The Definability of Valuations in Global Fields An Introduction to Rumely's Undecidability and Definability for the Theory of Global Fields

Reid Dale
University of California, Berkeley
reiddale@math.berkeley.edu
December 11, 2014

Introduction

This document is meant to be serve as a self-contained introduction to the definability portion of Rumely's classic paper [6] on the definability and undecidability of the first-order theory of global fields. For the sake of brevity and the clarity of the argument we restrict ourselves to showing the definability of nonarchimedean valuations in the case of number fields. The way we go about doing this actually shows more: by showing that we can define all such valuations from a uniform family of first-order formulas we will be able to explicitly show that not only are all of the valuation rings of a given number field definable, but also that the ring of integers itself is definable. The key technical tools used in the paper come from local and global class field theory: density theorems for idele class groups, Hasse's local-to-global principle for norms, and the local and global norm residue symbols. The references we use for background number-theoretic facts are Neukirch's classic Algebraic Number Theory [5] and Lang's Algebraic Number Theory [3]. There is essentially no new content in this paper; I hope only that I've succeeded in producing a friendly introduction to some key themes in the intersection of model theory and algebraic number theory.

Before we begin, we set some notational conventions. I will use symbols such as v and w to refer to valuations (archimedean or nonarchimedean), Gothic letters $\mathfrak{p}, \mathfrak{P}$ to refer to primes in the spectrum of some ring of integers \mathcal{O}_{K}. \mathcal{O}_{v} will be the valuation ring of v in K, with maximal ideal \mathfrak{m}_{v} and residue field $\kappa(v):=\mathcal{O}_{v} / \mathfrak{m}_{v}$. Typically ℓ and p will be prime integers, and ζ_{ℓ} will denote a primitive $\ell^{\text {th }}$ root of unity. The idele group of a number field is denoted \mathbb{I}_{K}, and for a given cycle \mathfrak{c} we let $C l_{\mathfrak{c}}=J(\mathfrak{c}) / K_{\mathfrak{c}}$ be the corresponding generalized class group. When I speak of a tuple $\left(x_{1}, \cdots, x_{n}\right)$ I will often just write it as \bar{x}.

Interpretations of Fields

We assume that the reader is familiar with the most basic concepts of model theory, namely: firstorder languages and (unnested) atomic formulas, (parameter) definable sets and definable functions. If required, these definitions may all be found in Chapter 1 of [2]. Beyond these elementary notions,
the most important model-theoretic concept for our purposes here is that of an interpretation of one structure inside another:

Definition 1. ([2] 4.3) An interpretation Γ of a ρ-structure \mathcal{B} in a τ-structure \mathcal{A} is given by the following data:

- A τ-formula $\partial_{\Gamma}\left(x_{0}, \cdots, x_{n-1}\right)$
- For each unnested atomic ρ-formula $\phi\left(y_{0}, \cdot, y_{m-1}\right)$ a τ-formula $\phi_{\Gamma}\left(\left(x_{0 i}\right)_{0 \leq i<n}, \cdots,\left(x_{(m-1), i}\right)_{0 \leq i<n}\right)$ (a "translation" of ρ-formulas into τ-formulas)
- A surjection $\pi: \partial_{\Gamma}(\mathcal{A}) \rightarrow \mathcal{B}$ such that for all $\bar{a}, \bar{b} \in \partial_{\Gamma}(\mathcal{A})$

1. $\pi(\bar{a})=\pi(\bar{b})$ if and only if $\psi_{\Gamma}(\bar{a}, \bar{b})$ where ψ is the formula $y_{0}=y_{1}$.
2. For each unnested atomic formula $\phi \in \mathcal{L}_{\rho}, \pi^{-1}(\phi(\mathcal{B}))=\phi_{\Gamma}(\mathcal{A})$.

The main point of interpretations is that if a structure \mathcal{A} interprets another structure \mathcal{B}, then the first-order theory of \mathcal{B} is in some sense already "witnessed" by \mathcal{A}. This is made precise by a special case of the so-called reduction theorem (which is not too difficult to prove!)

Fact 1. ([2] 4.3.1) Let \mathcal{B} be interpreted in \mathcal{A} as above. Then for every $\phi \in \mathcal{L}_{\rho}$ there is a $\phi_{\Gamma} \in \mathcal{L}_{\tau}$ such that

$$
\mathcal{B} \vDash \phi(\pi(\bar{a})) \leftrightarrow \mathcal{A} \vDash \phi_{\Gamma}(\bar{a})
$$

The key use of interpretations for our purposes is the fact that if K is perfect, any finite extension $L \mid K$ can be interpreted (with pararameters) over K.

Theorem 1. Let K be a perfect field. Then any finite extension $L \mid K$ is interpretable over K over a finite set of parameters, namely, the parameters of the minimal polynomial of any element θ such that $L=K(\theta) \mid K$.

Proof. Let $L \mid K$ be a finite extension of number fields of degree n. By the primitive element theorem, there is some $\theta \in L$ such that $L=K(\theta)$. Let $f(x)=$ minpoly $(\theta)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$. Consider K in the natural way as an $\mathcal{L}_{\text {rings }} \cup\left\{a_{i}\right\}_{0 \leq i<n}$-structure. We aim to construct an interpretation Γ the $\mathcal{L}_{\text {rings }}$ structure $(L,+, \times, 0,1)$ in the $\mathcal{L}_{\text {rings }} \cup\left\{a_{i}\right\}_{0 \leq i<n}$-structure $\left(K,+, \times, 0,1, a_{0}, \cdots, a_{n-1}\right)$. Since L is an n-dimensional K-vector space with basis $\left\{1, \theta, \cdots, \theta^{n-1}\right\}$, we set

- Let $\partial_{\Gamma}\left(x_{0}, \cdots, x_{n-1}\right):=" \bigwedge_{0 \leq i<n} x_{i}=x_{i}{ }^{\prime \prime}$, which has $\partial_{\Gamma}\left(K^{n}\right)=K^{n}$.
- Set $\pi: K^{n} \rightarrow L$ by mapping $\left(c_{0}, \cdots, c_{n-1}\right) \mapsto \sum_{0 \leq i<n} c_{i} \theta^{i}$ which is surjective since $\left\{1, \theta, \cdots, \theta^{n-1}\right\}$ is a basis of L over K.
- Set $\psi_{\Gamma}(\bar{x}, \bar{z}):=$ " $\bigwedge_{0 \leq i<n} x_{i}=z_{i}$ ", so that $\pi(\bar{c})=\pi(\bar{d})$ if and only if $\psi_{\Gamma}(\bar{c}, \bar{d})$ since $\left\{1, \theta, \cdots, \theta^{n-1}\right\}$ is a basis of L over K.

The slightly harder part of this problem is to endow K^{n} with an $\mathcal{L}_{\text {rings }} \cup\left\{a_{i}\right\}_{0 \leq i<n}$-definable field structure $(K, \oplus, \otimes, 0,1)$ such that $\left(K^{n}, \oplus, \otimes, 0,1\right) \cong(L,+, \times, 0,1)$. If we manage to do this, it is routine to check that this gives an interpretation of L in K (over the given choice of parameters) since the only unnested atomic formulas in $\mathcal{L}_{\text {rings }}$ are of the form $y_{0}+y_{1}=y_{2}, y_{0} \cdot y_{1}=y_{2}$, and $y=c$ for some constant c.

We define the field structure as follows:

- We let $0 \in K^{n}$ be the tuple $(0, \cdots, 0)$. This is definable in K by the formula zero $(\bar{x})=$ " $\bigwedge_{0 \leq i<n} x_{i}=0$ ".
- We let $1 \in K^{n}$ be the tuple $(1,0, \cdots, 0)$. This is definable in K by the formula one $(\bar{x})=$ " $x_{0}=$ $1 \wedge \wedge_{1 \leq i<n} x_{i}=0^{\prime \prime}$.
- The graph of addition $\oplus: K^{n} \rightarrow K^{n}$ is given by the formula

$$
\operatorname{Add}(\bar{x}, \bar{y}, \bar{z})=" \bigwedge_{0 \leq i<n} x_{i}+y_{i}=z_{i}^{\prime \prime}
$$

so that $\oplus: K^{n} \rightarrow K^{n}$ is the obvious vector space addition.

- Multiplication is the hardest part. To define the graph of multiplication, first recall that the multiplication-by- θ map $T_{\theta}: L \rightarrow L$ is represented by the matrix

$$
T_{\theta}=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \cdots & \cdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-a_{0} & -a_{1} & -a_{2} & \cdots & -a_{n-1}
\end{array}\right)
$$

with respect to the basis $\left\{1, \theta, \cdots, \theta^{n-1}\right\}$ (this fact is from [5] in the proof of Prop I.2.6). But then

$$
(\forall m \in \omega)\left(T_{\theta}\right)^{m}=T_{\theta^{m}} ;(\forall x \in K) x T_{\theta^{m}}=T_{x \theta^{m}} ; T_{\theta^{0}}=T_{1}=I
$$

For $\gamma=c_{0}+c_{1} \theta+\cdots c_{n-1} \theta^{n-1}$ we may therefore represent the multiplication-by- γ map in the basis $\left\{1, \theta, \cdots, \theta^{d-1}\right\}$ as the sum $T_{\gamma}=\sum_{i=0}^{n-1} c_{i} T_{\theta^{i}}$. But this allows us to define multiplication on K^{n} by the following equation

$$
\left(c_{0}, \cdots, c_{n-1}\right) \otimes\left(d_{0}, \cdots, d_{n-1}\right):=\left(\sum_{i=0}^{n-1} c_{i} T_{\theta^{i}}\right)\left(d_{0}, \cdots, d_{n-1}\right)^{T}
$$

which is definable over the parameters $\left\{a_{0}, \cdots, a_{n-1}\right\}$ since matrix multiplication and addition are clearly definable functions in $\mathcal{L}_{\text {rings }}$. From here it is easy to write down an explicit formula $\operatorname{Mult}(\bar{x}, \bar{y}, \bar{z})$ for the graph of $\otimes: K^{n} \rightarrow K^{n}$.

By construction of \oplus and \otimes, π is in fact a field isomorphism and so ($L,+, \times, 0,1$) is interpretable in $\left(K,+, \times, 0,1, a_{0}, \cdots, a_{n-1}\right)$.

It is worth remarking that something similar can be achieved even in the imperfect case, which must be dealt with if one wishes to consider the case of global function fields.

Definability of Nonarchimedean Valuations

Now that we've set up some model-theoretic background we can proceed to the real substance of Rumely's work. We begin by saying what we mean when we say that a valuation v is arithmetically
definable in K :
Definition 2. Given a discrete valuation $v: K^{\times} \rightarrow \mathbb{Z}$, an arithmetic definition of v is a formula $\phi(x, y, \bar{z}) \in \mathcal{L}_{\text {rings }}$ such that for some choice of parameters $\bar{c} \in K^{n}$ and all $a, b \in K$

$$
v(a) \geq v(b) \leftrightarrow \phi(a, b, \bar{c})
$$

In other words, v is definable if the set $\left\{(a, b) \in K^{2} \mid v(a) \geq v(b)\right\}$ is a parameter-definable subset of K.

Right away we can reduce this problem to a slightly easier one:
Proposition 1. A valuation v is arithmetically definable in K if and only if the valuation ring $\mathcal{O}_{v} \subseteq K$ is parameter-definable.

Proof. Suppose that v is arithmetically definable, and let $\phi(x, y, \bar{c})$ be a formula defining it. Then $\mathcal{O}_{v}=\{x \in K \mid v(x) \geq 0\}=\phi(K, 1, \bar{c})$ and so the formula $\phi(x, 1, \bar{c})$ defines \mathcal{O}_{v}.

On the other hand, suppose \mathcal{O}_{v} is parameter-definable by a formula $\psi(x, \bar{c})$. Consider the formula $\chi(x, y, \bar{c})$ given by

$$
x=0 \vee(y \neq 0 \wedge \forall z(z y=x \rightarrow \psi(z, \bar{c})))
$$

which says that either $x=0$ or that $\psi(z, \bar{c})$ holds for $z=\frac{x}{y}$. But then if $a, b \in K$ then $K \vDash \chi(a, b, \bar{c})$ just in case either $a=0$ (in which case $v(a) \geq v(b))$ or $b \neq 0$ and $K \vDash \psi\left(\frac{a}{b}, \bar{c}\right)$, in which case $v\left(\frac{a}{b}\right) \geq 0$ which is equivalent to saying that $v(a) \geq v(b)$. Hence

$$
\left\{(a, b) \in K^{2} \mid v(a) \geq v(b)\right\} \subseteq \chi\left(K^{2}, \bar{c}\right)
$$

On the other hand, if $v(a) \geq v(b)$ then either $a=0$ or $b \neq 0$ and $\frac{a}{b} \in \mathcal{O}_{v}$, so that

$$
\chi\left(K^{2}, \bar{c}\right) \subseteq\left\{(a, b) \in K^{2} \mid v(a) \geq v(b)\right\}
$$

meaning that

$$
K \vDash \chi(a, b, \bar{c}) \leftrightarrow v(a) \geq v(b)
$$

and the result is proven.
It will be useful to perform a further reduction:
Proposition 2. Let $\ell \in \omega$ with $\ell \geq 2$ and v a discrete valuation. Suppose that the set $\{x \in K \mid v(x) \equiv 0$ $\bmod \ell\}$ is arithmetically definable. Then \mathcal{O}_{v} is arithmetically definable.

Proof. Let $\psi(x, \bar{c})$ be a definition of $\{x \in K \mid v(x) \equiv 0 \bmod \ell\}$ and let π be a uniformizer for v. We claim that the formula

$$
\chi(x, \pi, \bar{c}):=\exists y\left(1+\pi x^{\ell}=y \wedge \psi(y, \bar{c})\right)
$$

is an arithmetic definition of \mathcal{O}_{v}. We break into two cases:

- If $v(x) \geq 0$ then $v\left(\pi x^{\ell}\right)=1+\ell v(x)$ and so the strong triangle inequality tells us that

$$
v\left(1+\pi x^{\ell}\right)=\min \left(v(1), v\left(\pi x^{\ell}\right)\right)=\min (0,1+\ell v(x))=0
$$

But then $v\left(1+\pi x^{\ell}\right) \equiv 0 \bmod \ell$ and so $K \vDash \chi(x, \pi, \bar{c})$.

- If $v(x)<0$ then

$$
v\left(1+\pi x^{\ell}\right)=\min (0,1+\ell v(x))=1+\ell v(x)
$$

since $\ell>1$ and $v(x)<0$. But then $v\left(1+\pi x^{\ell}\right) \equiv 1 \bmod \ell$ and so $K \not \forall \chi(x, \pi, \bar{c})$.
Together this means that $\chi(K, \pi, \bar{c})=\mathcal{O}_{v}$, and so \mathcal{O}_{v} is arithmetically definable.
Given a discrete valuation v on K we will construct an arithmetic definition of $\{x \in K \mid v(x) \equiv 0$ $\bmod \ell\}$ for some prime $\ell \in \omega$. To do so, we first show that we can construct definitions for all valuations under mild field-theoretic conditions on K by reducing the problem to one of expressing a given $x \in K$ as the norm of some element y in some cyclic extension of the form $K(\sqrt[8]{a})$. We recall the following fact from Galois Theory:
Fact 2. ([4] VI.6.2). Let K be a field, $\ell \neq \operatorname{char}(\mathrm{K})$ be prime, and suppose that K contains all $\ell^{\text {th }}$ roots of unity. Then

- If $L \mid K$ is a cyclic field extension with $[L: K]=\ell$ then there is some $\alpha \in K$ such that $L=K(\sqrt[\ell]{\alpha})$.
- If $a \in K$ and α is a root of $x^{\ell}-a, K(\alpha)$ is a cyclic extension of K of degree either 1 or ℓ.

By the above fact, for well chosen ℓ all cyclic extensions of local fields $L_{w} \mid K_{\nu}$ with $\left[L_{w}: K_{\nu}\right]=\ell$ can be written as $L_{w}=K_{v}(\sqrt[\ell]{\alpha})$ for some $\alpha \in K_{v}$. The following lemma shows that under mild field-theoretic hypotheses the ramification behavior of v in the extension $K(\sqrt[\ell]{\alpha}) \mid K$ is tightly controlled by the $(\bmod \ell)$-arithmetic of $v(\alpha)$.
Lemma 1. Suppose that K is a number field that has all $2 \ell^{\text {th }}$ roots of unity and suppose that v is a discrete valuation on K such that $\operatorname{char}(\kappa(v)) \neq \ell$. Let $L_{w}=K_{v}(\sqrt[\ell]{\alpha})$ for some $\alpha \in K_{v}^{\times}$. Recall that since K_{v} is a complete valued field, w is uniquely specified.

1. If $v(\alpha) \not \equiv 0 \bmod \ell$ then $L_{w} \mid K_{v}$ is totally ramified of degree ℓ and the image of the norm map is given by

$$
N_{L_{w} \mid K_{v}}\left(L_{w}^{\times}\right)=\left\langle\alpha,\left(K_{v}\right)^{\times}\right\rangle .
$$

2. If $v(\alpha) \equiv 0 \bmod \ell$ but $\alpha \notin\left(K_{v}\right)^{\ell}$ then $L_{w} \mid K_{v}$ is unramified, $\left[L_{w}: K_{v}\right]=\ell$, and

$$
N_{L_{w} \mid K_{v}}\left(L_{w}^{\times}\right)=\left\{x \in K_{v}^{\times} \mid v(x) \equiv 0 \quad \bmod \ell\right\}
$$

3. If $\alpha \in\left(K_{v}\right)^{\ell}$ then $L_{w}=K_{v}$ and, trivially, $N_{L_{w} \mid K_{v}}\left(L_{w}^{\times}\right)=K_{v}^{\times}$.

Proof. Recall the formula $\left[L_{w}: K_{v}\right]=e(w \mid v) f(w \mid v)$. Since ℓ is prime and $L_{w}=K_{v}(\sqrt[\ell]{\alpha})$ we have that either $\left[L_{w}: K_{\nu}\right]=\ell$, in which exactly one of $e(w \mid v)$ or $f(w \mid v)$ is ℓ (and the other is 1), or $\left[L_{w}: K_{v}\right]=1$ and $e(w \mid v)=f(w \mid v)=1$. These possibilities correspond to the above three cases:

1. If $v(\alpha) \not \equiv 0 \bmod \ell$ then $\sqrt[\ell]{\alpha} \notin K$ for otherwise $v(\alpha)=\ell v(\sqrt[\ell]{\alpha})$, forcing $v(\alpha) \equiv 0 \bmod \ell$. This simultaneously shows that $\left[L_{w}: K_{n u}\right]=\ell$ and $e(w \mid v) \neq 1$ and so, by the remarks above, $e(w \mid v)=\ell$. But then $L_{w} \mid K_{v}$ is totally ramified.
Now note that if $a \in K_{v}^{\times}$then $N_{L_{w} \mid K_{v}}(a)=a^{\ell}$ and that

$$
N_{L_{w} \mid K_{v}}(\sqrt[\ell]{\alpha})=\prod_{0 \leq i \leq \ell-1} \zeta_{\ell}^{i} \sqrt[\ell]{\alpha}=\alpha
$$

since $L_{w} \mid K_{v}$ is Galois and the Galois conjugates of $\sqrt[\ell]{\alpha}$ are precisely of the form $\zeta_{\ell}^{i} \sqrt[\ell]{\alpha}$. This shows that the subgroup $\left.\left\langle\alpha, K_{v}^{\times}\right)^{\ell}\right\rangle \subseteq N_{L_{w} \mid K_{v}}\left(L_{w}^{\times}\right)$. We wish to show the reverse inclusion. Indeed, note that since $v(\alpha)$ and ℓ are relatively prime, $\left.v:\left\langle\alpha, K_{v}^{\times}\right)^{\ell}\right\rangle \rightarrow \mathbb{Z}$ is surjective, and so if $\beta \in N_{L_{w} \mid K_{v}}\left(L_{w}^{\times}\right)$ then there is $\left.\gamma \in\left\langle\alpha, K_{v}^{\times}\right)^{\ell}\right\rangle$ such that $v(\beta)=-v(\gamma)$, so that

$$
\beta \gamma \in N_{L_{w} \mid K_{v}}\left(\mathcal{O}_{w}^{\times}\right) \subseteq \mathcal{O}_{v}^{\times} .
$$

If we can show that $\beta \gamma=u^{\ell}$ for some $u \in \mathcal{O}_{v}^{\times} \subseteq K_{v}^{\times}$then we will have that

$$
\beta=\gamma^{-1} u^{\ell} \in\left\langle\alpha,\left(K_{v}^{\times}\right)^{\ell}\right\rangle
$$

proving the claim. To do so it suffices to show that $N_{L_{w} \mid K_{v}}\left(\mathcal{O}_{w}^{\times}\right)=\left(\mathcal{O}_{v}^{\times}\right)^{\ell}$. We use the following fact:

Fact 3. ([3] IX.3, Lemma 4) Let $L_{w} \mid K_{v}$ be a cyclic extension of local fields of characteristic 0 of degree n. Then $\left[K_{v}^{\times}: N_{L_{w} \mid K_{v}}\left(L_{w}^{\times}\right)\right]=\left[L_{w}: K_{v}\right]$ and $\left[\mathcal{O}_{K_{v}}^{\times}: N_{L_{w} \mid K_{v}}\left(\mathcal{O}_{L_{w}}^{\times}\right)\right]=e(w \mid v)$.
By using Hensel's lemma it is not hard to show that $\left[\mathcal{O}_{K_{v}}^{\times}:\left(\mathcal{O}_{K_{v}}^{\times}\right)^{\ell}\right]=\ell=\left[\mathcal{O}_{K_{v}}^{\times}: N_{L_{w} \mid K_{v}}\left(\mathcal{O}_{L_{w}}^{\times}\right)\right]$and so as $\left(\mathcal{O}_{K_{v}}^{\times}\right)^{\ell} \subseteq N_{L_{w} \mid K_{v}}\left(\mathcal{O}_{L_{w}}^{\times}\right)$, in fact we have

$$
\left(\mathcal{O}_{K_{v}}^{\times}\right)^{\ell}=N_{L_{w} \mid K_{v}}\left(\mathcal{O}_{L_{w}}^{\times}\right)
$$

as desired.
2. If $v(\alpha) \equiv 0 \bmod \ell$ but $\alpha \notin\left(K_{v}\right)^{\times}$then by writing $\alpha=\pi^{\ell} \tilde{\alpha}$ with π a uniformizer we have that $L_{w}=(K(\sqrt[l]{\tilde{\alpha}}))$ with $v(\tilde{\alpha})=0$, so without loss of generality we may assume that $v(\alpha)=0$. But then

$$
\alpha \notin\left(K_{v}\right)^{\ell} \cap\left(\mathcal{O}_{K}^{\times}\right)=\left(\mathcal{O}_{K}^{\times}\right)^{\ell}
$$

and so $\kappa(w)=\kappa(v)\left(\sqrt[\ell]{\alpha+\mathfrak{m}_{v}}\right) \neq \kappa(v)$, implying that

$$
[\kappa(w): \kappa(v)]=\ell=f(w \mid v)
$$

by primality of ℓ. But then by the fundamental identity this implies that $L_{w} \mid K_{v}$ is unramified and that $\left[L_{w}: K_{v}\right]=\ell$. Moreover,

$$
N_{L_{w} \mid K_{v}}\left(L_{w}^{\times}\right)=\left\{x \in K_{v}^{\times} \mid v(x) \equiv 0 \quad \bmod \ell\right\}
$$

since $\left[\mathcal{O}_{v}^{\times}: N_{L_{w} \mid K_{v}}\left(\mathcal{O}_{w}^{\times}\right)\right]=e(w \mid v)=1$ and since $\left[K_{v}^{\times}: N_{L_{w} \mid K_{v}}\left(L_{w}^{\times}\right)\right]=\ell=\left[K_{v}^{\times}:\left(K_{v}^{\times}\right)^{\ell}\right]$ and since $\left(K_{v}^{\times}\right)^{\ell} \subseteq N_{L_{w} \mid K_{v}}\left(L_{w}^{\times}\right)$.
3. If $\alpha \in\left(K_{v}^{\times}\right)^{\ell}$ then $L_{w}=K_{v}$ and the result is clear.

For a prime $\ell \in \omega$ and global field K such that $\mu_{2 \ell} \subseteq K$, consider the set

$$
\Lambda^{K ; \ell}=\left\{\alpha \in K \mid \neg \exists x\left(x^{\ell}-\alpha=0\right)\right\}
$$

the set of $\alpha \in K$ such that the extension $K(\sqrt[\ell]{\alpha}) \mid K$ is nontrivial and hence of degree exactly ℓ. Consider the function $N_{\ell}: \Lambda_{K ; \ell} \times K^{\ell} \rightarrow K$ given by setting

$$
N_{\ell}\left(\alpha, \beta_{0}, \cdots \beta_{\ell-1}\right)=N_{K(\sqrt[\ell]{\alpha}) \mid K}\left(\beta_{0}+\beta_{1} \sqrt[\ell]{\alpha}+\cdots+\beta_{i} \sqrt[\ell]{\alpha}+\cdots+\beta_{\ell-1} \sqrt[\ell]{\alpha}(\ell-1)\right)
$$

Claim 1. $N_{\ell}: \Lambda_{K ; \ell} \times K^{\ell} \rightarrow K$ is a polynomial map with integer coefficients.
Proof. We know that for all $\alpha \in \Lambda_{K ; \ell}$ that $\left\{1, \sqrt[\ell]{\alpha}, \sqrt[\ell]{\alpha}^{2}, \cdots, \sqrt[\ell]{\alpha}(\ell-1)\right\}$ is a basis of $K(\sqrt[\ell]{\alpha}) \mid K$. Under this basis, the multiplication-by- $\sqrt[\ell]{\alpha}$ map is given by the matrix

$$
T_{\sqrt[\ell]{\alpha}}=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \cdots & \cdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-\alpha & 0 & 0 & \cdots & 0
\end{array}\right)
$$

(As in [5] in the proof of Prop I.2.6). Moreover,

$$
(\forall m \in \omega)\left(T_{\sqrt[\ell]{\alpha}}\right)^{m}=T_{\sqrt[\ell]{\alpha}}^{m} ;(\forall x \in K) x T_{\sqrt[\ell]{\alpha}}^{m}=T_{x \sqrt[\ell]{\alpha}}^{m} ; T_{\sqrt[\ell]{\alpha}}=T_{1}=I
$$

and so

$$
\begin{aligned}
& N_{\ell}\left(\alpha, \beta_{0}, \cdots, \beta_{\ell-1}\right)= N_{K(\sqrt[\ell]{\alpha}) \mid K}\left(\beta_{0}+\beta_{1} \sqrt[\ell]{\alpha}+\cdots+\beta_{i} \sqrt[\ell]{\alpha}^{i}+\cdots+\beta_{\ell-1} \sqrt[\ell]{\alpha}\right. \\
&=\operatorname{det}\left(T_{\sum \beta_{i} \sqrt[\ell]{\alpha}}\right)=\operatorname{det}\left(\sum_{i=0}^{\ell-1} \beta_{i}\left(T_{\sqrt[\ell]{\alpha}}\right)^{i}\right)
\end{aligned}
$$

which is clearly an integer-coefficient polynomial in the variables $\alpha, \beta_{0}, \cdots, \beta_{\ell}$.
The utility of this claim is that the function N_{ℓ} uniformly parametrizes the norms $N_{K(\sqrt[\ell]{\alpha}) \mid K}$ in a first-order manner. Using this parametrization we can construct a formula ψ_{ℓ} that encodes ramification information for extensions of the form $K_{v}(\sqrt[\ell]{\alpha}) \mid K_{v}$. For a fixed prime ℓ consider the first-order-formula $\psi_{\ell}(u ; x, y)$ given by

$$
\psi_{\ell}(u ; x, y):=" u \neq 0 \wedge \exists \overline{z_{1}} \exists \overline{z_{2}} \exists \overline{z_{3}} \exists t\left(t=N_{\ell}\left(y, \overline{z_{1}}\right) \wedge x t=N_{\ell}\left(x y, \overline{z_{2}}\right) \wedge u=N_{\ell}\left(t, \overline{z_{3}}\right)\right) "
$$

which, in plain English, says that $u \in N_{K(\sqrt[l]{t}) \mid K}\left(K(\sqrt[q]{t})^{\times}\right)$for some t such that $t \in N_{K(\sqrt[\ell]{y}) \mid K}\left(K(\sqrt[\ell]{y})^{\times}\right)$ and such that $x t \in N_{K(\sqrt[f]{x y}) \mid K}\left(K(\sqrt[f]{x y})^{\times}\right)$.

Lemma 2. Let v be a nontrivial discrete valuation and suppose that $\ell \neq \operatorname{char}(\kappa(v))$ and that K contains $\mu_{2 \ell}$. Suppose further that $b \in \mathcal{O}_{v}^{\times} \backslash\left(\mathcal{O}_{v}^{\times}\right)^{\ell}$ and $v(a)=1$. If $K \vDash \psi_{\ell}(u ; a, b)$, then $v(u) \equiv 0 \bmod \ell$.
Proof. Suppose $K \vDash \psi_{\ell}(u ; a, b)$. By Lemma 1 above we immediately have that $K_{v}(\sqrt[\ell]{b}) \mid K_{v}$ is unramified of degree ℓ and that $K_{v}(\sqrt[\ell]{a b}) \mid K_{v}$ is totally ramified of degree ℓ and by construction it is clear that the same claims hold for the extensions $K(\sqrt[l]{b}) \mid K$ and $K(\sqrt[\ell]{a b}) \mid K$ respectively. The equations occuring in $\psi_{\ell}(u ; a, b)$ occuring of the form $t=N_{\ell}\left(b, \overline{z_{1}}\right)$ and $a t=N_{\ell}\left(a b, \overline{z_{2}}\right)$ imply that

$$
t=\tau_{1} a^{m_{1} \ell} \wedge a t=\tau_{2}(a b)^{m_{2}}
$$

for some $\tau_{i} \in \mathcal{O}_{v}^{\times} \cap K^{\times}, m_{i} \in \mathbb{Z}$, and $t \in K$ by Lemma 1 since $N_{K_{v}(\sqrt[6]{a}) \mid K_{v}}\left(K_{v}\left(\sqrt[\ell]{a}{ }^{\times}\right)=\{x \in\right.$ $\left.K_{v}^{\times} \mid v(x) \equiv 0 \bmod \ell\right\}$, since $N_{K_{\nu}(\sqrt[\ell]{a b}) \mid K_{v}}\left(K_{v}\left(\sqrt[\ell]{a} \times{ }^{\times}\right)=\left\langle a b,\left(K_{v}\right)^{\times}\right\rangle\right.$, and since $v(a b)=1=v(a)$ means that a and $a b$ are uniformizers for K_{v}. We then have

$$
\tau_{1} a^{m_{1} \ell+1}=a t=\tau_{2}^{\ell}(a b)^{m_{2}}
$$

so that, dividing by a, we can write $t=\left(\tau_{2} a^{m_{1}} b^{m_{1}}\right)^{\ell} b$. But then $\frac{\sqrt[8]{t}}{\sqrt[\ell]{b}}=\tau_{2} a^{m_{1}} b^{m_{1}} \in K$ so that $K_{v}(\sqrt[\ell]{t})=K_{v}(\sqrt[\ell]{b})$ is unramified of degree ℓ. This means that we may write $u=\tau t^{m \ell}$ for some $\tau \in \mathcal{O}_{v}^{\times} \cap K$ and $m \in \mathbb{Z}$ so that $v(u)=m \ell$ so $v(u) \equiv 0 \bmod \ell$.

As such, picking any $a, b \in K$ satisfying the above hypotheses for a fixed discrete valuation v yields a subset $\psi_{\ell}(K, a, b) \subseteq\{x \in K \mid v(x) \equiv 0 \bmod \ell\}$, but a priori the reverse inclusion may not hold. Our next goal is to use facts from class field theory to show that we can choose $a, b \in K$ so that the formula $\psi_{\ell}(u ; a, b)$ (in one free variable) almost satisfies the desired property.

Up until now we haven't needed to use the correspondence between nontrivial discrete valuations v on K and nonzero primes $\mathfrak{p} \in \operatorname{Spec}\left(\mathcal{O}_{K}\right)$, but to make the connection to class field theory explicit we will henceforth identify a discrete valuation v with the unique prime $\mathfrak{p}_{v} \in \operatorname{Spec}\left(\mathcal{O}_{K}\right)$ such that $\left(\mathcal{O}_{K}\right)_{\mathfrak{p}_{v}}=\mathcal{O}_{v}$.

Lemma 3. Let v be a nontrivial discrete valuation, that $\ell \neq \operatorname{char}(\kappa(v))$, that K contains $\mu_{2 \ell}$, and that $v(\ell)=0$. Let $\mathfrak{p}=\mathfrak{p}_{v}$ be the prime associated to v. Then there exists $a, b \in K$ and $\mathfrak{q} \neq \mathfrak{p} \in \operatorname{Spec}\left(\mathcal{O}_{K}\right)$ with associated valuation $v_{\mathfrak{q}}$ such that

$$
\psi_{\ell}(K ; a, b)=\left\{x \in K \mid v(x) \equiv 0 \quad \bmod \ell \wedge v_{\mathfrak{q}}(x) \equiv 0 \bmod \ell\right\}
$$

Proof. We first construct candidates for $a, b \in K$ and $\mathfrak{q} \in \operatorname{Spec}\left(\mathcal{O}_{K}\right)$ and then show that they yield the desired conclusion.

Construction. We first construct a and along the way we will also construct \mathfrak{q}. Consider the set $R_{\ell, K}=\left\{\mathfrak{r} \in \operatorname{Spec}\left(\mathcal{O}_{K}\right) \backslash\{0\}|\mathfrak{r}| \ell\right\}$ the set of divisors of ℓ. I first claim that there is an $m \in \mathbb{Z}$ such that if $c \equiv 1 \bmod \mathfrak{r}^{m}$ then $c \in\left(K_{\nu_{\mathfrak{r}}}^{\times}\right)^{\ell}$. Let $\mathfrak{r} \in R_{\ell, K}$, let $m=2 v_{\mathfrak{r}}(\ell)$, and consider the polynomial
$f(x)=x^{\ell}-c$ which has derivative ℓ. If $c \equiv 1 \bmod \mathfrak{r}^{m}$ then

$$
f(1)=1-a \equiv 0 \quad \bmod \mathfrak{r}^{m} \equiv 0 \quad \bmod \mathfrak{r}^{2 v_{\mathfrak{r}}(\ell)} \equiv 0 \quad \bmod (\ell)^{2} \mathfrak{r} \equiv 0 \quad \bmod \left(f^{\prime}(1)\right)^{2} \mathfrak{r}
$$

so by Hensel's lemma we have that there is some $d \in K$ such that $f(d)=d^{\ell}-c=0$, so that $c \in\left(K_{\nu_{\mathbf{r}}}^{\times}\right)^{\ell}$. Since $R_{\ell, K}=\left\{\mathfrak{r}_{i}\right\}_{i \in I}$ is finite, if for all $i \in I$ we take $m_{i}=2{v_{\mathfrak{r}_{i}}}(\ell) \in \mathbb{Z}$ then taking $m:=\sup \left(\left\{m_{i}\right\}\right)$ gives us the desired number. Given this m, define a cycle

$$
\mathfrak{c}:=\prod_{v \mid \infty} v \times \prod_{\mathfrak{r} \in R_{\ell, K}} v_{\mathfrak{r}}^{m}
$$

and consider the generalized class group associated to the cycle $\mathfrak{c}, \mathrm{Cl}_{\mathfrak{c}}=J(\mathfrak{c}) / K_{\mathfrak{c}}$. Consider the class of $\left[\mathfrak{p}_{v}\right] \in C_{\mathfrak{c}}$. We use the following analogue of Dirichlet's Theorem on Arithmetic Progressions for generalized class groups:
Fact 4. ([5] Theorem VII.13.2) Let H be a subgroup of $J(\mathfrak{c})$ such that $P_{\mathfrak{c}} \subseteq H$. Then for every class $[\mathfrak{p}] \in J(\mathfrak{c}) / H$, the density of primes in $[\mathfrak{p}]$ is $\frac{1}{[J(\mathfrak{c}): H]}>0$.

Given this fact, we may choose a prime $\mathfrak{q} \neq \mathfrak{p} \in[\mathfrak{p}]^{-1}$. By construction, $\mathfrak{p q}=(a)$ for some $a \in K$ satisfying $a \equiv 1 \bmod \mathfrak{r}^{m}$ for all $\mathfrak{r} \in R_{\ell, K}$ and such that $a>0$ in all archimedean valuations.

We now aim to construct b using class field theory. Keep in mind that our choice of b should make it apparent that $\psi(K, a, b) \subseteq \mathcal{O}_{\mathfrak{p}} \cap \mathcal{O}_{\mathfrak{q}}$, for one direction of the proof. Our choice of \mathfrak{p} and \mathfrak{q} yields that they are the only ramified primes in the extension $K(\sqrt[\ell]{a}) \mid K$. Since ℓ is prime, this means that $\mathfrak{p} \mathcal{O}_{K(\sqrt[l]{a})}=\mathfrak{P}^{\ell}$ and $\mathfrak{q} \mathcal{O}_{K(\sqrt[l]{a})}=\mathfrak{Q}^{\ell}$ for primes $\mathfrak{P}, \mathfrak{Q} \in \operatorname{Spec}\left(\mathcal{O}_{K(\sqrt[l]{a})}\right)$.

Then by the fundamental identity and the theorems on local norm indices we have that

$$
\left[\mathcal{O}_{K_{\mathfrak{p}}}: N_{K(\sqrt[l]{a})_{\mathfrak{F}} \mid K_{\mathfrak{p}}}\left(\mathcal{O}_{K(\sqrt[l]{a})_{\mathfrak{F}}}^{\times}\right)\right]=\ell=\left[\mathcal{O}_{K_{\mathfrak{q}}}: N_{K(\sqrt[\ell]{a})_{\mathfrak{Q}} \mid K_{\mathfrak{q}}}\left(\mathcal{O}_{(K(\sqrt[l]{a}))_{\mathfrak{Q}}}^{\times}\right)\right]>1 .
$$

and so, in particular, there is a unit $\tau_{\mathfrak{p}} \in \mathcal{O}_{K_{\mathfrak{p}}} \backslash N_{K(\sqrt[\ell]{a})_{\mathfrak{F}} \mid K_{\mathfrak{p}}}\left(\mathcal{O}_{K(\sqrt[l]{a})_{\mathfrak{F}}}^{\times}\right)$. At this stage we invoke pertinent facts from both local and global class field theory
Fact 5. ([5])

1. (Local Norm Residue Symbol [V.1.3]) Let $L_{w} \mid K_{v}$ be a finite Galois extension of local fields. Then there is a canonical surjective morphism

$$
\left(-, L_{w} \mid K_{v}\right): K_{v}^{\times} \rightarrow \operatorname{Gal}\left(L_{w} \mid K_{v}\right)^{a b}
$$

with $\operatorname{ker}\left(\left(-, L_{w} \mid K_{v}\right)\right)=N_{L_{w} \mid K_{\nu}}\left(L_{w}^{\times}\right)$.
2. (Global Norm Residue Symbol [VI.5.5]) Let $L \mid K$ be a finite Galois extension of number fields. Then there is a canonical surjective morphism

$$
(-, L \mid K): \mathbb{I}_{K} / K^{\times} \rightarrow \operatorname{Gal}(L \mid K)^{a b}
$$

with kernel $\operatorname{ker}((-, L \mid K))=N_{L \mid K}\left(\mathbb{I}_{L} / L^{\times}\right)$.
3. (Local-Global Compatibility [VI.5.6]) If $L \mid K$ is a finite abelian extension of number fields and v is a valuation (archimedean or nonarchimedean) then the following diagram commutes

where $\theta: K_{v}^{\times}$maps $\theta_{v}(a)=[(\cdots, 1, \cdots, 1, a, 1, \cdots, 1, \cdots)] \in \mathbb{I}_{K} / K^{\times}$where a is the $v^{t h}$ coordinate of the idele $(\cdots, 1, \cdots, 1, a, 1, \cdots, 1, \cdots)$ and ι is the embedding guaranteed to exist by decomposition theory.
4. (Product Formula [VI.5.7]) If $L \mid K$ is a finite abelian extension of number fields and $\alpha=\left(\alpha_{v}\right)_{v} \in \mathbb{I}_{K}$ then

$$
(\alpha, L \mid K)=\prod_{v \in \mathcal{M}_{K}}\left(\alpha_{v}, L_{w} \mid K_{v}\right)
$$

where L_{w} is the unique extension of local fields of K_{v} with $w \mid v$. Moreover, for a principal idele $\alpha=(a)_{v}$ we have that

$$
\prod_{v \in \mathcal{M}_{K}}\left(a, L_{w} \mid K_{v}\right)=1
$$

Recall our choice of $\tau_{\mathfrak{p}} \in \mathcal{O}_{K_{\mathfrak{p}}} \backslash N_{K(\sqrt[l]{a})_{\mathfrak{P}} \mid K_{\mathfrak{p}}}\left(\mathcal{O}_{K(\sqrt[l]{a})_{\mathfrak{P}}}^{\times}\right)$. The by the theorem above on local norm residues,

$$
\left.\left(\tau_{\mathfrak{p}}, K(\sqrt[\ell]{a})\right)_{\mathfrak{P}} \mid K_{\mathfrak{p}}\right)=\sigma \neq \operatorname{id}_{L} \in \operatorname{Gal}(L / K)
$$

since $\tau_{\mathfrak{p}}$ was chose to not be a norm. Since $K(\sqrt[\ell]{a})_{\mathfrak{P}} \mid K_{\mathfrak{p}}$ is cyclic of prime order, the local norm residue $\operatorname{map}\left(-, K(\sqrt[\ell]{a})_{\mathfrak{Q}} \mid K_{\mathfrak{q}}\right): \mathcal{O}_{K_{\mathfrak{q}}}^{\times} \rightarrow \operatorname{Gal}\left(L_{w} \mid K_{v}\right)=\operatorname{Gal}(L / K)$ is surjective! As such, there is a non-norm $\tau_{\mathfrak{q}} \in \mathcal{O}_{K_{\mathfrak{q}}}^{\times}$with $\left(\tau_{\mathfrak{q}}, K(\sqrt[\ell]{a})_{\mathfrak{Q}} \mid K_{\mathfrak{q}}\right)=\sigma^{-1}$.

We now produce a first approximation for our desired b. Let $\tilde{b} \in K$ be such that $\tilde{b} \equiv \tau_{\mathfrak{p}} \bmod \mathfrak{p}$, $\tilde{b} \equiv \tau_{\mathfrak{q}} \bmod \mathfrak{q}, \tilde{b} \equiv 1 \bmod \mathfrak{r}^{m}$ for all $\mathfrak{r} \in R_{\ell, K}$, and such that \tilde{b} is positive in all real valuations. Since this is a finite list of valuations, the

Fact 6. (Approximation Theorem, [5] II.3.4) Let $\left|-\left.\right|_{1}, \cdots,|-|_{n}\right.$ be pairwise inequivalent valuations of the field K and let $z_{1}, \cdots, z_{n} \in K$ be given. Then for every $\epsilon>0$ there is $a y \in K$ such that

$$
(\forall 1 \leq i \leq n)\left|y-z_{i}\right|_{i}<\epsilon
$$

guarantees the existence of such a \tilde{b} by considering, for every prime \mathfrak{s} appearing above, the induced absolute value $|-|_{\mathfrak{s}}$ given by $|x|_{\mathfrak{s}}=|N(\mathfrak{s})|^{-v_{\mathfrak{s}}(x)}$ and by letting each archimedean prime being associated to its natural absolute value.

Note that in the generalized class group $J(\mathfrak{c p q}) / P_{\mathfrak{c p q}}$ the class every element in the class $[(\tilde{b})]$ is principal (since the equivalence relation defining this generalized class group is a refinement of the one defining the class group $C l_{K}$ since we have the natural surjection $\left.J(\mathfrak{c p q}) / P_{\mathfrak{c p q}} \rightarrow C l_{K}\right)$. Then by
the density theorem for primes in living in a given class in the generalized class group, there exists a principal prime $\mathfrak{t}=(t) \in[(\tilde{b})]$ (which is emphatically not \mathfrak{p} or \mathfrak{q}). Then $[\mathfrak{t}]\left[(\tilde{b})^{-1}\right] \in J(\mathfrak{c p q}) / P_{\mathfrak{c p q}}$ is trivial and so the principal ideal $\mathfrak{t}\left(\tilde{b}^{-1}\right)$ has a generator $g \equiv 1 \bmod \mathfrak{c p q}$. Then setting $b:=g \tilde{b}$ yields a generator of \mathfrak{t} such that

- $b \equiv 1 \bmod \mathfrak{r}^{m}$ for all $\mathfrak{r} \in R_{\ell, K}$
- $b \equiv \tau_{\mathfrak{p}} \bmod \mathfrak{p}, b \equiv \tau_{\mathfrak{q}} \bmod \mathfrak{q}$
- b is positive for all real valuations on K
which all follow since $g \equiv 1 \bmod \mathfrak{c p q}$ and by choice of \tilde{b}.
Verification. We now sketch how to verify that, in fact,

$$
\psi_{\ell}(K ; a, b)=\left\{x \in K \mid v(x) \equiv 0 \quad \bmod \ell \wedge v_{\mathfrak{q}}(x) \equiv 0 \quad \bmod \ell\right\}
$$

To show that $\psi_{\ell}(K ; a, b) \subseteq\left\{x \in K \mid v(x) \equiv 0 \bmod \ell \wedge v_{\mathfrak{q}}(x) \equiv 0 \bmod \ell\right\}$ it turns out that what we really need to do is use the fact that
Fact 7. ([5] VI.4.5) Let $L \mid K$ be a cyclic extension of algebraic number fields. An $x \in K^{\times}$is of the form $x=N_{L \mid K}(y)$ for some $y \in L^{\times}$if and only if $x=N_{L_{w} \mid K_{v}}\left(y_{w}\right)$ for some $y_{w} \in L_{w}^{\times}$for all completions L_{w} of L.
to show that $a \in N_{K(\sqrt[l]{b}) \mid K}\left(K(\sqrt[l]{b})^{\times}\right)$. It turns out that to apply this fact, the main thing we have to show is that $a \in\left(K_{\mathrm{t}}^{\times}\right)^{\ell}$ which can be done using Artin Reciprocity. Indeed, since b is a norm for all $K_{\mathfrak{r}}$ such that $\mathfrak{r} \in R_{\ell, K}$ (by choice of cycle \mathfrak{c} and integer m as well as the lemma characterizing norm groups in the ramified case) we have that $\left(b,(K(\sqrt[\ell]{a}))_{\mathfrak{R}} \mid K_{\mathfrak{r}}\right)=\operatorname{id}_{K}$. For real valuations $v_{\text {real }}$ we have that $\left(b,(K(\sqrt[\ell]{a}))_{w_{\text {real }}} \mid K_{v_{\text {real }}}\right)=1$ since $|b|_{v_{\text {real }}}>0$. For all $\mathfrak{s} \notin \mathcal{M}_{K, \infty} \cup R_{\ell, K} \cup\{\mathfrak{p}, \mathfrak{q}, \mathfrak{t}\}$ we have that $(K(\sqrt[\ell]{a}))_{\mathfrak{S}}$ is unramified and because $v_{\mathfrak{s}}(b)=0$ as b is a uniformizer for $v_{\mathfrak{t}}$. Then the product formula for norm residues tells us that

$$
\operatorname{id}_{K}=\left(b,(K(\sqrt[\ell]{a}))_{\mathfrak{P}} \mid K_{\mathfrak{p}}\right)\left(b,(K(\sqrt[\ell]{a}))_{\mathfrak{Q}} \mid K_{\mathfrak{q}}\right)\left(\left(b,(K(\sqrt[\ell]{a}))_{\mathfrak{T}} \mid K_{\mathfrak{t}}\right)\right)=\left(\left(b,(K(\sqrt[\ell]{a}))_{\mathfrak{T}} \mid K_{\mathfrak{t}}\right)\right)
$$

since our choice of b forces $\left(b,(K(\sqrt[\ell]{a}))_{\mathfrak{P}} \mid K_{\mathfrak{p}}\right)=\left(\tau_{\mathfrak{p}},(K(\sqrt[\ell]{a}))_{\mathfrak{P}} \mid K_{\mathfrak{p}}\right)=\sigma$ and similarly that $\left(b,(K(\sqrt[l]{a}))_{\mathfrak{Q}} \mid K_{\mathfrak{q}}\right)=\sigma^{-1}$. Then as

$$
\operatorname{ker}\left(\left(-,(K(\sqrt[l]{a}))_{\mathfrak{T}} \mid K_{\mathfrak{t}}\right)\right)=N_{(K(\sqrt[l]{a}))_{\mathfrak{z}} \mid K_{\mathfrak{t}}}\left((K(\sqrt[l]{a}))_{\mathfrak{T}}^{\times}\right)
$$

b is a norm of $(K(\sqrt[\ell]{a}))_{\mathfrak{t}} \mid K_{\mathfrak{t}}$. But by choice of $\mathfrak{t} \neq \mathfrak{p}, \mathfrak{q}$ we have that this extension is unramified; but as b is a uniformizer for $v_{\mathfrak{t}}$ we must have that $(K(\sqrt[\ell]{a}))_{\mathfrak{T}}=K_{\mathfrak{t}}$ and so $a \in\left(K_{\mathfrak{t}}^{\times}\right)^{\ell}$. Now, using this Hasse's Norm theorem and our construction of a and b it is not too hard to show that $N_{K(\sqrt[l]{b}) \mid K}\left(K(\sqrt[l]{b})^{\times}\right)$and the proof of Lemma 2 it is not too hard to show that

$$
\psi_{\ell}(K ; a, b) \subseteq\left\{x \in K \mid v(x) \equiv 0 \quad \bmod \ell \wedge v_{\mathfrak{q}}(x) \equiv 0 \quad \bmod \ell\right\}
$$

Conversely, the verification that if $v(x) \equiv 0 \bmod \ell$ and $v_{\mathfrak{q}}(x) \equiv 0 \bmod \ell$ then $K \vDash \psi_{\ell}(x ; a, b)$ is a fairly straightforward of the local-to-global principle for norms as well as the product formula for the norm residue symbol evaluated at principal ideles. The precise details may be found in ([6], Lemma 3).

Now that we've shown this hard technical lemma, the definability of \mathcal{O}_{v} is almost immediate.
Theorem 2. Let K be a number field. Then all nontrivial discrete valuations v are arithmetically definable.
Proof. We first prove the result under the hypotheses above. Let ℓ be a prime number. Suppose that v is a nonarchimedean valuation on K such that $v(\ell)=0$, that K contains the $2 \ell^{\text {th }}$ roots of unity, and that $\operatorname{char}(\kappa(v)) \neq \ell$. By the proof of Lemma 3 (namely, the density theorem for primes in classes in generalized class groups) we may pick two distinct primes $\mathfrak{q}_{1}, \mathfrak{q}_{2}$ and elements $a_{1}, b_{1}, a_{2}, b_{2} \in K$ such that $\psi_{\ell}\left(K ; a_{i}, b_{i}\right)=\left\{x \in K^{\times} \mid v(x) \equiv 0 \bmod \ell \wedge v_{\mathfrak{q}_{i}}(x) \equiv 0 \bmod \ell\right\}$. But clearly any $y \in K^{\times}$ such that $v(y) \equiv 0 \bmod \ell$ can be written as the product $y=z_{1} z_{2}$ with $z_{i} \in\left\{x \in K^{\times} \mid v(x) \equiv 0\right.$ $\left.\bmod \ell \wedge v_{\mathfrak{q}_{i}}(x) \equiv 0 \bmod \ell\right\}$ and any such product has $v\left(z_{1} z_{2}\right) \equiv 0 \bmod \ell$. Set

$$
\phi_{\ell}\left(x ; a_{1}, b_{1}, a_{2}, b_{2}\right):=\left(\exists z_{1}, z_{2}\right) x=z_{1} z_{2} \wedge \psi_{\ell}\left(z_{1} ; a_{1}, b_{1}\right) \wedge \psi_{\ell}\left(z_{2} ; a_{2}, b_{2}\right)
$$

Then

$$
\phi_{\ell}\left(K ; a_{1}, b_{1}, a_{2}, b_{2}\right)=\left\{x \in K^{\times} \mid v(x) \equiv 0 \quad \bmod \ell\right\} .
$$

By Proposition 2, this implies that in fact v is arithmetically definable!
To eliminate the special assumptions about K we show that we use an easy fact from commutative algebra:
Fact 8. (Going-Up Theorem, [1] 5.11) Let $A \subseteq B$ be an integral extension of commutative rings and let $\mathfrak{p} \in \operatorname{Spec}(A)$. Then there exists $a \mathfrak{q} \in B$ such that $\mathfrak{q} \cap A=\mathfrak{p}$.

Using this fact we can prove the following
Claim 2. Suppose that $L \mid K$ is a finite extension of number fields. Suppose that all discrete valuations w on L are arithmetically definable. Then all discrete valuations v on K are definable.

Proof of claim: Let v be a discrete valuation on K. Then by the going up theorem, there is some $w \mid v$ on L. By assumption, w is arithmetically definable, say by some formula $\Phi_{w}(x ; y ; \bar{c})$. Take an element θ such that $L=K(\theta)$ and let $\left\{a_{0}, \cdots a_{n-1}\right\} \subseteq K$ (where $n=[L: K]$) be the coefficients of the minimal polynomial of θ. By Theorem 1, there exists an interpretation Γ of $(L,+, \times, 0,1)$ in $\left(K,+, \times, 0,1, a_{0}, \cdots, a_{n-1}\right)$. Let $\Psi_{\Gamma}\left(\bar{x}, \bar{y} \pi^{-1}(c)\right)$ be a formula defining w. By construction, the first-order formula $\Psi_{\Gamma}\left(x_{0}, 0, \cdots, 0 ; y_{0}, 0, \cdots, 0 ; \overline{\pi^{-1}(c)}\right)$ is satisfied exactly by those $x_{0} \in K$ such that

$$
w\left(x_{0}+0 \cdot \theta+\cdots+0 \cdot \theta^{n-1}\right) \geq w\left(y_{0}+0 \cdot \theta+\cdots+0 \cdot \theta^{n-1}\right)
$$

But as $w \mid v$, this is precisely the set

$$
\left\{\left(x_{0}, y_{0}\right) \in K \mid w\left(x_{0}\right) \geq w\left(y_{0}\right)\right\}=\left\{\left(x_{0}, y_{0}\right) \in K \mid v\left(x_{0}\right) \geq v\left(y_{0}\right)\right\}
$$

and so v is arithmetically definable in K, as desired.
Now note that for all discrete valuations v on K, one of the following must occur: $v(2)=0$, $v(3)=0$ and either $\operatorname{char}(\kappa(v)) \neq 2, \operatorname{char}(\kappa(v)) \neq 3$. Consider the field $K\left(\zeta_{12}\right) \mid K$. Then for any discrete valuation v on K, any extension $w \mid v$ must have that

$$
\left\{x \in\left(K\left(\zeta_{12}\right)\right)^{\times} \mid w(x) \equiv 0 \quad \bmod \ell\right\}=\phi_{\ell_{w}}\left(\left(K\left(\zeta_{12}\right) ; a_{w}, b_{w}\right)\right.
$$

for some $\ell_{w} \in\{2,3\}$ and $a_{w}, b_{w} \in\left(K\left(\zeta_{12}\right)\right)^{\times}$. But then w is arithmetically definable over $K\left(\zeta_{12}\right)$ and so by the claim above v is arithmetically definable over K.

Conclusion and Further Results

In his original paper [6], proves the following stronger result:
Theorem 3. ([6] Theorems 1,6) Let K be a global field.

- If K is a number field, then every discrete valuation is arithmetically definable, as are the closed unit balls of all archimedean valuations.
- If K is a function field, then every discrete valuation is arithmetically definable.

The function field analogue is proven using similar methods to the ones outlined above, and the proof of the archimedean case for number fields has a very topological flavor and relies upon deep theorems on quadratic forms.

By tweaking the first-order formulas ϕ_{ℓ} (defined in our proof of Theorem 2 above), Rumely is able to construct first order formulas $\Phi_{\ell}(x ; \bar{z})$ such that for all global fields K and $\bar{c} \in K, \Phi(K ; \bar{c})$ is either \mathcal{O}_{v} for some discrete valuation v or is all of K. This uses the characterization of valuation rings of K as subrings $R \subseteq K$ such that if $c \neq 0 \in K$, then either c or $c^{-1} \in R$. Moreover, Rumely shows there is a finite list $\left\{\ell_{1}, \cdots, \ell_{n}\right\}$ of primes such that every discrete v on K there is some tuple $\overline{c_{v}} \in K$ with $\Phi_{\ell_{i}}\left(K ; \overline{c_{v}}\right)=\mathcal{O}_{v}$ for some i. Using this and the fact that universal quantification is the same as taking a large intersection and that $\mathcal{O}_{K}=\bigcap_{\mathfrak{p} \in \operatorname{Spec}\left(\mathcal{O}_{K}\right) \backslash\{0\}} \mathcal{O}_{\mathfrak{p}}$ Rumely shows the following:

Theorem 4. ([6] Corollary 3) There is a first-order formula Int (x) such such that, for all number fields K, $\operatorname{Int}(K)=\mathcal{O}_{K}$.

These results point to and culminate in Rumely's proof that
Theorem 5. ([6] Theorem 4) The first-order theory of global fields is essentially undecidable; that is, any consistent extension of the common first-order theory of global fields is undecidable.

References

1. M. Atiyah and I. MacDonald. Introduction To Commutative Algebra. Addison Wesley, 1st edition, 1969.
2. W. Hodges. A Shorter Model Theory. Cambridge University Press, 1st edition, 1997.
3. S. Lang. Algebraic Number Theory. Springer, 2nd edition, 1994.
4. S. Lang. Algebra. Springer, 3rd edition, 2002.
5. J. Neukirch. Algebraic Number Theory. Springer, 1st edition, 1999.
6. R. S. Rumely. Undecidability and Definability for the Theory of Global Fields. Transactions of the American Mathematical Society, 262(1):195-217, November 1980.
