274 Microlocal Geometry, Lecture 19

David Nadler Notes by Qiaochu Yuan

Fall 2013

19 Sheaves on the projective line, the Fourier transform

Last time we described constructible sheaves on $\mathbb C$ with a singular point in terms of modules over the quiver

$$\varepsilon^{\vee} \underbrace{\overset{p[1]}{\overset{}}}_{q[-1]} \varepsilon \tag{1}$$

where 1 - qp and 1 - pq are invertible (these give the monodromy up to homotopy, which we can forget since they don't arise in any other conditions). The left vertex is the microlocal stalk $F_{(0,\varepsilon^{\vee}dx)}$ and the right vertex is the usual stalk $F_{\epsilon}[-1]$, which we'll shift for convenience so p, q can have degree 0.

Now let's consider sheaves on $M = \mathbb{P}^1$ with a singular point.

Figure 1: The sphere with a singular point.

This has the effect of adding a 2-cell which kills the monodromy, hence $pq = \delta h$ for some h of degree -1. Letting M_0, M_1 be the stalks above, we want to find indecomposable modules over this quiver with M_0, M_1 in degree 0 (h = 0 in this case). There are exactly 5 of these. They can be thought of as perverse sheaves and have something to do with \mathfrak{sl}_2 -modules of highest weight with central character 0. Here they are:

$$\mathbb{C} \xrightarrow[0]{0} 0, \mathbb{C} \xrightarrow[0]{\sim} \mathbb{C}, 0 \xrightarrow[0]{0} \mathbb{C}, \mathbb{C} \xrightarrow[-]{\circ} \mathbb{C}, \mathbb{C} \oplus \mathbb{C} \xrightarrow[i_2]{\pi_1} \mathbb{C}.$$
(2)

Exercise 19.1. These are all the indecomposable modules.

The sheaf corresponding to the first module is $\mathbb{C}_{\{0\}}$ and the sheaf corresponding to the third module is $\mathbb{C}_{\mathbb{P}^1}[1]$. The sheaf corresponding to the second module is $j_*\mathbb{C}_U[1]$ where

 $j: U \to \mathbb{P}^1$ is the inclusion of \mathbb{C} into \mathbb{P}^1 . The sheaf corresponding to the fourth module is $j_! \mathbb{C}_U[1]$. Finally, the sheaf corresponding to the fifth module is Harold's pushforward.

Now let's talk about the Fourier transform. Let V be a real vector space and V^{\vee} its dual. Then $V \times V^{\vee}$ can be thought of as both $T^*(V)$ and as $T^*(V^{\vee})$. In $V \times V^{\vee}$ consider the subset S of pairs (v, λ) with $\lambda(v) \ge 0$.

Figure 2: The subset S.

If $C_S^{\bullet} \in D(V \times V^{\vee})$, we can consider the functor

$$D(V) \ni F \mapsto E(F) = (\pi_{V^{\vee}})_! (C_S^{\bullet} \otimes \pi_V^* F) \in D(V^{\vee}).$$
(3)

This is an equivalence on sheaves which are \mathbb{R}_+ -conical. The construction we are performing here should be thought of as analogous to integration against a kernel

$$\hat{f}(\xi) = \int f(x)K(x,\xi) \, dx. \tag{4}$$

Example Let's compute a few examples, all of which may be off by a shift, for $V = \mathbb{R}$. Here $\mathbb{C}_{\{0\}}$ gets sent to $\mathbb{C}_{V^{\vee}}$. \mathbb{C}_{V} gets sent to $\mathbb{C}_{\{0\}}$. The pushforward $j_*\mathbb{C}_{(-\infty,0)}$ gets sent to $j_!\mathbb{C}_{(0,\infty)}$.