiξ+

x
2t
|2 dξ dt

=

∫ ∞
0

etλ−
|x|2
4t

∫
et|2πiξ|

2

dξ dt =

∫ ∞
0

etλ−
|x|2
4t

∫
e−|2π

√
t ξ|2 dξ dt

=πd/2
∫ ∞

0

etλ−
|x|2
4t (2π

√
t)−d dt = (4π)−d/2

∫ ∞
0

etλ−
|x|2
4t t−d/2 dt
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(iii) Consider L = − d2

dx2 − V011(|x| ≤ 1). As we mentioned before, if λ is an eigenvalue,
then λ ∈ (−∞, 0). We write λ = −`2. Since outside [−1, 1], the eigenfunction must satisfy
ψ′′ = `2ψ, we learn that ψ(x) = c0e

−±x. Since we require ψ ∈ L2(R), we must have
ψ(x) = c0e

−`x, for x > `, and ψ(x) = c′0e
`x, for x < −`. For simplicity, we assume that

c0 = c′0. In summary, We first concentrate on its eigenvalues. We search for ψ such that
ψ(x) = c0e

−`|x| outside the interval [−1, 1]. Inside the interval [−1, 1], we wish to solve

Lψ = −ψ′′ − V0ψ = −`2ψ, or ψ′′ = (`2 − V0)ψ.

We now argue that `2 − V0 < 0. If to the contrary `2 − V0 = η2 for some η ≥ 0, then
ψ(x) = c1e

ηx + c2e
−ηx, and the condition ψ(1) = ψ(−1) = c0e

−` implies that c1 = c2,
c1(e−η + eη) = c0e

−`. On the other hand the conditions ψ′(1) = −c0`e
−`, ψ′(−1) = c0`e

−`,
lead to c1η(eη − e−η) = −c0`e

−`. Note that since ` > 0, we must have η > 0. In summary

c1(e−η + eη) = c0e
−`, c1η(eη − e−η) = −c0`e

−`,

which in particular implies

η
eη − e−η

eη + e−η
= −`.

This is impossible because the left-hand side is positive. In summary, we must have V0−`2 =
µ2 > 0. As a result, we have ψ(x) = c1 cos(µx) + c2 sin(µx), inside [−1, 1]. The boundary
conditions ψ(1) = ψ(−1) = c0e

−` imply that either c2 = 0, or sinµ = 0. Additionally we
require

ψ′(1) = −c0`e
−`, ψ′(−1) = c0`e

−`.

This means,

−c1µ sinµ+ c2µ cos(µ) = −c0`e
−`, c1µ sinµ+ c2µ cos(µ) = c0`e

−`.

These equations rule out the possibility of sinµ = 0, because we are assuming that c0 6= 0
and ` > 0. Hence c2 = 0, and

c1 cosµ = c0e
−`, c1µ sinµ = c0`e

−`.

As a result, we must have µ tanµ = ` =
√
V0 − µ2. Hence µ2 tan2 µ = V0−µ2. In summary,

σd(L) =
{
V0 − µ2 : µ ∈ (0,

√
V0), µ| cosµ|−1 =

√
V0

}
.

Clearly this set is nonempty and finite. Indeed if we write ζ(µ) = µ| cosµ|−1, then ζ is
monotone restricted to an interval

(
jπ/2, (j+1)π/2

)
, j ∈ N∪{0} with ζ

(
jπ/2, (j+1)π/2

)
=(

jπ/2,∞
)
, for j even, and ζ

(
jπ/2, (j + 1)π/2

)
=
(
((j + 1)π/2,∞

)
, for j odd.

We next turn our attention to the essential spectrum. Given λ = k2 ∈ σess(L) = [0,∞),
we wish to find ψ such that Lψ = λψ. Note that now ψ is not in L2(R). Since ψ′′ = −k2ψ
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outside [−1, 1], we must be able to express ψ as a linear combination of eikx and e−ikx.
For the sake of simplicity, let us assume that ψ(x) = c1e

−ikx for x < −1, and ψ(x) =
c2e

ikx + c3e
−ikx for x > 1. Inside [−1, 1], we have ψ′′ = −r2ψ, where r2 = V0 + k2. Hence

ψ(x) = c4e
irx + c5e

−irx inside [−1, 1]. Matching these functions and their first derivatives at
±1 yield

c4e
−ir + c5e

ir = c1e
ik, c4re

−ir − c5re
ir = −c1ke

ik,

c4e
ir + c5e

−ir = c2e
ik + c3e

−ik, c4re
ir − c5re

−ir = c2ke
ik − c3ke

−ik.

As a result,

2c4 = c1

(
1− k

r

)
ei(k+r), 2c5 = c1

(
1 +

k

r

)
ei(k−r),

2c4 = c2

(
1 +

k

r

)
ei(k−r) + c3

(
1− k

r

)
e−i(k+r),

2c5 = c2

(
1− k

r

)
ei(k+r) + c3

(
1 +

k

r

)
e−i(k−r).

These equations allow us to determine the coefficients c2, . . . , c5 in terms of c1. �

We now consider the operator

(3.1) L : H2(Rd)→ L2(Rd), L = −∆ + V,

for a potential V : Rd → R.

Definition 3.1 We say V is a Kato potential, if for every ε > 0, there exists a decomposition
V = V1 + V2 such that V1 ∈ L2(Rd), and supx |V2(x)| ≤ ε. In particular, if V ∈ L2(Rd), then
V is a Kato potential. �

Example 3.2 If V (x) = c|x|−α, for some α > 0, then we can write V = V1 + V2, where
V1(x) = V (x)11(|x| ≤ `). Clearly V2 is small for ` large. On the other hand, V1 ∈ L2 iff
2α < d. In particular, the Coulomb potential (α = 1, d = 3) is a Kato potential. �

Theorem 3.1 Let L be as in (3.1).
(i) If V ≥ 0, and V (x)→∞ as |x| → ∞, then σ(L) = σd(L).

(ii) If V is a Kato potential, then σess(L) = σess(−∆) = [0,∞).

Remark 3.1 Give a bounded set Ω, consider the potential V (x) =∞11(x /∈ Ω). We interpret
−∆ + V as the restriction of −∆ to Ω, which has a discrete spectrum. �
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We now focus on the case of L as in (A.1) when d = 1, and V satisfies

(3.2)

∫
(1 + |x|)|V (x)| dx <∞.

Definition 3.2(i) Let λ = −`2 ∈ σd(LW ), ` > 0. Then there exists a unique C2 function
ψ` : R→ R such that ∫

(ψ`(x))2 dx = 1, (LW + `2)ψ` = 0,

and ψ` ∼= a±(`)e−`|x| as x→ ±∞, for constants a±(`) = aW± (`) ∈ R.

(ii) Let λ = k2 ∈ σess(LW ) = [0,∞). Then there exists a unique C2 function ϕk such that
(LW − k2)ϕk = 0, and ϕ ∼= b(k)e−ikx as x → −∞, and ϕ ∼= e−ikx + A(k)eikx as x → ∞, for
constants b(k) = bW (k), A(k) = AW (k) ∈ R.

(ii) Define X(W ) : P (W )→ R by X(W )(−`2) = a+(`), X(W )(k2) = A(k).

Proposition 3.1 Given two C2 functions ψ : R → C and ϕ : R → C, recall that its
Wronskian is defined by

W(ψ, ϕ) = det

[
ψ ϕ
ψ′ ϕ′

]
.

If ψ and ϕ satisfy
(LW + λ)ϕ = (LW + λ)ψ = 0,

then W(ψ, ϕ) is constant (independent of x).

Proof We certainly have

d

dx
W(ψ, ϕ) = det

[
ψ′ ϕ′

ψ′ ϕ′

]
+ det

[
ψ ϕ
ψ′′ ϕ′′

]
= det

[
ψ ϕ

(W − λ)ψ (W − λ)ϕ

]
= 0.

�

Definition 3.2 In what follows, we write f ∼= g at ∞ for

lim
x→∞

f(x)

g(x)
= 1, lim

x→∞

f ′(x)

g′(x)
= 1.

In the same fashion, by f ∼= g at −∞ we mean that the above limits hold as x→ −∞.
�
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Proposition 3.2 Assume that a C2 function ψ : R → C satisfies the following conditions:
Lϕ = k2ϕ, for k ∈ R, and

(3.3) ϕ(x) ∼= c1e
−ikx as x→ −∞, ϕ(x) ∼= c2e

−ikx + c3e
ikx as x→∞.

Then we have

(3.4) c2
2 = c2

1 + c2
3.

Proof Note that since V and k are real, we have Lϕ̄ = λϕ̄. We then use Proposition 3.1 to
assert that W(ϕ, ϕ̄) = c is constant. On the other hand

W(ϕ, ϕ̄)(−∞) = det

[
c1e
−ikx c̄1e

ikx

−ikc1e
−ikx ikc̄1e

ikx

]
= 2ik|c1|2,

W(ϕ, ϕ̄)(+∞) = det

[
c2e
−ikx + c3e

ikx c̄2e
ikx + c̄3e

−ikx

−ikc2e
−ikx + ikc3e

ikx ikc̄2e
ikx − ikc̄3e

−ikx

]
= 2ik(|c2|2 − |c3|2).

From this and W(ϕ, ϕ̄)(−∞) =W(ϕ, ϕ̄)(∞) we deduce (3.4). �

Remark 3.2 The intuition behind (3.4) is as follows. We send a wave ϕ(x) = c2e
−ikx from

∞ to the left. Its kinetic energy is associated with |ϕ′(x)|2 = k2|c2|2. A part of this wave is
transmitted as c1e

−ikx, and a part of it is reflected back as c3e
ikx. With this interpretation,

(??) is the conservation of energy. �

3.1 Inverse Scattering Transform

We wish to recover the potential W from its spectral/scattering data
(
σ(LW ), aW (`), AW (k)

)
.

In this subsection we derive a celebrated formula of Gelfand-Levitan-Marchenko (GLM)
equation is the key identity for building the potential W from its the spectral/scattering
data.

Theorem 3.2 Given a potential W , define BW = B = Bd +Bc, where

(3.5) Bd(x) =
∑

−`2∈σd(LW )

aW (`)2e−`x, Bc(x) =
1

2π

∫
A(k)eikx dk.

Find E(x, ξ) from the linear integral equation

(3.6) E(x, ξ) +B(ξ + x) +

∫ ∞
x

B(ξ + ζ)E(x, ζ) dζ = 0.

Then

(3.7) W (x) = −2
d

dx
E(x, x).
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In our setting, we have a wave function ϕ(x, k) such that

(3.8) ϕxx + k2ϕ = Wϕ,

We may use Duhammel principle to solve (3.8). The space of all solutions is 2-dimensional,
and we produce a basis {f−, f+} for this space by requiring f± ∼= e±ikx as x→ ±∞. More
precisely, we require f±(x, k) to satisfy

f+(x, k) =eikx − k−1

∫ ∞
x

sin(k(x− y))W (y)f+(y, k) dy,(3.9)

f−(x, k) =e−ikx + k−1

∫ x

−∞
sin(k(x− y))W (y)f−(y, k) dy.

The functions f± are called the Jost functions/solutions. Note that if

G±(x, k) = ∓k−1 sin(kx)11
(
∓ x ≥ 0

)
,

then

(3.10) G±xx + k2G± = δ0, G±(±∞, k) = G±x (±∞, k) = 0.

As a result, f± satisfy (3.8)

(3.11) f±xx + k2f± = Wf±,

with f± ∼= e±ikx, as x → ±∞. Note that if we write g(x, k) = b(k)f−(x, k), then g ∼=
b(k)e−ikx, as x→ −∞. As a result, W(ϕ, g)(−∞) = 0. This and Proposition 4.5 imply that
W(ϕ, g) = 0, which in turn imply that ϕ is a constant multiple of g. Since ϕ, g ∼= b(k)e−ikx,
as x → −∞, we deduce that ϕ = g. In the same fashion, we can use f+ to represent ϕ. In
summary,

(3.12) ϕW (x, k) = ϕ(x, k) = b(k)f−(x, k) = f+(x,−k) + A(k)f+(x, k).

As an immediate consequence of this, we have the following formula for f− in terms of f+:

(3.13) f−(x, k) = β(k)f+(x,−k) + α(k)f+(x, k),

where β(k) = b(k)−1, and α(k) = A(k)b(k)−1.

Proposition 3.3 (i) Functions f± have extensions from R× [0,∞) to

R×
{

(x, k) : x ∈ R, k ∈ C, k 6= 0, Im(k) ≥ 0
}
.

This extension (still denoted by f±) is continuous, and analytic when restricted to the upper-
half plane Im(k) > 0.

(ii) The functions α, β and A are analytic in the upper-half plane.
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Proof(i) We only provide a proof for f+, as the case of f− can be established by a verbatim
argument. We define a sequence fn inductively by starting from f0(x, k) = eikx, and

fn+1(x, k) = eikx −
∫ ∞
x

sin(k(x− y))W (y)fn(y, k) dy.

Evidently each fn is analytic in k away from k = 0. If we can show that fn converges
locally uniformly when Imk > 0, we deduce the analytic property of f+. Observe that if
gn = fn − fn−1, with f−1 = 0, then g0 = eikx, and

gn+1(x, k) = −
∫ ∞
x

sin(k(x− y))W (y)gn(y, k) dy.

On the other hand, if hn(x, k) = gn(x, k)e−ikx, then h0 = 1, and

hn+1(x, k) =−
∫ ∞
x

sin(k(x− y))eik(y−x)W (y)hn(y, k) dy

=

∫ ∞
x

1

2ik

(
e2ik(y−x) − 1

)
W (y)hn(y, k) dy.

Since ∣∣e2ik(y−x) − 1
∣∣ ≤ (e−2(y−x)Im(k) + 1

)
≤ 2,

by y − x ≥ 0, Im(k) ≥ 0, we deduce

|hn+1(x, k)| ≤ |k|−1

∫ ∞
x

|W (y)| |hn(y, k)| dy.

From this we can readily deduce

(3.14) |hn(x, k)| ≤ C0(x)n

|k|nn!
,

where C0(x) =
∫∞
x
|W (y)| dy. To see this, assume (3.14) is true. Then

|hn+1(x, k)| ≤ 1

|k|n+1n!

∫ ∞
x

|W (y)| C0(y)n dy = − 1

|k|n+1n!

∫ ∞
x

C ′0(y) C0(y)n dy

= − 1

|k|n+1(n+ 1)!

∫ ∞
x

d

dy

(
C0(y)n+1

)
dy =

1

|k|n+1(n+ 1)!
C0(x)n+1,

which implies (3.14) for n+ 1. Since C0(x) ≤
∫
|W | dy, we deduce the convergence of fn.
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(ii) Note that since f± are analytic in the upper-half, so is W(f−, f+), which depends on k
only. On the other hand,

W(f−, f+)(+∞) =W(β(k)f+(·,−k) + α(k)f+
(
·), f+(·, k)

)
(+∞)

= β(k)W
(
f+(·,−k), f+(·, k)

)
(+∞)

= β(k)W(e−ikx, eikx)(+∞) = 2ikβ(k).

From this we deduce that β is analytic. Similarly, since W
(
f+(·, k), f+(·,−k)

)
is analytic,

and

W
(
f+(·, k), f+(·,−k)

)
(+∞) =W(β(k)f+(·,−k) + α(k)f+

(
·), f+(·,−k)

)
(+∞)

= α(k)W
(
f+(·, k), f+(·,−k)

)
(+∞)

= α(k)W(eikx, e−ikx)(+∞) = −2ikα(k),

we deduce that α is analytic. �

Note that when k = i` is purely imaginary, then k2 = −`2, and since f±(x, k) satisfy
equation (3.8), we learn that f± would serve as an eigenfunction associated with the eigen-
value −`2 provided that f± is in L2. Note that f−(x, k) ∼= e`x at −∞, and f+(x, k) ∼= e−`x

at ∞. To have both, we need β(i`) = 0 because of (3.12). Hence purely imaginary zeros
of the analytic function β would yield eigenvalues in the discrete spectrum. These are the
poles of b(k) as we will see below. Since we already know that there are only finitely many
eigenvalues and they are all situated in (−∞, 0), we deduce that the only singularities of the
function b (equivalently, the only zeros of β) are situated on the line iR+. We are now ready
to give a proof of Theorem 3.2.

Proof of Theorem 3.2 (Step 1) We set

F±(x, ξ) =
1

2π
f±(x, k)e−ikξ dk.

Note that since f±(x, k) ∼= e±ikx, as x → ∞, we learn F±(x, ξ) ∼= δ0(x ∓ ξ), as x → ∞.
This suggests writing F±(x, ξ) =: δ0(ξ ∓ x) + E±(x, ξ) dξ. Integrating both sides against
(2π)−1e−ikξ) yields the Wave Equation

(3.15) F±xx − F±ξξ = WF±.

Substituting δ0(ξ ∓ x) + E±(x, ξ) dξ for F±(x, dξ) yields the equation

(3.16) E±xx(x, ξ)− E±ξξ(x, ξ) = W (x)E±(x, ξ) + δ0(ξ ∓ x)W (x),

because δ0(ξ ∓ x) = η satisfies the Wave Equation ηxx − ηξξ = 0. Some care is needed for
the exact meaning of (3.16). For the simplicity of our presentation, let us assume that the
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potential W is of compact support [−c0, c0] so that all ∼= at ±∞ can be replaced with =
outside the interval [−c0, c0]. Observe that E±(x, ξ) = 0 when ±x ≥ c0. Since the right-hand
side (3.16) has a delta function, we guess that E±x ± E±ξ experiences a jump discontinuity
along the line {(x, ξ) : ξ∓x = 0}, so that (∂x∓∂ξ)(Ex±Eξ) produces δ0(ξ∓x)W (x). Note
that if

2z± = ξ ± x, H±(z+, z−) = E±(x, ξ) = E±
(
z+ − z−, z+ + z−

)
,

then when H± is twice differentiable,

H±z+ = E±x + E±ξ , H±z− = −E±x + E±ξ , H±z+z− = −E±xx + E±xξ − E
±
ξx + E±ξξ = −E±xx + E±ξξ.

The discontinuity of H±z± occurs at z∓ = 0. For example,

−E+
xx + E+

ξξ = H+
z+z− + (H+

z−(z+, 0+)−Hz(z
+, 0−))δ0(z−).

From this and (3.16) we learn

−(H+
z+(z+, 0+)−Hz+(z+, 0−))δ0(z−) = W (x)δ0(ξ − x) = W (z+ − z−)δ0(2z−)

= 2−1W (z+)2δ0(2z−) = 2−1W (z+)δ0(z−),

which in turn implies

(3.17) W (z+) = −2(Hz(0+, z+)−Hz(0−, z+)).

Regarding x as the time variable, and treating WF+ as a source, we may use F+(x, ξ) =
δ0(x− ξ), x ≥ c0 and D’Alambert’s formula, to write

F+(x, ξ) =
1

2

(
F+(c0, ξ − x+ c0) + F+(c0, ξ + x− c0)

)
+

1

2

∫ ξ−x+c0

ξ+x−c0
F+
x (x, ζ) dζ

+
1

2

∫ c0

x

∫ ξ−x+c0−θ

ξ+x−c0+θ

(WF+)(θ, ζ) dζdθ,

for x ≤ c0. This formula is formal because F+(c0, ξ) = δc0(ξ). Though we can approximate
δc0 by a smooth function and write the analogous formula for the corresponding solution
(it would not matter for the conclusion we will get in the end). We can use this formula
to setup an iteration scheme for approximating F+. For example, if F+,n → F+ in large n
limit, where F+,n is defined inductively by

F+,n+1(x, ξ) =
1

2

(
F+,n(c0, ξ − x+ c0) + F+,n(c0, ξ + x− c0)

)
+

1

2

∫ ξ−x+c0

ξ+x−c0
F+,n
x (x, ζ) dζ

+
1

2

∫ c0

x

∫ ξ−x+c0−θ

ξ+x−c0+θ

(WF+,n)(θ, ζ) dζdθ,
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for x ≤ c0, starting from F+,0(x, ξ) = δ0(ξ−x). Inductively we can show that for x ≤ c0, the
support of F+,n is contained in [x, 2c0 − x]. Hence the same is true F+. As a consequence,
the support the function E+ is contained in the set{

(x, ξ) : x ≤ c0, ξ ∈ [x, 2c0 − x]
}
.

In particular H+
z (0+, z) = 0. From this and (3.15) we deduce

(3.18) W (z) = 2H+
z+(z+, 0−).

Similarly, we can show that the support of E− is contained in the set{
(x, ξ) : x ≥ −c0, ξ ∈ [−2c0 − x, x]

}
.

In summary we have learned two important fact about F , the Fourier transform of the Jost’s
solution f±:

� F±(x, ξ) = δ0(x ∓ ξ) + E±(x, ξ), and we can recover the potential W from the jump
discontinuity of E± as in (3.16).

� The function E± is supported in the set {(x, ξ) : ±(ξ − x) > 0}.
By Fourier Inversion Formula, we may write

f+(x, k) =

∫ ∞
−∞

eikξF+(x, ξ) dξ = e±ikx +

∫ ∞
−∞

eikξE+(x, ξ) dξ

=e±ikx +

∫ ∞
x

eikξE+(x, ξ) dξ,(3.19)

f−(x, k) = = e−ikx +

∫ x

−∞
eikξE−(x, ξ) dξ.(3.20)

(Step 2) We next define

Φ(x, ξ) =
1

2π

∫ ∞
−∞

eikξϕ(x, k) dk.

(Note that instead of e−ikξ, we are integrating against eikξ.) From (3.12) we can relate Φ to
F±. For example,

Φ(x, ξ) =F+(x, ξ) +
1

2π

∫
A(k)f+(x, k)eikξ dk

=F+(x, ξ) +
1

(2π)2

∫
A(k1)f+(x, k2)eik1ξei(k1−k2)ζ dζdk1dk2

=F+(x, ξ) +
1

(2π)2

∫
Bc(ξ + ζ)F+(x, ζ) dζ

=δ0(ξ − x) + E+(x, ξ) +Bc(ξ + x) +

∫ ∞
x

Bc(ξ + ζ)E+(x, ζ) dζ.(3.21)
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Alternatively we can write

(3.22) Φ(x, ξ) =
1

2π

∫ ∞
−∞

b(k)f−(x, k)eikξ dk.

Note that the function ϕ(x, k) = b(k)f−(x, k) is analytic in the upper-half expect for the
poles of b that are situated on the line iR+. Let us take a positively oriented contour γ that
consists of the line segment [−R,R], and a half circle C of radius R and center 0 in the
upper-half plane. By the Residue Theorem

1

2π

∫
C

ϕ(x, k)eikξ dk = i
n∑
j=1

Res(i`j),

where the sum is over j with −`2
j representing the j-th eigenvalue, and Res(i`j) is the residue

of ϕ(x, k)eikξ at k = i`j . We can show that the circular part of C does not contribute. As
a result,

(3.23) Φ(x, ξ) = i
n∑
j=1

Res(i`j).

(Step 3) We wish to calculate Res(i`j). We certainly have

Res(i`j) = lim
k→i`j

(k − i`j)ϕ(x, k)eikξ = lim
k→i`j

(k − i`j)b(k)f−(x, k)eikξ

=f−(x, i`j)e
−k`j lim

k→i`j
(k − i`j)β(k)−1 = f−(x, i`j)e

−k`jβ′(i`j)
−1,

where β = b−1. On the other hand,

W(f+, f−) =W
(
f+, βf̄+ + αf+) = βW

(
f+, f̄+) = βW

(
f+, f̄+)(∞) = −2ikβ(k).

Differentiating both sides with respect to k yields

(3.24) −
(
2iβ(k) + 2ikβ′(k)

)
=

d

dk
W(f+, f−) =W(ḟ+, f−) +W(f+, ḟ−),

where by ġ we mean g′. From (3.11) we deduce

ḟ±xx + k2ḟ± + 2kf± = Wḟ±.

This and (3.11) again yield

d

dx
W(f+, ḟ−) =

d

dx
det

[
f+ ḟ−

f+
x ḟ−x

]
= det

[
f+ ḟ−

f+
xx ḟ−xx

]
= det

[
f+ ḟ−

(W − k2)f+ (W − k2)ḟ− − 2kf−

]
= −2kf−f+.
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Similarly
d

dx
W(ḟ+, f−) = 2kf−f+.

Equivalently,

W(f+, ḟ−)(x)−W(f+, ḟ−)(−∞) = −2

∫ x

−∞
kf−f+ dy,

W(ḟ+, f−)(x)−W(ḟ+, f−)(+∞) = −2

∫ +∞

x

kf−f+ dy.

Adding these equations up yields

2

∫ ∞
−∞

kf−(y, k)f+(y, k) dy =W(ḟ−, f+)(+∞)+W(ḟ−, f+)(−∞)−
[
W(ḟ−, f+)+W(ḟ−, f+)

]
(x).

Imagine that we can show

(3.25) W(ḟ−, f+)(+∞) +W(ḟ−, f+)(−∞) = 0,

so that

2

∫ ∞
−∞

kf−(y, k)f+(y, k) dy = −
[
W(ḟ−, f+) +W(ḟ−, f+)

]
(x).

Note that the right-hand side is independent of x, because the left-hand side of (3.24) is
independent of x.) Then whenk = k̄ = −i`, with k̄2 an eigenvalue, we have β(k̄) = 0, and
(3.24) yields

2ik̄β′(k̄) = −
[
W(ḟ−, f+) +W(ḟ−, f+)

]
(x, k̄) = 2k̄

∫ ∞
−∞

f−(y, k̄)f+(y, k̄) dy.

Hence

iβ′(i`) =

∫ ∞
−∞

f−(y, i`)f+(y, i`) dy =

∫ ∞
−∞

α(i`)f+(y, i`)2 dy.

Recall that f+(x, i`j) is the bound state associated with −`2
j :

ψ(x, `) = a(`j)f
+(x, i`j).

Since
∫
ψ2 dy = 1, we learn ∫

f+(y, k0)2 dy = a(`j)
−2.

As a result,

iRes(i`j) = ia(`j)
2f−(x, i`j)e

−k`jA()−1b(k0) = ia(`j)
2f+(x, i`j)e

−k`j .

�
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3.2 Fredholm-Volterra Integral Equation

For our IST, we need to solve (3.6), which is an example of a Fredholm-Volterra Integral
Equation. More generally, we wish to find a function E(ξ) that solve the equation

(3.26) E(ξ) +

∫
K(ξ, ζ)E(ζ) dζ = C(ξ).

For our application, λ = 1, K(ξ, ζ) = B(ξ + ζ)11(ζ ≥ x), C(ξ) = −B(ξ + x). Writing

KE(ξ) =

∫
K(ξ, ζ)E(ζ) dζ,

we wish to invert the operator I + K. An integral operator K is an infinite dimensional
analog of a matrix multiplication where the sums are replace with integrals. According to
the Fredholm Theory, one can define the determinant of I+K under some natural conditions
on K. Indeed, if K is symmetric with eigenvalues {λi : i ∈ N}, then a candidate for the
determinant det(I+K) is simply

∏
i(1+λi), which is well-defined when

∑
i |λi| <∞. When

such a condition is met, we say that the operator I + K is of the trace class. Moreover,
the operator I + K is invertible iff det(I + K) 6= 0, and (I + K)−1 can be represented by a
formula that is a generalization of the Cramer’s formula for the inverse of a matrix. Before
presenting the work of Fredholm, let us review some basic facts about matrices:

(i) Given a d× d matrix A = [aij]
d
i,j=1, recall that its minor M(A) = [Mij]

d
i,j=1 is the matrix

with Mij = det Âij, where Âij is the (d − 1) × (d − 1) matrix that is obtain from A by
removing its i-th row and j-column. The cofactor Cof(A) = [Cij]

d
i,j=1 is the matrix with

Cij = (−1)i+jMij. The transpose of Cof(A) is the adjoint of A and is denoted by Adj(A).
According to Cramer’s formula A−1 = (detA)−1Adj(A). If we regard det : Rd×d → Rd×d,
then

(3.27) ∇ det(A) = Cof(A).

Here we are using a matrix notation to represent ∇ det(A) (as opposed to a vector in Rd2
).

The proof of (3.27) is an immediate consequence of

detA =
∑
j

aijCij,

which implies that ∂ det /∂aij(A) = Cij, because Cij is independent of aij. The equation
(3.27) allows us to rewrite Cramer’s formula as

(3.28)
[
A−1

]t
= ∇ log det(A).
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The moral of this formula is that if we have a good candidate for the determinant in an
infinite dimensional setting, we might be able to use it to find a formula for the inverse.

(ii) We next assume that A = I +K for a d× d matrix K = [kij]
d
i,j=1. Our hope is that the

formula (3.28) in terms of K has a chance to be meaningful even when d→∞. First we study
det(I + K). Let us write [d] for the set {1, . . . , d}. Given a = (a1, . . . , ar), b = (b1, . . . , br),
and and s ∈ [d], we set

Ka := [Kaiaj ]
r
i,j=1, Ka,b := [Kaibj ]

r
i,j=1.

We have

∆(K) := det(I+K) = 1+
d∑
r=1

∑
1≤a1<···<ar≤d

det
[
kasat

]r
s,t=1

= 1+
d∑
r=1

1

r!

∑
a1,...,ar∈[d]

det
[
kasat

]r
s,t=1

.

Here we have the facts that if a1, . . . , ar are not distinct, then the determinant is 0, and that
a permutation of a1, . . . , ar does not alter the corresponding determinant. We also define
R = [Rij], with

Rij :=kij +
d∑
r=1

∑
1≤a1<···<ar≤d

detK(i,a1,...,ar),(j,a1,...,ar)

=kij +
d∑
r=1

∑
1≤a1<···<ar≤d

kij detK(a1,...,ar)

+
d∑
r=1

r∑
s=1

∑
1≤a1<···<ar≤d

(−1)skias detK(a1,...,ar),(j,a1,...,as−1,as+1,...,ar)

=kij + kij

d∑
r=1

∑
1≤a1<···<ar≤d

detK(a1,...,ar)

−
d∑
r=1

r∑
s=1

∑
1≤a1<···<ar≤d

kias detK(as,a1,...,as−1,as+1,...,ar),(j,a1,...,as−1,as+1,...,ar)

=kij∆(K)− (KR)ij.

In other words, R = K(∆(K)I −R). As a result,

(3.29) (I +K)−1 = K −∆(K)−1R.

�
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Fredholm observed that the operator R has an extension to infinite dimension, namely
the integral operator associated with a kernel K, we may define an operator R associated
with a kernel R the is defined by

(3.30) R(x, y) = K(x, y) +
∞∑
r=1

∫
· · ·
∫
x1<···<xr

detK(x,x1,...,xk),(y,x1,...,xk) dx1 . . . dxk.

As before, if a = (a1, . . . , a`), b = (b1, . . . , b`), then by Ka,b we mean the matrix

[K(ai, bj)]
`
i,j=1.

Moreover, the formula (3.29) holds provided that ∆(K) 6= 0, with

(3.31) ∆(K) = 1 +
∞∑
r=1

∫
· · ·
∫
x1<···<xr

detK(x1,...,xk),(x1,...,xk) dx1 . . . dxk.

3.3 Exercise

(i) Verify (3.10), and show directly that f± of (3.9) satisfy (3.8).

(ii) Let W be a potential function such that AW (k) = 0 (reflectionless) for all k, and
σd(LW ) = {−`2} consists of a single eigenvalue. Use Theorem 3.2 to find the form of W .
(Hint: Search for a solution of (3.6) of the form E(x, ξ) = M(x)e−`ξ.)

(iii) Let W be a potential function such that AW (k) = 0 (reflectionless) for all k, and
σd(LW ) = {−`2

1,−`2
2} consists of exactly two eigenvalues. Use Theorem 3.2 to find the form

of W . (Hint: Search for a solution of (3.6) of the form E(x, ξ) = M1(x)e−`1ξ +M2(x)e−`2ξ.)
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4 Burgers Equation and Hamilton-Jacobi PDE

Hamilton-Jacobi equation (in short HJE) is a PDE of the form

(4.1) ut +H(x, ux, t) = 0, u(x, 0) = g(x).

Here H : Rd ×Rd ×R→ R is known as the Hamiltonian function, and u : Rd × [0,∞)→ R
is a function of the position x and time t. Here are two applications of HJEs;

(i) (Classical Mechanics) If x = (x1, . . . , xd) and p = (p1, . . . , pd) represent the positions and
momenta of moving bodies in a system, then the evolution of (x, p) is given by a Hamiltonian
ODE of the form

(4.2) ẋ = Hp(x, p, t), ṗ = −Hx(x, p, t),

where H(x, p, t) represents the total energy of the pair (x, p) at time t. The system (4.2) is
completely integrable, if there exists a change of coordinates (x, p) 7→ (X,P ) such that the
system (4.2) in new coordinates reads as

(4.3) Ẋ = ∇H̄(P ), Ṗ = 0.

In other words, in (X,P ) the system is a Hamiltonian ODE associated with the Hamiltonian
function H̄ that is independent of X. The momentum P is conserved in (4.3). To guarantee
that our change of coordinates preserves the Hamiltonian form of our system, the map
(x, p) 7→ (X,P ) must be canonical (symplectic). For canonical maps we can find a generating
function S such that

(P · dX −Hdt)− (p · dx− H̄dt) = dS.

We may rewrite this as
X · dP + p · dx− (H − H̄)dt = du,

where w = X · P − S. Regarding w as a function of (x, t, P ), we can assert wx = p, wP =
X, wt = H̄ −H. Hence,

wt(x, t;P ) +H
(
x, t, wx(x, t;P )

)
= H̄(P ),

which is a HJE for u, for every P . Note that the volume measure dX1∧· · ·∧dXd is invariant
for the flow of the first equation of(4.3) for fixed P . Since X = wP , we can write

dX1 ∧ · · · ∧ dXd = det(wPx) dx1 ∧ · · · ∧ dxd.

This gives an invariant measure for the flow of the ODE

ẋ = Hp

(
x, t, wx(x, t;P )

)
,
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for every P .

(ii) (Classical Mechanics) When the Hamiltonian function H(x, t, p) is convex in the mo-
mentum variable, then we can define the Lagrangian function L(x, v, t) by

(4.4) Hp(x, t, p) = v ⇔ Lv(x, t, v) = p.

The action of a path x : [s, t]→ Rd is defined by

A(x(·), s, t) =

∫ t

s

L
(
x(θ), θ, ẋ(θ)

)
dθ.

Minimizing the action yields the function

w(x, t) = w(x, t; y, s) = inf
{
A(x(·), s, t) : x ∈ C1([s, t],Rd), x(s) = y, x(t) = x

}
.

It turns out that w, as a function of (x, t), satisfies the HJE (4.1) so long as t > s. In fact the
minimizing path x(·) solves the Hamiltonian ODE (4.2). This is a solution that additionally
satisfies

(4.5) p(t) = wx(x(t), t).

In other words, the pair (x(t), p(t)) lies on the graph of wx.

(iii) (Quantum Mechanics) The wave function ψ : Rd × [0,∞) → C in quantum mechanics
satisfies the Schrödinger Equation

(4.6) i~ψt = − ~2

2m
∆ψ + V ψ.

If we write ψ = aei
u
~ , for a pair of function a, u : Rd × [0,∞)→ R, then ρ = |ψ|2 = a2 is the

probability density for the position. Moreover,

ψt
ψ

=
at
a

+
i

~
ut, ψ = axe

iu~ +
i

~
uxψ,

∆ψ

ψ
=

∆a

a
+ 2

i

~
ax · ux
a

+
i

~
∆u− 1

~2
|ux|2.

In terms of (a, u), the equation (4.6) is equivalent

ut +
1

2m
|ux|2 + V =

~2

2m

∆a

a
,(4.7)

ρt +∇ ·
( ρ
m
ux

)
= 0.(4.8)
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If we replace the right-hand side of (4.7) with 0, then u satisfies a HJE associated with the
Hamiltonian function

(4.9) H(x, t, p) =
1

2m
|p|2 + V (x, t),

and the corresponding wave function yields a semi-classical approximation of quantum me-
chanics. On account of (4.5), the term m−1∇u represents the velocity, and the equation
(4.9) is the continuity (Liouville) equation for the probability density. If we take a family of
solutions u(x, t;P ) of the HJE

ut +
1

2m
|ux|2 + V = 0,

then ρ = detuxP provides a solution to (4.8) as in our discussion in (i). This in quantum
mechanics is known as Van Vleck’s theorem. �

In the third application, we learned how to turn the Schrödinder equation (4.6) to a pair
of equations (4.7) and (4.8). A similar idea of Cole and Hopf would allow us to go from a
diffusion equation to a variant of (4.7), namely the viscous HJE

(4.10) ut +
1

2m
|ux|2 + V = α∆u, u(x, 0) = g(x).

More precisely if we set ψ = e−
u

2mα , then

ψt
ψ

= − ut
2mα

, ∇ψ = − ux
2mα

ψ,
∆ψ

ψ
= − ∆u

2mα
+
|ux|2

(2mα)2
=

1

2mα2

(
−α∆u+

1

2m
|ux|2

)
.

This in turn implies

(4.11) ut +
1

2m
|ux|2 + V − α∆u = −2mα

[
1

ψ

(
ψt − α∆ψ − 1

2mα
V ψ

)]
.

In particular, if u satisfies (4.11), then ψ satisfies the diffusion equation

(4.12) ψt = α∆ψ + (2mα)−1 V ψ, ψ(x, 0) = e−
g

2mα .

Based on our experience with (4.12), we can study the behavior of (4.11) as α → 0. As a
warm-up, let use first assume that V = 0. In this case, u = uα is given by

(4.13) uα(x, t) = −2mα log

∫
((4παt)−d/2 exp

[
−(2mα)−1

(
g(y) +

m|x− y|2

2t

)]
dy.
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Let us write ε = 2mα, and assume that α (equivalently ε) is small. If we assume that (for
example) g is a Lipschitz function, then

g(y) +
m|x− y|2

2t
≥ g(x)− c|x− y|+ m|x− y|2

2t
≥ g(x)− tc2

2m
+
m

2t

[
|x− y| − ct

m

]2

,

which is large of order O(|y|2), when |y| is large. (Here c is the Lipschitz constant of g.)
From this, we learn

min
y

(
g(y) +

m|x− y|2

2t

)
≥ g(x)− tc2

2m
> −∞,

and that large y’s contribute very little to the integral (4.13). From this, it is not hard to
deduce

lim
α→0

uα(x, t) = w(x, t) = min
y

(
g(y) +

m|x− y|2

2t

)
.

In summary, we have a candidate for the (unique) solution of the PDE

(4.14) wt +
1

2m
|wx|2 = 0, u(x, 0) = g(x),

namely

(4.15) w(x, t) = min
y

(
g(y) +

m|x− y|2

2t

)
.

We now turn our attention to the equation (4.11) for general V . We already know that
by the Feynman-Kac formula, the solution u = uα can be expressed as

uα(x, t) = −2mα logE exp

[
−(2mα)−1

(
g
(
x+
√

2αB(t)
)

+

∫ t

0

V
(
x+
√

2αB(s), s
)
ds

)]
.

As our formula right after (2.40) suggests, the right-hand side can be interpreted as

−ε log

∫
Z([0, t])−1 exp

[
−ε−1

(
g(y(t)) +

∫ t

0

(m
2
|ẏ(s)|2 − V (y(s), s)

)
ds

)]
D(dy(·)),

where ε = 2mα, and y(t) = x+
√

2αB(t). This suggests that the solution w of the PDE

(4.16) wt +
1

2m
|wx|2 + V = 0, u(x, 0) = g(x),

has a representation as

(4.17) w(x, t) = inf

{
g(y(t)) +

∫ t

0

L(y(s), s, ẏ(s)) ds : y(0) = x, y ∈ C1([0, t];Rd)

}
.
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where L(x, t, v) = m
2
|v|2 − V (x, t). If we set z(s) = y(t− s), then (4.17) reads as

(4.18) w(x, t) = inf

{
g(z(0)) +

∫ t

0

L(z(s), s, ż(s)) ds : z(t) = x, z ∈ C1([0, t];Rd)

}
.

Indeed this formula offers a solution to (4.1) whenever H is convex in p, and L is the Legendre
transform of H:

(4.19) L(x, t, v) = sup
p

(
v · p−H(x, t, p)

)
.

Note that at the maximizing p = p(x, t, v), we have Hp(x, t, p) = v, and

Lv(x, t, v) =
(
v · p(x, t, v)−H(x, t, p(x, t, v))

)
v

=
(
v · p−H(x, t, p)

)
p
pv(x, t, v) + p(x, t, v) = p(x, t, v),

which is consistent with (4.4).
Let us study the minimizing path z(s) = z(s;x) in (4.18). Define

Γ(a) = g(a(0)) +

∫ t

0

L(a(s), s, ȧ(s)) ds.

Given w ∈ C1 with w(t) = 0, set ϕ(τ) = Γ(z + τw). We have

0 =ϕ̇(0) = ∇g(z(0)) · w(0) +

∫ t

0

[
Lx(z(s), s, ż(s)) · w(s) + Lv(z(s), s, ż(s)) · ẇ(s)

]
ds

=
[
∇g(z(0))− Lv(z(0), 0, ż(0))

]
· w(0) +

∫ t

0

[
Lx(z(s), s, ż(s)) =

d

ds

(
Lv(z(s), s, ż(s))

)]
· w(s) ds.

As we vary w, we deduce

(4.20) ∇g(z(0)) = Lv(z(0), 0, ż(0)),
d

ds

(
Lv(z(s), s, ż(s))

)
= Lx(z(s), s, ż(s)).

We may use these to evaluate wx:

wx(x, t) =
∂

∂x

[
g(z(0;x)) +

∫ t

0

L(z(s;x), s, zs(s;x)) ds

]
=∇g(z(0;x)) · zx(0;x)

+

∫ t

0

[
Lx(z(s;x), s, zs(s;x)) · zx(s;x) + Lv(z(s;x), s, zs(s;x)) · zsx(s;x)

]
ds

=
[
∇g(z(0;x))− Lv(z(0;x), 0, ż(0;x)) · zx(0;x) + Lv(z(t;x), t, z(t;x))

+

∫ t

0

[
Lx(z(s;x), s, zs(s;x))− d

ds

(
Lv(z(s), s, ż(s))

)]
· zx(s;x) ds

=Lv(z(t;x), t, ż(t;x)) = Lv(x, t, ż(t;x)).
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where we have used zx(t;x) = id for the second equality. Since the minimizing z(s;x) is also
a minimizer at earlier times i.e.

s1 < s2 < t =⇒ z
(
s1; z(s2;x), s2

)
= z(s1;x, t),

we learn

(4.21) wx
(
z(s;x, t), s

)
= Lv

(
z(s;x, t), s, ż(s;x, t)

)
.

Also, if we write x(s) = z(s;x, t), p(s) = Lv(x(s), s, ẋ(s)), then (x, s) satisfies (4.2). From
(4.4), we certainly have ẋ(s) = Hp(x(s), s, p(s)). On the other hand,, from

L(x, t, v) = v · p(x, t, v)−H(x, t, p(x, t, v)),

we deduce

Lx(x, t, v) =
(
v −Hp(x, t, p(x, t, v))

)
· px(x, t, v)−Hx(x, t, p(x, t, v)) = −Hx(x, t, p(x, t, v)).

This and the second equation in (4.20) imply that ṗ(s) = −Hx(x(s), s, p(s)).
In the above calculation, we assume that there exists a unique minimizer. When there

is more that one minimizer, w is not differentiable at (x, t). Note that if ρ = wx, then ρ
satisfies

(4.22) ρt +H(x, t, ρ)x = 0.

We already have a representation for ρ in terms of the minimizing path z(·;x, t):

(4.23) ρ(x, t) = Lv
(
x, t, ż(t;x, t)

)
.

When there more than one minimizers, ρ(x, t) is discontinuous. When d = 1, and H is of
the form (4.9), the corresponding PDE, namely

(4.24) ρt +m−1ρρx = f,

is known as the forced Burgers’ equation. Here f = −Vx represents the force.

Remark 4.1 A rigorous derivation of (4.17) from the Feynman-Kac’s formula of uα can
be carried out with the aid of the so-called Large Deviation Theory. More specifically a
large deviation principle holds for

√
2αB by a result of Schilder. This and the celebrated

Varadhan’s lemma can be used to derive (4.17). See for example [R] for details. �
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4.1 Exercise

(i) Prove that for any continuous function h, and any `,

lim
ε→0

ε log

∫
|x|≤`

e−
1
ε
h(x) dx = −min

|x|≤`
h(x).

(ii) Let L be a convex function. Show that the minimizing path (z(s), s), s ∈ [0, t] in the
variational problem

min

{∫ t

0

L(ż(s)) ds : z(0) = a, z(t) = b

}
,

is the straight line connecting (a, 0) to (b, t). (Hint: Use Jensen’s inequality.)

(iii) Assume that the map Φ(x, p) = (X(x, p), P (x, p)) is a canonical map with a generating
function w(x, P ), so that wx(x, P ) = p, wP (x, P ) = X. Assume that the matrix

wxP = [wxiPj ]
d
i,j=1,

is invertible. The function P (x, p) may be defined implicitly by wx(x, P ) = p. Use this
to find Px and Pp in terms of the second derivatives of w. Verify that the matrix PpP

T
x is

symmetric. (By AT we mean the transpose of A.)

(iv) Let P (x, t) =
(
P 1(x, t), . . . , P d(x, t)

)
. Show that {P i, P j} = 0 for all i and j.

(v) Consider the viscous Burgers’ equation

ρt + ρρx = αρxx,

in dimension one. Find solutions of the form ρ(x, t) = ϕ(x − vt) for a function ϕ that is
decreasing, and ϕ(±∞) = ρ±, ϕ′(±∞) = 0, where ρ− and ρ+ are two given constants. Show
that such a solution exists if and only if v = (ρ− + ρ+)/2.
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5 Completely Integrable Hamiltonian PDEs

In Chapter 2, we discussed Hamiltonian ODEs. In this chapter we discuss two examples of
completely integrable Hamiltonian PDEs. For this, we first describe a robust generalization
of Hamiltonian ODEs of the form (3.2). An infinite dimensional extension of our formalism
would allow us to recast our two examples as Hamiltonian PDEs.

Observe that if we use complex numbers, we may regard a solution z(t) = (x(t), p(t)) of
(3.2) as a path z(t) = x(t) + ip(t) as a solution ż = −i∇H(z, t). Also, if we set

J =

[
0 I
−I 0

]
,

then we can rewrite (3.2) as

(5.1) ż = J∇H(z, t) =: XH(·,t)(t).

We refer to XH as the Hamiltonian vector field associated with the Hamiltonian function H.
We also write φHt for the flow of the vector field XH . Given any C1 function f : R2d → R,
we have

(5.2)
d

dt
f(z(t)) = J∇H(z(t), t) · ∇f(z(t)) =: {H(·, t), f}(z(t)).

We refer to {H, f} as the Poisson bracket of H and f . If we set

(5.3) ω̄(a, b) = Ja · b,

then we always have

(5.4) {H, f} = ω̄(XH , Xf ).

Recall that for a completely integrable Hamiltonian ODE, we can find a change of coor-
dinates (x, p) 7→ (X,P ) that turns (3.2) to (3.3). Since P is conserved for (3.3), we deduce
that that each coordinate of P (x, p) is conserved for (3.2). In other words {H,Pi} = 0 for
i = 1, . . . , d. By Exercise (v) of Chapter 3 twe know that {Pi, Pj} = 0 for all i and j. In
fact the converse is also true by a result of Liouville. More precisely, if we have d conserved
functions f1, . . . , fd such that {fi, fj} = 0 for i, j ∈ {1, . . . , d}, and the vectors ∇f1, . . . ,∇fd
are linearly independent at every point, then the ODE (3.2) is completely integrable.

Moreover, Poincare discovered that if γ : [0, T ]→ R2d is a closed curve, then

(5.5)

∫
φHt (γ)

p · dx =

∫
γ

p · dx.
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This invariance principle of Poincare is a fundamental property of Hamiltonian flows, and
we extend our notation of Hamiltonian ODEs by replacing the one form p · dx with more
general one forms.

Given a 1-form λ := w(z) · dz, and its exterior derivative ω = dλ, we have

ωz(a, b) = C(w)(z)a · b,

where C(w) is the curl of w = (w1, . . . , w2d):

C(w) =
[
wjzi − w

i
zj

]2d
i,j=1

.

When C(w) is invertible, we say that the form ω is symplectic. The associated Hamiltonian
vector field and Poisson bracket are defined by

(5.6) XH = −C(w)−1∇H, {H, f} = −C(w)−1∇H · ∇f.

To explain the reason behind our definition, let us state and prove the analog of (5.5).

Proposition 5.1 . Let γ be a closed curve and write φHt for the flow of the Hamiltonian
vector field XH of (5.6). Then

(5.7)

∫
φHt (γ)

w(z) · dz =

∫
γ

w(z) · dz.

Proof Let us parametrize γ by a C1 function z : R → R2d, which T -periodic. Write
z = (z1, . . . , z2d), and define z(θ, t) = (φHt z)(θ). We have

(
w(z) · zθ

)
t

=
d

dt

∑
i

wiziθ =
∑
i

(
dwi

dt
ziθ + wizitθ

)
=
∑
i

(
dwi

dt
ziθ −

dwi

dθ
zit

)
+ (w · zt)θ

=
∑
i,j

wizj
(
zjt z

i
θ − z

j
θz
i
t

)
+ (w · zt)θ = −C(w)zt · zθ + (w · zt)θ

=∇H(z) · zθ + (w · zt)θ =
(
H(z) + w(z) · zt)θ.

As a result,
d

dt

∫ T

0

(
w(z) · zθ

)
dθ = 0,

which implies (5.7). �

We now explain how our formalism can be carried out in infinite dimension in the case
of two examples.
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(i) (Nonlinear Schrödinger (NSL) equation) NLS arises in various physical settings for the
description of wave propagation in plasma and nonlinear optics. It also arises in quantum
field theory as a mean field equation for a system of large number of bosons weakly interacting
via a pair potential. The statistical dynamics of such a system is governed by the Gross-
Pitaevskii equation

(5.8) i~ψt = − ~2

2m
∆ψ + V ψ +

4π~2as
2m

|ψ|2ψ,

where as is a wave scattering length associated with the pair potential. Here V is the
external potential, and 4π~2as

2m
|ψ|2 represents a statistical average of the pair potential (which

is a multiple of the density |ψ|2). Let us assume V = 0, and to simplify our notation, let us
replace some of the constants by one. Nonlinear Schrödinger equation (NLS) is the PDE

(5.9) iψt = −∆ψ + κ|ψ|r−1ψ.

This equation is equivalent to (5.8) when r = 3 (in the case of V = 0). We refer to (5.8)
as the defocusing NLS (respectively focusing NLS) when κ > 0 (respectively κ < 0). If we
write ψ = q + ip, then (5.9) can be rewritten as

qt = −∆p+ κ|ψ|r−1p,(5.10)

pt = ∆q − κ|ψ|r−1q.

To interpret (5.9) as a Hamiltonian PDE, we define two bilinear forms on X = L2(Rd) by

〈ψ, ψ′〉 =

∫
Re(ψψ̄′) dx =

∫
(qq′ + pp′) dx,

ω(ψ, ψ′) =

∫
Im(ψψ̄′) dx =

∫
(pq′ − qp′) dx,

where ψ = q + ip, ψ′ = q′ + ip′. The form ω is a symplectic form and can be written as

ω(ψ, ψ′) = 〈Jψ, ψ′〉 := −〈iψ, ψ′〉.

We define H : H1 → R, by

(5.11) H(ψ) =

∫ [
1

2
|∇ψ|2 +

κ

r + 1
|ψ(x)|r+1

]
dx.

(For this to be well-defined, we assume that r + 1 ≤ 2∗ = 2d/(d− 2) so that by Gagliardo-
Nirenberg-Sobolev inequality, H(ψ) <∞ for every ψ ∈ H1.) We note that in the defocusing
case, the HamiltonianH is convex and nonnegative. This is no longer the case in the focusing
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case. We can readily calculate the functional derivative of H; given a C2 functions ψ and ζ,
the directional derivative of H at ψ, in the direction of ζ is defined as

∂ζH(ψ) :=
d

dθ
H(ψ + θζ)|θ=0.

The functional derivative of H with respect to the inner product 〈·, ·〉 is defined to be the
function ∂H(ψ) such that

∂ζH(ψ) = 〈∂H(ψ), ζ〉.

We certainly have
∂ζH(ψ) = 〈∇ψ,∇ζ〉+ κ

〈
|ψ|r−1ψ, ζ

〉
.

After an integration by parts we deduce

(5.12) ∂H(ψ) = −∆ψ + κ|ψ|r−1ψ.

From this we conclude that (5.9) can be written as

(5.13) ψt = J∂H(ψ).

In accordance with Symplectic Geometry, we expect to have a Poincare-type invariance.
More precisely, if we take a family of solutions (ψ(x, t; θ) = q(x, t; θ) + ip(x, t; θ) : θ ∈ R) of
NLS that is T -periodic in θ, then

(5.14)
d

dt

∫ T

0

∫
p(x, t; θ)qθ(x, t; θ) dx dθ = 0.

Indeed, from (
pqθ
)
t

= ptqθ + pqθt = ptqθ − pθqt +
(
pqt
)
θ

= Re(Jψtψ̄θ) +
(
pqt
)
θ

= −Re(∂H(ψ)ψ̄θ) +
(
pqt
)
θ

=
(
pqt −H(ψ)

)
θ
,

we can deduce (5.14). This implies that if we take a family of solutions

(ψ(x, t; θ1, θ2) = q(x, t; θ1, θ2) + ip(x, t; θ1, θ2) : (θ1, θ2) ∈ U),

for a region U in the plane, then

d

dt

∫∫
U

∫
(pθ1qθ2 − pθ2qθ1)(x, t; θ1, θ2) dx dθ1 dθ2 = 0,

by Green’s theorem, because if

α = α(x, t; ·) = p qθ2 dθ2 + p qθ1 dθ1,
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is regarded as a 1-form in R2, then

dα = (pθ1qθ2 − pθ2qθ1) dθ1 ∧ dθ2.

Needless to say that the Hamiltonian H(ψ) is conserved for NLS solution. It turns out that
the L2 norm

M(ψ) =

∫
|ψ(x)|2 dx,

is also conserved. This is an immediate consequence of (5.10). Zakharov and Shabat in 1972
showed that NLS equation is completely integrable in dimension one.

We can construct explicit traveling wave solutions to focusing NSL equation when d =
1. To ease the notion, we assume that κ = −2. Note that if ψ(x, t) is a solution, so is
ψ̂(x, t) = aψ(ax, a2t). As a warm-up, let us search for a stationary solution of the form
ψ(x, t) = aeia

2tf(ax), where f , and f ′ vanish at ±∞. Substituting this in

iψt + ψxx + 2|ψ|2ψ = 0,

yields −f +f ′′+2f 3 = 0. Multiplying both sides by 2f ′ yields (f ′)2 +f 4−f 2 = 0, which has
a solution of the form f(x) = cosh−1(x). More generally, we can find solutions of the form

(5.15) ψ(x, t) = aei(bx+ct)f
(
a(x− x0 − σt)

)
.

(ii)(Korteweg–De Vries (KdV) equation) The KdV equation describes the evolution of sur-
face waves in narrow canals. If the surface wave elevation at position x ∈ R and time t is
denotes by V (x, t), then according to KdV equation, V satisfies

(5.16) Vt + 6V Vx + Vxxx = 0.

More generally we may consider

(5.17) Vt + κ
(
V r
)
x

+ Vxxx = 0.

We refer to (5.17) as KdV(r). To represent (5.17) as a Hamiltonian PDE, we use the standard
inner product

〈V, V ′〉 =

∫
R
V V ′ dx.

We define a Hamiltonian function

(5.18) H(V ) =

∫ (
1

2

(
dV

dx

)2

− κ

r + 1
V r+1

)
dx,
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for a C1 function V : R→ R, such that V and dV
dx

decays sufficiently fast at infinity. We can
readily show

(5.19) ∂H(V ) = −Vxx − κV r.

As a result, we may rewrite (5.17) as

(5.20) Vt = J ∂H(V ),

where J = d
dx

is the differentiation operator. Note that if J (V ) = W , then
∫
W dx = 0.

For such W , we define the inverse of J by

I(W )(x) =

∫ x

−∞
W (y) dy.

We also define

ω(W,W ′) =

∫
I(W )W ′ dx.

Evidently H(V ) is conserved for solutions of (5.17). It is not hard to show that the mass
and momentum

M(V ) =

∫
V dx, P(V ) =

∫
V 2 dx,

are also conserved. Kruskal, Zabusky, Mirua and Gardner discovered infinitely many conser-
vation laws when r = 3 or 2. They also showed that these PDEs are completely integrable.
Moreover, Mirua found a transformation that maps a solution of KdV(3) equation to a
solution of KdV(2).

Given a function ψ = ew, observe

wx =
ψx
ψ
, wxx =

ψxx
ψ
− w2

x, wt − 2w3
x + wxxx =

ψt
ψ
− 2
(
wxx + w2

x

)ψx
ψ

+
(
wxx + w2

x

)
x
.

Hence we can write

(5.21) L(ψ) := −ψxx + V ψ = 0, C(w) := wt − 2w3
x + wxxx = ψ−1

(
ψt − 2V ψx + Vxψ

)
,

where V = −(wxx + w2
x) is the potential. The transformation w 7→ V was introduced by

Miura to study KdV equation. Indeed

−
(
Vt + 6V Vx + Vxxx

)
=(wxx + w2

x)t − 3
[
(wxx + w2

x)
2
]
x

+ (wxx + w2
x)xxx

=(wtxx + 2wxwtx)− 3
(
w2
xx + 2wxxw

2
x + w4

x

)
x

+ (wxxxxx + 2wxwxxxx + 6wxxwxxx)

=(wtxx + 2wxwtx)−
(
3
(
w2
xx

)
x

+ (2w3
x)xx + 12w3

xwxx
)

+ (wxxxxx + 2wxwxxxx + 6wxxwxxx)

=
(
wt − 2w3

x + wxxx
)
xx

+ 2wx
(
wt − 2w3

x + wxxx
)
x
.
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In summary,

(5.22) Vt + 6V Vx + Vxxx = −C(w)xx − 2wxC(w)x.

To develop a better understanding for (5.16), let us first examine its scaling property. In
other words, assume that V is a solution, and given a scalar λ, set W (x, t) = λαV (λx, λβt).
We wish to find α and β so that W is also a solution. Since

Wt + 6WWx +Wxxx = λα+βVt + 6λ2α+1V Vx + λα+3Vxxx,

we need α + β = 2α + 1 = 3 + α, which leads to α = 2, β = 3.
An early evidence of the complete integrabilty of KdV equation was observed by Kruskal

and Zabusky in their simulations of solutions. To explain their discovery, let us first consider
traveling wave solutions of (5.16). These are solutions of the form V (x, t) = f(x−σt) where
f is a C3 functions such that f , f ′ and f ′′ are vanishing at ±∞. Substituting such a wave
function V in (5.16) yields−σf ′+6ff ′+f ′′′ = 0. Integrating once leads to−σf+3f 2+f ′′ = 0.
We now multiply both sides by 2f ′, and integrate again to arrive at the equation

−σf 2 + 2f 3 + (f ′)2 = 0.

If we assume σ > 0, then we can write

f(x) =
σ

2
g

(√
σ

2
(x− x0)

)
,

with g satisfying (g′)2 = 4g2(1− g), which has a solution of the form

g(x) = cosh−2(x).

This yields traveling wave solutions of (5.16) that are known as solitons. When x0 = 0, the
corresponding solution

V σ(x, t) =
σ

2
g

(√
σ

2
(x− σt)

)
= σV 1

(
σ1/2x, σ3/2t

)
,

has the scaling property that was discussed before. Kruskal and Zabusky observed the
stability of solitons in the following sense: If the initial data has two solitons V 0 and V 1 of
centers x0 and x1, and speeds σ0 and σ1 with s0 < s1, x0 >> x1, then after a nonlinear
interaction, the two solitons emerge unscathed (with some shift of the traveled centers due
to the interaction). �

We now describe a robust method of Lax that offers a recipe for finding conservation
laws for certain PDEs.
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Proposition 5.2 (i) Let L(t),A(t) : X → X be two families of operators on a Hilbert space
X such that

(5.23) L̇ = [A,L] := AL− LA.

Then

(5.24) L(t) = U(t)L(0)U(t)−1,

where U(t) defined by

(5.25) U̇(t) = A(t)U(t), U(0) = id.

We refer to (L,A) as a Lax pair.

(ii) For a Lax pair (L,A), the spectrum of the operator L(t) is independent of t. Moreover,
if λ is an eigenvalue of −L, and ψ(0) is the corresponding eigenfunction of −L(0), then
ψ(t) = U(t)ψ(0) is a corresponding eigenfunction of −L(t).

(iii) Let L,A : X → X be two linear operators. Assume that there exist functions λ : R→ R
and ψ : X → R such that

(5.26) λ̇ = 0, −Lψ = λψ, ψ̇ = Aψ.

Then
(
L̇+ [L,A]

)
ψ = 0.

Proof(i) From (5.23) and (5.25) we learn

d

dt

(
U(t)−1L(t)U(t)

)
=− U(t)−1U̇(t)U(t)−1L(t)U(t) + U(t)−1L̇(t)U(t) + U(t)−1L(t)U̇(t)

=− U(t)−1A(t)L(t)U(t) + U(t)−1L(t)A(t)U(t)

+ U(t)−1
(
A(t)L(t)− L(t)A(t)

)
U(t) = 0.

This immediately implies (5.24).

(iii) From differentiating (L+ λ)ψ = 0 we deduce

0 = L̇ψ + Lψ̇ + λAψ = L̇ψ + LAψ +ALψ =
(
L̇+ [L,A]

)
ψ.

�

Example 5.2(i) We note that when A is anti-selfadjoint, then U is unitary because

d

dt
‖U(t)ψ‖2 = 〈U̇(t)ψ,U(t)ψ〉+ 〈U(t)ψ, U̇(t)ψ〉

= 〈A(t)U(t)ψ,U(t)ψ〉+ 〈U(t)ψ,A(t)U(t)ψ〉 = 0.
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Moreover if L(0) is self-adjoint, then L(t) is also self-adjoint by (5.24). Let X be the space
of wave functions ψ : Rd → C, and let

A =
i

~
H =

i

~

(
− ~2

2m
∆ + V

)
,

for a potential V (x). Then U(t)−1 = U(−t) = e−
i
~ tH is the fundamental solution of the

Schrodinger’s equation. The corresponding L(t) is the observable at time t, and (5.23)
yields the evolution of the observable as in Heisenberg’s description of quantum mechanics.

(ii) Given a function V (x, t), and a constant c, set(
L(t)ψ

)
(x) = ψ′′(x) + V (x, t)ψ(x), Aψ(x) = −cψ′(x).

We have (
L̇+ [L,A]

)
ψ = Vtψ − a

[
d2

dx2
+ V,

d

dx

]
ψ = Vtψ − c

[
V,

d

dx

]
ψ

= Vtψ − cV ψ′ + c(V ψ)x = (Vt + cVx)ψ.

Hence (5.23) is satisfied iff V satisfies the PDE Vt + cVx = 0. A solutions to this PDE is
of the form V (x, t) = V 0(x − ct). We have the same form for the eigenfunction equation
ψt + cψx = 0, namely ψ(x, t) = ψ0(x− ct). �

5.1 KdV Equation

Given a C3 function V (x, t), let L be as in (ii), but now

A = −
(
a
d3

dx3
+ bV

d

dx
+ cVx

)
.

From [
L, d

3

dx3

]
=

[
V,

d3

dx3

]
= −

(
Vxxx + 3Vxx

d

dx
+ 3Vx

d2

dx2

)
,[

L, V d

dx

]
=

[
V, V

d

dx

]
+

[
d2

dx2
, V

d

dx

]
= −V Vx + Vxx

d

dx
+ 2Vx

d2

dx2
,

[
L, Vx

]
=

[
d2

dx2
, Vx

]
= Vxxx + 2Vxx

d

dx
.

we deduce

[L,A] = (a− c)Vxxx + bV Vx + (3a− b− 2c)Vxx
d

dx
+ (3a− 2b)Vx

d2

dx2
.
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This operator is a multiplication if a = 4, b = 6, c = 3. For such choices,

(5.27) L̇+ [L,A] = Vt + 6V Vx + Vxxx.

If we write λ(V ) for an eigenvalue of L = LV , then λ(V ) is conserved for a solution of KdV
equation (5.17). �

Remark 5.1 We could have started from a general A of the form

A = −
(
a
d3

dx3
+B

d

dx
+ C

)
,

with a a scalar, and B,C two functions of (x, t). Then the requirement that operator
L̇ + [L,A] is a multiplication would lead to an ODE for (B,C). From this ODE we can
readily deduce that B and C are constant multiples of V and Vx. �

As we have seen in Proposition 5.2, (5.23) can be recast as a compatibility equation
for the over-determined system (5.26). In our examples, the operators L and A depend
on a function V , and if we require isospectral property for L(t), as we vary t, then the
compatibility of the equation we have for the eigenfuncton ψ is the PDE we try to solve. In
other words, we have turned our (nonlinear) PDE to a compability condition for two linear
PDEs. As we have seen in the case of KdV, the operators L and A are differential operators
of order 2 and 3. There is a way of turning our system (5.26) to a system of first order PDEs
provided we switch from scalar-valued function to a vector valued function. Let us explain

this in the setting of KdV equation first. Note that if we set Ψ =

[
ψ
ψx

]
, then the equation

(L+ λ)ψ = 0 can be rewritten as

(5.28) Ψx = XΨ, where X =

[
0 1

−(V + λ) 0

]
On the other hand, the equation ψt = Aψ would lead to

ψt = −3Vxψ − 6V ψx − 4ψxxx = −3Vxψ − 6V ψx + 4
[
(V + λ)ψx + Vxψ

]
= Vxψ + 2

(
2λ− V

)
ψx,

ψxt = Vxxψ + Vxψx − 2Vxψx + 2
(
2λ− V

)
ψxx = Vxxψ − Vxψx − 2

(
2λ− V

)
(V + λ)ψ

=
[
Vxx − 2

(
2λ− V

)
(V + λ)

]
ψ − Vxψx.

Hence

(5.29) Ψt = TΨ, where T =

[
Vx 2

(
2λ− V

)
Vxx − 2

(
2λ− V

)
(V + λ) −Vx

]
.
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In other words, Ψ satisfies

(5.30) Ψx = XΨ, Ψt = TΨ.

The compatibility of these equations lead to

(5.31) Xt − Tx + [X,T ] = 0,

which is the analog of (5.23). A direct computation yields

[X,T ] =

[
Vxx −2Vx

−2(V + λ)Vx −Vxx

]
.

From this we can readily deduce

Xt − Tx + [X,T ] = −
[

0 0
Vt + 6V Vx + Vxxx 0

]
.

So far we know that V is a solution iff the linear equations in (5.26) hold for a wave
function ψ that serves as an eigenfunction ψ of the linear operator L. The question now
is whether this connection can be used to completely integrate (5.16). Recall that for a
completely integrable Hamiltonian ODE we have a change variable Φ(x, p) = (X,P ) such
that P is conserved and the evolution of X is linear in t. For the complete integrability
of (5.16), we wish to come up with such a transformation. The rough description of our
strategy for constructing such a transformation has 3 steps:

(i) We define a set V of potential functions W (x) that vanishes sufficiently fast at infinity.
We write Φ(W ) for a collection of spectral/scattering data that are associated with
W ∈ V .

(ii) We describe the linear evolution of Φ
(
V (·, t)

)
when V solves the KdV equation.

(iii) We determine the inverse operator Φ−1. In other words, we learn how to recover a
potential W from its spectral/scattering data.

We start with Step (i). Given a potential W that vanishes sufficiently fast at ±∞,
Φ(W ) is roughly the full spectrum of the operator LW = − d2

dx2 −W , and the behavior of the
corresponding eigenfunctions at ±∞. By a full spectrum we mean the set of eigenvalues plus
the continuous spectrum that will be defined below. The reason we consider only the behavior
of the eigenfunctions at ±∞ is because the eigenfuctions are equal to the eigenfunctions of
− d2

dx2 asymptotically, and as a result the dynamics of their coefficients simplify to a linear
ODE. This is exactly what we advertise for in (ii) above.

We wish to define a map Φ that assigns to a potential W its certain spectral data.
In fact our map is of the form Φ(W ) = (P (W ), X(W )), with P (W ) = σ(LW ), where
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LW = − d2

dx2 −W . Note that if (5.24) holds, then ρ(L(t)) is independent of t. From this and
(5.27) we learn that if V t(x) = V (x, t) satisfies the KdV equation (5.16), then

(5.32)
d

dt
P (V t) = 0.

We are now ready to define X(W ).

Definition 5.4(i) Let λ = −`2 ∈ σd(LW ), ` > 0. Then there exists a unique C2 function
ψ` : R→ R such that ∫

(ψ`(x))2 dx = 1, (LW + `2)ψ` = 0,

and ψ` ∼= a±(`)e−`|x| as x→ ±∞, for constants a±(`) = aW± (`) ∈ R.

(ii) Let λ = k2 ∈ σess(LW ) = [0,∞). Then there exists a unique C2 function ϕk such that
(LW − k2)ϕk = 0, and ϕ ∼= b(k)e−ikx as x → −∞, and ϕ ∼= e−ikx + A(k)eikx as x → ∞, for
constants b(k) = bW (k), A(k) = AW (k) ∈ R.

(ii) Define X(W ) : P (W )→ R by X(W )(−`2) = a+(`), X(W )(k2) = A(k).

We are now ready for our step (ii).

Theorem 5.1 Let aW+ , b
W , AW be as above. If V satisfies the KdV equation (5.16), V ∼= 0,

and Vx ∼= 0 at ±∞, and write a(t, `) := aV
t

+ (`), b(t, k) := bV
t
(k), and A(t, k) := AV

t
(k).

Then

(5.33) at(t, `) = 4`3a(t, `), At(t, k) = −8ik3A(t, k), bt(t, k) = 0.

Moreover,
ϕt = Aϕ− 4ik3ϕ.

Proof Assume V satisfies the KdV equation (5.16). Recall that if ψ(t) = ψ`(t) is the
eigenfunction of the operator L(t) = −L−V t associated with the eigenvalue λ = −`2, then
by Proposition 5.2, and Example 5.2(iii),

(5.34) ψt = Aψ = Vxψ + 2(2λ− V )ψx ∼= 4λψx = −4`2ψx,

by (5.28). On the other hand,

ψt ∼= ate
−`x, ψx ∼= −a`e−`x,

as x→∞. From this and (5.34) we deduce the first equation of (5.33).
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For the other two equations in (5.33), we no longer have ϕt = Aϕ because ϕ /∈ X = L2(R).
In other words even though (5.23) and (5.24) hold, the third equation of (5.26) does not
hold for ϕ (ϕ is not in the domain of the definition of U−1). Nonetheless we can derive an
equation of ϕt. To this end, let us write h = ϕt −Aϕ. From (5.23), and Lϕ = λϕ = −k2ϕ
we learn

0 =
d

dt

[
(L − λ)ϕ

]
= L̇ϕ+ (L − λ)ϕt = ALϕ− LAϕ+ (L − λ)ϕt

=λAϕ− LAϕ+ (L − λ)ϕt = (L − λ)h.

From this, (L−λ)ϕ = 0, and Proposition 5.5 we deduce thatW(ϕ, h) = c is constant. Note,

h = ϕt − Vxϕ− 2(2λ− V )ϕx ∼= ϕt − 4λϕx ∼= (bt + 4iλkb)e−ikx, as x→ −∞,
h ∼= ϕt − 4λϕx ∼= (At − 4iλkA)eikx + 4ikλe−ikx, as x→ +∞,
hx = ϕtx − (Aϕ)x = ϕtx −

[
Vxϕ+ 2(2λ− V )ϕx

]
x
∼= ϕtx − 4λϕxx

∼= ϕtx − 4λ2ϕ ∼= −(ikbt + 4λ2b)e−ikx, as x→ −∞,
hx ∼= ϕtx − 4λ2ϕ ∼= (ikAt − 4λ2A)eikx − 4λ2e−ikx. as x→ +∞,

From this and λ = k2 we learn

W(ϕ, h) = ϕhx − ϕxh ∼= −b(ikbt + 4λ2b)e−2ikx + ikb(bt + 4iλkb)e−2ikx = 0,

as x→ −∞. Similarly

W(ϕ, h) ∼=
[
(ikAt − 4λ2A)eikx − 4λ2e−ikx

][
e−ikx + Aeikx

]
,

− ik
[
− e−ikx + Aeikx

][
(At − 4iλkA)eikx + 4ikλe−ikx

]
= ikAt − 8λ2A+ ik(At − 4iλkA) + 4k2λA

+
[
A(ikAt − 4λ2A)− ikA(At − 4iλkA)

]
e2ikx −

[
4k2λ+ 4k2λ

]
e−2ikx

= 2ikAt − 16λ2A,

as x → −∞. Since W(ϕ, h) is independent of x, we must have 2ikAt − 16λ2A = 0. This
implies the second equation in (5.33).

For the last equation, observe that since W(ϕ, h) = 0, we know that h/ϕ is independent
of x. On the other hand,

h

ϕ
∼=
bt + 4iλkb

b
as x→ −∞,

h

ϕ
∼=

(At − 4iλkA)eikx + 4ikλe−ikx

e−ikx + Aeikx
=
−4ik3Aeikx + 4ikλe−ikx

e−ikx + Aeikx
= −4ik3, as x→ +∞,

Matching the right-hand sides would yield the third equation in (5.33). Moreover, h/ϕ =
−4ik3, which implies the last claim of the Theorem. �

65



5.2 NLS Equation

For KdV equation, we learned that the stationary Schrodingar equation can be recast as a
first order vector equation (5.28). Alternatively, the factorization

d2

dx2
+ k2 =

(
d

dx
+ ik

)(
d

dx
− ik

)
,

suggests setting φ2 = φ, φ1 = φ2
x − ikφ2, to recast φxx + k2φ = Wφ, as φ1

x + ikφ1 = Wφ2.
As a result, we can write Φx = XΦ, where

Φ =

[
φ1

φ2

]
, X =

[
−ik W

1 ik

]
.

Zakharov and Shabat proposes a generalization of the form

Φx = XΦ, where X =

[
−ik ψ
ξ ik

]
,(5.35)

Φt = TΦ, where X =

[
A B
C −A

]
.

5.3 Exercise

(i) Find solutions of the form (5.15) to (5.9) when d = 1, κ = −2, and r = 3.

(ii) Show that the derivative of the map f(U) = U−1 is given by Df(U)(Z) = −U−1ZU−1.
More precisely, given a bounded invertible linear operator U , show that there exists a con-
stant c0 = c0(U) such that∥∥(U + Z)−1 − U−1 + U−1ZU−1

∥∥ ≤ c0‖Z‖2,

for every bounded operator Z of sufficiently small norm.

(iii) Let G : R → R be a C1 function. Write F for the set of C1 functions u : R → R such
that u and its derivative ux vanish at ±∞. Given a pair of functions q, p ∈ F , define its
Hamiltonian

H(q, p) =

∫
−∞,∞

[
1

2

(
qx(x)2 + p(x)2

)
+G(q(x))

]
dx.

What PDE q(x, t) satisfies if ψ(x, t) = (q(x, t), p(x, t)) satisfies ψt = J∂H(ψ)? (The matrix
J was defined right before (5.1).)

(iv) Let V be a solution of KdV equation with V (x, 0) = −W (x). Assume that W is as in
Exercise (ii) and (iii) of Chapter 3. Find V (x, t).
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6 Incompressible Fluid Equations

In this chapter we study the incompressible Euler equation (1.11). It is possible to write
(1.11) as an equation for u only (getting ride of P ) by projecting (u ·∇)u onto its divergence
free part. For this, we recall that by a result of Holmholtz, we can always decompose a
vector field w into a gradient vector field , and a divergence free vector field. More precisely
w = −∇φ + Z, for a C1 function ϕ : Rd → R and divergence free vector field Z. It is not
hard to find φ by taking the divergence of both sides to obtain −∆φ = ∇·w, which suggests
a candidate for φ of the form

φ(x) =

∫
Ḡ(x, y)(∇ · w)(y) dy,

where Ḡ is the Green’s function of −∆ in Rd (see section 2.3). When d = 3, we may express
Z = ∇× A for a vector field A. We may choose A divergence free so that

∇× (∇× A) = ∇(∇ · A)−∆A = −∆A.

Because of this, we may choose A by

A(x) =

∫
Ḡ(x, y)(∇× w)(y) dy, P(w) := ∇× A.

With the aid of the projection operator P, we may write (1.11) as

(6.1) ut + P
[
(u · ∇)u

]
= 0.

We now give a dynamical/geometric description of the equation (1.11). For this, let us
consider the classical Hamiltonian function

H(x, U) =
1

2
|U |2 + P (x, t),

and consider the corresponding Hamiltonian ODE

(6.2) ẋ = U, U̇ = −Px(x, t),

which is the Newton’s equation associated with the potential P . We write Φt for the flow of
this ODE. Now imagine that the momentum U(t) is related to the position x(t) as

(6.3) U(t) = u(x(t), t),

for a suitable vector field u(x, t). We now claim that (6.2) and (6.3) are compatible if and
only if u satisfies the first equation in (1.11). In fact if we write X t(x) = X(x, t) for the flow
of the vector field u, i.e.,

(6.4) Xt(x, t) = u(X(x, t), t), X(x, 0) = x,
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Then (6.3) means

(6.5) Φt(x, u(x, 0)) =
(
X(x, t), u(X(x, t), t)

)
.

If we set U(x, t) := u(X(x, t), t), then

0 = Ut(x, t) + Px(X(x, t), t) = (ut + uxu+ Px)(X(x, t), t).

Then if both (6.3) and (6.5) hold for every initial x, we must have ut + uxu + Px = 0. For
the ODE (6.2), the invariance (5.5) is valid:

(6.6)
d

dt

∫
Φt(γ)

U · dx = 0,

for a closed curve γ : [0, t0] → R2d. Given a closed curve η : [0, t0] → R2d, we lift it to a
curve in R2d by

γ(θ) =
(
η(θ), u(η(θ), 0)

)
.

From (6.5) we learn
Φt(γ)(θ) =

(
X t(η)(θ), u(X t(η)(θ), t)

)
.

This and (6.6) imply

(6.7)
d

dt

∫
Xt(η)

u(x, t) · dx = 0.

This invariance principle is due to Kelvin.
We may apply Stokes formula to rewrite (6.7) as

(6.8)

∫
Xt(Γ)

(∇× u)(x, t) · dS(x) =

∫
Γ

(∇× u)(x, 0) · dS(x),

where Γ is a surface with ∂Γ = γ, and dS = n dS, with n the unit normal to the surface.
(Here the direction of n must be compatible with the orientation of γ.) If x(θ1, θ2) is a
parametrization of Γ, then

n = xθ1 × xθ2 .

If we write ξ = δ × u, and [ξ, v1, v2] := ξ · (v1 × v2), then (6.8) is equivalent to saying[
ξ ◦X, (DX)v1, (DX)v2

]
=
[
ξ0, v1, v2

]
,

where ξ0(x) = ξ(x, 0). Since ∇ · u = 0, we have[
ξ0, v1, v2

]
=
[
(DX)ξ0, (DX)v1, (DX)v2

]
.
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Hence (6.8) is equivalent to

(6.9) ξ(X(x, t), t) = Xx(x, t)ξ(x, 0).

If we differentiate both sides with respect to t, we obtain

ξt ◦X + (ξx ◦X)Xt = Xxtξ
0.

From this, and Xt = u ◦X we learn

ξt ◦X + (ξx ◦X)(u ◦X) = (ux ◦X)Xxξ
0 = (ux ◦X)(ξ ◦X).

In summary

(6.10) ξt + ξxu− uxξ = 0.
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A Spectral Theory

Definition A.1(i) Let X be a Hilbert space. Given a linear operator L : Dom(L)→ X, we
write ρ(L) for the set of λ ∈ C such that the operator L − λ is invertible, and the inverse
(L − λ)−1 : X → X is bounded (continuous). The set ρ(L) is called the resolvent of L. Its
complement σ(L) = C \ ρ(L) is called the spectrum of L.

(ii) We say λ is an eigenvalue of L if ker(L − λ) 6= {0}. Obviously any eigenvalue of L
belongs to σ(L).

(iii) Let L : Dom(L)→ X be a linear operator, and assume that Dom(L) is dense in X . We
call the operator L closed if its graph is a closed set. That is, if xn is a sequence in Dom(L)
such that (xn,Lxn)→ (x, y) in large n limit, then x ∈ Dom(L), and y = Lx. �

When Dom(L) 6= X , the a closed densely defined operator that cannot be extended to
the whole space X must be unbounded by the following closed graph theorem of Banach:

Proposition A.1 A closed linear operator L : X → X is bounded (continuous).

Definition A.2 We define the discrete (point) spectrum σd(L) as the set λ ∈ C such that
λ is an isolated point of σ(L), ker(L − λ) 6= {0}, and dim ker(L − λ) < ∞. The essential
(continuous) spectrum σess(L) of L is defined as σess(L) = σ(L) \ σd(L). When λ ∈ σd(L),
we refer to it as an eigenvalue of L. �

Proposition A.2 Suppose that L is a self-adjoint operator. If λ is an isolated point of σ(L),
then λ is an eigenvalue. Moreover L − λ restricted to ker(L − λ)⊥ has a bounded inverse.

Theorem A.1 (Weyl) Suppose L : Dom(L) → X is a self-adjoint operator. Then λ ∈
σess(L) iff there exists a sequence xn ∈ Dom(L) such that

(A.1) ‖xn‖ = 1, lim
n→∞

(L − λ)xn = 0, , xn ⇀ 0.

Proof We only show how (A.1) implies that λ ∈ σess(L). First we argue that if such a
sequence exists, then λ ∈ σ(L). Suppose to the contrary, (L − λ)−1 is a bounded operator.
Then for yn = (L − λ)xn we have

lim
n→∞

yn = 0, 1 = ‖xn‖ =
∥∥(L − λ)−1yn

∥∥ ≤ ∥∥(L − λ)−1
∥∥ ‖yn‖,

which is impossible. Hence we must have λ ∈ σ(L).
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It remains to show that λ /∈ σd(L). Suppose to the contrary, λ ∈ σd(L), and {e1, . . . , ek}
is an orthonormal basis for ker(L − λ). Write Y for ker(L − λ)⊥ and P for the orthogonal
projection onto Y . Set zn = (Pxn)/‖Pxn‖. Then ‖zn‖ = 1, and

‖Pxn‖2 = ‖xn‖2 −
k∑
j=1

〈xn, ej〉2 = 1−
k∑
j=1

〈xn, ej〉2 → 1,

‖(L − λ)zn‖ = ‖(L − λ)Pxn‖ ‖Pxn‖−1 = ‖(L − λ)xn‖ ‖Pxn‖−1 → 0,

in large n limit. This implies that the restriction of L−λ to Y is not invertible by repeating
the argument in the previous paragraph. When then use Proposition 4.4 to deduce that λ
is not isolated in σ(L). This contradicts λ ∈ σd(L). �

Remark A.1 If L is a densely defined closed operator, then λ ∈ ρ(L) iff L−λ is one-to-one
and onto. The reason is that if (L − λ)−1 is well-defined as a linear function on X , then it
is also closed, and hence bounded by Proposition 4.2. �

Example A.1 Let X be an infinite dimensional separable Hilbert space with an orthonormal
basis {en : n ∈ N}. If L = I is the identity operator, then σ(L) = σess(L) = {1}.

A.1 Exercise

(i) Show that the resolvent set ρ(L) is open.
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