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Chapter 1

Introduction

Consider the following problem: you are given a black box containing fragile circuitry with some
of its nodes and conductors sticking out, as well as a blueprint for the whole network. You are
able to measure the voltages and the currents of the visible nodes and conductors (the boundary
data), but opening the black box would cause the device to break. The electrical inverse problem is
to deduce the conductances of each conductor on the inside of the black box (the interior of the
network) from this boundary information so as to preserve the integrity of the box.

Black Box  Network

This problem has been studied over the last 25 years in Jim Morrow’s Summer REU program,
resulting in a large number of results that draw from ideas in probability, functional analysis,
and combinatorics. With these tools, students have shown that under certain conditions there is
a unique, well-defined solution to this inverse problem. It’s also been shown that there are finite
networks with given boundary data whose inverse problem has continuum many solutions. In
the last ten years, others have exhibited networks whose boundary conditions admit exactly n
solutions to the inverse problem, for all natural numbers n. These results are all constructive in the
sense that they includeded algorithms for constructing such networks or were explicit examples
of such phenomena.

When I first studied inverse problems on electrical networks, I had wondered if there could
be countably many solutions to the inverse problem (or, more generally, if there could be exactly
κ many solutions for ℵ0 ≤ κ < 2ℵ0 , not assuming the continuum hypothesis). After all, the
constructive methods outlined above did not themselves rule out the existence of such networks.
In order to study this problem, I turned to the methods of model theory, a purportedly esoteric
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Reid Dale 1.0.0

branch of mathematical logic. In Summer 2013 I was able to show that the answer to this ques-
tion was a resounding no. There is a strict dichotomy in the number of solutions to a inverse
problem for any given finite electrical network: there are either finitely many solutions or there
are continuum many.

After describing this to Tom Scanlon, he suggested that I extend these results to the com-
putable setting. Again, using methods of model theory, I was able to prove the following strength-
ening of the dichotomy theorem: not only does the dichotomy theorem hold for finite electrical
networks, but under natural assumptions on the type of number used to represent the problem
there exists an algorithm that separates these two cases and actually computes how many so-
lutions to the inverse problem there are. This result hinges upon two facts: that the property
of having continuum many solutions to the inverse problem is in fact a first-order property in
this setting (which is not at all obvious a priori), and that there exists an algorithm for quantifier
elimination in the language of ordered fields.

Before we begin, I would like to make a few remarks about methodology. As briefly men-
tioned above, most investigations of inverse problems in electrical networks were highly con-
structive and led to strong results for specific (but very interesting) classes of electrical networks.
This project, however, is completely general in its scope. Using the fact that I can interpret, for
any finite electrical network, the data relevant to studying inverse problems in the language of
real closed fields I am able to prove results about all finite electrical networks. This necessarily
means that I am not proving completely optimized results. For instance, the algorithm that I use
for enumerating solutions to electrical inverse problems on a given graph does necessarily halt,
but the proof that it does so does not give any indication as to how long the algorithm will run.
No doubt if I were to restrict attention to some nice class of graphs the computation would have
explicit, bounded run time. It is my hope that future work will be done to produce reasonable
algorithms for either solving or counting solutions of these problems in a more restricted setting.
In this way the level of generality considered is both a blessing and a curse; while I show that
there are effective methods for computing quantities related to the electrical inverse problem,
they are exceedingly slow.

I hope that this work inspires an approach to the electrical inverse problem that, in dialectical
tandem with the concrete and constructive methods that preceded it, stimulates further research
in the algebro-geometric and structural components of discrete inverse problems.
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and Tom Scanlon, for their patience and support spanning multiple years. I thank Jim for sug-
gesting a general project of applying real algebraic geometry to the problems dealt with in his
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and ways of thinking that I have gleaned from them during my time as an undergraduate at the
University of Washington in Seattle. I also acknowledge financial support from three sources: Jim
Morrow’s NSF REU grant, his Barbara Hand Sando and Vaho Rebasoo endowed professorship,
as well as the UW’s NSF RTG grant.

In a very real sense I would not have been able to do this work without the encouragement
of my parents and siblings. I thank them for supporting me as I made my way through the
University in the Early Entrance Program. The transition was certainly a shock at first, but their
care ensured that I could make the most of my undergraduate education.
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Chapter 2

The Inverse Problem for Electrical
Networks

2.1 Definitions and Formulation of the Inverse Problem

Recall the informal setup of the inverse problem given in the introduction: you are presented
with an electrical network along with some given boundary data (currents and voltages along the
boundary) and, because of the fragility of the materials, trying to physically measure important
electrical quantities (namely, the conductance of each edge) on the interior would cause the device
to break. The electrical inverse problem is to deduce the conductances of each conductor on the
inside of the black box (the interior of the network) from this boundary information so as to
preserve the integrity of the electrical network

In this section we will build up a mathematical framework to precisely state the inverse
problem. The central notion will be that of the measurement map of an electrical network LG, a
map that coherently assigns global data to boundary data. The map LG takes the conductances
of all of the edges on G, γ, and returns the linear response map Λγ which sends boundary voltages
to boundary currents. The key insight will be that solutions to given inverse problems can be
interpreted as fibers of this map LG: given a candidate for a response map Λ, a solution to the
inverse problem is simply an element of the fiber L−1

G (Λ).
We will give a formula for LG and note that, when defined, it is given by a system of rational

maps defined on the space of conductivities (R+)|E| and returns a map in M∂G(R). This charac-
terization of both LG and the inverse problem will put us in the realm of model theory and real
algebraic geometry, where we will be able to study the inverse problem in high generality and
great detail.

Ordinary electrical networks can be modeled using weighted graphs, wherein each vertex rep-
resents a node of the network and each edge with edge weight γ corresponds to a measurement
of the conductance between each node. However, as the informal statement suggests, we need
to make a distinction between interior and boundary nodes. The mathematical device we use to
model this is what Curtis and Morrow refer to as a resistor network with boundary.

Definition 1. An electrical network with boundary, G consists of the following data:
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• A connected graph G with at most one edge between each node.

• A partition of the vertices VG of G into disjoint sets ∂G and int G (standing for the “boundary
vertices" and “interior vertices" respectively). We moreover assume that |∂G| ≥ 1 and that
| int G| ≥ 1, to avoid degenerate cases.

In addition, we will consider any function from edges of G to R+, γ : EG → R+ to be a
conductance function.

Remark 1. Note that the function γ simply assigns nonzero weights to each edge of G. We could
relax the condition that γ(e) > 0 for all e to γ(e) ≥ 0, but for our purposes this data is equivalent
to the data given by the graph G′ with edges EG′ = Supp γ equipped with the restriction of γ to
EG′ .

For our formulation of the inverse problem, we assume that we are given the “blueprint" of
our network, which is simply a graph G. The other piece of data that we need is a precise notion
of what we mean by “boundary information," which we take to be encapsulated by a certain linear
map called the response map, which assigns arbitrary boundary voltages to boundary currents by
way of Ohm’s Law. We now construct the map Λγ in two ways, both due to Curtis and Morrow.

Begin by ordering the vertices of G in such a way that ∂G = {v1, · · · , vn} and int G =
{vn+1, · · · , vn+m}.. Then, given a conductance function γ : EG → R+ and potential function
u : VG → R we are able to define the current at edge epq due to u to be the quantity

c(epq) = γ(pq)[u(p)− u(q)]

and, for a given node p we define the current into p by the formula

φ(p) = ∑
q∼p

c(epq) = ∑
q∼p

γ(pq)[u(p)− u(q)]

The map that we want to construct is the map that assigns a given potential u∂ defined on all
of ∂G to the current into each p ∈ ∂G. A priori there is a problem with this definition; the way
we defined the net current flow φ(p) required us to know the values of potentials on the interior
vertices as well. To show that this association of u∂ to φ∂ is in fact well defined, we need to show
that there is a unique way to extend u∂ to a potential u defined on all of VG in an electrically
coherent fashion. The way that to do this is to require that the electrical network G satisfies the
following condition on interior nodes:

Principle 1. (Kirchhoff’s Law) Let p ∈ int G be an interior node. Then

φ(p) = ∑
q∼p

γ(pq)[u(p)− u(q)] = 0

In other words, the net current flow at an interior node is zero.

This motivates the definition of a γ-harmonic function:

Definition 2. A γ-harmonic function is a potential function u : VG → R such that each interior
node p satisfies Kirchhoff’s Law.
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To show that this definition of the response matrix is well-defined, therefore, it suffices to
show that given conductance function γ and boundary potential u∂ there is a unique γ-harmonic
function u defined on all of VG extending u∂. It is a result of Curtis and Morrow, using methods
of “discrete complex analysis," that this is in fact the case.

Theorem 1 (Curtis-Morrow). Given an electrical network (G, γ) and boundary potential function u∂,
there exists a unique γ-harmonic extension u of u∂ defined on the whole of VG.

Corollary 1. The response map Λγ is a well-defined linear map.

Moreover, Curtis and Morrow were able to give an explicit formula for the response matrix in
terms of an auxiliary matrix called the Kirchhoff matrix.

Definition 3. Let (G, γ) be an electrical network. The Kirchhoff matrix of (G, γ) is defined to be
the matrix Kγ with entries

• For i 6= j, (Kγ)ij = −γ(ij) for i 6= j where, by convention, γ(ij) = 0 if vi � vj

• For i = j take (Kγ)ij = ∑
j 6=i

γ(ij).

Note that Kγ is symmetric and has row (and column) sums equal to 0. Note also that our
choice of indexing gives rise to the following decomposition of Kγ:

Kγ =

[
Aγ Bγ

BT
γ Dγ

]
where

• Aγ is the top left ∂G × ∂G submatrix of Kγ, keeping track of weighted edges between
vertices in ∂G

• Bγ (resp BT
γ ) is the int G × ∂G (respectively ∂G × int G) submatrix of Kγ, keeping track of

weighted edges between vertices in int G and vertices in ∂G.

• Dγ is the int G× int G submatrix of Kγ, keeping track of weighted edges between vertices
in int G and int G.

More generally, for an ordered subset P, Q ⊆ VG let Kγ(P; Q) = (γij)(i,j)∈P×Q.
Curtis and Morrow related Kγ and the above submatrices to the response matrix Λγ in a

particularly neat way, giving an explicit formula for computing Λγ.

Theorem 2 (Curtis-Morrow, Lemma 3.8 and Theorem 3.9). Suppose that (G, γ) is a connected elec-
trical network with boundary. Then Kγ is positive semidefinite and for any proper ordered P ⊆ VG the
matrix Kγ(P; P) is positive definite. Furthermore, the response matrix Λγ is given by the equation

Λγ = Aγ − BγD−1
γ BT

γ
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This formula gives us a connection between Kγ and Λγ. In fact, it shows us that we can
express the entries of the Λγ as rational combinations of the γij, since finding the inverse Dγ

can be done with Gaussian elimination and matrix addition and multiplication are polynomial
operations. It is also clear by this theorem that with our assumptions on γ (thinking of γ as an
|E|-tuple of positive real numbers) this function is well-defined on all of (R+)|E| as it avoids the
zero locus of det(Dγ). Hence the association of γ 7→ Kγ 7→ Λγ is a well-defined rational function
on the ordered tuple γ. We summarize thusly:

Corollary 2. There is a well-defined, rational measurement map LG : (R+)|E| → M∂G(R) associated to
any connected graph G given by mapping

γ 7→ Λγ

This means that there is a rational parametrization of response matrices that arise from G. A
set of conductances γ induce a unique response matrix Λγ given by applying LG. The inverse
problem is precisely to go the other way:

Problem. The inverse problem (G, Λ) is the following: Given a graph with boundary G and a candidate
for a response matrix Λ ∈ M∂G(R), does there exist a set of conductances γ on EG such that LG(γ) = Λ?
A solution to the inverse problem (G, Λ) such a γ.

Phrased in this way, a solution to the inverse problem (G, Λ) is simply some element of
the fiber L−1

G (Λ). We consider both the local and global aspects of the problem, wherein we study
problems of counting solutions to specific inverse problems (G, Λ) and problems where we study
the behavior (G, Λ) as Λ ranges over all matrices in M|∂G|(R). We typically identify the solutions
of the inverse problem (G, Λ) with the set L−1

G (Λ).

2.2 Examples and Prior Results

Constructing problems and graphs that witness both unique and non-unique recoverability has
been a major industry in Jim Morrow’s Electrical Networks REU almost since its inception, often
requiring a great deal of combinatorial ingenuity to produce or classify them. In this section we
sketch the state of knowledge prior to this thesis. We first fix some terminology:

Definition 4. Let G be a (connected) graph with boundary and Λ ∈ Mn(R).

• Call an inverse problem (G, Λ) κ-to-1 if |L−1
G (Λ)| = κ.

• Call a network G weakly κ-to-1 if there is some inverse problem (G, Λ) with |L−1
G (Λ)| ≥ κ.

• Call G strongly κ-to-1 if max
A∈Mn(R)

|L−1
G (A)| = κ.

Finally, define the fiber cardinals of G, Ψ G, to be

Ψ G = {κ | ∃Λ ∈ M|∂G|(R) |(G, Λ)| = κ}.
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A corollary of the formula for the response matrix from the Kirchhoff matrix given in the
previous section is that it immediately yields some necessary conditions that a matrix must satisfy
in order to be a response matrix.

Proposition 1 (Curtis-Morrow, Section 5.1). If G is a connected electrical network with boundary
with measurement map LG, then any response matrix Λγ = LG(γ) is necessarily symmetric with
rows summing to zero.

An important consequence of this is the existence of inverse problems with no solutions
whatsoever.

Corollary 3. Let G be an arbitrary connected electrical network with boundary with measurement map
LG. Then if Λ ∈ M|∂G|(R) is not symmetric, then the inverse problem (G, Λ) is 0-to-1.

Moving to the case of unique recoverability, participants in the REU program isolated a certain
class of graphs for which, if a solution to the inverse problem existed, then it was in fact unique.
The graphs considered were so-called critical circular planar graphs. The definition of this class is
very involved, but contains a great deal of combinatorial insight.

Definition 5 (Curtis-Morrow, Chapter 2, almost verbatim). A circular planar graph G is an elec-
trical network with boundary embedded in the disk D1 ⊆ R2 so that ∂G ⊆ S1 and int G ⊆ int D1.

If p, q ∈ ∂G, a path αpq : p → q is a sequence of edges e0 = pr1, e1 = r1r2, · · · , en−1 =
rn−1rn, en = rnq such that the ri ∈ int G and are all distinct.

A sequence of points r1, · · · , rm ∈ ∂G ⊆ S1 is said to be in circular order if going from r1 to rm
clockwise span an arc of S1 and r1 < r2 < · · · < rm in the linear order induced by going around
the arc clockwise.

Let P = (p1, · · · , pk) and Q = (q1, · · · , qk) be finite sequences of length k of boundary nodes
of G. We say that P and Q are connected through G if there is a permutation τ : [k] → [k] and
disjoint paths αpiqτ(i) such that the only boundary nodes each αpiqτ(i) passes through are pi and
qτ(i). P and Q are said to be a circular pair if (p1, · · · , pk; qk, · · · , q1) is in circular order.

The admissible edge-removal operations on a graph are

• Deletion, where given a graph G = (VG, EG) and edge e ∈ EG, we construct the new graph
Gd

e = (VG, EG \ {e}). For graphs with boundary we do allow edges between boundary
nodes to be deleted.

• Contraction, where given a graph G = (VG, EG) and edge e = epq ∈ EG we construct the
contraction graph Gc

e as a quotient graph as follows: let ∼ ⊆ V2
G be the equivalence relation

identifying p and q and no other vertices. Let VGc
e = VG/ ∼ and let EGc

e = EG/ ∼ be the
induced quotient on edges. For a graph with boundary we do not allow the contraction of
an edge between two boundary vertices (but allow all other contractions).

Let P = (p1, · · · , pk) and Q = (q1, · · · , qk) form a circular pair. We say that the removal of an
edge e by any of the above admissible operations breaks the connection from P to Q if there is a k-
connection from P to Q in G but no such k-connection in the modified graph G′.

A graph G is said to be critical if the removal of any edge by the above admissible processes
breaks some connection in G.
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Criticality is a measure of how efficient the set of paths from p to q in a circular planar graph
G is. This is an important concept intuitively, since Kirchhoff’s Law gives a way of describing
how electrical data travels across the graph from node to node.

Jeffrey Giansiracusa was able to show that

Theorem 3 (Giansiracusa). Let G be a critical circular planar graph. Then LG is a diffeomorphism onto
its image.

In particular, this means that critical circular planar graphs are a class of graphs for which
the Ψ G = {0, 1}. An example of a critical circular planar graph is the graph Σ6 (due to Curtis,
Ingerman, and Morrow) depicted below:

Critical Circular Planar 
Network

where the filled-in vertices are boundary vertices and the empty vertices are interior vertices.
2n-to-1 graphs were studied by Jenny French and Shen Pan, including the example of the

triangle-in-triangle graph, which is strongly 2-to-1.

Triangle in Triangle
Network

More generally, Chad Klumb constructed n-to-1 graphs for all n in his senior thesis. The
construction is very clever, and uses highly nontrivial combinatorial tools studied in the REU
over the last twenty years.

Finally, it is very easy to see that not all graphs are strongly n-to-1 for n < ω. A very simple
example exists of a 2ℵ0 -to-1 graph, the series network S,

9



Reid Dale 2.2.0

Series Network

Proposition 2. The electrical network S is strongly 2ℵ0 -to-1.

Proof. Ordering the rows with the two boundary vertices b1 and b2 first and the interior vertex i

last and letting γj = γbj ,i, the Kirchhoff matrix of S is given by Kγ =

 γ1 0 −γ1
0 γ2 −γ2
−γ1 −γ2 γ1 + γ2

 and

the response matrix Λγ by

Λγ =

[
γ1 0
0 γ2

]
−
[
−γ1
−γ2

] [
γ1 + γ2

]−1 [−γ1 −γ2
]
=


γ1γ2

γ1 + γ2
− γ1γ2

γ1 + γ2

− γ1γ2

γ1 + γ2

γ1γ2

γ1 + γ2

 =
γ1γ2

γ1 + γ2

[
1 −1
−1 1

]

Now if we consider the inverse problem (S, Λ) for Λ =

[
1 −1
−1 1

]
we find that we contain

a whole curve of solutions in (1, ∞)× (1, ∞) carved out by the relation γ2 =
γ1

γ1 − 1
. Hence S is

strongly 2ℵ0 -to-1.

We have, therefore, a wide range of κ-to-1 behavior for the electrical inverse problem. All
known graphs satisfied two properties: that κ was finite or 2ℵ0 , and the electrical spectrum Ψ G
was finite. In the course of this paper we show that this is in fact always the case. The precise
questions we seek to resolve in this thesis are as follows:

1. Given an inverse problem (G, Λ), can we computably determine how many solutions it has;
in other words, can we computably find the value of |L−1

G (Λ)|?

2. Can we compute the largest such κ? Can we computably enumerate the elements of Ψ G?

3. What can we say about the structure of L−1
G (Λ), independently of Λ? In other words, what

is the fiberwise structure of LG?

The answer to questions 1 and 2, it turns out that under the assumption that all quantities
used to pose the inverse problem are algebraic reals, the answer is a resounding yes. Furthermore,
we show that the only admissible cardinals κ for the inverse problem are κ = n for some n ∈ ω
or κ = 2ℵ0 , and give a method of enumerating all elements of Ψ G.

In the case of question 3, we will show that LG is cellwise locally-trivial, meaning that there
is a finite decomposition of M|∂G|(R) = C1 ∪ · · · ∪ Cn with Cn given by semialgebraic conditions
such that LG �L−1

G (Ci)
is a fibration map. Moreover, we will be able to explicitly compute such

a decomposition of M|∂G|(R). Moreover, we will be able to computably present an implicit
parametrization of the fibers L−1

G (Λ) over each cell Ci.
Finally, in the case that (G, Λ) is suitably presented and is finite-to-one, we will be able to

produce approximations of all of its solutions by extracting from a certain algorithm a finite set
of polynomials whose zero loci contain all of the coordinate valued attained as a solution of the
inverse problem.
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Chapter 3

A Crash Course in Model Theory

The methods we found most amenable to studying the structure of solution spaces of inverse
problems in complete generality were the methods of model theory. A branch of mathematical
logic, it may surprise some that model theory would have anything to say about an applied
problem such as this one. This reaction is, however, ultimately unwarranted: the key insight of
a certain strand of model theory is that if you know how a mathematical object is constructed in
a first-order way in some “tame" structure, then you are immediately able to apprehend its fine
structure.

In our case, the “tame structure" that we can interpret the electrical inverse problem in is
the ordered field structure of R, and the objects that we consider are constructed out of certain
semialgebraic sets using the field operations and the order relation. This is a vague description, of
course, but the elementary definitions of model theory make this intuition precise.

3.1 Languages and Structures

To begin with, we isolate what we mean by “mathematical objects constructed in a first-order
way" by way of formal languages and structures.

Definition 6. A formal language (also called a signature) L = 〈C,F ,R〉 consists of the following
data:

• a set C of constant symbols with elements c,

• a set F of function symbols
〈

f , n f

〉
with elements f of arity n f ,

• a set R of relation symbols 〈R, nR〉 with elements R of arity nR

• the logical connectives ∨ (or), ∧ (and), ¬ (negation), = (equality), ∀ (universal quantifier),
∃ (existential quantifier), and a set of variables 〈xi〉i∈ω

An L-structureM consists of the following data:

• a set M, called the universe ofM

11
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• for each constant symbol c an element cM ∈ M

• for each function symbol f of arity n f a total function fM : Mn f → M.

• for each relation symbol R of arity nR a subset RM ⊆ MnR .

In and of itself this definition is very broad; there are almost no meaningful constraints limit-
ing what L-structures can occur. The main way of getting a handle on L-structures that we wish
to study is by way of specifying theories built up out of first-order sentences.

Definition 7. A first-order L-formula φ is simply an expression constructed inductively as fol-
lows:

1. First of all, an L-term is constructed inductively from the following:

• a variable xi

• a constant symbol c

• if f is a function symbol of arity n f , and t1, · · · , tn f are terms, then so is f (t1, · · · , tn f ).
In other words, substitutions of terms into functions are again terms.

2. An atomic L-formula is given inductively by:

• If t1 and t2 are terms, then t1 = t2 is an atomic formula

• If R is an nR-ary relation symbol and t1, · · · , tnR are terms then R(t1, · · · , tnR) is an
atomic formula.

3. An L-formula is then given inductively as:

• An atomic L-formula is an L-formula.

• If φ, ψ are L-formulas then ¬φ, φ ∨ ψ, and φ ∧ ψ are also L-formulas.

• If x is a variable and φ a formula, then ∀x φ and ∃x φ are L-formulas.

We make a distinction between formulas that have “free" variables and those that have no
“free" variables. The formulas without free variables will allow us to give constraints on the class
of L-structures that we consider.

Definition 8. A variable xi in a formula φ (with xi occurring in it) is said to be bound if either ∃xi
or ∀xi occurs in φ. If xi occurs in φ and is not bound then we say that xi is free in φ. We write φ
as φ(x1, · · · , xn) where the xi are the free variables occurring in φ.

A formula φ is said to be a sentence if all of its variables are bound, or equivalently if it contains
no free variables.

Remark 2. The definitions of terms, formulas, and sentences are admittedly quite abstract and may
seem unmotivated. The way to think of it is roughly that “terms" are operations on variables and
constants admissible by L, formulas are ways of constructing sets in an L-structure out of terms
and relations, and sentences are expressions that can have truth values in structures.
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A set of constraints on L-structures is called a theory. More precisely,

Definition 9. An L-theory T is a set of L-sentences.
An L-structure M is said to model T, denoted M � T, if every sentence of T holds when

interpreted inM.
Given an L-formula φ(x1, · · · , xn) and (m1, · · · , mn) ∈ Mn we say that M � φ(m1, · · · , mn)

just in case the resulting sentence in L ∪ {c1, · · · , cn}, when intepreted in M by cMi = mi, holds
true in M.

Now that we have all of these model-theoretic definitions, we consider some examples to get
a better sense of what they entail.

Example 4. 1. Let Lring = 〈+,−, ·, 0, 1〉 be the language of rings with constants 0 and 1, func-
tion symbols +, −, and ·, and no relation symbols. We consider two L-structures, Q1 and
Q2, both with universe Q. We let +1,−1, ·1, 01, and 11 be interpreted in the standard way
so that Q1 is a field. On the other hand, let +2 = −2 = ·2 all be the constant function
f (x, y) = 0 and let 02 = 12 = 12637845. As it stands, Q1 and Q2 are radically different
Lring-structures, that have almost nothing to do with each other except for their shared
universe Q.

2. Let Q1 and Q2 be as above, and let T be the theory axiomatizing rings. That is, T consists
of the sentences

• ∀x∀y x + y = y + x

• ∀x∀y∀z (x + y) + z = x + (y + z)

• ∀x∀y∀z (x · y) · z = x · (y · z)
• ∀x∀y∀z x · (y + z) = x · y + x · z
• ∀x x + 0 = 0 + x = x

• ∀x x · 1 = 1 · x = x

• 0 6= 1

ThenQ1 � T but certainlyQ2 6� T. In this way theories are natural constraints on structures:
they distinguish properties of L-structures by using the language at hand.

3. If M is an L-structure then T = ThL(M) := {φ ∈ L |M � φ} is an L-theory. Note that
for every sentence φ ∈ L, either M � φ or M 6� φ, in which case M � ¬φ. Hence structures
decide the truth or falsehood of all L-sentences.

3.2 Definable Sets, Quantifier Elimination, and Decidability

Given the precise framework of the previous section we are finally able to describe what we mean
when we talk about objects built in a first-order way with the notion of definable set.

13
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Definition 10. LetM be an L-structure. A set D ⊆ Mn is said to be an A- definable set if there is a
formula φ such that D = {(d1, · · · , dn) | M � φ(d1, · · · , dn)} for some formula φ perhaps involving
added constants A ⊆ M. In other words, an A-definable set is the locus of some first-order
formula in the language L ∪ {a}a∈A adding a ∈ A constants. We call a set definable in case it is
∅-definable.

We often identify a definable set D with any of the (possibly many) formulas φ that defines it.
We also write, for a given formula φ, φ(M) := {(m1, · · · , mn) ∈ Mn | M � φ(m1, · · · , mn)}

We call a function f : D → D′ between definable sets a definable function if the graph

Γ f = {(x, f (x)) | x ∈ D} ⊆ D× D′

is definable.

We briefly list some closure properties of definable sets:

Proposition 3. Let Defn
L(M) be the set of definable subsets of Mn and let DefL(M) =

⋃
n∈ω

Defn
L(M)

be the set of L-definable sets of M.

1. If D, D′ ∈ Defn
L(M) then so are D ∪ D′, D ∩ D′ and Dc = Mn \ D.

2. If D ∈ Defn
L(M) and D′ ∈ Defm

L(M) then D× D′ ∈ Defm+n
L (M)

3. Projections of definable sets are definable.

4. If f : D → D′ is definable then the image f (D) ⊆ D′ is also definable.

Proof. 1. Let φD(x1, · · · , xn), φD′(x1, · · · , xn) define D and D′. Then φD(x1, · · · xn)∧φD′(x1, · · · , xn),
φD(x1, · · · xn)∨ φD′(x1, · · · , xn), and ¬φD(x1, · · · , xn) define D∪D′, D∩D′, and Dc respec-
tively.

2. Let φD(x1, · · · , xn), φD′(x′1, · · · , x′m) define D and D′. Then making a dummy variable
substitution let ψD′ : φD′(y1, · · · , ym) so that the sets of variables occuring in φD and ψD′

are disjoint. Then φD ∧ ψD′ defines D× D′.

3. Let φ(x1, · · · , xn) define D. Then ∃xi φ(x1, · · · , xn) defines the projection

πi(D) = {(x1, · · · , x̂i, · · · xn) ∈ Mn−1 | (x1, · · · , xn) ∈ D} ⊆ Mn−1.

4. Let f : D → D′ be definable. Then Γ f ⊆ D×D′ is definable; take the projection onto the D′

of Γ f , πD′(Γ f ) ⊆ D′. This coincides with f (D), and so f (D) is definable.

Remark 3. There is a way to view any given definable set φ, thought of here as a formula, as a
functor from an appropriate category of L-structures with appropriately chosen morphisms to
the category of sets given by assigning a structureM 7→ φ(M).

These closure properties hint at the way in which complexity may arise in the class of definable
sets: they are closed under images of definable functions and, in particular, projections. Being
closed under projections very often violates many nice properties of an otherwise “nice" family
of mathematical objects, as the following examples indicate:

14
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Example 5. 1. It is a well-known fact that projections of Borel subsets of a Polish space (for
instance, R) need not be Borel.

2. Analogously, one requires a strong set-theoretic hypothesis called Projective Determinacy if
one wishes to show that the projection of a Lebesgue-measurable set is again Lebesgue-
measurable.

3. Let R be considered as an Lring-structure under the usual ring operations. Then the subsets
of R definable without quantifiers are simply finite Boolean combinations of polynomial
equations and inequations, and it is easy to check that all such subsets are finite or cofinite.
If one allows for quantifiers to be used to define subsets of R, then the set

R≥0 = {x ∈ R | x ≥ 0}

is defined by the formula φ(x) := ∃y y2 = x. This is an infinite-coinfinite set, and is
therefore not expressible by a quantifier-free ring formula. Hence allowing quantifiers to
define sets can add complexity to our class of definable sets.

With these examples and analogies in mind, we define a model theoretic notion that captures
the notion that given sufficiently many constraints on both a language and a structure, we may
be able to apprehend the structure of a definable set using only quantifier-free formulas. This
notion is called quantifier elimination:

Definition 11. An L-theory T is said to eliminate quantifiers if for all L-formulas φ there exists a
quantifier-free L-formula ψ such that for all modelsM � T,M � ∀x(φ(x)↔ ψ(x)).

It is easy to construct examples of theories where quantifier elimination fails. For instance,
take T = ThL(R) := {φ ∈ Lring |R � φ}. Then R � T and our above example shows that T
does not eliminate quantifiers. Seeing as we hope to express the inverse problem in some first-
order language that has all of the field operations, this counterexample is quite discouraging.
In the next chapter we will actually exhibit a very simple language L for which ThL(R) admits
quantifier elimination that is also sufficient to interpret the inverse problems that we wish to
consider. In many contexts, including the one we find ourselves in now, quantifier elimination
is intimately related to the ability to algorithmically determine whether or not an L-sentence φ
holds true in a modelM of some theory T (which we typically take to be complete, meaning that
T = ThL(M)). We fix the notion of decidability:

Definition 12. An L-theory T is said to be decidable if for every sentence φ ∈ T, there is an
algorithm which determines whether or not for all modelsM � T,M � φ.

The way that we will prove and use quantifier elimination in this context is to show the much
stronger statement that given any formula φ (in a suitable language L describing sets of interest
in R) we can algorithmically produce a quantifier-free ψ equivalent to it modulo the L-theory of
R. As we can computably replace φ with a logically equivalent quantifier-free sentence ψ the
problem of deciding whether or not R � φ for arbitrary φ reduces to answering the question
for quantifier-free ψ which themselves are simply Boolean combinations of atomic quantifier-free
sentences.

15



Chapter 4

o-minimality and the First-Order
Theory of R

Throughout this section we consider R as an LRCF = 〈+,−,<, ·, 0, 1〉 structure

4.1 Quantifier Elimination and Decidability of R

In this section we exhibit an explicit algorithm for deciding sentences in the LRCF theory of
R, realizing the promise of Section 3.2. This will split into two steps. First we will produce
an algorithm for taking a formula φ and producing a quantifier-free formula ψ such that R �
∀x(φ(x) ↔ ψ(x)). Then we will give an algorithm for deciding whether or not R � ψ for any
quantifier-free ψ.

We begin by giving the quantifier elimination algorithm based on the exposition in chapter 2
of Basu, Pollack, and Roy’s Algorithms in Real Algebraic Geometry with the model theorist in mind.
Throughout the section, if p(y, x) ∈ R[y, x] and t ∈ R|y| write pt(x) ∈ R[x] to be the result of
substituting t into p(y, x), viewed as a polynomial in x.

We first give an effective bound for roots of a given polynomial p(x) ∈ R[x].

Proposition 4 (Modulus of Roots). Let p(x) = ∑
0≤i≤n

aixi ∈ R[x] with an 6= 0. Then if p(r) = 0,

|r| ≤ 1 + max
0≤i≤n

{
∣∣∣∣ ai
an

∣∣∣∣} = 1 + mp

where mp = max
0≤i<n

{
∣∣∣∣ ai
an

∣∣∣∣}
Proof. If |r| < 1 with p(r) = 0 then surely |r| < mp, so we assume that |r| > 1. Then if p(r) = 0,
we have the equation

rn =
1
an

(
∑

i≤n−1
airi

)

16
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Then each
∣∣∣∣ ai
an

∣∣∣∣ ≤ mp and so we have the inequality rn ≤ mp[ ∑
i≤n−1

|r|i]. But ∑
i≤n−1

|r|i = |r|
n − 1
|r| − 1

,

and so

|r|n ≤ mp
|r|n − 1
|r| − 1

Rearranging terms, we yield

|r| ≤ 1 + mp
|r|n − 1
|r|n ≤ 1 + mp

as desired.

This bound allows us to express the number of solutions to a given univariate polynomial
p(x) ∈ R[x] in terms of a sequence of polynomials known as the Sturm sequence.

Construction 1 (Sturm Sequences). Let f ∈ R[x] be a squarefree polynomial. Define the Sturm
sequence St f of f , { fi}i≤j, as follows:

1. Take f0 = f , Let f1 = f ′

2. For i ≥ 0 let fi+1 be − rem( fi−1, fi), as gotten from the Euclidean algorithm.

3. Let j + 1 be the first index for which f j+1 = 0. Then end the Sturm sequence at f j = r 6= 0 a
constant.

In the case that f is not squarefree, run the procedure outlined above until you reach f j =

gcd( f , f ′). Then the Sturm sequence is defined to be f0 =
f
f j

, · · · ,
f j−1

f j
, 1.

Sturm’s key insight was that one could determine the number of solutions of a polynomial
p(x) ∈ R[x] on a given interval (a, b) by measuring the sign changes in the Sturm sequence of p.

Theorem 6 (Sturm’s Theorem, BPR 2.50). Let f ∈ R[x] and (a, b) ⊆ R. Denote by V(St f ; a) the
number of sign changes in the sequence of numbers St f (a) = ( f (a), f ′(a), f2(a), · · · , f j(a)). Then the
number of solutions of f in the interval [a, b] is

V(St f ; a)−V(St f ; b).

Proof. This is an unwinding of the proof of a special case of the result proven in [BPR 2.50].
We assume that f is squarefree for simplicity. We show that as a function V(St f ; t) : R → ω;

V(St f ; t) is a weakly decreasing function such that V(St f ; t) = V(St f ; u)− 1 just in case there is
exactly one root of f in the interval (t, u). Given this claim it is immediate from the number of
roots of f in the interval [a, b] is V(St f ; a)−V(St f ; b). The two main properties of real polynomials
that we use in this argument are that the zeroes of nonzero univariate polynomials are isolated
and that f is squarefree implies that f ′ has no roots in common with f .

Let Z = {z ∈ R | (∃ f j ∈ St f ) f j(z) = 0} and let Zi = {z ∈ R | fi(z) = 0}. These are finite,
hence discrete, sets, and Z =

⋃
i≤j

Zi with each of the Zi disjoint (by the squarefreeness of f and the
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construction of the fi as remainders). Note that it is also clear that the only places where V(St f ; t)
can possibly vary is at elements of Z.

First we show that if f (x) = 0 then lim
t→x−

V(St f ; t) = lim
u→x+

V(St f ; u) + 1; in other words that

crossing x results in the decrease of V(St f ) by 1. Now as f is squarefree there is a neighborhood
of x, (ax, bx) contained in the connected components of x in R \ {Z \ {x}} such that sgn( f ′(y)) is
constant on (ax, bx) and such that f (ax) < 0 and f (bx) > 0 or visa versa. This induces a decrease
by one of V(St f ) as one crosses x in (ax, bx) and since we avoided all the points Z \ {x} no further
sign changes occur in the fi for i > 0 on (ax, bx). Hence if f (x) = 0 the equation

lim
t→x−

V(St f ; t) = lim
u→x+

V(St; u) + 1

holds.
Now, repeating almost that exact same argument for fi with 0 < i < j we can see that if

fi(x) = 0 then there is a neighborhood (ax, bx) in a connected component of R \ {Z \ {x}} on
which fi−1 and fi+1 are constant sign and with, by construction, sgn( fi−1(w)) = −sgn( fi+1(w))
for w ∈ (ax, bx). Because fi−1 and fi+1 have opposite signs on this neighborhood a sign change
induced by crossing x results in no change in V(St f ). Finally f j = c 6= 0 is a nonzero constant, so
it never contributes any change to V(St f ) and the result is proven.

Combining the two previous results, we yield the following effective method for counting real
roots of a real polynomial:

Corollary 4. Let f ∈ R[x] and a > mp. The total number of real roots of a polynomial f (x) ∈ R[x] is
given by V(St f ;−a)−V(St f ; a).

In particular, to determine whether or not the set {x ∈ R | f (x) = 0} is empty can be computed by the
above formula.

In order to prove quantifier elimination we will need as uniform a way of making sense of
what we might mean by a “Sturm sequence" for multivariate polynomials. We do this by taking
a polynomial p(y, x) and considering a certain tree of polynomials obtained in a similar way as the
Sturm sequence applied to py(x) in such a way that we account for the possibility of the certain
cancellations arising from substituting y into p. Before we do this, we will need the following
proposition:

Proposition 5. The property of a polynomial py ∈ R[y][x] having degree equal to i (for i ∈
{−∞, 0, 1, · · · }) (in the variable x) is quantifier free definable.

Proof. (BPR) Express py(x) = ∑
i≤np

aixi with each ai = ai(y) a term in the variables y. Then let

degx(p) = i ⊆ Rk be the formula in the variables y given by

“ degx(p) = i” :=


∧

np>j>i
(aj(y) = 0) ∧ ai 6= 0 | 0 ≤ i < np ∈ O

aj(y) 6= 0 | i = np∧
j≤np

aj(y) = 0 | i = −∞

18



Reid Dale 4.1.0

Given this first order characterization, it’s clear that
⋃

i∈{−∞,0,··· ,np}
(degx(p) = i)(Rk) partition

Rk into finitely many sets, and on each set the degree of py ∈ R[x] is constant.

Construction 2 (Pseudo-remainder Tree; BPR section 1.3). Let p, q ∈ R[x] with p =
np

∑
i=1

aixi and

q =
nq

∑
i=1

bjxj. We assume that p, q ∈ O some subring of R. The signed pseudoremainder pr(p, q)

is the remainder of bd
nq p in q under the Euclidean algorithm, with d the minimal even integer

≥ np − nq + 1.
For a polynomial p(x) ∈ R[x] let lc(p) be its leading coefficient.
If q ∈ R[x] let the ith truncation of q, tri(q) = ∑

j≤i
bjxj.

Given q ∈ R[y, x] let Tr(q), the set of truncations of q, be defined recursively by

Tr(q) =

{
{qy} lc(qy) ∈ O
{qy} ∪ Tr(trdeg(qy−1)(qy) lc(qy)) /∈ O

The pseudo-remainder tree of (p, q) ∈ O[y][x], Tpr(p, q) is the tree with nodes N each assigned
a polynomial fN as specified by the following data:

• The root R with fR = p

• The children of p are nodes corresponding to elements Tr(q).

• A node N is a leaf just in case the polynomial fN is 0.

• If N is not a leaf then the children of N are precisely Tr(−pr( fpN , fN)) where pN is the
parent of N.

By construction, for each leaf L ∈ Tpr(p, q) there is a unique path BL from the root to L. If
N ∈ BL \ {L} then by construction there is a unique child of N, cL(N), also in BL. For each leaf
L ∈ Tpr(p, q) consider the first order formula θL(y) defined by

θL(y) := degx(q) = degx( fcL(R)) ∧
∧

N∈BL\{R}
(degx(−pr( fp(N), fN)) = degx( fcL(N))

This tree plays the rôle that the Sturm sequence played in the univariate case in the proof
of quantifier elimination. We require a bit more machinery before we describe the quantifier
elimination algorithm:

Theorem 7 (Effective Quantifier Elimination). There is an algorithm for taking a given LRCF-formula
ψ and returning a quantifier free φ equivalent to it over R.

Proof. (BPR 2.4) We suppose at the outset that χ is in prenex normal form, meaning that χ :=
Q1x1 · · ·Qnxn φ(y; x) with φ quantifier free and Qi ∈ {∃, ∀}. Furthermore, we assume that φ is
an LRCF formula of the form

[p(y, x) = 0] ∧
∧

i∈[`]
(sgn(qi(y, x)) = σ(qi))
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where σ : [j] → {−1, 0, 1} determines the required sign of qi(y, x). Certainly all LRCF formulas
are expressible as Boolean combinations of such sets.

First, it suffices to show effective quantifier elimination in the simple case of formulas with a
single existential quantifier ∃x φ(y, x). It suffices as ∀z ψ(z; w) is logically equivalent to ¬∃z¬ψ(z; w)
and because we may successively iterate such an algorithm as follows to yield the desired quan-
tifier free formula:

1. Start “inside out" on the formula Qnxn φ(y, x1, · · · , xn−1; xn) and output an equivalent
quantifier-free formula ψn−1(y; x1, · · · , xn−1).

2. Suppose we’re given ψi as above, run the algorithm again on Qi ψi after ensuring that it is in
the form prescribed above. Continuing in this way, ψ0(y) will be the desired quantifier-free
formula.

Therefore we need only show the base case of the induction, the case of a single projection.
For simplicity we assume that χ := ∃x φ(y, x) for φ of the form [p(y, x) = 0] with |y| = k. That is,
we wish to show that the projection of an algebraic set is semialgebraic. The quantifier elimination
algorithm for showing that the projection of a semialgebraic set is again semialgebraic is very
similar to this one, but would take too long and distract from the rest of this paper. The full
argument can be found in [BPR 2.4].

We fix some notation for useful objects in the algorithm:

• Let Z = φ(R) ⊆ Rk+1 be the set defined by φ.

• For given y ∈ Rk let Zy = {x ∈ R | py(x) = 0}.

• Let C = {(y, x) ∈ Rk+1 | [p(y)](v) 6≡ 0 ∈ R[v]} be the set of (y, x) such that [p(y)](v) ∈ R[v]
is not the zero polyomial (this is not a typo!)

• Let Z′ = Z ∩ C.

Let ΘL be the set of polynomials occuring in the formula θL(y) of a given leaf of Tpr(p, p′)
(explicitly, this is the set of pseudoremainders −pr( fp(N), fN) and the polynomials fN for N ∈
BL), and let

Θ =
⋃

L∈Tpr(p,p′) a leaf

ΘL.

For σ : Θ→ {−1, 0, 1} a sign condition, the set of realizations of σ is the definable set

RΘ
σ (R) = {y ∈ Rk |

∧
f∈Θ

[sgn( f (y)) = σ( f )]}

Note that for any family of polynomials Θ and any sign condition σ whatsoever, RΘ
σ is definable

by a quantifier free formula.
By Sturm’s theorem, the effective method for calculating the number of real solutions of a

given polynomial, and the observation that the possible sign conditions on Θ yield all possible
sign conditions that can occur for substituted polynomials py, we have that simply knowing σ
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lets us computably determine whether or not an y ∈ Rk satisfying RΘ
σ corresponds to a Zy that

is empty or not. In summary, we have for all sign conditions σ that either RΘ
σ (R) ⊆ {y | Zy 6= ∅}

or RΘ
σ (R) ⊆ {y | Zy = ∅}.

Now let

Σ = {σ : Θ→ {−1, 0, 1} | ∀y ∈ RΘ
σ , Zy 6= ∅}

Then clearly
⋃

σ∈Σ
RΘ

σ defines π(Z′). This means that π(Z′) is quantifier-free definable as it is

the finite union of the the RΘ
σ , which were themselves quantifier-free definable.

On the other hand, π(Z \ Z′) is the projection of the set of (y, x) ∈ Rk+1 such that p(y, x) = 0
with p((y), v) ≡ 0 ∈ R[v]. But then ∃x([py(x) = 0] ∧ Zy = R) is equivalent to saying that py = 0
as a function, which is equivalent to the condition that the terms ai((y)) = 0 for all i. This is
manifestly a quantifier-free condition and so π(Z \ Z′) is quantifier-free definable.

Therefore π(Z) = π(Z′) ∪ π(Z \ Z′) is quantifier-free definable by the formula⋃
σ∈Σ

RΘ
σ ∨

∧
i≤deg(p)

[ai(y) = 0]

and we’ve produced an algorithm for effective quantifier elimination.

Given this proof of quantifier elimination we can almost immediately conclude that the theory
of R as an ordered field is in fact decidable.

Corollary 5 (Decidability of R). Let φ be a sentence in LRCF. Then there is an algorithm for determining
whether or not R � φ.

Proof. By applying the quantifier elimination algorithm to φ, we may assume without loss of
generality that φ is a quantifier-free sentence. But quantifier-free sentences are Boolean combina-
tions of terms and are therefore Boolean combinations of diophantine equalities and inequalities
applied to integers. Checking the truth or falsehood of such a sentence is a familiar exercise in
elementary school arithmetic and does the job.

As such, we’ve furnished a sketch of the methods used to prove effective quantifier elimination
for and decidability of the ordered field theory of the real numbers, which we will use extensively
in our applications to the electrical inverse problem.

4.2 o-minimality

The abstract model theoretic notion of o-minimality provides a way of extending the above results
to theories in the incomputable realm. For instance, if one considers the language L′ extending
LRCF by adding a constant cr for each r ∈ R, we would have that ThL′(R) is an uncountable set
and hence cannot possibly be decidable. Nevertheless, one would not expect that adding names
for constants would substantially alter the geometry of definables subsets of Rn from L to L′.
o-minimality confirms this intuition.

We begin by recalling a corollary of quantifier elimination of R in LRCF:
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Corollary 6. Every definable subset D ⊆ R1 is a finite union of points and intervals.

It is this property that motivates the definition of o-minimality.

Definition 13. Let L = (<, · · · ) be any language containing a symbol for a linear order and let
M be an L-structure. We say thatM is o-minimal just in case every definable D ⊆M1 is a finite
union of points and intervals.

Hence (R,<, ·,+,−, 0, 1) provides a natural example of an o-minimal structure.
It turns out that the geometry of arbitrary definable sets D ⊆ Mn is rather simple if M is

an o-minimal structure: a version of cell decomposition holds, there is a well-defined dimension
theory, and all definable maps are definably piecewise trivial. Moreover, o-minimality guarantees
certain uniformities when parametrizing definable sets by other definable sets. We recall some of
the central results in the theory of o-minimal structures.

Definition 14 (van den Dries 2.2.3, 2.2.10). We define the notion of a cell in an o-minimal structure
M inductively:

• A point m ∈ M is a 0-cell.

• An interval (m1, m2) ⊆ M is a 1-cell.

• Given an i-cell C ⊆ M`, we can construct cells in M`+1 as follows:

- If f : C → M is a definable function then the graph Γ f = {(x, f (x)) ⊆ M` ×M | x ∈ C} is
an i-cell.

- If f , g : C → M are definable functions (or f = ±∞) with f < g then the set

{(x, s) | x ∈ C, f (x) < s < g(x)}

is an (i + 1)-cell

A cell decomposition of M` is a partition of M` = C1 ∪ · · · ∪ Cn where the Ci are disjoint cells
satisfying the following inductive definition:

• A cell decomposition of M is a partition M = C1∪ · · · ∪Cn where the Ci are disjoint intervals
or points.

• A cell decomposition of M` = C1 ∪ · · · ∪ Cn into cells such that π(C1) ∪ · · · ∪ π(Cn) (where
π : Mn → M`−1) is projection) is a cell decomposition.

A cell decomposition subordinate to a definable S ⊆ M` is a cell decomposition of M` such
that each cell Ci occuring in the decomposition is such that either Ci ⊆ S or Ci ⊆ Mn \ S.

The cell decomposition theorem for o-minimal structures states that

Theorem 8. Let M be an o-minimal structure. Then for all definable D ⊆ M` there exists a cell
decomposition of M` subordinate to D.
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A key lemma used in the proof of this result, interesting in its own right, is the uniform
finiteness lemma. We call a family of definable sets {Da ⊆ X | a ∈ Y} a uniformly definable family
where X and Y are definable and there is a set D ⊆ X×Y such that

Da = {x ∈ X |M � φD(x, a) for the given a ∈ Y}.

A typical example of such a family is the set of fibers of a definable map: if f : X → Y is a
definable map then { f−1(a) | a ∈ Y} is a uniformly definable family. The lemma says that

Lemma 9. Let {Da ⊆ X | a ∈ Y} be a uniformly definable family. Then there exists an M < ω such that
if |Da| > M then |Da| is infinite.

This lemma can be used to reduce the proof of one key result in this paper to a triviality,
although we will see that it yields somewhat weaker information than we get with computable
methods.

Finally, there is a refinement of the cell-decomposition theorem that applies to definable maps
called the definable trivialization theorem. It states roughly that given a surjective definable map
f : S→ T we can partition T into definable subsets Ti such that we can definably parametrize the
fibers.

We begin with the definition of a trivial definable map.

Definition 15. Let f : X → Y be a definable map. f is said to be definably trivial if the following
diagram commutes

X
( f ,λ)
∼
//

f
��

Y× F

πY||
Y

Where F ⊆M` and λ : X → F are definable.

Note, in particular, that λ : X → F is a surjective definable map, meaning that λ can be used
to determine a first-order formula for generating the fibers. To see this, let f−1(t) be a fiber.
Then as ( f , λ) is a definable bijection, its inverse ( f , λ)−1 is also a definable bijection. But then
as the trivialization diagram commutes, we have that we have that π−1

Y (t) = {t} × F is bijective
with f−1(t) and so ( f , λ)−1 : {t} × F → f−1(t) is a definable bijection between fibers. Hence
we can view the points of Y as definably (which, in the case of the real ordered field R, means
semialgebraically) parametrizing a family of fibers. The trivialization theorem says that there’s
always a definable way to reduce to this case:

Theorem 10 (van den Dries 9.1.2). Suppose that X ⊆Mn, Y ⊆Mm are definable sets and f : X → Y
a continuous definable map. Then there is a partition of Y into cells, Y = C1 ∪ · · · ∪ C`, such that
f : f−1(Ci)→ Ci is a definably trivial map.
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Chapter 5

Applications to n-to-1 Graphs

5.1 Dichotomy Theorems and a Hierarchy of Graphs

In this section we prove two dichotomy theorems, which will be very important in our study of
both the local and global inverse problems.

Theorem 11 (Dichotomy Theorem for Inverse Problems). For a given inverse problem (G, Λ), we
have that either |L−1

G (Λ)| = 2ℵ0 or |L−1
G (Λ)| = M < ω for some M.

Proof. It is a straightforward model-theoretic fact that if an L-structure M is o-minimal then M
is o-minimal as an L′ = L∪ {ci} structure where the ci are constants when interpreted by cMi . In
particular, given an inverse problem (G, Λ) we may add to LRCF the constants {λij} for the entries
of Λ. Then the set L−1

G (Λ) ⊆ (R+)|E| is LRCF({λij})-definable. Therefore we may decompose
L−1

G (Λ) = C1 ∪ · · · ∪C` into a finite union of cells. If dim Ci > 0 for some i then, by the definition
of cells, Ci has cardinality 2ℵ0 . If, to the contrary dim Ci = 0 for all i then L−1

G (Λ) is a finite union
of points. Hence either |L−1

G (Λ)| = 2ℵ0 or |L−1
G (Λ)| = M < ω.

Theorem 12 (Uniform Dichotomy Theorem for Graphs). For a given graph G, we have that either
|L−1

G (Λ)| = 2ℵ0 for some A or that there exists a constant natural number M such that for all Λ,
|L−1

G (Λ)| ≤ M.

Proof. I will present two proofs of this theorem: one using the fact that definable functions in
o-minimal structures are piecewise fibrations, and the other using the fact that o-minimality is a
property preserved under elementary equivalence. Both proofs are included as they appeal to
different intuitions.

Let X = LG((R
+)|E|). As LG is a definable map applied to the definable space (R+)|E|, X

is definable and the local trivialization theorem of o-minimality guarantees that we can partition
X = X1 ∪ · · · ∪ Xn into finitely many definable sets such that the maps LG �L−1

G (Xi)
is a fibration.

More precisely, the following diagram commutes:
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L−1
G Xi

(L,hi)

∼
//

LG

��

Xi × Fi

πXizz
Xi

where Fi is a definable representative fiber of Xi under LG and hi : L−1
G Xi → Fi is a definable

map such that (LG, hi) : L−1
G Xi → Xi × Fi is a definable bijection. But then for each Λ ∈ Xi we

have that |L−1
G (Λ)| = |{Λ} × Fi| = |Fi|, so that the cardinality of the fiber depends only on i. As

we decomposed X into finitely many such Xi, we have that the set {κ | ∃Λ |L−1
G (Λ)| = κ} is finite.

Furthermore, by the Dichotomy Theorem for Inverse Problems we have that the κ appearing
above are either κ = n < ω or κ = 2ℵ0 . Now if |L−1

G (Λ)| = 2ℵ0 for some Λ then we satisfy the
hypothesis of the theorem and we are done. Otherwise, let M = max{κ | ∃Λ |L−1

G (Λ)| = κ}.
Then clearly for all Λ we have that |L−1

G (Λ)| ≤ M and we are done.
For the more clearly model-theoretic proof, suppose for the contrary that |L−1

G (Λ)| < ω for
all Λ. Then by Uniform Finiteness for o-minimal structures we may immediately conclude that
there is some M < ω such that |L−1

G (Λ)| < M.

5.2 Finding One’s Place in the Hierarchy

Using the theorem in the preceding section we are able to show that the place of a finite parti-
tioned graph G in the hierarchy of the electrical inverse problem is in fact computable. To this end
we first show that we can translate the problem into questions about first-order statements in the
theory of real-closed fields and then apply the decidability algorithm for real-closed fields to a
sequence of first order formulas. The main worry a priori is that the algorithm described would
not halt. The dichotomy theorems, however, guarantee that this does in fact happen.

To begin with, we show that the properties that arise in the hierarchy are, in fact, first order
definable.

Proposition 6. Let G be a partitioned graph, LG its measurement map, definable over a subset
C ⊆ R. Then the following properties are first-order expressible in LRCF(C):

1. G is strongly 2ℵ0 -to-1.

2. G is weakly n-to-1 for a given n.

3. G is strongly n-to-1 for a given n.

Proof. We prove by cases.

1. We first show that for a fixed inverse problem(G, Λ), being 2ℵ0 -to-1 is first-order definable.
To this end we invoke the dichotomy theorem and cell decomposition of sets definable in
an o-minimal structure. Certainly the set L−1

G (Λ) = {γ | LG(γ) = Λ} is first-order definable
with finitely many parameters. Now, suppose that |L−1

G (Λ)| = 2ℵ0 . Then one of the coordi-
nate projections πj(L−1

G (Λ) onto the coordinates not equal to j, (1, · · · , ĵ, · · · , n), must also
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be of size 2ℵ0 , for otherwise the fibers would all be finite and |L−1
G (Λ)| ≤ ∏ |πj(L−1

G (Λ))| <
ℵ0, a contradiction. Repeating this process, we get to a step where at least one sequence of
projections is a definable subset S of R1 of size 2ℵ0 . Then as R is o-minimal, S necessarily
contains an interval (a, b). Conversely, if such a series of projections exist, by taking inverse
images we must have that 2ℵ0 ≤ |L−1

G (Λ)| ≤ 2ℵ0 , whence |L−1
G (Λ)| = 2ℵ0 . Hence the ex-

istence of such a filtration of projections containing an interval is equivalent to the inverse
problem having 2ℵ0 solutions. To check that G is strongly 2ℵ0 -to-1, we merely need ask for
the existence of such a Λ, which is again first order.

Now we formalize this. Let ψG be the formula

∃(Λ ∈ M|∂V|(R
+))∃(a, b ∈ R+)∀x(a < x < b→

∨
Si⊆[1,··· ,n]
|Si |=n−1

∃(γsi1 , · · · , γsi(n−1))LG(γsi1 , · · · , x, · · · , γsi(n−1)) = Λ)


where we insert x into the sequence of γij’s (for a fixed i) in the mth

i place where mi /∈ Si
place. By inspection, ψG is the first order sentence corresponding to the above construction.
Hence, we have that the graph G is strongly 2ℵ0 -to-1 if and only if ψG holds in R.

2. Let χn(G) be the formula

∃(Λ ∈ M∂V(R
+))∃γ1, · · · γn ∈ (R+)|E|

∧
i 6=j

γi 6= γj ∧
∧
i≤n

LG(γi) = Λ

for n > 0. Then χn(G) says precisely that there is an A with at least n distinct solutions to
the electrical inverse problem on G, which exactly says that G is weakly n-to-1.

3. Let φn(G) be the formula χn(G) ∧ ¬χn+1(G) for n > 0. Then φn(G) expresses that G is
strictly n-to-1.

Remark 4. I do not know of a topological proof that if G is strongly 2ℵ0 -to-1 then there is an
interval in some projection of the domain on which LG(γsi1 , · · · , x, · · · , γsi(n−1)) = Λ. The main
difficulty is that there exist uncountable nowhere dense subsets of R, namely Cantor sets. Hence
this proof relies on something much stronger than continuity- it relies on LG being definable in
an o-minimal structure.

By essentially the same argument as for the global case, the analogous properties for a fixed
inverse problem (G, Λ) are first order:

Proposition 7. Let G be a partitioned graph and suppose that LG and Λ ∈ Mn(R) are definable
over a subset C ⊆ R. Then the following properties are first-order expressible in LRCF(C):

1. (G, Λ) is 2ℵ0 -to-1.
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2. (G, Λ) is n-to-1 for a given n.

3. dimR(L−1
G ) = n

Proof. Clearly ∃γLG(γ) = Λ is a C-definable first-order sentence. Repeating the argument of
the proposition above, we see that the statement “LG(γ) = Λ has 2ℵ0 solutions" is also first-
order expressible in LRCF(C); defined by a formula ψ(G,Λ), as are the statements “LG(γ) = Λ
has n distinct solutions" (let this be χn,(G,Λ))) and “LG(γ) = Λ has exactly n-distinct solutions"
(φn,(G,A)).

For computing dimension, we adapt an exercise in [van den Dries, 4.1.17.1] and use the fact
that the real dimension dimR(L−1

G (Λ)) ≥ n just in case there is some subset of n coordinates
such that the projection map π : L−1

G (Λ) → Rn given by mapping a point γ ∈ L−1
G (Λ) 7→

(γi1 , · · · , γin) has non-empty interior, which is a first-order property. Then dimR(L−1
G ) = n just

in case [dimR(L−1
G (Λ)) ≥ n] ∧ ¬[dimR(L−1

G (Λ)) ≥ n + 1]. Hence the property of having given
dimension n is first-order expressible.

We now provide sufficient conditions for electrical inverse problems to be ∅-definable, allow-
ing us to apply the decision procedures of the preceding chapter to the problems at hand:

Proposition 8. 1. If Λ ∈ M|∂V|((R
alg) then Λ is ∅-definable in LRCF.

2. For all electrical networks G, LG is ∅ definable.

Proof. 1. It suffices to show that each entry Λij is ∅-definable. As Λij ∈ Ralg, there is some
polynomial pij(x) ∈ Q[x] such that pij(Λij) = 0. This specifies Λij up to at most deg(pij)-
many other reals. Assume that Λij is the kth real solution of pij, ordered by the induced
ordering on R. Let ξij(x) := “pij(x) = 0”. The formula

ρk
ij(x) := ∃y1 · · · ∃yk−1

∧
`<k

(x > y` ∧ pij(y`) = 0)
∧

k 6=k′
(yk 6= yk′) ∧ pij(x) = 0

 ∧
@yk([yk−1 < yk < x] ∧ pij(yk) = 0)

says that x is the kth real solution to pij. Then Λij is the unique element specified by ρk
ij, and

hence each entry of Λ is ∅-definable, whence Λ is ∅-definable in LRCF.

2. Immediate from the formula LG(γ) = Aγ − BT
γ D−1

γ Bγ as described in Chapter 2.

If we implemented this algorithm in an actual computer, we would require that the entries of
Λ were presented in the form of ρk

ij above, which can certainly contribute quite a bit of complexity
to the actual representation of the formulas we consider in the following algorithms.

Now that we know that all of the relevant data is in fact first-order expressible over ∅, we
are in prime position to give algorithms computing quantities related to fiber cardinals, Ψ G. We
insist that our inverse problem Λ has algebraic-real entries for the purpose of computability. If
you were ever to calculate this for a physical electrical network, you would use only rational
approximations of boundary measurements anyways, so allowing for real algebraic coefficients
gives us slightly more generality than we actually need.
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Theorem 13. The problems (1) and (2) below are answerable when Λ has real-algebraic coordinates.

1. Given a particular inverse problem (G, Λ) with Λ ∈ M|∂V|((R
alg) on a graph G with LG being

∅-definable in LRCF, how many solutions does it have? If it is not n-to-1, what is the dimension of
L−1

G (Λ)?

2. Given a graph G, where in the hierarchy of n-to-1 graphs does it fall?

Proof. This is a simple application of the model theoretic black-boxes that we’ve proven.
For problem (1), let (G, Λ) be an inverse problem with Λ ∈ M|∂V|((R)alg). As R is o-minimal,

algebraic closure is the same as definable closure, and so as Λ ∈ M|∂V|((R
alg), all its coefficients

aij live in (Ralg) and are therefore ∅-definable in the language of ordered fields. Hence Λ is
∅-definable in R and so all the properties “LG(γ) = Λ has 2ℵ0 solutions, " as is “LG(γ) = Λ
has exactly n distinct solutions." Denote the former formula by ψ(G,Λ) and the latter family of
formulas by φn,(G,Λ) for each n (including n = 0). Using the decision procedure for ∅-definable
first-order formulas, consider the following algorithm:

1. Run the decision algorithm on ψ(G,Λ). If true, run the decision algorithm on the formulas
{dim(L−1

G (Λ)) = n}n∈ω. This returns that R � [dimR(L−1
G (Λ)) = m] for some number

m < E + 1 and we know that (G, Λ) is 2ℵ0 -to-1 and of real dimension m.

2. If R � ¬ψ(G,Λ), then run the decision procedure on the family of first order formulas
{φn,(G,Λ)}n∈ω. Terminate when the decision procedure determines that R � φM,(G,Λ). Then
(G, Λ) is M-to-1.

By the Dichotomy Theorem for Inverse Problems, we have that either the inverse problem (G, Λ)
has 2ℵ0 solutions or it has M < ω solutions. Since the decidability algorithm for sentences in
RCF terminates and since we are simply applying the decidability algorithm to finitely many
formulas, the algorithm above must terminate after finitely many steps.

Now we consider Problem (2). The algorithm is almost identical to the one for a fixed inverse
problem (G, Λ). It is:

1. Run the decision algorithm on ψG. If true, terminate. G is then strongly 2ℵ0 -to-1.

2. If R � ¬ψG, then run the decision procedure on the family of first order formulas {φn,G}n∈ω.
Terminate when the decision procedure determines that R � φM,G. Then G is strongly M-
to-1.

This time, by the Uniform Dichotomy Theorem for Graphs, we have that a graph G is either
strongly 2ℵ0 -to-1 or strongly M-to-1 for some M < ω. Again, the algorithm for sentences in
RCF terminates after finitely many steps and, by the Uniform Dichotomy Theorem, we need only
apply this algorithm to finitely many sentences before it terminates.

5.3 Finer Analysis

The previous section gives an algorithm for computing exactly how many solutions a given
(algebraically presented) inverse problem has and, moreover, for where in the hierarchy a given
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graph falls. In this section we very briefly sketch how more sophisticated algorithms can yield
finer information about the solution spaces.

First off, we cite a very powerful result:

Theorem 14. Find Citation Given any first-order expressed semialgebraic map f : X → Y we can
computably produce a cell decomposition of Y = C1 ∪ · · · ∪ Cn on which f : f−1(Ci)→ Ci is a piecewise
trivial map.

Proof.

Using this theorem it is clear that we can computably partition Mn(R) into finitely many nice
cells Ci on which LG is a locally trivial map. In particular, on each of these cells the cardinality
of fibers will be constant. This allows us to computably break up (R+)|E| into finitely many sets
on which we know the behavior of LG. Moreover, we will be able to computably produce on
each L−1

G (Ci) an implicitly defined bijection (LG, h) : L−1
G (Ci) → Ci × Fi, giving us an implicit

parametrization of the fibers as we vary Λ along Ci.
In the local setting we consider the case where (G, Λ) is n-to-1. In this former case we are able

to computably produce polynomials for the coordinates are solutions as follows:
Start with the definable set {γ | LG(γ) = Λ} ⊆ R|E|. If (G, Λ) is finite-to-1, then applying the

quantifier elimination algorithm to each set

Si = {x ∈ R | ∃(γ1, · · · , γi−1, γi+1, γ|E|)LG(γ1, · · · , γi−1, x, γi+1, γ|E|) = Λ

we end up with a quantifier-free LRCF formula defining Si of the form

ηi =
∨

ji∈[ki ]

[pji (x) = 0] ∧
∨

j′∈[k′ ]
[qj′(x)�i0]

for �i ∈ {6=,>,<}. Then let Fi = ∏
ji∈[ki ]

pji . Then the solutions of L−1
G (Λ) are contained in the set

{(γ1, · · · , γn) |
∧

i∈[|E|]
[Fi(γi) = 0]}

Then, by approximating solutions to these polynomials (by using Newton’s method or any
other) and ruling out combinations of solutions of the Fi’s that aren’t solutions of (G, Λ) (by
using the integral form of the Taylor Remainder theorem, for instance) we are able to computably
approximations to all solutions to (G, Λ).

5.4 Conjectures and Further Research

While this thesis provides answers to many open problems in the study of inverse problems on
electrical networks, the asymptotic theory of inverse problems is still very mysterious. Recall that
the fiber cardinals of a electrical network with boundary G, Ψ G, which was defined as

Ψ G = {κ | ∃Λ ∈ M|∂G|(R) |(G, Λ)| = κ}.
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One of the key results in this paper was that for all finite electrical networks with boundary,
Ψ G was finite. Moreover, for a given network G we are able to compute Ψ G by producing a
computable cell decomposition of M|∂G|(R) making LG cellwise a fiber bundle and then running
our decision procedure to find the cardinality of each fiber. However, this sheds no light on the
dependence of Ψ G on simple numerical quantities associated to G, such as |EG|, |VG|, and |∂G|.
In my mind the most pressing question in this regard is

Question 15. (Strong Form) Let κG = max{κ | κ ∈ Ψ G ∧ κ 6= 2ℵ0} be the largest finite cardinal in
the fiber cardinal of G. Given any graph-theoretic quantity (or tuple of quantities) νG associated to finite
connected electrical networks with boundary G, is there an asymptotic relationship between κG such that
as νG → ∞, κG ∼ θ(νG) for some explicit function θ?

(Weak Form) Given a graph-theoretic quantity νG associated to some subclass G of finite connected
electrical networks with boundary G, is there an asymptotic relationship between κG such that as νG → ∞,
κG ∼ θ(νG) for some explicit function θ?

It would be of great interest to answer this in the special case of νG = |EG| or νG = |VG|, since
all known constructions of n-to-1 graphs require high numbers of edges and vertices relative to
n.

In a similar vein, it is unclear whether or not we should generically expect strictly finite-to-1
behavior in a graph or whether we should expect continuum-to-1 behavior. An asymptotic study
of this would be very enlightening, for it would help get a better picture of exactly along what
dividing lines ground the dichotomy theorem proved in this thesis. One possible framing of this
question is as follows:

Question 16. (Strong Form) Let νG be a given graph-theoretic quantity such that for all n there are only
finitely many finite connected electrical networks with boundary G with νG ≤ n, and let κ be a cardinal
number. Is there any asymptotic estimate for the probability that a given G of bounded νG admits κ-to-1
behavior, in the sense that

|{G |G is strongly κ-to-1 and νG ≤ n}|
|{G | νG ≤ n}| ∼ θ(n)

for some explicit θ : R→ [0, 1] as n→ ∞?
(Weak Form) Given any graph-theoretic quantity νG associated to some subclass G of finite connected

electrical networks with boundary G, such that for all n there are only finitely many finite connected
electrical networks with boundary G ∈ G with νG ≤ n. Is there an explicit θ : R → [0, 1] such that,
asymptotically,

|{G ∈ G |G is strongly κ-to-1 and νG ≤ n}|
|{G ∈ G | νG ≤ n}| ∼ θ(n)

In the previous section I presented a method of producing approximations to all solutions for
a finite-to-1 inverse problem (G, Λ), not exact solutions. I expect this to be optimal:

Conjecture 17. There is no algorithm applying to all inverse problems (G, Λ) that returns for a given
finite-to-1 problem (G, Λ) all of its solutions exactly, presented in radicals.
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The intuition behind this is that, for Galois theoretic reasons, we cannot solve a general poly-
nomial of degree 5 or greater. The algorithm given above to compute minimal polynomials for
the coordinates of solutions definitely will return univariate polynomials of high degree, so it
would be quite shocking if one were to find a way to avoid this when computing all solutions
exactly. I believe that one should be able to easily code the Galois-theoretic problem directly into
some inverse problem, thus proving the result, but I have yet to do so.

The algorithm that I gave for deciding where in the κ-to-1 hierarchy both a given inverse prob-
lem (G, Λ) and a graph G land in relies on repeated iterations of a very time-consuming decision
algorithm. In fact, it has been proven by Davenport and Heintz that any decision procedure for
〈R,+,−, ·,<, 0, 1〉 is of at least 22n

-complexity; Ben-Or, Kozen, and Reif showed that this bound
is sharp by exhibiting a decision algorithm of doubly-exponential complexity. In many ways, this
is the price of approaching the problem in full generality. It’s very feasible that by restricting
attention to a class of graphs satisfying certain nice graph theoretic properties we could construct
far faster algorithms in these cases. With this in mind we can ask the following open-ended
question:

Question 18. Which classes of graphs can we find algorithms of low computational complexity for enu-
merating and, if applicable, approximating solutions of inverse problems in both the local and global set-
tings?

The methods used to abstractly study the solution spaces of graphs crucially relied on o-
minimality and the ability to rephrase the problem in terms of finite-dimensional subsets of RN

for some large enough N. This renders these methods useless for studying countable electrical
networks. As such, another open-ended problem would be to find an appropriate model-theoretic
framework for studying the enumeration problem in the case of coubtable electrical networks.

Question 19. Is there a model-theoretic framework amenable to approaching the problems considered in
this thesis for countable electrical networks?

Finally, it would be lovely to see an account of some other discrete inverse problem investi-
gated using methods of o-minimality that go beyond the simple case of the structure 〈R,+,−, ·,<, 0, 1〉.
This leads to the following suggestive, yet very ill-posed, question:

Question 20. Is o-minimality an appropriate framework for studying the discrete inverse problems that
occur in the practical world?
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Chapter 6

Appendix: The Characterization of
Response Matrices

One of the major problems in the program on electrical inverse problems has been to give (for a
fixed but arbitrary electrical network G) necessary and sufficient criteria for a matrix Λ ∈ M∂G(R)
to be the response matrix of some set of conductivities γ ∈ (R+)|E|. In fact, the effective quantifier
elimination for the real field yields such a characterization instantly.

Theorem 21. Given a finite electrical network G, there is an effective characterization of its response
matrices by semialgebraic constraints.

Proof. Note that the set of Λ ∈ M∂G(R) that are the response matrices of some set of conductiv-
ities γ ∈ (R+)|E| is precisely the image of (R+)|E| under the measurement map LG. This set is
described explicitly by the definable set

{Λ ∈ M∂G(R) | ∃γ LG(γ) = Λ}

The LRCF formula "∃γ LG(γ) = Λ" is defined over ∅, and so we are free to apply effective quanti-
fier elimination to yields an equivalent quantifier-free formula φ in LRCF. This is simply a finite
Boolean combination of explicit semialgebraic conditions, and so the result is proven.

This theorem in principle allows one to test whether an arbitrary Λ is in the image of the
measurement map of G or not simply by checking the truth of certain polynomial equalities and
inequalities dependent only on G.
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