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2 Mapping class groups

Regarding the exercises from the previous lecture: it is cleaner to compactify and
identify the point at infinity with the top and bottom punctures, so we work instead
with a four-punctured sphere. Then there can be components of a curve which loop
around one puncture or components which loop around two punctures (circumfer-
ences). This gives five different kinds of curves, and up to the action of the mapping
class group every simple (multi)curve consists of copies of these five kinds of curves.

Figure 1: The five kinds of components of a simple multicurve on the four-punctured
sphere.

In the first exercise, the three intersection numbers on the edges of a triangle
must have the form a + b, b + c, c + a where a, b, c are non-negative integers. This
is equivalent to the three numbers summing to an even integer and satisfying the
triangle inequality. Now, if all of the triangle inequalities among the coordinates are
strict, then the curve necessarily has a component which loops around one puncture.
Removing all such loops, we can work out that the coordinates must have the form

•
p

|p−q|
q

• q • p •

•
p

p+q
q

(1)

and the mapping class group acts essentially by Euclid’s algorithm on p, q. This is
not a coincidence; the mapping class group B3 is related to SL2(Z), which is in turn
related to the Euclidean algorithm.
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An easier case to handle first is the (orientation-preserving) mapping class group
MCG+(T 2) = Diff+(X)/Diff0(X) of the torus (where Diff0(X) is the connected com-
ponent of the group of diffeomorphisms containing the identity). This is the same as
the mapping class group of the torus minus a point x, which acts on loops based at
x.

Figure 2: Two curves on a torus being acted on by the mapping class group.

This gives an action on the fundamental group, hence a homomorphism

MCG(T 2, x)→ Aut(π1(T
2, x)) ∼= Aut(Z2) ∼= GL2(Z) (2)

whose restriction to MCG+(T 2, x) lands in SL2(Z). This relies on the fact that
π1(T

2, x) is abelian. In general we only get an action by outer automorphisms

MCG(X)→ Out(π1(X)) (3)

because the mapping class group acts on unbased loops, and changing the base-
point changes the corresponding automorphism of fundamental groups (based at dif-
ferent points) by conjugation by a path connecting the basepoints.

In the special case of surfaces Σ, the map MCG(Σ) → Out(π1(Σ)) is an isomor-
phism. This is false in general. It is also false that the mapping class group of a space
is the mapping class group of a space minus a point x. There is only a commutative
diagram

MCG(X) // Out(π1(X))

MCG(X, x)

OO

// Aut(π1(X))

OO
(4)
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Figure 3: Changing basepoints on a surface with nonabelian fundamental group.

and the various maps in it are not isomorphisms in general, for example when X is
a wedge of two circles S1∨S1. In this case MCG(X) has 8 elements (we can flip either
of the two circles or switch the circles), MCG(X, x0) = MCG(X) if x0 is the wedge
point, and MCG(X, x1) has two elements if x1 lies on only one of the circles. Here
π1 = Z∗Z is not abelian, so the map Aut(π1)→ Out(π1) is also not an isomorphism.

Figure 4: The wedge of two circles and the generators of its mapping class group.

Theorem 2.1. MCG(T 2) ∼= MCG(T 2, x) ∼= GL2(Z) and MCG+(T 2) ∼= MCG+(T 2, x) ∼=
SL2(Z).

Regarding the distinction between Aut(π1(X)) and Out(π1(X)), we have the fol-
lowing result.

Theorem 2.2. If G is a topological group, π1(G, e) is abelian.
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In particular T 2 is a topological group.

Exercise 2.3. Find out what the Birman exact sequence is and report back next week.

Back to curves. How can we describe curves on a punctured torus? We can
triangulate and then count intersections as before. There are only three coordinates
a, b, c, and there is a component around the puncture if various triangle inequalities
are strict.

Figure 5: General coordinates for a curve on a punctured torus, and a specific curve
with components around the puncture.

Removing all such components, assume WLOG that c is the greatest coordinate;
then c = a + b. In this case curves are parameterized by two numbers (a, b), which
in the universal cover R2 of the torus we can think of as given by a line with slope b

a

(when a, b are relatively prime).
The number of components of the corresponding curve is gcd(a, b) (the mapping

class group acts by the Euclidean algorithm); consequently, we get a curve with a
single component if and only if gcd(a, b) = 1, so we can identify the simple closed
curves on T 2 (not trivial, and not around the puncture) with the projective line P1(Q)
over Q. The probability that gcd(a, b) = 1 occurs asymptotically is

6

π2
=

(
∞∑
n=1

1

n2

)−1
. (5)

(Heuristically this is because the probability that gcd(a, b) = n should be propor-
tional to 1

n2 .)

Exercise 2.4. Explain how running Euclid’s algorithm corresponds to changing the
triangulation.
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Figure 6: A line of slope 5
3

in R2 and the corresponding curve on the torus.

Back to the braid group. What does MCG+(T 2) have to do with the thrice-
punctured disc or the four-punctured sphere? If Y denotes the four-punctured sphere,
the double cover branched at the punctures Ỹ is a torus. Branched means that near
the punctures the map looks locally like z2 7→ z in C.

Figure 7: A local picture of the map z2 7→ z (given by projection down).

To obtain this double cover, skewer the torus by a line and quotient by rotation
by 180◦ about the line. The corresponding cover is branched at the four points where
we skewered the torus.

More algebraically, we quotiented by the element −I in the mapping class group

5



Figure 8: A skewered torus and a picture of the quotient, except that we still need
to identify parts of the circles.

SL2(Z). This branched cover descends to a map of mapping class groups

MCG+(T 2) ∼= SL2(Z)→ PSL2(Z) ∼= MCG+(S2, 1 pt, 3 pts). (6)

The last mapping class group fixes one puncture pointwise and fixes the other
three setwise. One way to see this action on three points is to look at the quotient
SL2(Z)→ SL2(F2).

On the other hand, there is a map

B3
∼= MCG(D2, 3 pts)→ MCG+(S2, 1 pt, 3 pts) (7)

(where the first mapping class group fixes the boundary pointwise) and the claim
is that this exhibits B3 as a central extension of PSL2(Z).
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