274 Microlocal Geometry, Lecture 19

David Nadler

Notes by Qiaochu Yuan
Fall 2013

19 Sheaves on the projective line, the Fourier transform

Last time we described constructible sheaves on \mathbb{C} with a singular point in terms of modules over the quiver

$$
\begin{equation*}
\varepsilon^{\vee} \underset{q[-1]}{\stackrel{p[1]}{\longleftrightarrow}} \varepsilon \tag{1}
\end{equation*}
$$

where $1-q p$ and $1-p q$ are invertible (these give the monodromy up to homotopy, which we can forget since they don't arise in any other conditions). The left vertex is the microlocal stalk $F_{\left(0, \varepsilon^{\vee} d x\right)}$ and the right vertex is the usual stalk $F_{\epsilon}[-1]$, which we'll shift for convenience so p, q can have degree 0 .

Now let's consider sheaves on $M=\mathbb{P}^{1}$ with a singular point.

Figure 1: The sphere with a singular point.

This has the effect of adding a 2-cell which kills the monodromy, hence $p q=\delta h$ for some h of degree -1 . Letting M_{0}, M_{1} be the stalks above, we want to find indecomposable modules over this quiver with M_{0}, M_{1} in degree 0 ($h=0$ in this case). There are exactly 5 of these. They can be thought of as perverse sheaves and have something to do with $\mathfrak{s l}_{2}$-modules of highest weight with central character 0 . Here they are:

Exercise 19.1. These are all the indecomposable modules.
The sheaf corresponding to the first module is $\mathbb{C}_{\{0\}}$ and the sheaf corresponding to the third module is $\mathbb{C}_{\mathbb{P}^{1}}[1]$. The sheaf corresponding to the second module is $j_{*} \mathbb{C}_{U}[1]$ where
$j: U \rightarrow \mathbb{P}^{1}$ is the inclusion of \mathbb{C} into \mathbb{P}^{1}. The sheaf corresponding to the fourth module is $j_{!} \mathbb{C}_{U}[1]$. Finally, the sheaf corresponding to the fifth module is Harold's pushforward.

Now let's talk about the Fourier transform. Let V be a real vector space and V^{\vee} its dual. Then $V \times V^{\vee}$ can be thought of as both $T^{*}(V)$ and as $T^{*}\left(V^{\vee}\right)$. In $V \times V^{\vee}$ consider the subset S of pairs (v, λ) with $\lambda(v) \geq 0$.

Figure 2: The subset S.

If $C_{S}^{\bullet} \in D\left(V \times V^{\vee}\right)$, we can consider the functor

$$
\begin{equation*}
D(V) \ni F \mapsto E(F)=\left(\pi_{V^{\vee}}\right)!\left(C_{S}^{\bullet} \otimes \pi_{V}^{*} F\right) \in D\left(V^{\vee}\right) \tag{3}
\end{equation*}
$$

This is an equivalence on sheaves which are \mathbb{R}_{+}-conical. The construction we are performing here should be thought of as analogous to integration against a kernel

$$
\begin{equation*}
\hat{f}(\xi)=\int f(x) K(x, \xi) d x \tag{4}
\end{equation*}
$$

Example Let's compute a few examples, all of which may be off by a shift, for $V=\mathbb{R}$. Here $\mathbb{C}_{\{0\}}$ gets sent to $\mathbb{C}_{V \vee}$. \mathbb{C}_{V} gets sent to $\mathbb{C}_{\{0\}}$. The pushforward $j_{*} \mathbb{C}_{(-\infty, 0)}$ gets sent to $j_{!} \mathbb{C}_{(0, \infty)}$.

