274 Microlocal Geometry, Lecture $8\,$

David Nadler Notes by Qiaochu Yuan

Fall 2013

8 More about intersection cohomology

Theorem 8.1. Let X^{2n} be a (reasonable) 2n-dimensional stratified space with only evendimensional strata (e.g. any complex algebraic variety). Write S_{2k} for its 2k-dimensional strata and assume that S_{2n} is oriented. Then there is a unique cochain theory (sheaf) IC_X such that

- 1. When restricted to S_{2n} , we get cochains on S_{2n} in the usual sense,
- 2. IC_X is self-dual in the sense that $IC_X^{\bullet}(U_x)$ is quasi-isomorphic to $IC_X^{2n-\bullet}(U_x, \partial U_x)^{\vee}$ in sufficiently small neighborhoods U_x of points (those looking like cones on the link times a ball),
- 3. IC_X satisfies local vanishing in the sense that if $x \in S_{2k}$ and U_x is a neighborhood as above, then the cohomology of $IC^{\bullet}_X(U_x)$ vanishes for $\bullet \geq n-k$.

Figure 1: A neighborhood U_x .

Our earlier construction in the special case that $X = \text{Cone}(L^{2n-1})$, where L is 2n-1-dimensional, satisfied these conditions. The idea is to inductively perform this construction to construct intersection cochains in general.

Example Let $L = S^1$, so X is the cone over a circle. The ordinary cohomology of the link is \mathbb{C} in degree 0 (generated by the whole thing) and 1 in degree 1 (generated by a point). The intersection cohomology is \mathbb{C} in degree 0 (generated by the cone over the link) and zero otherwise, and the relative intersection cohomology is \mathbb{C} in degree 2 (generated by a point in the link).

We now inductively define intersection cochains as follows by inducting on codimension. Let $x \in S_{2k}$. Consider a neighborhood $U_x \ni x$ of the form $\operatorname{Cone}(L_x) \times B^{2k}$. Moving along

Figure 2: The cone over a circle.

Figure 3: A neighborhood.

 S_{2k} won't change anything, so we'll take a slice and reduce to the case that $x \in S_0$ and $U_x \cong \operatorname{Cone}(L_x)$.

(Previously we only allowed L_x to be a manifold, but now L_x is itself a stratified space all of whose strata are odd-dimensional). Since L_x was obtained by taking a slice, by induction we have a self-dual cochain theory on $L_x \times (-\epsilon, \epsilon)$ which restricts (e.g. by taking transverse intersections) to a self-dual cochain theory on L_x . Now we cone off cochains of degree less than or equal to $\frac{\dim L_x - 1}{2}$ as before and ignore the others.

Example Let X be the cone over a pair L of 3-dimensional tori meeting along a circle (so all strata are odd-dimensional, or equivalently have even codimension). L has a finite resolution given by a pair of 3-dimensional tori, so the self-dual cohomology that X sees above is just

 \mathbb{C}^2 , \mathbb{C}^6 , \mathbb{C}^6 , \mathbb{C}^2 . Alternatively, we know what happens on the smooth locus, and the singular locus looks like two tori meeting at a point times an interval.

Figure 4: Two 3-tori meeting along a circle.