Equilibrium Fluctuations for Coagulating-Fragmenting Brownian Particles

Fraydoun Rezakhanlou

Department of Mathematics UC Berkeley

70th Birthday of Raghu Varadhan National Taiwan University 15/07/2011

Outline

- The Model
- Scaling Limit
- Fluctuations
- 4 Equilibrium
- Idea of Proof

Outline

- 1 The Model
- Scaling Limit
- 3 Fluctuations
- 4 Equilibrium
- Idea of Proof

- (Configuraion) $x_i \in \mathbb{R}^d$, $m_i \in \mathbb{N}$, $r_i \in (0, \infty)$, $i \in I$ are positions (centers), masses and radii of particles (bubbles).
- (Dynamics)
 - x_i travels as a Brownian motion of diffusion constant $d(m_i)$

- (Configuraion) $x_i \in \mathbb{R}^d$, $m_i \in \mathbb{N}$, $r_i \in (0, \infty)$, $i \in I$ are positions (centers), masses and radii of particles (bubbles).
- (Dynamics)
 - x_i travels as a Brownian motion of diffusion constant $d(m_i)$
 - x_i and x_j coagulate with rate $\alpha(m_i, m_j) V_{\epsilon}(x_i x_j; m_i, m_j)$. The new particle of mass $m = m_i + m_j$ is at x_i with probability m_i/m .

- (Configuraion) $x_i \in \mathbb{R}^d$, $m_i \in \mathbb{N}$, $r_i \in (0, \infty)$, $i \in I$ are positions (centers), masses and radii of particles (bubbles).
- (Dynamics)
 - x_i travels as a Brownian motion of diffusion constant $d(m_i)$
 - x_i and x_j coagulate with rate $\alpha(m_i, m_j) V_{\epsilon}(x_i x_j; m_i, m_j)$. The new particle of mass $m = m_i + m_j$ is at x_i with probability m_i/m .
 - x_i fragments into two particles of masses m and $m_i m$ with rate $\beta(m, m_i m) V^{\epsilon}(x_i y; m_i m, m)$. The new particles are at x_i and y.

 We assume d = 2, V ≥ 0 of compact support and total integral 1.

The central object to study is the cluster density of a given size; Empirical measures

$$g_n^{\varepsilon}(dx,t) = K_{\varepsilon}^{-1} \sum_i \delta_{x_i(t)}(dx) \mathbb{1}(m_i(t) = n),$$

- We assume d = 2, V ≥ 0 of compact support and total integral 1.
- Relationship between mass and radius: $r_i = m_i^{\chi}$. To simplify the notation, we assume $\chi = 0$.

The central object to study is the cluster density of a given size; Empirical measures

$$g_n^{\varepsilon}(dx,t) = K_{\varepsilon}^{-1} \sum_i \delta_{x_i(t)}(dx) \mathbb{1}(m_i(t) = n),$$

- We assume d = 2, V ≥ 0 of compact support and total integral 1.
- Relationship between mass and radius: $r_i = m_i^{\chi}$. To simplify the notation, we assume $\chi = 0$.

•
$$V_{\varepsilon}(x_i - x_j) = |\log \varepsilon|^{-1} \varepsilon^{-2} V\left(\frac{x_i - x_j}{\varepsilon}\right)$$

The central object to study is the cluster density of a given size; Empirical measures

$$g_n^{\varepsilon}(dx,t) = K_{\varepsilon}^{-1} \sum_i \delta_{x_i(t)}(dx) \mathbb{1}(m_i(t) = n),$$

- We assume d = 2, V ≥ 0 of compact support and total integral 1.
- Relationship between mass and radius: $r_i = m_i^{\chi}$. To simplify the notation, we assume $\chi = 0$.
- $V_{\varepsilon}(x_i x_j) = |\log \varepsilon|^{-1} \varepsilon^{-2} V\left(\frac{x_i x_j}{\varepsilon}\right)$
- $V^{\varepsilon}(x_i x_j) = K_{\varepsilon} V_{\varepsilon}(x_i x_j) = \varepsilon^{-2} V\left(\frac{x_i x_j}{\varepsilon}\right)$

The central object to study is the cluster density of a given size; Empirical measures

$$g_n^{\varepsilon}(dx,t) = K_{\varepsilon}^{-1} \sum_i \delta_{x_i(t)}(dx) \mathbb{1}(m_i(t) = n),$$

- We assume d = 2, V ≥ 0 of compact support and total integral 1.
- Relationship between mass and radius: $r_i = m_i^{\chi}$. To simplify the notation, we assume $\chi = 0$.
- $V_{\varepsilon}(x_i x_j) = |\log \varepsilon|^{-1} \varepsilon^{-2} V\left(\frac{x_i x_j}{\varepsilon}\right)$
- $V^{\varepsilon}(x_i x_j) = K_{\varepsilon} V_{\varepsilon}(x_i x_j) = \varepsilon^{-2} V\left(\frac{x_i x_j}{\varepsilon}\right)$
- Set $K_{\varepsilon} = |\log \varepsilon|$. Think of K_{ε} as the number of particles per unit area.

The central object to study is the cluster density of a given size; Empirical measures

$$g_n^{\varepsilon}(dx,t) = K_{\varepsilon}^{-1} \sum_i \delta_{x_i(t)}(dx) \mathbb{1}(m_i(t) = n),$$

Outline

- 1 The Model
- Scaling Limit
- 3 Fluctuations
- 4 Equilibrium
- Idea of Proof

Theorem (FR and Hammond when there is no fragmentation)

 $g_n^{\varepsilon}(dx, t)$ converges to $f_n(x, t)dx$ where f_n is a solution to the Smoluchowski's equation.

Smoluchowski's equation (solution is unique)

$$\frac{\partial f_n}{\partial t}(x,t) = d(n)\Delta_x f_n(x,t) + Q_n^{+,c}(\mathbf{f}) - Q_n^{-,c}(\mathbf{f}) + Q_n^{+,f}(\mathbf{f}) - Q_n^{-,f}(\mathbf{f}),$$

•
$$Q_n^{+,c}(\mathbf{f}) = \frac{1}{2} \sum_{m=1}^n \hat{\alpha}(m, n-m) f_m f_{n-m}$$

•
$$Q_n^{+,c}(\mathbf{f}) = \frac{1}{2} \sum_{m=1}^n \hat{\alpha}(m, n-m) f_m f_{n-m}$$

•
$$Q_n^{-,c}(\mathbf{f}) = \sum_{m=1}^{\infty} \hat{\alpha}(m,n) f_m f_n$$

•
$$Q_n^{+,c}(\mathbf{f}) = \frac{1}{2} \sum_{m=1}^n \hat{\alpha}(m, n-m) f_m f_{n-m}$$

•
$$Q_n^{-,c}(\mathbf{f}) = \sum_{m=1}^{\infty} \hat{\alpha}(m,n) f_m f_n$$

•
$$Q_n^{+,f}(\mathbf{f}) = \sum_{m=1}^{\infty} \hat{\beta}(m,n) f_{n+m}$$

•
$$Q_n^{+,c}(\mathbf{f}) = \frac{1}{2} \sum_{m=1}^n \hat{\alpha}(m, n-m) f_m f_{n-m}$$

•
$$Q_n^{-,c}(\mathbf{f}) = \sum_{m=1}^{\infty} \hat{\alpha}(m,n) f_m f_n$$

•
$$Q_n^{+,f}(\mathbf{f}) = \sum_{m=1}^{\infty} \hat{\beta}(m,n) f_{n+m}$$

•
$$Q_n^{-,f}(\mathbf{f}) = \frac{1}{2} \sum_{m=1}^{n-1} \hat{\beta}(m, n-m) f_n$$

•
$$Q_n^{+,c}(\mathbf{f}) = \frac{1}{2} \sum_{m=1}^n \hat{\alpha}(m, n-m) f_m f_{n-m}$$

•
$$Q_n^{-,c}(\mathbf{f}) = \sum_{m=1}^{\infty} \hat{\alpha}(m,n) f_m f_n$$

•
$$Q_n^{+,f}(\mathbf{f}) = \sum_{m=1}^{\infty} \hat{\beta}(m,n) f_{n+m}$$

•
$$Q_n^{-,f}(\mathbf{f}) = \frac{1}{2} \sum_{m=1}^{n-1} \hat{\beta}(m, n-m) f_n$$

•
$$\hat{\alpha}(m,n) = \eta(m,n)\alpha(m,n)$$

•
$$Q_n^{+,c}(\mathbf{f}) = \frac{1}{2} \sum_{m=1}^n \hat{\alpha}(m, n-m) f_m f_{n-m}$$

•
$$Q_n^{-,c}(\mathbf{f}) = \sum_{m=1}^{\infty} \hat{\alpha}(m,n) f_m f_n$$

•
$$Q_n^{+,f}(\mathbf{f}) = \sum_{m=1}^{\infty} \hat{\beta}(m,n) f_{n+m}$$

•
$$Q_n^{-,f}(\mathbf{f}) = \frac{1}{2} \sum_{m=1}^{n-1} \hat{\beta}(m, n-m) f_n$$

•
$$\hat{\alpha}(m,n) = \eta(m,n)\alpha(m,n)$$

•
$$\hat{\beta}(m,n) = \eta(m,n)\beta(m,n)$$

The function $\eta(m,n)$ is calculated in terms of the microscopic details of the model. In the case d=2, η is independent of the function V and the parameter χ , and is simply given by

$$\eta(m,n) = \frac{2\pi(d(m) + d(n))}{2\pi(d(m) + d(n)) + \alpha(m,n)}$$

Outline

- 1 The Model
- Scaling Limit
- Fluctuations
- 4 Equilibrium
- Idea of Proof

Fluctuation fields $\xi_n^{\varepsilon}(dx,t)$

$$\sqrt{K_{\varepsilon}}\left(K_{\varepsilon}^{-1}\sum_{i}\delta_{x_{i}(t)}(dx) \operatorname{11}(m_{i}(t)=n)-f_{n}(x,t)dx\right)$$

Heuristics: Roughly,

$$g_n^{\varepsilon} = f_n + (K_{\varepsilon})^{-1/2} \xi_n + o((K_{\varepsilon})^{-1/2})$$

with \mathbf{g}^{ε} satisfying

$$\begin{split} \frac{\partial g_n^{\varepsilon}}{\partial t} = & d(n) \Delta_X g_n^{\varepsilon} + Q_n^{+,c}(\mathbf{g}^{\varepsilon}) - Q_n^{-,c}(\mathbf{g}^{\varepsilon}) + Q_n^{+,f}(\mathbf{g}^{\varepsilon}) - Q_n^{-,f}(\mathbf{g}^{\varepsilon}) \\ & + (K_{\varepsilon})^{-1/2} \gamma_n + o((K_{\varepsilon})^{-1/2}). \end{split}$$

Conjecture

As $\varepsilon \to 0$, the process ξ_n^ε converges to ξ_n where ξ_n is the unique solution to the Uhlenbeck–Ornstein equation

$$\frac{\partial \xi_n}{\partial t} = d(n)\Delta_x \xi_n + \mathcal{L}_n^c \xi + \mathcal{L}_n^f \xi + \gamma_n$$

Here $\boldsymbol{\xi} = (\xi_n : n \in \mathbb{N})$, and

$$\mathcal{L}_n^c = \mathcal{L}_n^{+,c} - \mathcal{L}_n^{-,c}, \quad \mathcal{L}_n^f = \mathcal{L}_n^{+,f} - \mathcal{L}_n^{-,f}$$

•
$$\mathcal{L}_{n}^{+,c}\xi = \sum_{m=1}^{n-1} \hat{\alpha}(m, n-m) f_{m}\xi_{n-m}$$

•
$$\mathcal{L}_{n}^{+,c}\xi = \sum_{m=1}^{n-1} \hat{\alpha}(m, n-m) f_{m}\xi_{n-m}$$

•
$$\mathcal{L}_n^{-,c}\xi = 2\sum_{m=1}^{\infty} \hat{\alpha}(m,n)(f_m\xi_n + f_n\xi_m)$$

•
$$\mathcal{L}_{n}^{+,c}\xi = \sum_{m=1}^{n-1} \hat{\alpha}(m, n-m) f_{m}\xi_{n-m}$$

•
$$\mathcal{L}_{n}^{-,c}\xi = 2\sum_{m=1}^{\infty} \hat{\alpha}(m,n)(f_{m}\xi_{n} + f_{n}\xi_{m})$$

•
$$\mathcal{L}_n^{+,f} \boldsymbol{\xi} = \sum_{m=1}^{\infty} \hat{\beta}(m,n) \xi_{n+m}$$

•
$$\mathcal{L}_{n}^{+,c}\xi = \sum_{m=1}^{n-1} \hat{\alpha}(m, n-m) f_{m}\xi_{n-m}$$

•
$$\mathcal{L}_{n}^{-,c}\xi = 2\sum_{m=1}^{\infty} \hat{\alpha}(m,n)(f_{m}\xi_{n} + f_{n}\xi_{m})$$

•
$$\mathcal{L}_{n}^{+,f}\xi = \sum_{m=1}^{\infty} \hat{\beta}(m,n)\xi_{n+m}$$

•
$$\mathcal{L}_n^{-,f} \xi = \frac{1}{2} \sum_{m=1}^{n-1} \hat{\beta}(m, n-m) \xi_n$$

 γ_n is a space-time white noise with variance

$$\mathbb{E}\left(\sum_{n}\iint J_{n}\gamma_{n}dxdt\right)^{2}$$

given by the sum of

•
$$2\iint \sum_{n} d(n) f_{n} |\nabla J_{n}|^{2} dx dt$$

for any smooth test function $J=(J_n:n\in\mathbb{N})$ of compact support in $\mathbb{R}^d\times(0,\infty)$.

 γ_n is a space-time white noise with variance

$$\mathbb{E}\left(\sum_{n}\iint J_{n}\gamma_{n}dxdt\right)^{2}$$

given by the sum of

- $2 \iiint \sum_{n} d(n) f_{n} |\nabla J_{n}|^{2} dx dt$
- $\frac{1}{2}\iint \sum_{m,n} \hat{\alpha}(m,n) f_n f_m (J_{n+m} J_n J_m)^2 dxdt$

for any smooth test function $J = (J_n : n \in \mathbb{N})$ of compact support in $\mathbb{R}^d \times (0, \infty)$.

 γ_n is a space-time white noise with variance

$$\mathbb{E}\left(\sum_{n}\iint J_{n}\gamma_{n}dxdt\right)^{2}$$

given by the sum of

- $2 \iiint \sum_{n} d(n) f_{n} |\nabla J_{n}|^{2} dx dt$
- $\frac{1}{2}\iint \sum_{m,n} \hat{\alpha}(m,n) f_n f_m (J_{n+m} J_n J_m)^2 dxdt$
- $\frac{1}{2} \iint \sum_{m,n} \hat{\beta}(m,n) f_{n+m} (J_{n+m} J_n J_m)^2 dxdt$

for any smooth test function $J = (J_n : n \in \mathbb{N})$ of compact support in $\mathbb{R}^d \times (0, \infty)$.

Outline

- 1 The Model
- Scaling Limit
- Fluctuations
- 4 Equilibrium
- Idea of Proof

Take a collection of positive numbers $\lambda = (\lambda_n : n \in \mathbb{N})$ such that

•
$$\sum_{n} \lambda_n < \infty$$
, $\alpha(m, n) \lambda_n \lambda_m = \beta(m, n) \lambda_{n+m}$

Take a collection of positive numbers $\lambda = (\lambda_n : n \in \mathbb{N})$ such that

- $\sum_{n} \lambda_n < \infty$, $\alpha(m, n) \lambda_n \lambda_m = \beta(m, n) \lambda_{n+m}$
- **Remark:** For such a collection, $f_n(x, t) \equiv \lambda_n$ solves the Smoluchowski's equation because $\hat{\alpha}(m, n)\lambda_n\lambda_m = \hat{\beta}(m, n)\lambda_{n+m}$, so

$$Q_n^{+,c}(\lambda) = Q_n^{-,f}(\lambda), \quad Q_n^{-,c}(\lambda) = Q_n^{+,f}(\lambda).$$

Take a collection of positive numbers $\lambda = (\lambda_n : n \in \mathbb{N})$ such that

- $\sum_{n} \lambda_n < \infty$, $\alpha(m, n) \lambda_n \lambda_m = \beta(m, n) \lambda_{n+m}$
- **Remark:** For such a collection, $f_n(x, t) \equiv \lambda_n$ solves the Smoluchowski's equation because $\hat{\alpha}(m, n)\lambda_n\lambda_m = \hat{\beta}(m, n)\lambda_{n+m}$, so

$$Q_n^{+,c}(\lambda) = Q_n^{-,f}(\lambda), \quad Q_n^{-,c}(\lambda) = Q_n^{+,f}(\lambda).$$

• Given such λ , we construct a reversible invariant measure: Let \mathbf{x}^n to be a Poisson point process with intensity $K_{\varepsilon}\lambda_n$. Assume that $(\mathbf{x}^n, n \in \mathbb{N})$ are independent. Set $\omega = (\mathbf{x}, \mathbf{m})$ with $\mathbf{x} = \bigcup_{n=1}^{\infty} \mathbf{x}^n$ and $\mathbf{m}(a) = n$ for $a \in \mathbf{x}^n$.

Theorem (FR and Ranjbar)

Assume the system is in equilibrium as above. As $\varepsilon \to 0$, the process ξ_n^ε converges to ξ_n where ξ_n is the unique solution to the Uhlenbeck–Ornstein equation

$$\frac{\partial \xi_n}{\partial t} = d(n)\Delta_x \xi_n + \mathcal{L}_n^c \xi + \mathcal{L}_n^f \xi + \gamma_n$$

Outline

- The Model
- Scaling Limit
- 3 Fluctuations
- 4 Equilibrium
- Idea of Proof

 $\hat{\alpha}=\eta\alpha,\,\tilde{\alpha}=\eta^2\alpha$ and similarly define $\hat{\beta},\,\tilde{\beta}.$ Recall

$$\eta(m,n) = \frac{2\pi(d(m) + d(n))}{2\pi(d(m) + d(n)) + \alpha(m,n)} < 1.$$

• Macro coagulation rate $\hat{\alpha} <$ Micro coagulation rate α

 $\hat{\alpha}=\eta\alpha,\,\tilde{\alpha}=\eta^2\alpha$ and similarly define $\hat{\beta},\,\tilde{\beta}.$ Recall

$$\eta(m,n) = \frac{2\pi(d(m) + d(n))}{2\pi(d(m) + d(n)) + \alpha(m,n)} < 1.$$

- Macro coagulation rate $\hat{\alpha} <$ Micro coagulation rate α
- Macro fragmentation rate $\hat{\beta} <$ Micro fragmentation rate β

 $\hat{\alpha}=\eta\alpha,\,\tilde{\alpha}=\eta^2\alpha$ and similarly define $\hat{\beta},\,\tilde{\beta}.$ Recall

$$\eta(m,n) = \frac{2\pi(d(m) + d(n))}{2\pi(d(m) + d(n)) + \alpha(m,n)} < 1.$$

- Macro coagulation rate $\hat{\alpha} <$ Micro coagulation rate α
- Macro fragmentation rate $\hat{\beta} <$ Micro fragmentation rate β
- Macro coag noise strength $\hat{\alpha} <$ Micro coag noise strength α

 $\hat{\alpha}=\eta\alpha,\,\tilde{\alpha}=\eta^2\alpha$ and similarly define $\hat{\beta},\,\tilde{\beta}.$ Recall

$$\eta(m,n) = \frac{2\pi(d(m) + d(n))}{2\pi(d(m) + d(n)) + \alpha(m,n)} < 1.$$

- Macro coagulation rate $\hat{\alpha}$ < Micro coagulation rate α
- Macro fragmentation rate $\hat{\beta} <$ Micro fragmentation rate β
- Macro coag noise strength $\hat{\alpha} <$ Micro coag noise strength α
- Macro frag noise strength $\hat{\beta}$ < Micro frag noise strength β

The Model Scaling Limit Fluctuations Equilibrium Idea of Proof

How does it happen?

• Auxiliary function u^{ε} REDUCES the original noise coming from coagulation: Strength α reduces to Strength $\tilde{\alpha}$

The Model Scaling Limit Fluctuations Equilibrium Idea of Proof

How does it happen?

- Auxiliary function u^{ε} REDUCES the original noise coming from coagulation: Strength α reduces to Strength $\tilde{\alpha}$
- Auxiliary function u^{ε} REDUCES the original noise coming from fragmentation: Strength β reduces to Strength $\tilde{\beta}$

How does it happen?

- Auxiliary function u^{ε} REDUCES the original noise coming from coagulation: Strength α reduces to Strength $\tilde{\alpha}$
- Auxiliary function u^{ε} REDUCES the original noise coming from fragmentation: Strength β reduces to Strength $\tilde{\beta}$
- Brownian part uses u^{ε} to ENHANCE the reduced strength $\tilde{\alpha}$ to $\hat{\alpha}$

How does it happen?

- Auxiliary function u^{ε} REDUCES the original noise coming from coagulation: Strength α reduces to Strength $\tilde{\alpha}$
- Auxiliary function u^{ε} REDUCES the original noise coming from fragmentation: Strength β reduces to Strength $\tilde{\beta}$
- Brownian part uses u^{ε} to ENHANCE the reduced strength $\tilde{\alpha}$ to $\hat{\alpha}$
- Brownian part uses u^{ε} to ENHANCE the reduced strength $\tilde{\beta}$ to $\hat{\beta}$

$$(d(m)+d(n))\Delta u^{\varepsilon}(x) = \alpha(m,n)\left[V_{\varepsilon}(x;m,n)u^{\varepsilon}(x) + V^{\varepsilon}(x;m,n)\right].$$

Here $u^{\varepsilon}(x) = u^{\varepsilon}(x; m, n)$.

Dynamics of $x_i - x_j$ has an infinitesimal generator of a killed Brownian motion:

$$\Gamma^{\varepsilon} = (d(m) + d(n))\Delta - \alpha(m, n)V_{\varepsilon}(\cdot; m, n),$$

with $m=m_i$ and $n=m_j$. Now the function $u^{\varepsilon}=\Gamma_{\varepsilon}^{-1}V^{\varepsilon}$ is smoother than V^{ε} and this allows us to perturb its argument by a small vector z. $\Gamma_{\varepsilon}^{-1}$ is relevant because of the time average.

Main Step

We replace $V^{\varepsilon}(a)$ with $W^{\varepsilon}(a+z)$ for any z satisfying $|z| \leq |\log \log \varepsilon|^{-\theta}$ with $0 < \theta < 1/2$. Here $a = x_i - x_j$ and

$$W^{\varepsilon}(a; m, n) = V^{\varepsilon}(a; m, n)(1 + K_{\varepsilon}^{-1}u^{\varepsilon}(a; m, n)).$$

Remark

• First we can afford $|z| \leq |\log \varepsilon|^{\theta'}$ with $\theta' < 1/2$. Good enough for going from α to $\hat{\alpha}$. No CLT used. Less singular kernel. Not good enough.

Main Step

We replace $V^{\varepsilon}(a)$ with $W^{\varepsilon}(a+z)$ for any z satisfying $|z| \leq |\log \log \varepsilon|^{-\theta}$ with $0 < \theta < 1/2$. Here $a = x_i - x_j$ and

$$W^{\varepsilon}(a; m, n) = V^{\varepsilon}(a; m, n)(1 + K_{\varepsilon}^{-1}u^{\varepsilon}(a; m, n)).$$

Remark

- First we can afford $|z| \le |\log \varepsilon|^{\theta'}$ with $\theta' < 1/2$. Good enough for going from α to $\hat{\alpha}$. No CLT used. Less singular kernel. Not good enough.
- We can now go to z satisfying $|z| \leq |\log \log \varepsilon|^{-\theta}$

Main Step

We replace $V^{\varepsilon}(a)$ with $W^{\varepsilon}(a+z)$ for any z satisfying $|z| \leq |\log \log \varepsilon|^{-\theta}$ with $0 < \theta < 1/2$. Here $a = x_i - x_j$ and

$$W^{\varepsilon}(a; m, n) = V^{\varepsilon}(a; m, n)(1 + K_{\varepsilon}^{-1}u^{\varepsilon}(a; m, n)).$$

Remark

- First we can afford $|z| \le |\log \varepsilon|^{\theta'}$ with $\theta' < 1/2$. Good enough for going from α to $\hat{\alpha}$. No CLT used. Less singular kernel. Not good enough.
- We can now go to z satisfying $|z| \leq |\log \log \varepsilon|^{-\theta}$
- We have

$$\lim_{\varepsilon \to 0} \sup_{|x| \le k} \left| u^{\varepsilon}(\varepsilon x) |\log \varepsilon|^{-1} + 1 - \eta \right| = 0$$