The Definability of Valuations in Global Fields An Introduction to Rumely's Undecidability and Definability for the Theory of Global Fields

> REID DALE University of California, Berkeley reiddale@math.berkeley.edu December 11, 2014

Introduction

This document is meant to be serve as a self-contained introduction to the *definability* portion of Rumely's classic paper [6] on the definability and undecidability of the first-order theory of global fields. For the sake of brevity and the clarity of the argument we restrict ourselves to showing the definability of *nonarchimedean* valuations in the case of *number fields*. The way we go about doing this actually shows more: by showing that we can define all such valuations from a *uniform* family of first-order formulas we will be able to explicitly show that not only are all of the valuation rings of a given number field definable, but also that the ring of integers itself is definable. The key technical tools used in the paper come from local and global class field theory: density theorems for idele class groups, Hasse's local-to-global principle for norms, and the local and global norm residue symbols. The references we use for background number-theoretic facts are Neukirch's classic *Algebraic Number Theory* [5] and Lang's *Algebraic Number Theory* [3]. There is essentially no new content in this paper; I hope only that I've succeeded in producing a friendly introduction to some key themes in the intersection of model theory and algebraic number theory.

Before we begin, we set some notational conventions. I will use symbols such as ν and w to refer to valuations (archimedean or nonarchimedean), Gothic letters \mathfrak{p} , \mathfrak{P} to refer to primes in the spectrum of some ring of integers \mathcal{O}_K . \mathcal{O}_ν will be the valuation ring of ν in K, with maximal ideal \mathfrak{m}_ν and residue field $\kappa(\nu) := \mathcal{O}_\nu/\mathfrak{m}_\nu$. Typically ℓ and p will be prime integers, and ζ_ℓ will denote a primitive ℓ^{th} root of unity. The idele group of a number field is denoted \mathbb{I}_K , and for a given cycle \mathfrak{c} we let $Cl_{\mathfrak{c}} = J(\mathfrak{c})/K_{\mathfrak{c}}$ be the corresponding generalized class group. When I speak of a *tuple* (x_1, \dots, x_n) I will often just write it as \overline{x} .

Interpretations of Fields

We assume that the reader is familiar with the most basic concepts of model theory, namely: firstorder languages and (unnested) atomic formulas, (parameter) definable sets and definable functions. If required, these definitions may all be found in Chapter 1 of [2]. Beyond these elementary notions, the most important model-theoretic concept for our purposes here is that of an *interpretation* of one structure inside another:

Definition 1. ([2] 4.3) An interpretation Γ of a ρ -structure \mathcal{B} in a τ -structure \mathcal{A} is given by the following data:

- A τ -formula $\partial_{\Gamma}(x_0, \cdots, x_{n-1})$
- For each unnested atomic ρ -formula $\phi(y_0, \cdot, y_{m-1})$ a τ -formula $\phi_{\Gamma}((x_{0i})_{0 \le i < n}, \cdots, (x_{(m-1),i})_{0 \le i < n})$ (a "translation" of ρ -formulas into τ -formulas)
- A surjection $\pi : \partial_{\Gamma}(\mathcal{A}) \to \mathcal{B}$ such that for all $\overline{a}, b \in \partial_{\Gamma}(\mathcal{A})$
 - 1. $\pi(\overline{a}) = \pi(\overline{b})$ if and only if $\psi_{\Gamma}(\overline{a}, \overline{b})$ where ψ is the formula $y_0 = y_1$.
 - 2. For each unnested atomic formula $\phi \in \mathcal{L}_{\rho}$, $\pi^{-1}(\phi(\mathcal{B})) = \phi_{\Gamma}(\mathcal{A})$.

The main point of interpretations is that if a structure \mathcal{A} interprets another structure \mathcal{B} , then the first-order theory of \mathcal{B} is in some sense already "witnessed" by \mathcal{A} . This is made precise by a special case of the so-called *reduction theorem* (which is not too difficult to prove!)

Fact 1. ([2] 4.3.1) Let \mathcal{B} be interpreted in \mathcal{A} as above. Then for every $\phi \in \mathcal{L}_{\rho}$ there is a $\phi_{\Gamma} \in \mathcal{L}_{\tau}$ such that

$$\mathcal{B} \vDash \phi(\pi(\overline{a})) \leftrightarrow \mathcal{A} \vDash \phi_{\Gamma}(\overline{a})$$

The key use of interpretations for our purposes is the fact that if *K* is perfect, *any* finite extension L|K can be interpreted (with pararameters) over *K*.

Theorem 1. Let *K* be a perfect field. Then any finite extension L|K is interpretable over *K* over a finite set of parameters, namely, the parameters of the minimal polynomial of any element θ such that $L = K(\theta)|K$.

Proof. Let L|K be a finite extension of number fields of degree n. By the primitive element theorem, there is some $\theta \in L$ such that $L = K(\theta)$. Let $f(x) = minpoly(\theta) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$. Consider K in the natural way as an $\mathcal{L}_{rings} \cup \{a_i\}_{0 \leq i < n}$ -structure. We aim to construct an interpretation Γ the \mathcal{L}_{rings} structure $(L, +, \times, 0, 1)$ in the $\mathcal{L}_{rings} \cup \{a_i\}_{0 \leq i < n}$ -structure $(K, +, \times, 0, 1, a_0, \cdots, a_{n-1})$. Since L is an n-dimensional K-vector space with basis $\{1, \theta, \cdots, \theta^{n-1}\}$, we set

- Let $\partial_{\Gamma}(x_0, \cdots, x_{n-1}) := " \bigwedge_{0 \le i < n} x_i = x_i$ ", which has $\partial_{\Gamma}(K^n) = K^n$.
- Set $\pi : K^n \to L$ by mapping $(c_0, \dots, c_{n-1}) \mapsto \sum_{0 \le i < n} c_i \theta^i$ which is surjective since $\{1, \theta, \dots, \theta^{n-1}\}$ is a basis of *L* over *K*.
- Set $\psi_{\Gamma}(\overline{x},\overline{z}) := " \bigwedge_{\substack{0 \le i < n \\ K}} x_i = z_i"$, so that $\pi(\overline{c}) = \pi(\overline{d})$ if and only if $\psi_{\Gamma}(\overline{c},\overline{d})$ since $\{1, \theta, \cdots, \theta^{n-1}\}$ is a basis of *L* over *K*.

The slightly harder part of this problem is to endow K^n with an $\mathcal{L}_{rings} \cup \{a_i\}_{0 \le i < n}$ -definable field structure $(K, \oplus, \otimes, 0, 1)$ such that $(K^n, \oplus, \otimes, 0, 1) \cong (L, +, \times, 0, 1)$. If we manage to do this, it is routine to check that this gives an interpretation of *L* in *K* (over the given choice of parameters) since the only unnested atomic formulas in \mathcal{L}_{rings} are of the form $y_0 + y_1 = y_2$, $y_0 \cdot y_1 = y_2$, and y = c for some constant *c*.

We define the field structure as follows:

- We let $0 \in K^n$ be the tuple $(0, \dots, 0)$. This is definable in *K* by the formula $zero(\overline{x}) = \bigwedge_{0 \le i < n} x_i = 0^n$.
- We let $1 \in K^n$ be the tuple $(1, 0, \dots, 0)$. This is definable in *K* by the formula $one(\overline{x}) = "x_0 = 1 \land \bigwedge_{1 \le i < n} x_i = 0"$.
- The graph of addition $\oplus : K^n \to K^n$ is given by the formula

$$Add(\overline{x},\overline{y},\overline{z}) = "\bigwedge_{0 \le i < n} x_i + y_i = z_i"$$

so that \oplus : $K^n \to K^n$ is the obvious vector space addition.

• Multiplication is the hardest part. To define the graph of multiplication, first recall that the multiplication-by- θ map $T_{\theta} : L \to L$ is represented by the matrix

	/	0	1		0			0	
		0	0		1		•••	0	
$T_{\theta} =$		÷					۰.	:	
		0	0		0		• • •	1	
	\ -	$-a_0$	$-\iota$	ı ₁	$-a_{2}$	2		$-a_{n-1}$)

with respect to the basis $\{1, \theta, \dots, \theta^{n-1}\}$ (this fact is from [5] in the proof of Prop I.2.6). But then

$$(\forall m \in \omega) (T_{\theta})^m = T_{\theta^m}; (\forall x \in K) x T_{\theta^m} = T_{x\theta^m}; T_{\theta^0} = T_1 = I$$

For $\gamma = c_0 + c_1\theta + \cdots + c_{n-1}\theta^{n-1}$ we may therefore represent the multiplication-by- γ map in the basis $\{1, \theta, \cdots, \theta^{d-1}\}$ as the sum $T_{\gamma} = \sum_{i=0}^{n-1} c_i T_{\theta^i}$. But this allows us to define multiplication on K^n by the following equation

$$(c_0, \cdots, c_{n-1}) \otimes (d_0, \cdots, d_{n-1}) := (\sum_{i=0}^{n-1} c_i T_{\theta^i}) (d_0, \cdots, d_{n-1})^T$$

which is definable over the parameters $\{a_0, \dots, a_{n-1}\}$ since matrix multiplication and addition are clearly definable functions in \mathcal{L}_{rings} . From here it is easy to write down an explicit formula $Mult(\bar{x}, \bar{y}, \bar{z})$ for the graph of $\otimes : K^n \to K^n$.

By construction of \oplus and \otimes , π is in fact a field isomorphism and so $(L, +, \times, 0, 1)$ is interpretable in $(K, +, \times, 0, 1, a_0, \dots, a_{n-1})$.

It is worth remarking that something similar can be achieved even in the *imperfect* case, which must be dealt with if one wishes to consider the case of global function fields.

Definability of Nonarchimedean Valuations

Now that we've set up some model-theoretic background we can proceed to the real substance of Rumely's work. We begin by saying what we mean when we say that a valuation ν is arithmetically

definable in *K*:

Definition 2. Given a discrete valuation $\nu : K^{\times} \to \mathbb{Z}$, an *arithmetic definition* of ν is a formula $\phi(x, y, \overline{z}) \in \mathcal{L}_{rings}$ such that for some choice of parameters $\overline{c} \in K^n$ and *all* $a, b \in K$

$$\nu(a) \geq \nu(b) \leftrightarrow \phi(a, b, \overline{c}).$$

In other words, ν is definable if the set $\{(a, b) \in K^2 | \nu(a) \ge \nu(b)\}$ is a parameter-definable subset of *K*.

Right away we can reduce this problem to a slightly easier one:

Proposition 1. A valuation v is arithmetically definable in K if and only if the valuation ring $\mathcal{O}_{v} \subseteq K$ is parameter-definable.

Proof. Suppose that ν is arithmetically definable, and let $\phi(x, y, \overline{c})$ be a formula defining it. Then $\mathcal{O}_{\nu} = \{x \in K \mid \nu(x) \ge 0\} = \phi(K, 1, \overline{c})$ and so the formula $\phi(x, 1, \overline{c})$ defines \mathcal{O}_{ν} .

On the other hand, suppose \mathcal{O}_{ν} is parameter-definable by a formula $\psi(x, \bar{c})$. Consider the formula $\chi(x, y, \bar{c})$ given by

$$x = 0 \lor (y \neq 0 \land \forall z \, (zy = x \to \psi(z, \overline{c})))$$

which says that either x = 0 or that $\psi(z, \overline{c})$ holds for $z = \frac{x}{y}$. But then if $a, b \in K$ then $K \models \chi(a, b, \overline{c})$ just in case either a = 0 (in which case $v(a) \ge v(b)$) or $b \ne 0$ and $K \models \psi\left(\frac{a}{b}, \overline{c}\right)$, in which case $v(\frac{a}{b}) \ge 0$ which is equivalent to saying that $v(a) \ge v(b)$. Hence

$$\{(a,b)\in K^2\,|\,\nu(a)\geq\nu(b)\}\subseteq\chi(K^2,\bar{c}).$$

On the other hand, if $\nu(a) \ge \nu(b)$ then either a = 0 or $b \ne 0$ and $\frac{a}{b} \in \mathcal{O}_{\nu}$, so that

$$\chi(K^2, \overline{c}) \subseteq \{(a, b) \in K^2 \,|\, \nu(a) \ge \nu(b)\}$$

meaning that

 $K \vDash \chi(a, b, \overline{c}) \leftrightarrow \nu(a) \ge \nu(b)$

and the result is proven.

It will be useful to perform a further reduction:

Proposition 2. Let $\ell \in \omega$ with $\ell \ge 2$ and ν a discrete valuation. Suppose that the set $\{x \in K \mid \nu(x) \equiv 0 \mod \ell\}$ is arithmetically definable. Then \mathcal{O}_{ν} is arithmetically definable.

Proof. Let $\psi(x, \overline{c})$ be a definition of $\{x \in K \mid v(x) \equiv 0 \mod \ell\}$ and let π be a uniformizer for v. We claim that the formula

$$\chi(x,\pi,\overline{c}) := \exists y \left(1 + \pi x^{\ell} = y \land \psi(y,\overline{c})\right)$$

is an arithmetic definition of \mathcal{O}_{ν} . We break into two cases:

• If $\nu(x) \ge 0$ then $\nu(\pi x^{\ell}) = 1 + \ell \nu(x)$ and so the strong triangle inequality tells us that

$$\nu(1 + \pi x^{\ell}) = \min\left(\nu(1), \nu(\pi x^{\ell})\right) = \min(0, 1 + \ell \nu(x)) = 0$$

But then $\nu(1 + \pi x^{\ell}) \equiv 0 \mod \ell$ and so $K \models \chi(x, \pi, \overline{c})$.

• If $\nu(x) < 0$ then

$$\nu(1 + \pi x^{\ell}) = \min(0, 1 + \ell \nu(x)) = 1 + \ell \nu(x)$$

since $\ell > 1$ and $\nu(x) < 0$. But then $\nu(1 + \pi x^{\ell}) \equiv 1 \mod \ell$ and so $K \not\vDash \chi(x, \pi, \overline{c})$.

Together this means that $\chi(K, \pi, \overline{c}) = \mathcal{O}_{\nu}$, and so \mathcal{O}_{ν} is arithmetically definable.

Given a discrete valuation ν on K we will construct an arithmetic definition of $\{x \in K | \nu(x) \equiv 0 \mod \ell\}$ for some prime $\ell \in \omega$. To do so, we *first* show that we can construct definitions for all valuations under mild field-theoretic conditions on K by reducing the problem to one of expressing a given $x \in K$ as the norm of some element y in some cyclic extension of the form $K(\sqrt[\ell]{a})$. We recall the following fact from Galois Theory:

Fact 2. ([4] VI.6.2). Let K be a field, $\ell \neq char(K)$ be prime, and suppose that K contains all ℓ^{th} roots of unity. Then

- If L|K is a cyclic field extension with $[L:K] = \ell$ then there is some $\alpha \in K$ such that $L = K(\sqrt[\ell]{\alpha})$.
- If $a \in K$ and α is a root of $x^{\ell} a$, $K(\alpha)$ is a cyclic extension of K of degree either 1 or ℓ .

By the above fact, for well chosen ℓ all cyclic extensions of local fields $L_w|K_v$ with $[L_w:K_v] = \ell$ can be written as $L_w = K_v(\sqrt[\ell]{\alpha})$ for some $\alpha \in K_v$. The following lemma shows that under mild field-theoretic hypotheses the *ramification* behavior of v in the extension $K(\sqrt[\ell]{\alpha})|K$ is tightly *controlled* by the (mod ℓ)-arithmetic of $v(\alpha)$.

Lemma 1. Suppose that K is a number field that has all $2\ell^{th}$ roots of unity and suppose that ν is a discrete valuation on K such that $char(\kappa(\nu)) \neq \ell$. Let $L_w = K_\nu(\sqrt[\ell]{\alpha})$ for some $\alpha \in K_\nu^{\times}$. Recall that since K_ν is a complete valued field, w is uniquely specified.

1. If $v(\alpha) \neq 0 \mod \ell$ then $L_w | K_v$ is totally ramified of degree ℓ and the image of the norm map is given by

$$N_{L_w|K_{\nu}}(L_w^{\times}) = \left\langle \alpha, (K_{\nu})^{\times} \right\rangle.$$

2. If $\nu(\alpha) \equiv 0 \mod \ell$ but $\alpha \notin (K_{\nu})^{\ell}$ then $L_w|K_{\nu}$ is unramified, $[L_w:K_{\nu}] = \ell$, and

$$N_{L_w|K_\nu}(L_w^{\times}) = \{ x \in K_\nu^{\times} \, | \, \nu(x) \equiv 0 \mod \ell \}$$

3. If $\alpha \in (K_{\nu})^{\ell}$ then $L_{w} = K_{\nu}$ and, trivially, $N_{L_{w}|K_{\nu}}(L_{w}^{\times}) = K_{\nu}^{\times}$.

Proof. Recall the formula $[L_w : K_v] = e(w|v)f(w|v)$. Since ℓ is prime and $L_w = K_v(\sqrt[\ell]{\alpha})$ we have that either $[L_w : K_v] = \ell$, in which exactly one of e(w|v) or f(w|v) is ℓ (and the other is 1), or $[L_w : K_v] = 1$ and e(w|v) = f(w|v) = 1. These possibilities correspond to the above three cases:

1. If $\nu(\alpha) \neq 0 \mod \ell$ then $\sqrt[\ell]{\alpha} \notin K$ for otherwise $\nu(\alpha) = \ell \nu(\sqrt[\ell]{\alpha})$, forcing $\nu(\alpha) \equiv 0 \mod \ell$. This simultaneously shows that $[L_w : K_{nu}] = \ell$ and $e(w|\nu) \neq 1$ and so, by the remarks above, $e(w|\nu) = \ell$. But then $L_w|K_\nu$ is totally ramified.

Now note that if $a \in K_{\nu}^{\times}$ then $N_{L_w|K_{\nu}}(a) = a^{\ell}$ and that

$$N_{L_w|K_v}(\sqrt[\ell]{\alpha}) = \prod_{0 \le i \le \ell-1} \zeta_\ell^i \sqrt[\ell]{\alpha} = \alpha$$

since $L_w|K_v$ is Galois and the Galois conjugates of $\sqrt[\ell]{\alpha}$ are precisely of the form $\zeta_\ell^i \sqrt[\ell]{\alpha}$. This shows that the subgroup $\langle \alpha, K_v^{\times} \rangle^\ell \rangle \subseteq N_{L_w|K_v}(L_w^{\times})$. We wish to show the reverse inclusion. Indeed, note that since $\nu(\alpha)$ and ℓ are relatively prime, $\nu : \langle \alpha, K_v^{\times} \rangle^\ell \rangle \to \mathbb{Z}$ is surjective, and so if $\beta \in N_{L_w|K_v}(L_w^{\times})$ then there is $\gamma \in \langle \alpha, K_v^{\times} \rangle^\ell \rangle$ such that $\nu(\beta) = -\nu(\gamma)$, so that

$$\beta \gamma \in N_{L_w|K_v}(\mathcal{O}_w^{\times}) \subseteq \mathcal{O}_v^{\times}.$$

If we can show that $\beta \gamma = u^{\ell}$ for some $u \in \mathcal{O}_{\nu}^{\times} \subseteq K_{\nu}^{\times}$ then we will have that

$$\beta = \gamma^{-1} u^{\ell} \in \left\langle \alpha, (K_{\nu}^{\times})^{\ell} \right\rangle$$

proving the claim. To do so it suffices to show that $N_{L_w|K_v}(\mathcal{O}_w^{\times}) = (\mathcal{O}_v^{\times})^{\ell}$. We use the following fact:

Fact 3. ([3] IX.3, Lemma 4) Let $L_w|_{K_v}$ be a cyclic extension of local fields of characteristic 0 of degree n. Then $[K_v^{\times} : N_{L_w|_{K_v}}(L_w^{\times})] = [L_w : K_v]$ and $[\mathcal{O}_{K_v}^{\times} : N_{L_w|_{K_v}}(\mathcal{O}_{L_w}^{\times})] = e(w|v)$.

By using Hensel's lemma it is not hard to show that $[\mathcal{O}_{K_{\nu}}^{\times} : (\mathcal{O}_{K_{\nu}}^{\times})^{\ell}] = \ell = [\mathcal{O}_{K_{\nu}}^{\times} : N_{L_{w}|K_{\nu}}(\mathcal{O}_{L_{w}}^{\times})]$ and so as $(\mathcal{O}_{K_{\nu}}^{\times})^{\ell} \subseteq N_{L_{w}|K_{\nu}}(\mathcal{O}_{L_{w}}^{\times})$, in fact we have

$$(\mathcal{O}_{K_{\nu}}^{\times})^{\ell} = N_{L_{w}|K_{\nu}}(\mathcal{O}_{L_{w}}^{\times})$$

as desired.

2. If $\nu(\alpha) \equiv 0 \mod \ell$ but $\alpha \notin (K_{\nu})^{\times}$ then by writing $\alpha = \pi^{\ell} \tilde{\alpha}$ with π a uniformizer we have that $L_w = (K(\sqrt[\ell]{\tilde{\alpha}}))$ with $\nu(\tilde{\alpha}) = 0$, so without loss of generality we may assume that $\nu(\alpha) = 0$. But then

$$lpha
otin (K_
u)^\ell \cap (\mathcal{O}_K^{ imes}) = (\mathcal{O}_K^{ imes})^\ell$$

and so $\kappa(w) = \kappa(\nu)(\sqrt[\ell]{\alpha + \mathfrak{m}_{\nu}}) \neq \kappa(\nu)$, implying that

$$[\kappa(w):\kappa(\nu)] = \ell = f(w|\nu)$$

by primality of ℓ . But then by the fundamental identity this implies that $L_w|K_v$ is unramified and that $[L_w : K_v] = \ell$. Moreover,

$$N_{L_w|K_\nu}(L_w^{\times}) = \{ x \in K_\nu^{\times} \mid \nu(x) \equiv 0 \mod \ell \}$$

since $[\mathcal{O}_{\nu}^{\times}: N_{L_w|K_{\nu}}(\mathcal{O}_w^{\times})] = e(w|\nu) = 1$ and since $[K_{\nu}^{\times}: N_{L_w|K_{\nu}}(L_w^{\times})] = \ell = [K_{\nu}^{\times}: (K_{\nu}^{\times})^{\ell}]$ and since $(K_{\nu}^{\times})^{\ell} \subseteq N_{L_w|K_{\nu}}(L_w^{\times})$.

3. If $\alpha \in (K_{\nu}^{\times})^{\ell}$ then $L_{w} = K_{\nu}$ and the result is clear.

For a prime $\ell \in \omega$ and global field *K* such that $\mu_{2\ell} \subseteq K$, consider the set

$$\Lambda^{K;\ell} = \{ \alpha \in K \mid \neg \exists x \left(x^{\ell} - \alpha = 0 \right) \},\$$

the set of $\alpha \in K$ such that the extension $K(\sqrt[\ell]{\alpha})|K$ is nontrivial and hence of degree exactly ℓ . Consider the function $N_{\ell} : \Lambda_{K;\ell} \times K^{\ell} \to K$ given by setting

$$N_{\ell}(\alpha,\beta_{0},\cdots\beta_{\ell-1})=N_{K(\sqrt[\ell]{\alpha})|K}\left(\beta_{0}+\beta_{1}\sqrt[\ell]{\alpha}+\cdots+\beta_{i}\sqrt[\ell]{\alpha}^{i}+\cdots+\beta_{\ell-1}\sqrt[\ell]{\alpha}^{(\ell-1)}\right)$$

Claim 1. $N_{\ell} : \Lambda_{K;\ell} \times K^{\ell} \to K$ is a polynomial map with integer coefficients.

Proof. We know that for all $\alpha \in \Lambda_{K;\ell}$ that $\{1, \sqrt[\ell]{\alpha}, \sqrt[\ell]{\alpha}^2, \cdots, \sqrt[\ell]{\alpha}^{(\ell-1)}\}$ is a basis of $K(\sqrt[\ell]{\alpha})|K$. Under this basis, the multiplication-by- $\sqrt[\ell]{\alpha}$ map is given by the matrix

$$T_{\sqrt[\ell]{\alpha}} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0\\ 0 & 0 & 1 & \cdots & 0\\ \vdots & \dots & \ddots & \vdots\\ 0 & 0 & 0 & \cdots & 1\\ -\alpha & 0 & 0 & \cdots & 0 \end{pmatrix}$$

(As in [5] in the proof of Prop I.2.6). Moreover,

$$(\forall m \in \omega) (T_{\sqrt[\ell]{\alpha}})^m = T_{\sqrt[\ell]{\alpha}}^m; (\forall x \in K) x T_{\sqrt[\ell]{\alpha}}^m = T_{x\sqrt[\ell]{\alpha}}^n; T_{\sqrt[\ell]{\alpha}}^n = T_1 = I$$

and so

$$N_{\ell}(\alpha, \beta_0, \cdots, \beta_{\ell-1}) = N_{K(\sqrt[\ell]{\alpha})|K} \left(\beta_0 + \beta_1 \sqrt[\ell]{\alpha} + \cdots + \beta_i \sqrt[\ell]{\alpha}^i + \cdots + \beta_{\ell-1} \sqrt[\ell]{\alpha}^{(\ell-1)} \right)$$
$$= \det(T_{\sum \beta_i \sqrt[\ell]{\alpha}}) = \det(\sum_{i=0}^{\ell-1} \beta_i (T_{\sqrt[\ell]{\alpha}})^i)$$

which is clearly an integer-coefficient polynomial in the variables α , β_0 , \cdots , β_ℓ .

The utility of this claim is that the function N_{ℓ} uniformly parametrizes the norms $N_{K(\sqrt[\ell]{\alpha})|K}$ in a *first-order* manner. Using this parametrization we can construct a formula ψ_{ℓ} that encodes ramification information for extensions of the form $K_{\nu}(\sqrt[\ell]{\alpha})|K_{\nu}$. For a fixed prime ℓ consider the first-order-formula $\psi_{\ell}(u; x, y)$ given by

$$\psi_{\ell}(u; x, y) := "u \neq 0 \land \exists \overline{z_1} \exists \overline{z_2} \exists \overline{z_3} \exists t \ (t = N_{\ell}(y, \overline{z_1}) \land xt = N_{\ell}(xy, \overline{z_2}) \land u = N_{\ell}(t, \overline{z_3}))"$$

which, in plain English, says that $u \in N_{K(\sqrt[\ell]{t})|K}(K(\sqrt[\ell]{t})^{\times})$ for some t such that $t \in N_{K(\sqrt[\ell]{y})|K}(K(\sqrt[\ell]{y})^{\times})$ and such that $xt \in N_{K(\sqrt[\ell]{xy})|K}(K(\sqrt[\ell]{xy})^{\times})$.

Lemma 2. Let v be a nontrivial discrete valuation and suppose that $\ell \neq char(\kappa(v))$ and that K contains $\mu_{2\ell}$. Suppose further that $b \in \mathcal{O}_v^{\times} \setminus (\mathcal{O}_v^{\times})^{\ell}$ and v(a) = 1. If $K \models \psi_{\ell}(u; a, b)$, then $v(u) \equiv 0 \mod \ell$.

Proof. Suppose $K \models \psi_{\ell}(u; a, b)$. By Lemma 1 above we immediately have that $K_{\nu}(\sqrt[\ell]{b})|K_{\nu}$ is unramified of degree ℓ and that $K_{\nu}(\sqrt[\ell]{ab})|K_{\nu}$ is totally ramified of degree ℓ and by construction it is clear that the same claims hold for the extensions $K(\sqrt[\ell]{b})|K$ and $K(\sqrt[\ell]{ab})|K$ respectively. The equations occuring in $\psi_{\ell}(u; a, b)$ occuring of the form $t = N_{\ell}(b, \overline{z_1})$ and $at = N_{\ell}(ab, \overline{z_2})$ imply that

$$t = \tau_1 a^{m_1 \ell} \wedge at = \tau_2 (ab)^{m_2}$$

for some $\tau_i \in \mathcal{O}_{\nu}^{\times} \cap K^{\times}$, $m_i \in \mathbb{Z}$, and $t \in K$ by Lemma 1 since $N_{K_{\nu}(\sqrt[\ell]{a})|K_{\nu}}(K_{\nu}(\sqrt[\ell]{a}^{\times})) = \{x \in K_{\nu}^{\times} | \nu(x) \equiv 0 \mod \ell\}$, since $N_{K_{\nu}(\sqrt[\ell]{ab})|K_{\nu}}(K_{\nu}(\sqrt[\ell]{a}^{\times})) = \langle ab, (K_{\nu})^{\times} \rangle$, and since $\nu(ab) = 1 = \nu(a)$ means that *a* and *ab* are uniformizers for K_{ν} . We then have

$$\tau_1 a^{m_1\ell+1} = at = \tau_2^\ell (ab)^{m_2}$$

so that, dividing by *a*, we can write $t = (\tau_2 a^{m_1} b^{m_1})^{\ell} b$. But then $\frac{\sqrt[\ell]{t}}{\sqrt[\ell]{b}} = \tau_2 a^{m_1} b^{m_1} \in K$ so that $K_{\nu}(\sqrt[\ell]{t}) = K_{\nu}(\sqrt[\ell]{b})$ is unramified of degree ℓ . This means that we may write $u = \tau t^{m\ell}$ for some $\tau \in \mathcal{O}_{\nu}^{\vee} \cap K$ and $m \in \mathbb{Z}$ so that $\nu(u) = m\ell$ so $\nu(u) \equiv 0 \mod \ell$.

As such, picking *any* $a, b \in K$ satisfying the above hypotheses for a fixed discrete valuation ν yields a subset $\psi_{\ell}(K, a, b) \subseteq \{x \in K | \nu(x) \equiv 0 \mod \ell\}$, but *a priori* the reverse inclusion may not hold. Our next goal is to use facts from class field theory to show that we can choose $a, b \in K$ so that the formula $\psi_{\ell}(u; a, b)$ (in *one* free variable) *almost* satisfies the desired property.

Up until now we haven't needed to use the correspondence between nontrivial discrete valuations ν on K and nonzero primes $\mathfrak{p} \in \operatorname{Spec}(\mathcal{O}_K)$, but to make the connection to class field theory explicit we will henceforth identify a discrete valuation ν with the unique prime $\mathfrak{p}_{\nu} \in \operatorname{Spec}(\mathcal{O}_K)$ such that $(\mathcal{O}_K)_{\mathfrak{p}_{\nu}} = \mathcal{O}_{\nu}$.

Lemma 3. Let ν be a nontrivial discrete valuation, that $\ell \neq char(\kappa(\nu))$, that K contains $\mu_{2\ell}$, and that $\nu(\ell) = 0$. Let $\mathfrak{p} = \mathfrak{p}_{\nu}$ be the prime associated to ν . Then there exists $a, b \in K$ and $\mathfrak{q} \neq \mathfrak{p} \in Spec(\mathcal{O}_K)$ with associated valuation $\nu_{\mathfrak{q}}$ such that

$$\psi_{\ell}(K;a,b) = \{ x \in K \,|\, \nu(x) \equiv 0 \mod \ell \land \nu_{\mathfrak{q}}(x) \equiv 0 \mod \ell \}$$

Proof. We first *construct* candidates for $a, b \in K$ and $q \in \text{Spec}(\mathcal{O}_K)$ and then show that they yield the desired conclusion.

Construction. We first construct *a* and along the way we will also construct \mathfrak{q} . Consider the set $R_{\ell,K} = {\mathfrak{r} \in \operatorname{Spec}(\mathcal{O}_K) \setminus {0} \mid \mathfrak{r} \mid \ell}$ the set of divisors of ℓ . I first claim that there is an $m \in \mathbb{Z}$ such that if $c \equiv 1 \mod \mathfrak{r}^m$ then $c \in (K_{\nu_{\mathfrak{r}}}^{\times})^{\ell}$. Let $\mathfrak{r} \in R_{\ell,K}$, let $m = 2\nu_{\mathfrak{r}}(\ell)$, and consider the polynomial

 $f(x) = x^{\ell} - c$ which has derivative ℓ . If $c \equiv 1 \mod \mathfrak{r}^m$ then

 $f(1) = 1 - a \equiv 0 \mod \mathfrak{r}^m \equiv 0 \mod \mathfrak{r}^{2\nu_\mathfrak{r}(\ell)} \equiv 0 \mod (\ell)^2 \mathfrak{r} \equiv 0 \mod (f'(1))^2 \mathfrak{r}$

so by Hensel's lemma we have that there is *some* $d \in K$ such that $f(d) = d^{\ell} - c = 0$, so that $c \in (K_{\nu_{\mathfrak{r}}}^{\times})^{\ell}$. Since $R_{\ell,K} = {\mathfrak{r}_i}_{i \in I}$ is finite, if for all $i \in I$ we take $m_i = 2\nu_{\mathfrak{r}_i}(\ell) \in \mathbb{Z}$ then taking $m := \sup({m_i})$ gives us the desired number. Given this m, define a cycle

$$\mathfrak{c} := \prod_{\nu \mid \infty} \nu \times \prod_{\mathfrak{r} \in R_{\ell,K}} \nu_{\mathfrak{r}}^m$$

and consider the *generalized class group* associated to the cycle \mathfrak{c} , $Cl_{\mathfrak{c}} = J(\mathfrak{c})/K_{\mathfrak{c}}$. Consider the class of $[\mathfrak{p}_{\nu}] \in C_{\mathfrak{c}}$. We use the following analogue of Dirichlet's Theorem on Arithmetic Progressions for generalized class groups:

Fact 4. ([5] Theorem VII.13.2) Let H be a subgroup of $J(\mathfrak{c})$ such that $P_{\mathfrak{c}} \subseteq H$. Then for every class $[\mathfrak{p}] \in J(\mathfrak{c})/H$, the density of primes in $[\mathfrak{p}]$ is $\frac{1}{[J(\mathfrak{c}):H]} > 0$.

Given this fact, we may choose a prime $q \neq p \in [p]^{-1}$. By construction, pq = (a) for some $a \in K$ satisfying $a \equiv 1 \mod r^m$ for all $r \in R_{\ell,K}$ and such that a > 0 in all archimedean valuations.

We now aim to construct *b* using class field theory. Keep in mind that our choice of *b* should make it apparent that $\psi(K, a, b) \subseteq \mathcal{O}_{\mathfrak{p}} \cap \mathcal{O}_{\mathfrak{q}}$, for one direction of the proof. Our choice of \mathfrak{p} and \mathfrak{q} yields that they are the *only* ramified primes in the extension $K(\sqrt[\ell]{a})|K$. Since ℓ is prime, this means that $\mathfrak{p}\mathcal{O}_{K(\sqrt[\ell]{a})} = \mathfrak{P}^{\ell}$ and $\mathfrak{q}\mathcal{O}_{K(\sqrt[\ell]{a})} = \mathfrak{Q}^{\ell}$ for primes $\mathfrak{P}, \mathfrak{Q} \in \operatorname{Spec}(\mathcal{O}_{K(\sqrt[\ell]{a})})$.

Then by the fundamental identity and the theorems on local norm indices we have that

$$[\mathcal{O}_{K_{\mathfrak{p}}}:N_{K(\sqrt[\ell]{a})_{\mathfrak{P}}|K_{\mathfrak{p}}}(\mathcal{O}_{K(\sqrt[\ell]{a})_{\mathfrak{P}}}^{\times})] = \ell = [\mathcal{O}_{K_{\mathfrak{q}}}:N_{K(\sqrt[\ell]{a})_{\mathfrak{Q}}|K_{\mathfrak{q}}}(\mathcal{O}_{(K(\sqrt[\ell]{a}))_{\mathfrak{Q}}}^{\times})] > 1.$$

and so, in particular, there is a unit $\tau_{\mathfrak{p}} \in \mathcal{O}_{K_{\mathfrak{p}}} \setminus N_{K(\sqrt[\ell]{a})_{\mathfrak{P}}|K_{\mathfrak{p}}}(\mathcal{O}_{K(\sqrt[\ell]{a})_{\mathfrak{P}}}^{\times})$. At this stage we invoke pertinent facts from both local and global class field theory

Fact 5. ([5])

1. (Local Norm Residue Symbol [V.1.3]) Let $L_w|K_v$ be a finite Galois extension of local fields. Then there is a canonical surjective morphism

$$(-, L_w|K_v): K_v^{\times} \to Gal(L_w|K_v)^{ab}$$

with ker $((-, L_w | K_v)) = N_{L_w | K_v}(L_w^{\times}).$

2. (Global Norm Residue Symbol [VI.5.5]) Let L|K be a finite Galois extension of number fields. Then there is a canonical surjective morphism

$$(-, L|K) : \mathbb{I}_K/K^{\times} \to Gal(L|K)^{ab}$$

with kernel ker $((-, L|K)) = N_{L|K}(\mathbb{I}_L/L^{\times}).$

3. (Local-Global Compatibility [VI.5.6]) If L|K is a finite abelian extension of number fields and v is a valuation (archimedean or nonarchimedean) then the following diagram commutes

where $\theta : K_{\nu}^{\times}$ maps $\theta_{\nu}(a) = [(\dots, 1, \dots, 1, a, 1, \dots, 1, \dots)] \in \mathbb{I}_{K}/K^{\times}$ where *a* is the ν^{th} coordinate of the idele $(\dots, 1, \dots, 1, a, 1, \dots, 1, \dots)$ and ι is the embedding guaranteed to exist by decomposition theory. 4. (Product Formula [VI.5.7]) If L|K is a finite abelian extension of number fields and $\alpha = (\alpha_{\nu})_{\nu} \in \mathbb{I}_{K}$ then

$$(\alpha, L|K) = \prod_{\nu \in \mathcal{M}_K} (\alpha_{\nu}, L_w|K_{\nu})$$

where L_w is the unique extension of local fields of K_v with w|v. Moreover, for a principal idele $\alpha = (a)_v$ we have that

$$\prod_{\nu\in\mathcal{M}_K}(a,L_w|K_\nu)=1$$

Recall our choice of $\tau_{\mathfrak{p}} \in \mathcal{O}_{K_{\mathfrak{p}}} \setminus N_{K(\sqrt[\ell]{a})_{\mathfrak{P}}|K_{\mathfrak{p}}}(\mathcal{O}_{K(\sqrt[\ell]{a})_{\mathfrak{P}}}^{\times})$. The by the theorem above on local norm residues,

$$(\tau_{\mathfrak{p}}, K(\sqrt[\ell]{a}))_{\mathfrak{P}}|K_{\mathfrak{p}}) = \sigma \neq \mathrm{id}_{L} \in Gal(L/K)$$

since $\tau_{\mathfrak{p}}$ was chose to *not* be a norm. Since $K(\sqrt[\ell]{a})_{\mathfrak{P}}|K_{\mathfrak{p}}$ is *cyclic of prime order*, the local norm residue map $(-, K(\sqrt[\ell]{a})_{\mathfrak{P}}|K_{\mathfrak{q}}) : \mathcal{O}_{K_{\mathfrak{q}}}^{\times} \to Gal(L_{w}|K_{v}) = Gal(L/K)$ is surjective! As such, there is a non-norm $\tau_{\mathfrak{q}} \in \mathcal{O}_{K_{\mathfrak{q}}}^{\times}$ with $(\tau_{\mathfrak{q}}, K(\sqrt[\ell]{a})_{\mathfrak{P}}|K_{\mathfrak{q}}) = \sigma^{-1}$.

We now produce a first approximation for our desired *b*. Let $\tilde{b} \in K$ be such that $\tilde{b} \equiv \tau_{\mathfrak{p}} \mod \mathfrak{p}$, $\tilde{b} \equiv \tau_{\mathfrak{q}} \mod \mathfrak{q}$, $\tilde{b} \equiv 1 \mod \mathfrak{r}^m$ for all $\mathfrak{r} \in R_{\ell,K}$, and such that \tilde{b} is positive in all real valuations. Since this is a *finite* list of valuations, the

Fact 6. (Approximation Theorem, [5] II.3.4) Let $|-|_1, \dots, |-|_n$ be pairwise inequivalent valuations of the field K and let $z_1, \dots, z_n \in K$ be given. Then for every $\epsilon > 0$ there is a $y \in K$ such that

$$(\forall 1 \leq i \leq n) |y - z_i|_i < \epsilon \quad \Box$$

guarantees the existence of such a \tilde{b} by considering, for every prime \mathfrak{s} appearing above, the induced absolute value $|-|_{\mathfrak{s}}$ given by $|x|_{\mathfrak{s}} = |N(\mathfrak{s})|^{-\nu_{\mathfrak{s}}(x)}$ and by letting each archimedean prime being associated to its natural absolute value.

Note that in the generalized class group $J(\mathfrak{cpq})/P_{\mathfrak{cpq}}$ the class every element in the class $[(\tilde{b})]$ is principal (since the equivalence relation defining this generalized class group is a *refinement* of the one defining the class group Cl_K since we have the natural surjection $J(\mathfrak{cpq})/P_{\mathfrak{cpq}} \rightarrow Cl_K$). Then by

the density theorem for primes in living in a given class in the generalized class group, there exists a *principal* prime $\mathfrak{t} = (t) \in [(\tilde{b})]$ (which is emphatically *not* \mathfrak{p} or \mathfrak{q}). Then $[\mathfrak{t}][(\tilde{b})^{-1}] \in J(\mathfrak{cpq})/P_{\mathfrak{cpq}}$ is trivial and so the principal ideal $\mathfrak{t}(\tilde{b}^{-1})$ has a generator $g \equiv 1 \mod \mathfrak{cpq}$. Then setting $b := g\tilde{b}$ yields a generator of \mathfrak{t} such that

- $b \equiv 1 \mod \mathfrak{r}^m$ for all $\mathfrak{r} \in R_{\ell,K}$
- $b \equiv \tau_{\mathfrak{p}} \mod \mathfrak{p}, b \equiv \tau_{\mathfrak{q}} \mod \mathfrak{q}$
- *b* is positive for all real valuations on *K*

which all follow since $g \equiv 1 \mod \mathfrak{cpq}$ and by choice of \tilde{b} .

Verification. We now sketch how to verify that, in fact,

$$\psi_{\ell}(K;a,b) = \{ x \in K \,|\, \nu(x) \equiv 0 \mod \ell \land \nu_{\mathfrak{q}}(x) \equiv 0 \mod \ell \}$$

To show that $\psi_{\ell}(K; a, b) \subseteq \{x \in K \mid v(x) \equiv 0 \mod \ell \land v_q(x) \equiv 0 \mod \ell\}$ it turns out that what we really need to do is use the fact that

Fact 7. ([5] VI.4.5) Let L|K be a cyclic extension of algebraic number fields. An $x \in K^{\times}$ is of the form $x = N_{L|K}(y)$ for some $y \in L^{\times}$ if and only if $x = N_{L_w|K_v}(y_w)$ for some $y_w \in L_w^{\times}$ for all completions L_w of L.

to show that $a \in N_{K(\sqrt[\ell]{b})|K}(K(\sqrt[\ell]{b})^{\times})$. It turns out that to apply this fact, the main thing we have to show is that $a \in (K_t^{\times})^{\ell}$ which can be done using Artin Reciprocity. Indeed, since *b* is a norm for all K_t such that $\mathfrak{r} \in R_{\ell,K}$ (by choice of cycle *c* and integer *m* as well as the lemma characterizing norm groups in the ramified case) we have that $(b, (K(\sqrt[\ell]{a}))_{\mathfrak{R}}|K_t) = \mathrm{id}_K$. For real valuations v_{real} we have that $(b, (K(\sqrt[\ell]{a}))_{w_{real}}|K_{v_{real}}) = 1$ since $|b|_{v_{real}} > 0$. For all $\mathfrak{s} \notin \mathcal{M}_{K,\infty} \cup R_{\ell,K} \cup \{\mathfrak{p},\mathfrak{q},\mathfrak{t}\}$ we have that $(K(\sqrt[\ell]{a}))_{\mathfrak{S}}$ is unramified and because $v_{\mathfrak{s}}(b) = 0$ as *b* is a uniformizer for $v_{\mathfrak{t}}$. Then the product formula for norm residues tells us that

$$\mathrm{id}_{K} = (b, (K(\sqrt[\ell]{a}))_{\mathfrak{P}}|K_{\mathfrak{p}})(b, (K(\sqrt[\ell]{a}))_{\mathfrak{Q}}|K_{\mathfrak{q}})((b, (K(\sqrt[\ell]{a}))_{\mathfrak{T}}|K_{\mathfrak{t}})) = ((b, (K(\sqrt[\ell]{a}))_{\mathfrak{T}}|K_{\mathfrak{t}}))$$

since our choice of *b* forces $(b, (K(\sqrt[\ell]{a}))_{\mathfrak{P}}|K_{\mathfrak{p}}) = (\tau_{\mathfrak{p}}, (K(\sqrt[\ell]{a}))_{\mathfrak{P}}|K_{\mathfrak{p}}) = \sigma$ and similarly that $(b, (K(\sqrt[\ell]{a}))_{\mathfrak{Q}}|K_{\mathfrak{q}}) = \sigma^{-1}$. Then as

$$\ker((-, (K(\sqrt[\ell]{a}))_{\mathfrak{T}}|K_{\mathfrak{t}})) = N_{(K(\sqrt[\ell]{a}))_{\mathfrak{T}}|K_{\mathfrak{t}}}((K(\sqrt[\ell]{a}))_{\mathfrak{T}}^{\times})$$

b is a norm of $(K(\sqrt[\ell]{a}))_{\mathfrak{T}}|K_{\mathfrak{t}}$. But by choice of $\mathfrak{t} \neq \mathfrak{p}, \mathfrak{q}$ we have that this extension is unramified; but as *b* is a uniformizer for $\nu_{\mathfrak{t}}$ we must have that $(K(\sqrt[\ell]{a}))_{\mathfrak{T}} = K_{\mathfrak{t}}$ and so $a \in (K_{\mathfrak{t}}^{\times})^{\ell}$. Now, using this Hasse's Norm theorem and our construction of *a* and *b* it is not too hard to show that $N_{K(\sqrt[\ell]{b})|K}(K(\sqrt[\ell]{b})^{\times})$ and the proof of Lemma 2 it is not too hard to show that

$$\psi_{\ell}(K;a,b) \subseteq \{x \in K \,|\, \nu(x) \equiv 0 \mod \ell \land \nu_{\mathfrak{q}}(x) \equiv 0 \mod \ell\}$$

Conversely, the verification that *if* $v(x) \equiv 0 \mod \ell$ and $v_q(x) \equiv 0 \mod \ell$ *then* $K \models \psi_\ell(x; a, b)$ is a fairly straightforward of the local-to-global principle for norms as well as the product formula for the norm residue symbol evaluated at principal ideles. The precise details may be found in ([6], Lemma 3).

Now that we've shown this hard technical lemma, the definability of \mathcal{O}_{V} is almost immediate.

Theorem 2. Let K be a number field. Then all nontrivial discrete valuations v are arithmetically definable.

Proof. We first prove the result under the hypotheses above. Let ℓ be a prime number. Suppose that ν is a nonarchimedean valuation on K such that $\nu(\ell) = 0$, that K contains the $2\ell^{\text{th}}$ roots of unity, and that char $(\kappa(\nu)) \neq \ell$. By the proof of Lemma 3 (namely, the density theorem for primes in classes in generalized class groups) we may pick *two* distinct primes $\mathfrak{q}_1, \mathfrak{q}_2$ and elements $a_1, b_1, a_2, b_2 \in K$ such that $\psi_\ell(K; a_i, b_i) = \{x \in K^* \mid \nu(x) \equiv 0 \mod \ell \land \nu_{\mathfrak{q}_i}(x) \equiv 0 \mod \ell\}$. But clearly *any* $y \in K^*$ such that $\nu(y) \equiv 0 \mod \ell$ can be written as the product $y = z_1 z_2$ with $z_i \in \{x \in K^* \mid \nu(x) \equiv 0 \mod \ell \land \nu_{\mathfrak{q}_i}(x) \equiv 0 \mod \ell$. Set

$$\phi_{\ell}(x;a_1,b_1,a_2,b_2) := (\exists z_1,z_2)x = z_1z_2 \land \psi_{\ell}(z_1;a_1,b_1) \land \psi_{\ell}(z_2;a_2,b_2)$$

Then

$$\phi_{\ell}(K; a_1, b_1, a_2, b_2) = \{ x \in K^{\times} \mid \nu(x) \equiv 0 \mod \ell \}.$$

By Proposition 2, this implies that in fact ν is arithmetically definable!

To eliminate the special assumptions about *K* we show that we use an easy fact from commutative algebra:

Fact 8. (*Going-Up Theorem*, [1] 5.11) Let $A \subseteq B$ be an integral extension of commutative rings and let $\mathfrak{p} \in Spec(A)$. Then there exists a $\mathfrak{q} \in B$ such that $\mathfrak{q} \cap A = \mathfrak{p}$.

Using this fact we can prove the following

Claim 2. Suppose that L|K is a finite extension of number fields. Suppose that all discrete valuations w on *L* are arithmetically definable. Then all discrete valuations v on K are definable.

Proof of **claim**: Let ν be a discrete valuation on K. Then by the going up theorem, there is some $w|\nu$ on L. By assumption, w is arithmetically definable, say by some formula $\Phi_w(x;y;\overline{c})$. Take an element θ such that $L = K(\theta)$ and let $\{a_0, \dots, a_{n-1}\} \subseteq K$ (where n = [L : K]) be the coefficients of the minimal polynomial of θ . By Theorem 1, there exists an interpretation Γ of $(L, +, \times, 0, 1)$ in $(K, +, \times, 0, 1, a_0, \dots, a_{n-1})$. Let $\Psi_{\Gamma}(\overline{x}, \overline{y}\overline{\pi^{-1}(c)})$ be a formula defining w. By construction, the first-order formula $\Psi_{\Gamma}(x_0, 0, \dots, 0; y_0, 0, \dots, 0; \overline{\pi^{-1}(c)})$ is satisfied exactly by those $x_0 \in K$ such that

$$w(x_0 + 0 \cdot \theta + \dots + 0 \cdot \theta^{n-1}) \ge w(y_0 + 0 \cdot \theta + \dots + 0 \cdot \theta^{n-1})$$

But as w|v, this is precisely the set

$$\{(x_0, y_0) \in K \,|\, w(x_0) \ge w(y_0)\} = \{(x_0, y_0) \in K \,|\, v(x_0) \ge v(y_0)\}$$

and so v is arithmetically definable in *K*, as desired.

Now note that for all discrete valuations ν on K, one of the following must occur: $\nu(2) = 0$, $\nu(3) = 0$ and either char($\kappa(\nu)$) $\neq 2$, char($\kappa(\nu)$) $\neq 3$. Consider the field $K(\zeta_{12})|K$. Then for *any* discrete valuation ν on K, any extension $w|\nu$ must have that

$$\{x \in (K(\zeta_{12}))^{\times} \mid w(x) \equiv 0 \mod \ell\} = \phi_{\ell_w}((K(\zeta_{12}); a_w, b_w))$$

for some $\ell_w \in \{2,3\}$ and $a_w, b_w \in (K(\zeta_{12}))^{\times}$. But then *w* is arithmetically definable over $K(\zeta_{12})$ and so by the claim above ν is arithmetically definable over *K*.

Conclusion and Further Results

In his original paper [6], proves the following stronger result:

Theorem 3. ([6] Theorems 1,6) Let K be a global field.

- If K is a number field, then every discrete valuation is arithmetically definable, as are the closed unit balls of all archimedean valuations.
- *If K is a function field, then every discrete valuation is arithmetically definable.*

The function field analogue is proven using similar methods to the ones outlined above, and the proof of the archimedean case for number fields has a very topological flavor and relies upon deep theorems on quadratic forms.

By tweaking the first-order formulas ϕ_{ℓ} (defined in our proof of Theorem 2 above), Rumely is able to construct first order formulas $\Phi_{\ell}(x;\bar{z})$ such that for *all* global fields *K* and $\bar{c} \in K$, $\Phi(K;\bar{c})$ is either \mathcal{O}_{ν} for some discrete valuation ν or is all of *K*. This uses the characterization of valuation rings of *K* as subrings $R \subseteq K$ such that if $c \neq 0 \in K$, then either *c* or $c^{-1} \in R$. Moreover, Rumely shows there is a finite list $\{\ell_1, \dots, \ell_n\}$ of primes such that *every* discrete ν on *K* there is some tuple $\overline{c_{\nu}} \in K$ with $\Phi_{\ell_i}(K; \overline{c_{\nu}}) = \mathcal{O}_{\nu}$ for some *i*. Using this and the fact that *universal* quantification is the same as taking a large intersection and that $\mathcal{O}_K = \bigcap_{\mathfrak{p} \in \operatorname{Spec}(\mathcal{O}_K) \setminus \{0\}} \mathcal{O}_{\mathfrak{p}}$ Rumely shows the following:

Theorem 4. ([6] Corollary 3) There is a first-order formula Int(x) such such that, for all number fields K, $Int(K) = \mathcal{O}_K$.

These results point to and culminate in Rumely's proof that

Theorem 5. ([6] Theorem 4) The first-order theory of global fields is **essentially** undecidable; that is, any consistent extension of the common first-order theory of global fields is undecidable.

References

- M. Atiyah and I. MacDonald. Introduction To Commutative Algebra. Addison Wesley, 1st edition, 1969.
- 2. W. Hodges. A Shorter Model Theory. Cambridge University Press, 1st edition, 1997.
- 3. S. Lang. Algebraic Number Theory. Springer, 2nd edition, 1994.
- 4. S. Lang. Algebra. Springer, 3rd edition, 2002.
- 5. J. Neukirch. Algebraic Number Theory. Springer, 1st edition, 1999.
- 6. R. S. Rumely. Undecidability and Definability for the Theory of Global Fields. *Transactions of the American Mathematical Society*, 262(1):195–217, November 1980.