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2 Mapping class groups

Regarding the exercises from the previous lecture: it is cleaner to compactify and
identify the point at infinity with the top and bottom punctures, so we work instead
with a four-punctured sphere. Then there can be components of a curve which loop
around one puncture or components which loop around two punctures (circumfer-
ences). This gives five different kinds of curves, and up to the action of the mapping
class group every simple (multi)curve consists of copies of these five kinds of curves.

Figure 1: The five kinds of components of a simple multicurve on the four-punctured
sphere.

In the first exercise, the three intersection numbers on the edges of a triangle
must have the form a + b,b + ¢,c + a where a, b, c are non-negative integers. This
is equivalent to the three numbers summing to an even integer and satisfying the
triangle inequality. Now, if all of the triangle inequalities among the coordinates are
strict, then the curve necessarily has a component which loops around one puncture.
Removing all such loops, we can work out that the coordinates must have the form
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and the mapping class group acts essentially by Euclid’s algorithm on p, g. This is
not a coincidence; the mapping class group Bj is related to SLy(7Z), which is in turn
related to the FEuclidean algorithm.




An easier case to handle first is the (orientation-preserving) mapping class group
MCG™(T?) = Diff " (X)/Diffy(X) of the torus (where Diffy(X) is the connected com-
ponent of the group of diffecomorphisms containing the identity). This is the same as
the mapping class group of the torus minus a point x, which acts on loops based at
x.

Figure 2: Two curves on a torus being acted on by the mapping class group.

This gives an action on the fundamental group, hence a homomorphism

MCG(T?, z) — Aut(m(T? 7)) = Aut(Z?) = GLy(Z) (2)

whose restriction to MCG™ (T2, z) lands in SLy(Z). This relies on the fact that
71 (T? x) is abelian. In general we only get an action by outer automorphisms

MCG(X) — Out(m (X)) (3)

because the mapping class group acts on unbased loops, and changing the base-
point changes the corresponding automorphism of fundamental groups (based at dif-
ferent points) by conjugation by a path connecting the basepoints.

In the special case of surfaces ¥, the map MCG(X) — Out(m (X)) is an isomor-
phism. This is false in general. It is also false that the mapping class group of a space
is the mapping class group of a space minus a point x. There is only a commutative
diagram

MCG(X) — Out(mi (X)) (4)

| |

MCG(X, z) — Aut(m (X))
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Figure 3: Changing basepoints on a surface with nonabelian fundamental group.

and the various maps in it are not isomorphisms in general, for example when X is
a wedge of two circles S*V S, In this case MCG(X) has 8 elements (we can flip either
of the two circles or switch the circles), MCG(X, z9) = MCG(X) if x( is the wedge
point, and MCG(X, z1) has two elements if z; lies on only one of the circles. Here
m = Z+Z is not abelian, so the map Aut(m;) — Out(m) is also not an isomorphism.

Figure 4: The wedge of two circles and the generators of its mapping class group.

Theorem 2.1. MCG(T?) = MCG(T?, z) & GLy(Z) and MCG*(T?) = MCG*(T?, z) =
SLy(Z).

Regarding the distinction between Aut(m (X)) and Out(m (X)), we have the fol-
lowing result.

Theorem 2.2. If G is a topological group, w1 (G, e) is abelian.
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In particular T2 is a topological group.
Exercise 2.3. Find out what the Birman exact sequence is and report back next week.

Back to curves. How can we describe curves on a punctured torus? We can
triangulate and then count intersections as before. There are only three coordinates
a, b, c, and there is a component around the puncture if various triangle inequalities

are strict.
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Figure 5: General coordinates for a curve on a punctured torus, and a specific curve
with components around the puncture.

Removing all such components, assume WLOG that ¢ is the greatest coordinate;
then ¢ = a + b. In this case curves are parameterized by two numbers (a,b), which
in the universal cover R? of the torus we can think of as given by a line with slope g
(when a, b are relatively prime).

The number of components of the corresponding curve is ged(a, b) (the mapping
class group acts by the Euclidean algorithm); consequently, we get a curve with a
single component if and only if ged(a,b) = 1, so we can identify the simple closed
curves on T2 (not trivial, and not around the puncture) with the projective line P(Q)
over Q. The probability that ged(a,b) = 1 occurs asymptotically is

== (Z%) g

(Heuristically this is because the probability that ged(a,b) = n should be propor-
tional to -5.)

Exercise 2.4. Fxplain how running Euclid’s algorithm corresponds to changing the
triangulation.
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Figure 6: A line of slope % in R? and the corresponding curve on the torus.

Back to the braid group. What does MCG™(T?) have to do with the thrice-
punctured disc or the four-punctured sphere? If Y denotes the four-punctured sphere,
the double cover branched at the punctures Y is a torus. Branched means that near
the punctures the map looks locally like 2% +— 2 in C.

Figure 7: A local picture of the map 2? — 2z (given by projection down).

To obtain this double cover, skewer the torus by a line and quotient by rotation
by 180° about the line. The corresponding cover is branched at the four points where
we skewered the torus.

More algebraically, we quotiented by the element —7 in the mapping class group
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Figure 8: A skewered torus and a picture of the quotient, except that we still need
to identify parts of the circles.

SLy(Z). This branched cover descends to a map of mapping class groups

MCGH(T?) 22 SLy(Z) — PSLy(Z) = MCG™(S?, 1 pt, 3 pts). (6)

The last mapping class group fixes one puncture pointwise and fixes the other

three setwise. One way to see this action on three points is to look at the quotient
On the other hand, there is a map

By =2 MCG(D?, 3 pts) — MCG™ (5%, 1 pt, 3 pts) (7)

(where the first mapping class group fixes the boundary pointwise) and the claim
is that this exhibits Bs as a central extension of PSLy(Z).



