
Qualifying Exam Syllabus and Transcript

Qiaochu Yuan

December 6, 2013

Committee: Martin Olsson (chair), David Nadler, Mariusz Wodzicki, Ori Ganor (outside
member)

Major Topic: Lie Algebras (Algebra)

• Basic definitions: Lie algebras, ideals, subalgebras, the center, representations.

• Structure theory of Lie algebras: nilpotent Lie algebras, solvable Lie algebras,
semisimple Lie algebras, Engel’s theorem, Lie’s theorem, Cartan’s criterion, the Levi
decomposition.

• Structure theory of semisimple Lie algebras: Cartan subalgebras, root systems,
Dynkin diagrams, Weyl groups, classification of simple complex Lie algebras.

• Representation theory: Universal enveloping algebras, the Poincaré-Birkhoff-Witt
theorem, highest weight modules, Verma modules, classification of finite-dimensional
simple modules over semisimple Lie algebras, the BGG resolution, the Weyl character
formula.

• Examples: representation theory of sl2, sl3, Weyl character formula for sln.

Reference: Kirillov’s An Introduction to Lie Groups and Lie Algebras, Chapters 2-7,
8.1-8.5.

Major Topic: Algebraic Topology (Geometry)

• The fundamental group: Covering spaces, Seifert-van Kampen, Eilenberg-MacLane
spaces.

• Homology and cohomology: Singular homology and cohomology, Mayer-Vietoris,
cup products, Poincaré duality, universal coefficients, the Künneth formula.

• The homotopy groups: Commutativity of the higher homotopy groups, the long
exact sequence of a fibration, Whitehead’s theorem, the Hurewicz theorem.
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• Examples: Fundamental groups of graphs ⇒ subgroups of free groups are free,
(co)homology of surfaces, πk(S

n) for k ≤ n, the Hopf fibration and π3(S2).

Reference: Hatcher’s Algebraic Topology, Chapters 0-3.A, 4.1-4.2

Minor Topic: Homological Algebra (Algebra)

• Basic category theory: categories, functors, natural transformations, abelian cate-
gories, limits and colimits, adjoint functors, adjointness and exactness.

• Chain complexes: homology, mapping cones, mapping cylinders, chain homotopy,
the long exact sequence of a short exact sequence of chain complexes.

• Derived functors: projective resolutions, injective resolutions, left derived functors,
right derived functors, Ext and Tor.

• Examples: Ext and Tor for abelian groups, Hn(G,−) ∼= ExtnZ[G](Z,−) via the bar res-
olution, Hn(g,−) ∼= ExtnU(g)(C,−) via the Chevalley-Eilenberg resolution, Whitehead’s
lemma.

Reference: Weibel’s An Introduction to Homological Algebra, Appendix A, Chapters 1-3,
6, 7.
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Note: this transcript is from memory and is probably far from the exact words that were
said during the exam. At several points I am unsure which examiner asked which question.

Lie Theory

Nadler: Can you define sl2(C) and describe its finite-dimensional irreducible represen-
tations?

Me: sl2(C) is the Lie algebra of traceless 2 × 2 complex matrices. If V is the defining
2-dimensional representation, then the symmetric powers Sn(V ), with dimension n+ 1, are
a complete list of the finite-dimensional irreducible representations of sl2(C). Should I go
into more detail?

Nadler: That’s fine. Where is the adjoint representation in this classification?

Me: The obvious guess is that it’s the 3-dimensional irreducible S2(V ). The adjoint
representation must be irreducible because if it were reducible then sl2 would have a proper
ideal of dimension either 1 or 2, and in either case that would imply that sl2 is solvable,
which we know is not true because it’s equal to its own commutator subalgebra. Since the
adjoint representation is 3-dimensional we’re done.

Nadler: Can you write down an explicit isomorphism between the adjoint representation
and S2(V )?

Me: First observe that the adjoint representation fits into a short exact sequence

0→ sl(V )→ V ⊗ V ∗ tr−→ C→ 0 (1)

since by definition sl(V ) consists of the 2× 2 matrices of trace zero. On the other hand,
V is a self-dual representation, so we can replace the middle representation with V ⊗ V .
This is because Λ2(V ) is the trivial representation, hence the action of sl(V ) preserves a
nondegenerate skew-symmetric bilinear form ω : V ⊗ V → C. Explicitly, if e1, e2 is a basis
for V then this form can be chosen so that ω(e1, e2) = 1, so the corresponding isomorphism

V 3 v 7→ ω(v,−) ∈ V ∗ (2)

sends e1 to e∗2 and e2 to −e∗1. Using this isomorphism I claim that the short exact sequence
above is isomorphic to the short exact sequence

0→ S2(V )→ V ⊗ V → Λ2(V )→ 0. (3)

Olsson (?): I don’t think we need to be quite so explicit. More abstractly, what can
we say about maps from the tensor square V ⊗2 of the defining representation to the trivial
representation?

Me: We always have V ⊗2 ∼= S2(V ) ⊕ Λ2(V ). In this case Λ2(V ) ∼= C is the trivial
representation and S2(V ) is irreducible, so

Hom(S2(V )⊕ C,C) ∼= Hom(S2(V ),C) ∼= Hom(C,C) ∼= C (4)
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since there are no nonzero maps from a nontrivial irreducible representation to a trivial
one. Hence any two nonzero morphisms V ⊗2 → C are related by multiplication by a scalar,
and the kernel of any such morphism must be isomorphic to S2(V ).

Nadler: How would you decompose the tensor square of the adjoint representation as a
direct sum of irreducibles, by hook or by crook?

Me: The shortest method is probably to use the character of the adjoint representation,
which I’ll write as z2 + 1 + z−2, and —

Nadler: What kind of mathematical object is that expression?

Me: There’s a restriction map from representations of sl2 to representations of its Cartan
subalgebra h, and I prefer to think of characters as elements of the representation ring of
the Cartan subalgebra. Equivalently, characters describe weight decompositions.

Continuing, the tensor square of the adjoint representation has character (z2 + 1 + z−2)2,
which I just need to write as a sum of characters of irreducible representations. This looks
like

(z2 + 1 + z−2)2 = (z4 + z2 + 1 + z−2 + z−4) + (z2 + 1 + z−2) + 1 (5)

hence we deduce an isomorphism

sl(V )⊗2 ∼= S4(V )⊕ S2(V )⊕ C. (6)

Nadler: Can you tell me what the BGG resolution of the trivial representation of sl3
looks like?

Me: First I might as well state the BGG resolution in general. Let g be a semisimple Lie
algebra, W its Weyl group, `(w) the length function on the Weyl group, ∆ its root system,
∆+ a choice of positive roots, and

ρ =
∑
i

ωi =
1

2

∑
α∈∆+

α (7)

its Weyl vector. Define the dot action of W weights λ as w · λ = w(λ + ρ)− ρ. For λ a
dominant (integral) weight, the simple module L(λ) has a resolution of the form

· · · →
⊕
`(w)=2

M(w · λ)→
⊕
`(w)=1

M(w · λ)→M(λ)→ L(λ)→ 0 (8)

where M(λ) is the Verma module of highest weight λ.

Nadler: Is this resolution infinite?

Me: No, it ends at the longest element of W .

Nadler: How many longest elements are there?

Me: Exactly one.
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Nadler: Can you tell me what M(0) looks like explicitly?

Me: First I might as well describe Verma modules in general. Let g = n− ⊕ h ⊕ n+ be
the triangular decomposition of g, where h is the Cartan subalgebra, n− is the sum of the
negative root spaces, and —

Nadler: I notice we’ve gone this entire time talking about Lie algebras without writing
down any matrices!

Me: Okay, let’s specialize to g = sl3. There is a direct sum decomposition

sl3 ∼=


 0 0 0
∗ 0 0
∗ ∗ 0

⊕

 ∗ ∗ ∗0 ∗ ∗

0 0 ∗

 (9)

of sl3 into strictly lower triangular and upper triangular matrices. Let b denote the upper
triangular matrices. The Verma module M(0) is the induced representation

M(0) ∼= U(sl3)⊗U(b) C (10)

where C is the trivial 1-dimensional representation of U(b).

Olsson: What’s the action of U(sl3) here?

Me: It’s induced from left multiplication.

Continuing, by the PBW theorem, U(sl3) is a free U(b)-module on monomials in three
variables corresponding to the three entries of a strictly lower triangular matrix, call them
e21, e31, e32. So as a vector space, and in fact as a weight module, we can write M(0) ∼=
C[e21, e31, e32].

Nadler: What do the maps in the BGG resolution look like? Or, how would you go
about constructing something like the BGG resolution?

Me: L(λ) is the unique simple quotient of M(λ), hence we want to look for any proper
submodules of M(λ) at all. One idea is that we want to look for weight vectors in M(λ)
which generate proper submodules. If we’ve found such a weight vector of weight µ (note:
I didn’t say this, but we also need the weight vector to be singular, or annihilated by n+)
then we get an induced map M(µ)→M(λ), and the maps in the BGG resolution are maps
like this.

Nadler: Can you explain where these maps come from in terms of an adjunction?

Me: Yes, it’s the tensor-hom adjunction

HomU(g)(U(g)⊗U(b) Cµ, V ) ∼= HomU(b)(Cµ, V ) (11)

where Cµ is the 1-dimensional U(b)-module generated by a vector of weight µ.

Nadler: What are the irreducible Verma modules of sl2?
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Me: Let H,X, Y be the standard basis of sl2. The Verma module M(λ) is generated
by a vector vλ satisfying Hvλ = λvλ and Xvλ = 0 and has basis vλ, Y vλ, Y

2vλ, .... The first
thing we should do is probably write down the action of X, so commuting —

Nadler: Commuting operators is near and dear to my heart, but perhaps we should work
more abstractly. You already know that some of these Verma modules aren’t irreducible.
What about the others? Is there a more indirect argument you could use?

Me: I know that M(λ) has a finite-dimensional quotient L(λ) whenever λ ∈ Z≥0 and
that these are precisely the finite-dimensional irreducible representations of sl2. For all other
values of λ, if M(λ) were reducible then it would have a proper submodule containing some
weight vector of weight µ. But then this submodule contains all lower weights, so the quotient
is finite-dimensional and this can’t happen.

Nadler: Can you describe a geometric object on which sl2 acts?

Me: SL2 acts on P1 in the usual way, and differentiating this action gives an action of
sl2 by vector fields on P1 (more precisely on, say, smooth functions on P1).
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Algebraic Topology

Nadler: What is your favorite space?

Me: Can I pick a family of spaces? Let’s go with the configuration space Cn(C) of n
distinct unordered points in C, which is an Eilenberg-MacLane space K(Bn, 1) for the braid
groups Bn.

Nadler: Can you define an Eilenberg-MacLane space?

Me: A connected topological spaceX is aK(G, 1) if π1(X) ∼= G and the higher homotopy
vanishes.

Olsson: In what sense is an Eilenberg-MacLane space unique?

Me: Up to weak homotopy equivalence, or up to homotopy equivalence if we restrict
our attention to CW complexes by Whitehead’s theorem. But I’m not entirely sure how to
prove this.

Nadler: What if you use the universal property?

Me: We can use the fact that in, say, the homotopy category of CW complexes, K(G, 1)
represents the functor sending a space X to the principal G-bundles on X, which are G-
covers since G is discrete here, and then K(G, 1) is unique in the homotopy category of CW
complexes by the Yoneda lemma.

Nadler: Why is Cn(C) a K(Bn, 1)?

Me: I worked this out at some point. The idea is to work by induction on n, writing
down a sequence of fibrations relating the spaces for different n, and then using the long
exact sequence in homotopy of these fibrations to show that all of the higher homotopy
vanishes. Here I’m defining Bn to be π1(Cn(C)). I can’t remember how to write down the
fibrations though.

Wodzicki: Why don’t you just identify the universal cover?

Me: I can write down what the universal cover should be in terms of paths but I don’t
know how I would go about showing that it’s contractible.

Nadler: To write down fibrations it looks like you would need an ordering.

Me: Yes, that’s what I need. Let Fn(C) denote the configuration space of n distinct
ordered points in C; then we have an Sn-cover Fn(C) → Cn(C) inducing an isomorphism
on higher homotopy, so to prove that Cn(C) is a K(Bn, 1) it suffices to prove that Fn(C)
is a K(Pn, 1) where Pn is the pure braid group, the kernel of the natural homomorphism
Bn → Sn.

The fibrations I want are now obtained by forgetting the first point. This gives fibrations

C \ {1, 2, ...n− 1} → Fn(C)→ Fn−1(C) (12)
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with fiber homotopy equivalent to a wedge of n − 1 circles, which is a K(Fn−1, 1). The
long exact sequence in homotopy and induction now shows that each Fn(C) has vanishing
higher homotopy and that the pure braid groups are iterated extensions of free groups.

Olsson (?): What is your favorite compact manifold?

Me: Can I pick a family of manifolds? Let’s go with CPn.

Nadler: Compute its cohomology.

Me: First we recall that CPn admits a cell structure with one cell in each even dimension
from 0 to 2n. It follows that the differentials in the cellular chain complex are trivial, hence
the homology of CPn is free abelian on cells and the cohomology is dual to that. This gives

Hk(CPn) ∼=

{
Z if k = 0, 2, ...2n

0 otherwise
. (13)

Nadler: What about the ring structure?

Me: We can use the fact that on a compact oriented manifold, the cup product is
Poincaré dual to transverse intersection of oriented submanifolds. The cohomology H2i(CPn)
can be taken to be generated by the Poincaré dual of the fundamental class of an inclusion
CPn−i → CPn of a subspace of codimension i, and generically a copy of CPn−i and a copy
of CPn−j intersect in a copy of CPn−i−j. It follows that

H•(CPn) ∼= Z[c]/cn+1. (14)

Nadler: What happens to the cohomology when we remove a point?

Me: The obvious guess is that we remove the top cell, so the top homology and coho-
mology, but nothing else happens. More formally we can use Mayer-Vietoris. Let X = CPn
and write X = Y ∪ B where B is a small ball around the point we removed and Y is the
closure of the complement; in particular Y is homotopy equivalent to X minus a point. Now
X ∩ B is a sphere S2n−1. Let me see if I remember which way the homological vs. the
cohomological Mayer-Vietoris sequences go...

Nadler: That’s fine. What if we glue together two points?

Me: I think we can use Mayer-Vietoris again.

(note: here I waffle for a bit and eventually realize that my idea requires me to use
Mayer-Vietoris twice, which I don’t like)

Wodzicki: Why don’t you simply observe that gluing together two points is equivalent
to attaching them by a path, which is in turn equivalent to taking the wedge sum with a
circle?

Nadler: I don’t think we’re supposed to solve the problem for him!

Me: Oh, of course. That makes everything much simpler.
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Nadler: Well, in any case, does CP1 with two points glued together satisfy Poincaré
duality?

Me: The homology and cohomology are both Z,Z,Z, but I think capping with the
fundamental class doesn’t induce an isomorphism. I’m not sure how I would show that,
though.

Nadler: What can you say about cup products?

Me: Oh, right. CP1 with two points glued together is the wedge S1 ∨ S2, so a generator
of H1 has cup square zero, hence the cup product H1 ⊗H1 → H2 is not nondegenerate and
Poincaré duality must fail.

Wodzicki: Why does the generator of H1 have cup square zero?

Me: There’s a map S1∨S2 → S1 which collapses S2 to a point, and the generator of H1

is the pullback of the generator of H1(S1) along this map. The cup square of the generator
of H1(S1) is zero since H2(S2) is zero, so by functoriality the conclusion follows.
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Homological Algebra

Wodzicki: You have “Chevalley-Eilenberg resolution” written on your syllabus. This
is strange; I think you might be mixing up the Chevalley-Eilenberg complex with Cartan-
Eilenberg resolutions. In any case, can you define this term for me?

Me: I just mean the following distinguished resolution of the trivial representation k of
a Lie algebra g by free U(g)-modules:

· · · → U(g)⊗ Λ3(g)→ U(g)⊗ Λ2(g)→ U(g)⊗ g→ U(g)→ k → 0. (15)

Ganor: What are those tensor products over?

Me: Over the ground field k.

Wodzicki: What are the differentials in this resolution?

Me: I don’t know them off the top of my head. The first map U(g)→ k is the quotient
by the ideal generated by g; said another way, it’s the counit map for the Hopf algebra
structure on U(g).

In general, we can define the subsequent maps by describing maps Λk(g)→ U(g)⊗Λk−1(g)
of vector spaces and using the universal property. So the first differential is given by the
linear inclusion map g → U(g), since the resulting map of U(g)-modules surjects onto the
kernel of the counit map. The second differential is given by a linear map Λ2(g)→ U(g)⊗ g
which I’m guessing is

v ∧ w 7→ v ⊗ w − w ⊗ v. (16)

Wodzicki: That is incorrect.

Nadler: Perhaps it would help to answer the following question first. What is a resolu-
tion of the skyscraper sheaf at 0 on X = C2 as an OX-module?

Me: You’re saying I should write down the Koszul resolution first. That sounds reason-
able; I know that the Chevalley-Eilenberg resolution is supposed to be a deformation of the
Koszul resolution (note: I didn’t say this, but in addition the Chevalley-Eilenberg resolution
reduces to the Koszul resolution when g is abelian). For V a finite-dimensional vector space
the Koszul resolution is a resolution of the trivial module k of S(V ) (all elements of V act
by zero) by free S(V )-modules. It takes the form

· · · → S(V )⊗ Λ3(V )→ S(V )⊗ Λ2(V )→ S(V )⊗ V → S(V )→ k → 0. (17)

The maps S(V )→ k and V → S(V ) are the same as before. The map Λ2(V )→ S(V )⊗V
is the map I wrote down above because this generates the kernel of the previous map. But
to modify this for the case of Lie algebras we need the map

v ∧ w 7→ v ⊗ w − w ⊗ v − [v, w]. (18)

So that should be the correct next differential in the Chevalley-Eilenberg resolution.
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