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1 Introduction

We will first begin with Lie groups and some differential geometry. Next we will discuss
some generalities about Lie algebras. We will discuss the classification of semisimple Lie
algebras, root systems, the Weyl group, and Dynkin diagrams. This will lead into finite-
dimensional representations and the Weyl character formula. Finally we will apply this to
the classification of compact Lie groups.

To specify a group we specify three maps m : G×G→ G, i : G→ G−1, e : • → G which
satisfy various axioms. This definition can be internalized to various categories:

1. If G is a topological space and the maps are continuous, we get a topological group.

2. If G is a smooth manifold and the maps are smooth, we get a Lie group.

3. If G is a complex manifold and the maps are complex analytic, we get a complex Lie
group.

4. If G is an algebraic variety and the maps are algebraic, we get an algebraic group.

The last three categories are surprisingly close to equivalent (the morphisms are given
by smooth resp. complex analytic resp. algebraic maps which respect group structure).

Example (R,+) is a simple example of a Lie group. (R>0,×) is another. These two Lie
groups are isomorphic with the isomorphism given by the exponential map. These groups
are also (real) algebraic groups, but this isomorphism is not algebraic.

Example For F = R,C the general linear group GLn(F ) is a Lie group. GLn(C) is even a
complex Lie group and a complex algebraic group. In particular, GL1(C) ∼= (C \ {0},×).

GLn(R) is the smooth manifold Rn2
minus the closed subspace on which the determinant

vanishes, so it is a smooth manifold. It has two connected components, one where det > 0
and one where det < 0. The connected component containing the identity is the normal
subgroup GL+

n (R) of invertible matrices of positive determinant, and the quotient is Z/2Z.
GLn(C) is similar except that it is connected.

GLn(F ) also has as a normal subgroup the special linear group SLn(F ) of elements of
determinant 1. There is a short exact sequence

0→ SLn(F )→ GLn(F )→ F× → 0 (1)

where the last map is given by the determinant.

Example S1 is a Lie subgroup of GL1(C). Unlike the examples above, as a topological
space S1 is compact. There is a short exact sequence

0→ Z→ R→ S1 → 0 (2)

where the map R→ S1 sends x to eix.
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Example The torus T 2 ∼= S1 × S1 is a Lie group. We can also think of T 2 as a smooth
projective algebraic curve over C of genus 1 (an elliptic curve), in which case there are many
distinct isomorphism classes of such curves.

Example The orthogonal group O(n) is the subgroup of GLn(R) of elements X such that
XTX = id, where XT denotes the transpose. Equivalently, O(n) is the group of linear
operators preserving the standard inner product on Rn. This group has two connected
components. The connected component containing the identity is the special orthogonal
group SO(n) of elements of O(n) with determinant 1, and the quotient is Z/2Z.

This group is compact because it is closed and bounded with respect to the Hilbert-
Schmidt norm

∣∣tr(ATA)
∣∣.

Example Similarly, the unitary group U(n) is the subgroup of GLn(C) of elements such
that X†X = id where X† denotes the adjoint or conjugate transpose. Equivalently, it is the
subgroup preserving an inner product or Hermitian form on Cn. It is connected. As above,
this group is compact because it is closed and bounded with respect to the Hilbert-Schmidt
norm. U(n) is a Lie group but not a complex Lie group because the adjoint is not algebraic.

The determinant gives a map U(n) → U(1) ∼= S1 whose kernel is the special unitary
group SU(n), giving a short exact sequence

0→ SU(n)→ U(n)→ S1 → 0. (3)

Consider the example of SU(2) in particular. This consists of 2× 2 matrices[
a b
c d

]
(4)

satisfying |a|2 + |b|2 = 1, |c|2 + |d|2 = 1, ac̄+ bd̄ = 1, and ad− bc = 1. All such matrices
can be written [

a b
−b̄ ā

]
(5)

where a = x+yi, b = z+wi satisfy x2 +y2 +z2 +w2 = 1, and there are no such conditions.
So SU(2) can be identified with the 3-sphere S3 as a smooth manifold. Without the last
condition, the above is a representation of the quaternions H as 2× 2 matrices over C. The
quaternions have a multiplicative norm x2 + y2 + z2 +w2, and SU(2) can also be thought of
as the group Sp(1) of quaternions of norm 1.

Sp(1) acts by conjugation v 7→ qvq−1 on the quaternions. This action preserves the
subspace of quaternions with zero imaginary part (a 3-dimensional real representation of
SU(2)), giving a homomorphism SU(2) → GL3(R). This homomorphism is not surjective
since SU(2) also preserves the norm, giving an action of SU(2) on the 2-sphere S2 which
turns out to furnish a surjective homomorphism

SU(2)→ SO(3). (6)
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This is a double cover with kernel −1. Since SU(2) ∼= S3 is simply connected, it follows
that π1(SO(3)) ∼= Z/2Z.

2 Generalities

Definition If G is a Lie group and X is a manifold, an action of G on X is a smooth map
G×X → X such that g1(g2x) = (g1g2)x and ex = x, where g1, g2 ∈ G, e is the identit, and
x ∈ X.

The above definition can also be internalized into other categories, e.g. complex manifolds
or algebraic varieties.

Definition With an action as above, the stabilizer Stab(x) of a point x ∈ X is the subgroup
{g ∈ G : gx = x}.

The stabilizer is always a closed subgroup.

Example SLn(R) naturally acts on Rn. When n > 1, this action has two orbits: 0 and the
nonzero vectors. The stabilizer of any two nonzero vectors is conjugate, so to compute the
stabilizer of any nonzero vector it suffices to compute the stabilizer of one such vector. We
will take x0 = (1, 0, ...0). The resulting stabilizer consists of block matrices of the form[

1 ∗
0 M

]
(7)

where M ∈ SLn−1(R). This is the semidirect product of SLn−1(R) and Rn−1; topologi-
cally, it is homeomorphic to their product.

Consider the map

γ : SLn(R) 3 g 7→ gx0 ∈ Rn \ {0}. (8)

This map sends a matrix g to its first column. It is surjective, smooth, and open. The
fiber of any point is homeomorphic to the stabilizer subgroup above, and in fact γ is a fiber
bundle.

Proposition 2.1. SLn(R) is connected.

Proof. We proceed by induction on n. When n = 1 the statement is clear. Inductively,
suppose we have shown that SLn−1(R) is connected. Then γ is a surjective open map with
connected fibers and a connected codomain.

Proposition 2.2. Let γ : Y → Z be a surjective open map with Z connected and connected
fibers. Then Y is connected.
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Proof. We prove the contrapositive. Suppose Y = Y1 t Y2 is a disconnection of Y . Since the
fibers are connected, Y1, Y2 cannot both intersect the same fiber, so γ(Y1) ∩ γ(Y2) = ∅. But
then Z cannot be connected.

The conclusion follows.

If G is a topological group, by convention G0 will denote the connected component of
the identity. For example, if G = R \ {0}, then G0 = R+.

Proposition 2.3. G0 is a normal subgroup of G.

Proof. Multiplication restricts to a map G0×G0 → G whose image is connected and contains
the identity, so must be contained in G0. Similarly for inversion and conjugation by fixed
g ∈ G.

We can regard conjugation by fixed g ∈ G as the composition of two maps

Rg : G 3 x 7→ xg ∈ G (9)

Lg : G 3 x 7→ gx ∈ G. (10)

These maps commute and provide families of diffeomorphisms G→ G.

Proposition 2.4. Let G be a connected topological group. Then G is generated by any open
set containing the identity.

Proof. Let U be such an open set. We may assume WLOG that U is closed under inverses.
Let G′ =

⋃∞
n=1 U

n be the subgroup generated by U . It is open since it is a union of open
sets. G is the disjoint union of the cosets of G′, which are all open, hence if G is connected
then there is necessarily one such coset and G′ = G.

Corollary 2.5. Any open subgroup in a topological group G contains G0.

Let ϕ : G→ H be a continuous homomorphism of topological spaces. Then the kernel is
a closed (normal) subgroup of G. The image is a subgroup, but it is not necessarily closed.

Example Let H = T2 = S1 × S1, let G = R, and consider the homomorphism

ϕ : R 3 x 7→ (eiαx, eiβx) ∈ S1 × S1 (11)

where α, β ∈ R. This describes a geodesic on the torus (with respect to the flat metric).
If α

β
is rational, the geodesic is closed and the image is closed. Otherwise, the image is dense

(in particular, not closed).

Theorem 2.6. Let G be a connected topological group and let Z be a discrete normal sub-
group. Then Z is central.

Proof. Choose z ∈ Z. The map

G 3 g 7→ gzg−1 ∈ Z (12)

has connected image, which must therefore be a point, which must therefore be z.
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3 Lie algebras

Definition A closed linear group is a closed subgroup of GLn(R).

All of the examples we gave previously have this form.

Example B ⊂ GLn(R), the subgroup of upper-triangular matrices (the Borel subgroup), is
also a closed subgroup of GLn(R).

Consider the exponential map

exp :Mn(R) 3 X 7→
∞∑
n=0

Xn

n!
∈Mn(R). (13)

It is straightforward to check that this series converges; for example, we can use the op-
erator norm with respect to the inner product on Rn. It is also straightforward to check
that exp(X + Y ) = exp(X) exp(Y ) when X, Y commute; in particular, exp(0) = 1 =
exp(X) exp(−X), so exp(X) is always invertible and hence its image lies in GLn(R). For
fixed A ∈Mn(R), it also follows that the map

ϕ : R 3 t 7→ exp(At) ∈ GLn(R) (14)

is a homomorphism (a one-parameter subgroup).
exp is smooth. The Taylor series for the logarithm converges for matrices of norm less

than 1, so exp is a diffeomorphism in some neighborhood of zero.
exp satisfies exp(XAX−1) = X exp(A)X−1 by inspection, so we can compute exponen-

tials of matrices by computing their Jordan normal form. In particular, if J = λI + N is

a Jordan block with N nilpotent, then exp(J) = eλ
(

1 +N + N2

2!
+ ...

)
where the series is

finite.
The one-parameter subgroup ϕ(t) = exp(At) satisfies

d

dt
ϕ(t) = Aϕ(t). (15)

Lemma 3.1. Let ϕ : R → GLn(R) be a smooth homomorphism such that ϕ′(0) = A. Then
ϕ(t) = exp(At).

Proof. Follows from the uniqueness of solutions to ODEs.

Definition Let G be a closed subgroup in GLn(R). Its Lie algebra is

Lie(G) = g = {A ∈Mn(R)|eAt ∈ G∀t ∈ R}. (16)

Example If G = SLn(R), then its Lie algebra sln(R) consists of precisely the traceless
matrices. This is a corollary of the identity det exp(M) = exp tr(M), which follows from
triangularizing M over C. Alternatively, it suffices to verify that det exp(At) = exp tr(At),
and these are two one-parameter subgroups R→ R× whose derivatives at 0 agree.
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(Note: the following proposition did not appear in lecture. It corrects a gap in the proof
of the next proposition.)

Proposition 3.2. A ∈ Lie(G) if and only if there exists a smooth function γ : (−ε, ε) →
GLn(R) such that γ(0) = 1, γ(t) ∈ G for all t, and γ′(0) = A.

Proof. One direction is clear: if A ∈ Lie(G), we can take γ(t) = eAt. In the other direction,
suppose we have γ as in the proposition. Observe that for fixed t and sufficiently large n we
have a Taylor series expansion(

γ

(
t

n

))n
= 1 + At+O(|t|2) (17)

hence (
γ

(
t

nm

))nm
=

(
1 +

At

m
+
O(|t|2)

m2

)m
(18)

and, taking m→∞, using the fact that limm→∞
(
1 +O

(
1
m2

))m
= 1, we have

lim
m→∞

(
γ

(
t

nm

))nm
= lim

m→∞

(
1 +

At

m
+
O(|t|2)

m2

)m
= eAt. (19)

Since G is a closed subgroup, this limit, hence eAt, lies in G, which gives the desired
result.

Proposition 3.3. Lie(G) is a subspace of Mn(R) closed under the commutator bracket

[A,B] = AB −BA. (20)

Proof. By definition Lie(G) is closed under scalar multiplication. It is also closed: if X ∈
Lie(G) we can choose ε > 0 so that εX lies in a neighborhood of 0 such that the exponential
map is a diffeomorphism, and then Lie(G) is generated under scalar multiplication by the
preimage of a neighborhood of the identity intersected with G, which is closed.

If A,B ∈ Lie(G), then we compute that

d

dt

(
eAteBt

)
|t=0 = A+B (21)

hence that A+B ∈ Lie(G) by the previous proposition. Similarly, we compute that

d

dt

(
eAteBse−Ate−Bs

)
|t=0 = A− eBsAe−Bs (22)

hence that A− eBsAe−Bs ∈ Lie(G) by the previous proposition. We have

A− eBsAe−Bs = [A,B]s+O(|s|2) (23)

hence, dividing by s and taking s → 0, using the fact that Lie(G) is closed and closed
under scalar multiplication, we conclude that [A,B] ∈ Lie(G) as desired.
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The above proposition suggests the following definition.

Definition A Lie algebra is a vector space g together with a bilinear map [·, ·] : g× g→ g
satisfying the following axioms:

1. (Alternativity) ∀X ∈ g : [X,X] = 0

2. (Jacobi identity) ∀X, Y, Z ∈ g : [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0.

Eventually we will write down an intrinsic definition of the Lie algebra associated to a
Lie group; in particular, it will not depend on the choice of embedding into GLn(R).

If G is a closed linear group, the exponential map restricts to a local diffeomorphism
exp : g → G where g is the Lie algebra of G. Alternatively, we can consider the tangent
space Tg(G) ⊆Mn(R), which is the space of all derivatives F ′(0) where F : [−ε, ε]→ G is a
curve with F (0) = g. Then g = Te(G). Now we can associate to any smooth homomorphism
Φ : G→ H its differential

ϕ = dΦ|e : g→ h. (24)

Moreover, the diagram

G
Φ // H

g

exp

OO

ϕ
// h

exp

OO (25)

commutes. In particular, ϕ is a homomorphism of Lie algebras. Since exp is a local
diffeomorphism, knowing ϕ determines Φ on a neighborhood of the identity in G. If G is
connected, it follows that ϕ uniquely determines Φ.

Example What is the Lie algebra so(n) of SO(n)? We want A such that

exp(At) exp(At)T = exp(At) exp(AT t) = id. (26)

Differentiating, it follows that A+AT = 0, and conversely this condition guarantees the
aboe identity. So so(n) consists of the skew-symmetric matrices. In particular, dim so(n) =
n(n−1)

2
, so this is also the dimension of SO(n).

The functorG 7→ g preserves injective and surjective maps. It also reflects surjective maps
if the codomain is connected: if an induced map ϕ : g → h on Lie algebras is surjective,
then the corresponding map Φ : G→ H on Lie groups is surjective in a neighborhood of the
origin, and since H is connected the image of Φ must therefore be all of H, so Φ is surjective.
(But it does not reflect injective maps: the quotient map R → S1 fails to be injective even
though the corresponding map on Lie algebras is.)

In particular, suppose the map of Lie algebras su(2) → so(3) induced from the double
cover SU(2) → SO(3) failed to be surjective. Since both Lie algebras have dimension 3,
it must therefore have a nontrivial kernel, but this would be reflected in the kernel of the
map SU(2) → SO(3) having positive dimension, which is not the case. Hence the map
SU(2)→ SO(3) is surjective.
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4 Review of smooth manifolds

Let X be a Hausdorff topological space. A chart on X is an open subset U ⊆ X together
with a homeomorphism from U to an open subset V ⊆ Rn. Two charts are compatible if, on
their intersection, the corresponding map between open subsets of Rn is smooth. An atlas
is a collection of compatible charts covering X.

Definition A smooth manifold is a Hausdorff topological space X as above equipped with
a maximal atlas.

Every atlas is contained in a maximal atlas by Zorn’s lemma, so to specify a smooth
manifold it suffices to specify an atlas.

Example We can cover the sphere Sn with two charts as follows. Let U = Sn \ {(1, 0, ...0}
and let U ′ = Sn \ {(−1, 0, ...0}. Stereographic projection gives an identification of Sn minus
a point with Rn, and the two charts we get this way are compatible by explicit computation.

Definition Let X be a topological space. A sheaf on X consists of the following data
satisfying the following conditions:

1. An assignment, to each open set U , of an object F (U) (e.g. a set or an abelian group).

2. An assignment, to each inclusion U ⊆ V , of a restriction map F (V )→ F (U).

3. The restriction maps should satisfy the property that if U ⊆ V ⊆ W is a chain of
inclusions, the composition F (W ) → F (V ) → F (U) agrees with the restriction map
F (W )→ F (U).

4. If an open set U has an open cover
⊔
i Ui and f, g ∈ F (U) such that f |Ui (the restriction

of f to Ui) agrees with g|Ui for all i, then f = g.

Example The assignment, to every open subset U of Rn, the algebra C∞(U) of smooth
functions U → R is a sheaf of R-algebras on Rn.

Example More generally, if X is a smooth manifold then we can assign to X a sheaf CX
such that CX(U) consists of functions U → R which are smooth on each chart. This is the
sheaf of smooth functions on X.

Definition A smooth map is a continuous map f : X → Y between smooth manifolds such
that, on each open set U ⊆ Y , the pullback map from functions on U to functions on f−1(U)
sends smooth functions to smooth functions. A diffeomorphism is a smooth map with a
smooth inverse.
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Definition If X is a smooth manifold, its tangent space Tx(X) at a point x ∈ X consists
of equivalence classes of curves ϕ : R→ X such that ϕ(0) = x. Two such curves ϕ1, ϕ2 are
equivalent if, on some open neighborhood U 3 x, the identity

d

dt
(f ◦ ϕ1(t)) |t=0 =

d

dt
f ◦ ϕ2(t)|t=0 (27)

for all f ∈ CX(U).

Definition A point derivative at a point x ∈ X is an R-linear map

δ : CX(U)→ R (28)

such that δ(fg) = (δf)g(x) + f(x)(δg).

If U ⊆ Rn is open, every point derivative has the form

δf = α1
∂

∂x1

+ ...+ αn
∂

∂xn
. (29)

In particular, d
dt

(f ◦ ϕ1(t)) |t=0 is a point derivative, so in a chart we must have

d

dt
(f ◦ ϕ1(t)) |t=0 =

n∑
i=1

αi
∂f

∂xi
(30)

where αi = d
dt
xi(t)|t=0 and xi are the coordinate functions on the chart.

A smooth map f : X → Y gives a pullback map f ∗ : CY → CX on sheaves. This lets us
pull back point derivatives on CX to point derivatives on CY , giving a map dfx : Tx(X) →
Tf(x)(Y ) called the derivative of f at x.

Theorem 4.1. (Inverse function theorem) Let f : X → Y be a smooth map and let x ∈ X.
Then f is locally a diffeomorphism at x ∈ X iff dfx is invertible.

This is a local theorem, so it can be proved by working in a chart, hence in Rn.

Definition The sheaf of vector fields on a smooth manifold X is the sheaf Vect such that
Vect(U) consists of the derivations Der CX(U) on CX(U), namely those R-linear maps

δ : CX(U)→ CX(U) (31)

satisfying the Leibniz rule δ(fg) = (δf)g + f(δg).

This is a sheaf of Lie algebras: if δ1, δ2 are two derivations on the functions on the same
open subset U , their commutator or Lie bracket [δ1, δ2] is also a derivation. If x ∈ U is a
point, a derivation gives a point derivation by evaluating its output on x. Hence a vector
field on U is a smoothly varying collection of tangent vectors at each point of U .
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Definition An integral curve for a vector field v on U is a map γ(t) : (−a, b) → U such
that dγ

dt
= v(γ(t)).

Integral curves exist and are unique by existence and uniqueness for ODEs. We can use
integral curves to describe the geometric meaning of the Lie bracket [v, w] of vector fields.
Let γ be an integral curve for v with γ(0) = x. If f is a smooth function defined in a
neighborhood of x, then there is a Taylor series

f(γ(t)) = ((exp vt)f) (x) = f(x) + vf(x)t+ .... (32)

Starting from x, flow along an integral curve γ1 for v for a time −t, then along an integral
curve δ1 for w for a time −s, then along an integral curve γ2 for v for a time t, then along
an integral curve δ2 for w for a time s. This gets us to a point y, and we can compute that

f(y)− f(x) = (exp(vs) exp(wt) exp(−vs) exp(−wt)f)(x)− f(x) (33)

= ([v, w]f)(x)st+O
(
max(|s|, |t|)3

)
. (34)

Hence [v, w] measures the failure of flowing along v to commute with flowing along w.

5 Lie algebras, again

Let G be a Lie group. Left multiplication Lg : G → G by a fixed element g ∈ G induces a
map L∗g : Vect(G)→ Vect(G). A vector field is called left invariant if it commutes with this
map.

Definition The Lie algebra Lie(G) ∼= g of a Lie group G is the Lie algebra of left invariant
vector fields on G.

Left invariance of a vector field implies that the value of the vector field at a point
uniquely and freely determines its value everywhere; hence g ∼= Te(G) as vector spaces. In
particular, if G is a Lie algebra then there exists a nowhere-vanishing vector field on G (by
translating a nonzero vector in some tangent space). This is not possible on S2 by the hairy
ball theorem, so in particular S2 cannot be given the structure of a Lie group.

We can also talk about right invariant vector fields. This is another Lie algebra also
isomorphic to Te(G) as a vector space. This gives two Lie brackets on Te(G), one of which
is the negative of the other.

Example Let G = GLn(R). The assignment X 7→ −XA gives a left invariant vector field
on G (where we identify the tangent space at any point of G withMn(C) since it commutes
with left multiplication.

Let G be a Lie group and g ∼= Lie(G) ∼= Te(G) be its Lie algebra. For ξ ∈ Te(G) we
denote the associated left invariant vector field by vξ. Consider an integral curve of vξ, so a
map ϕ : R→ G satisfying ϕ(0) = e and
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dϕ

dt
= vξ(ϕ). (35)

A priori we can only guarantee that ϕ is locally defined, but we can show that ϕ is a
homomorphism of Lie groups and then it extends to be defined everywhere. To see this, we
use the fact that the left invariance of vξ implies that if ϕ is an integral curve then so is gϕ.
Now suppose ϕ is an integral curve with g = ϕ(t), t > 0. Then gϕ = ϕ by uniqueness. But
this means that

ϕ(t)ϕ(s) = ϕ(t+ s). (36)

Let ϕξ be the integral curve we have defined, and define the exponential map

exp : g 3 ξt→ exp(ξt) = ϕξ(t) ∈ G. (37)

This map is well-defined by existence and uniqueness. We can compute that d expe : g→
g is the identity, so exp is a local diffeomorphism near the identity.

Computing the differential at the identity of a homomorphism Φ : G→ H of Lie groups
gives a map

ϕ : g ∼= Te(G)→ Te(H) ∼= h. (38)

This turns out to be a homomorphism of Lie algebras, giving a functor

LieGrp 3 G 7→ Lie(G) ∼= g ∈ LieAlg. (39)

There are various ways to see this. One is to work in local coordinates at the identity
given by the exponential map. If m : G × G → G is the multiplication map, then in local
coordinates we can write

m(X, Y ) = X + Y +B(X, Y ) + h.o.t. (40)

where B is some quadratic term. Then

m(Y,X) = X + Y +B(Y,X) + h.o.t. (41)

and we can check that m(X, Y )−m(Y,X) = [X, Y ] + h.o.t..
It is somewhat surprising that the second term of this series completely determines it;

this is the Baker-Campbell-Hausdorff formula. Hence the Lie bracket of g locally determines
the group multiplication of G.

5.1 The adjoint representation

G acts on itself by conjugation, giving for each g ∈ G a conjugation map

G 3 x 7→ gxg−1 ∈ G. (42)
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This map preserves the identity. Differentiating it at the identity in x, we obtain a map

Ad(g) : Te(G)→ Te(G) (43)

called the adjoint representation of G. As a function of g, the adjoint representation
furnishes a map G→ Aut(g). Differentiating this map, we now obtain a map

ad : g→ End(g). (44)

This turns out to be the Lie bracket; X ∈ g is sent to the map Y 7→ [X, Y ]. We can
verify this by computing that

Ad(g)(Y ) = Y ◦ L∗g ◦R∗g−1 = L∗g ◦ vY ◦R∗g−1|e (45)

where vY is as above the left-invariant vector field associated to Y . Writing g = exp(Xt),
which we can do for g sufficiently close to the identity, we can compute that (where the
derivative with respect to t is evaluated at t = 0)

ad(X)(Y ) =
d

dt
L∗exp(Xt) ◦ vY ◦R∗exp(−Xt)|e (46)

=
d

dt
L∗exp(Xt) ◦ vY + vY ◦

d

dt
R∗exp(−Xt)|e (47)

= (vX ◦ vY − vY ◦ vX)|e (48)

as desired. Moreover, since this argument is natural in G, we can also use this argument
to show that the map on Lie algebras induced by a morphism of Lie groups is a morphism
of Lie algebras.

What can we say about the functor LieGrp → LieAlg? Since the exponential map is a
local diffeomorphism, it is faithful. It would be interesting to see to what extent it is full:
that is, we’d like to lift a morphism g → h of lie algebras up to a morphism G → H of
Lie groups. This is always possible when G is connected and simply-connected. In fact, the
functor from connected and simply-connected Lie groups to Lie algebras is an equivalence
of categories.

5.2 Subgroups

Proposition 5.1. A closed subgroup of a Lie group is a Lie group.

Proof. Let H be a closed subgroup of a Lie group G with Lie algebra g, and let

h = {ξ ∈ g| exp ξt ∈ H∀t ∈ R}. (49)

The same argument as in the case G = GLn(R) shows that h is a Lie subalgebra of g.
Now we claim that we can find neighborhoods U, V such that U ∩ H = exp(V ∩ h). Once

12



we have this, V ∩ h provides a chart in a neighborhood of the identity in H, which we can
translate around to obtain charts on all of H.

To prove the claim, we’ll write g = h ⊕ W for some complement W . Then in some
neighborhood of the identity we have exp(g) = exp(h) exp(W ). Assume the claim is false.
Then we can find a sequence wn ∈ W such that expwn ∈ H. The sequence wn

|wn| has a

convergent subsequence, so WLOG we can pass to it. For t > 0, let an = d t
|wn|e. Then

lim
n→∞

exp anwn = expxt ∈ H (50)

for some x ∈ h, but this contradicts h ∩W = {0}.

The above implies, for example, that the center Z(G) of any Lie group is also a Lie group.
We can compute that its Lie algebra is the center

Z(g) = {ξ ∈ g|adξ = 0} (51)

of g. We can also compute that if H is a closed normal subgroup of G then h is an ideal
in g (closed under bracketing with elements of g; all ideals are two-sided in the world of Lie
algebras).

The functor from Lie groups to Lie algebras preserves injective and surjective maps. This
is a consequence of the implicit function theorem.

5.3 Representations

A representation of a Lie group G on a vector space V is a morphism G → GL(V ) of
Lie groups. Differentiating this morphism gives a morphism g → gl(V ) ∼= End(V ) of Lie
algebras; this is (by definition) a representation of Lie algebras. In particular, differentiating
the adjoint representation of G gives the adjoint representation of g.

If V is a representation then we write V G = {v ∈ V |gv = v∀g ∈ G} for its invariant
subspace. If G is connected, it suffices to check this condition in an arbitrarily small neigh-
borhood of the identity, in particular a neighborhood such that the exponential map is a
diffeomorphism, so equivalently we can use the invariant subspace

V g = {v ∈ V |ξv = 0∀ξ ∈ g} (52)

as a g-representation.
If V,W are two representations of a Lie group G, then their tensor product V ⊗W is

also a representation of G with the action g(v⊗w) = gv⊗ gw. Differentiating this condition
gives

ξ(v ⊗ w) = ξv ⊗ w + v ⊗ ξw (53)

(the Leibniz rule), which defines the tensor product of representations of a Lie algebra.
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6 Topology and Lie groups

Theorem 6.1. Let G,H be Lie groups with G connected and simply connected. Let ϕ : g→ h
be a morphism between their Lie algebras. Then there exists a (unique) morphism Φ : G→ H
such that dΦe = ϕ.

Uniqueness is a corollary of the fact that the exponential map is a local diffeomorphism
and that a connected group is generated by a neighborhood of the identity, and we don’t
need simple connectedness for it.

Proof. Since G is connected and a smooth manifold, it is path-connected by smooth paths.
Hence for any g ∈ G we can find a smooth path γ : [0, 1]→ G with γ(0) = e, γ(1) = g. We
can write

dγ

dt
= vξ(t) (54)

where ξ(t) is a path in g. Now we construct a path γ′ in H satisfying

dγ′

dt
= vϕ(ξ(t)) (55)

and set Φ(g) = γ′(1). A priori this depends on the choice of γ, but we will show
that it does not. Let γ1, γ2 : [0, 1] → G be two smooth paths connecting e and g. Then
there is a homotopy h(t, s) : [0, 1] × [0, 1] → G, which we can take to be smooth, such that
h(t, 0) = γ1(t), h(t, 1) = γ2(t). This homotopy h itself satisfies a differential equation, namely

∂h

∂t
= vξ(t,s) (56)

∂h

∂s
= vη(t,s) (57)

and ξ(t, s), η(t, s) are related. In fact,

∂η

∂t
=
∂ξ

∂t
+ [ξ, η]. (58)

To prove this, let ψ be any smooth function on G. Then we can check that

∂2ψ(h)

∂t∂s
= v ∂η

∂t
ψ + vξ ◦ vηψ (59)

and

∂2ψ(h)

∂s∂t
= v ∂ξ

∂t
ψ + vη ◦ vξψ (60)

and the conclusion follows by identifying these.
The image of the smooth homotopy h in H is another smooth homotopy f , and we can

write down a similar differential equation
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∂f

∂t
= vζ(t,s) (61)

∂f

∂s
= vθ(t,s) (62)

satisfying the analogous relation

∂θ

∂t
=
∂ζ

∂s
+ [ζ, θ]. (63)

But we know that ζ = ϕ(ξ), hence we know that θ = ϕ(η) is a solution to the above
(hence it is the unique solution by existence and uniqueness). Now we compute that

∂f

∂s
(1, s) = θ(1, s) = ϕ(η(1, s)) = 0 (64)

so the start and endpoints of the paths γ′1, γ
′
2 in H corresponding to γ1, γ2 are the same.

Hence Φ : G→ H is well-defined by the simple connectedness of G.
It remains to show that Φ is a homomorphism, but this is clear by translating paths by

left multiplication and using uniqueness.

Corollary 6.2. The category of finite-dimensional representations of a connected and simply
connected Lie group G is isomorphic to the category of finite-dimensional representations of
its Lie algebra g.

6.1 Fiber bundles

Definition Let π : X → Y be a surjective map such that π−1(y) ∼= Z for all y ∈ Y and for
some space Z. Then π is called a fiber bundle if it is locally trivial in the sense that for all
y ∈ Y there is an open neighborhood U 3 y such that π−1(U) ∼= U × Z (compatibly with
the projection down to U).

Assume that X is path connected (hence that Y is path connected). Let π0(Z) denote
the set of path components of Z. If y0 ∈ Y and x0 ∈ X such that π(x0) = y0, then we get a
sequence of maps

Z
i−→ X

π−→ Y (65)

where π(i(z)) = y0∀z ∈ Z. This induces a sequence of maps in π1, and a part of the
long exact sequence of homotopy groups shows that this sequence of maps fits into an exact
sequence

π1(Z)
i∗−→ π1(X)

π∗−→ π1(Y )
∂−→ π0(Z)→ 0. (66)

(Here 0 refers to the set {0}.) The interesting map here is ∂, and it is defined as follows.
If γ : [0, 1] → Y is a path with γ(0) = γ(1) = y0, then we can lift γ uniquely to a path
γ̃ : [0, 1] → X such that γ̃(0) = x0. But γ̃(1) may be somewhere else in the fiber π−1(y0).
However, γ̃(1) only depends on γ up to homotopy, and this gives our map π1(Y )→ π0(Z).
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Example Let π : R → S1 be the exponential map. This has fiber Z. The corresponding
exact sequence is

π1(Z) ∼= 0→ π1(X) ∼= 0→ π1(S1)→ Z→ 0 (67)

which (once we know that ∂ is a group homomorphism here) shows that π1(S1) ∼= Z by
exactness.

Example Consider again the map SL2(R)→ R2 \ {0} given by sending a matrix to its first
column. This is a fiber bundle with fiber R. The corresponding exact sequence is

π1(Z) ∼= 0→ π1(SL2(R))→ π1(R2 \ {0}) ∼= Z→ 0 (68)

which shows that π1(SL2(R)) ∼= Z by exactness.

Definition A covering map π : X → Y is a fiber bundle map with discrete fiber. We say
that X is a covering space of Y .

If G is a connected Lie group, we will construct a connected and simply connected Lie
group G̃ (its universal cover) and a covering map π : G̃→ G which has the following lifting
property: if

G̃

π
��

// H

π′

��

G
f
// K

(69)

is a diagram of connected Lie groups with π′ a covering space, then there is a map
G̃→ H making the diagram commute. G̃ is constructed by starting with the group of paths
γ : [0, 1] → G with γ(0) = e and quotienting by homotopy relative to endpoints. The map
G̃ → G is given by evaluating at γ(1), and its kernel is precisely the fundamental group
π1(G) (based at e), giving an exact sequence

0→ π1(G)→ G̃→ G→ 0. (70)

Hence we can think of π1(G) as a discrete normal subgroup of G̃. Since we know that
such subgroups are central and, in particular, abelian, it follows that π1(G) is abelian.

By local triviality, the map dπe : Lie(G̃)→ Lie(G) is naturally an isomorphism, so their
Lie algebras are the same. Conversely the following is true.

Proposition 6.3. Let G1, G2 be two connected Lie groups. Then g1
∼= g2 iff G̃1

∼= G̃2.

Proof. The isomorphism g1 → g2 lifts to a map G̃1 → G̃2 and the same is true for the map
in the other direction.

In particular, there is at most one connected and simply connected Lie group G associated
to a Lie algebra g. We will show later that there always exists such a Lie group.
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Example Let G be a connected abelian Lie group. Then g = Rn with the trivial Lie bracket.
Since Rn itself is a connected and simply connected Lie group with this Lie algebra, it follows
that G̃ ∼= Rn, so G must be the quotient of Rn by some discrete subgroup. These all have
the form Zm, and the resulting quotients have the form (S1)m × Rn−m.

In the analytic category things get much more interesting. Even the study of quotients
C/Γ (with Γ of full rank) is interesting in the analytic category; these are elliptic curves and
there is a nontrivial moduli space M1,1 of these of dimension 1. We get abelian varieties this
way.

6.2 Homogeneous spaces

Let G be a Lie group and H a closed subgroup of G. Then there is a natural projection
map π : G → G/H where G/H is the space of left cosets. It is possible to define a natural
manifold structure on the latter space.

Definition A manifold G/H as above is a homogeneous space for G.

Since G acts transitively on G/H, it suffices to define this structure in a neighborhood
of the identity coset, and locally we can identify a neighborhood of the identity coset with a
complement of h in g via the exponential map.

Example The quotient SO(n)/SO(n− 1) is Sn−1.

Example As we saw earlier, the quotient of SL2(R) by the subgroup of matrices of the form[
1 ∗
0 1

]
is R2 \ {0}.

7 Structure theory

Below all Lie algebras are finite-dimensional.
Let G be a (path) connected Lie group. The commutator subgroup [G,G] is path con-

nected, but may not be closed in G.

Proposition 7.1. Let G be connected and simply connected. Then [G,G] is closed with Lie
algebra the commutator subalgebra

[g, g] = span([X, Y ] : X, Y ∈ g). (71)

Proof. The quotient map g→ g/[g, g] is the universal map from g to an abelian Lie algebra
Rn, giving an exact sequence

0→ [g, g]→ g→ Rn → 0. (72)

We can lift these maps to an exact sequence of connected and simply connected Lie
groups
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0→ K → G→ Rn → 0 (73)

where K is a closed subgroup of G. Since G/K is abelian, K contains [G,G]. We also
know that Lie([G,G]) contains [g, g] by computation. Hence the Lie algebra of K and [G,G]
coincide, and since K is connected and simply connected the conclusion follows.

7.1 Automorphisms

Let G be a connected and simply connected Lie group and let Aut(G) be its group of
automorphisms. Every ϕ ∈ Aut(G) also acts on g, giving a morphism Aut(G) → Aut(g)
which is an isomorphism by the above results. This is not true if G fails to be simply
connected. For example, if G = V/Γ is a quotient of a finite-dimensional real vector space
V by a discrete subgroup Γ, then Aut(G̃) ∼= Aut(V ) is GL(V ), but Aut(G) is the subgroup
of GL(V ) consisting of those elements which send Γ to Γ.

The Lie algebra of Aut(g) is the Lie algebra Der(g) of derivations of g.

7.2 Semidirect products

Definition Let g, h be Lie algebras and ϕ : g → Der(h) be an action of g on h. Their
semidirect product go h is the direct sum g⊕ h equipped with the bracket

[g1 + h1, g2 + h2] = [g1, g2]− ϕ(g2)h+ ϕ(g1)h+ [h1, h2]. (74)

The three Lie algebras above fit into a short exact sequence

0→ h→ go h→ g→ 0 (75)

of vector spaces, where all maps are Lie algebra homomorphisms. In particular, h is an
ideal in g o h. Conversely, given an ideal in a Lie algebra we can write down the above
short exact sequence, and choosing a splitting of it gives a description of the Lie algebra as
a semidirect product of the ideal and the quotient.

Suppose G,H are connected and simply connected and ϕ : g → Der(h) is an action.
Then we can lift it to an action Φ : G → Aut(H), which lets us construct the semidirect
product GoH of Lie groups. This is the cartesian product as a set with group operation

(g1, h1)(g2, h2) = (g1g2,Φ(g−1
2 )h1h2). (76)

7.3 Lie algebras of low dimension

We eventually want to prove that if g is a finite-dimensional Lie algebra then there is a
(unique up to isomorphism) connected and simply connected Lie group G with Lie algebra
g (Lie’s third theorem). To do this we will need some structure theory.

As an exercise, let’s classify Lie algebras of low dimension over C.
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1. If dim g = 1, the abelian Lie algebra K is the only possibility.

2. If dim g = 2, the Lie bracket defines a map Λ2(g) → g with image the commutator
subalgebra. The exterior square Λ2(g) is 1-dimensional, so dim[g, g] is either 0 or 1.

(a) If dim[g, g] = 0 we get the abelian Lie algebra K2.

(b) If dim[g, g] = 1, take X 6∈ [g, g] and Y ∈ [g, g]. Then [X, Y ] = λY (λ 6= 0 or we
reduce to the previous case) and by rescaling X we can take [X, Y ] = Y . The
resulting Lie algebra is isomorphic to the Lie algebra of 2×2 matrices of the form[

∗ ∗
0 0

]
. (77)

3. If dim g = 3, we will again work based on the dimension of the commutator subalgebra.

(a) If dim[g, g] = 0 we get the abelian Lie algebra C3.

(b) If dim[g, g] = 1, then the Lie bracket gives a skew-symmetric form g⊗g→ [g, g] ∼=
C with kernel the center Z(g). Since dim g = 3 and g is not abelian, this kernel
has dimension 1.

i. If Z(g) ∩ [g, g] = 0, then we can write g as a direct sum Z(g) ⊕ h where
[g, g] ∈ h. This exhibits g as the direct sum of a 1-dimensional (abelian) Lie
algebra and a 2-dimensional Lie algebra, which we’ve classified.

ii. If Z(g) = [g, g], then by taking Z ∈ Z(g) so that Z = [X, Y ] we have
[Z,X] = [Z, Y ] = 0, and this completely defines the Lie algebra since X, Y are
independent. This is the Heisenberg Lie algebra of strictly upper triangular
3× 3 matrices, e.g. those of the form 0 ∗ ∗

0 0 ∗
0 0 0

 . (78)

(c) If dim[g, g] = 2, we claim that h = [g, g] is abelian. Suppose otherwise. Then h is
spanned by X, Y such that [X, Y ] = Y . If Z 6∈ h, then by the Jacobi identity

[Z, Y ] = [Z, [X, Y ]] = [[Z,X], Y ] + [X, [Z, Y ]] ∈ [h, h]. (79)

But [h, h] is spanned by Y . It follows that [Z, Y ] = λY for some λ and [Z,X] =
aX+ bY . Since dim h = 2 we know that a 6= 0. With respect to the basis X, Y, Z,
the matrix of adX is  0 0 −a

0 1 −b
0 0 0

 (80)
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and in particular it has trace 1, but ad of any element in the commutator (which
X is in) is zero; contradiction.

Hence h is abelian and g is a semidirect product of C and C2, with a basis element
Z ∈ C acting on C2 by some invertible 2×2 matrix (up to conjugation and scalar
multiplication).

4. If dim[g, g] = 3, we claim that g ∼= sl2(C). For X ∈ g, consider ad(X) : g → g.
Since X is a commutator, tr(ad(X)) = 0. Furthermore, X ∈ ker(ad(X)). Hence the
eigenvalues of ad(X) must be 0, a,−a for some a (since in this case g has no center).
If a 6= 0, then ad(X) is semisimple; otherwise, ad(X) is nilpotent.

We claim there exists X ∈ g such that ad(X) is not nilpotent (hence semisimple).
Suppose otherwise. If [X, Y ] = X for some Y then ad(Y )(X) = −X, so ad(Y ) would
not be nilpotent. Hence we may assume that X 6∈ im(ad(X)) for all X. Hence
ad(X), X 6= 0 has rank 1 and is nilpotent, so we can extend X to a basis X, Y, Z such
that ad(X)(Y ) = 0, so [X, Y ] = 0, and ad(X)(Z) = Y , so [X,Z] = Y . But then
dim[g, g] ≤ 2; contradiction.

Hence we can find H ∈ g with eigenvalues 0, 2,−2 (by rescaling appropriately). If
X, Y are the eigenvectors of eigenvalues 2,−2, then [H,X] = 2X, [H,Y ] = −2Y , and
to completely determine g it suffices to determine [X, Y ]. Now,

[H, [X, Y ]] = [[H,X], Y ] + [X, [H,Y ]] = [2X, Y ]− [X, 2Y ] = 0 (81)

from which it follows that [X, Y ] is proportional to H. By rescaling we can arrange
[X, Y ] = H, and this is a presentation of sl2(C) as desired. More explicitly, sl2(C) has
a basis

H =

[
1 0
0 −1

]
, X =

[
0 1
0 0

]
, Y =

[
0 0
1 0

]
. (82)

The above argument in the perfect case g = [g, g] doesn’t work over R, since we used
Jordan normal form. Over R both sl2(R) and so(3) ∼= su(2) are 3-dimensional and non-
isomorphic perfect Lie algebras. However, by tensoring by C we get 3-dimensional perfect
complex Lie algebras, which must be isomorphic to sl2(C). Our strategy for classifying real
Lie algebras will be to classify complex Lie algebras and then to classify real Lie algebras
which tensor up to our complex Lie algebras (their real forms).

7.4 Solvable and nilpotent Lie algebras

Let D(g) = D1(g) = D1(g) = [g, g] be the commutator. This is an ideal of g. We inductively
define

Dn(g) = [g, Dn−1(g)] (83)
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and

Dn(g) = [Dn−1(g), Dn−1(g)]. (84)

Definition A Lie algebra g is nilpotent if Dn(g) = 0 for some n and solvable if Dn(g) = 0
for some n.

Example bn, the Lie algebra of upper triangular matrices in gln, is solvable. nn, the Lie
algebra of strictly upper triangular matrices in gln, is nilpotent. We can compute that
[bn, bn] = nn, but [bn, nn] = nn, so bn is not nilpotent.

Any subalgebra or quotient of a nilpotent resp. solvable Lie algebra is nilpotent resp.
solvable. In a short exact sequence

0→ j→ g→ h→ 0 (85)

of Lie algebras, if the first and last two terms are solvable then so is the middle term.
This is not true in the nilpotent case, since we have a short exact sequence

0→ nn → bn → kn → 0 (86)

where k is the base field. This generalizes: if g is a solvable Lie algebra, then it has
an ideal of codimension 1. (To see this it suffices to choose any subspace of codimension 1
containing [g, g].) But now it follows that any solvable Lie algebra is an iterated semidirect
product of abelian Lie algebras.

Corollary 7.2. Let g be a solvable Lie algebra over R resp. C. Then there exists a connected
and simply connected Lie group G with Lie algebra g. As a manifold, G ∼= Rn resp. Cn.

Proof. We proceed by induction on the dimension. It suffices to observe that, when we lift
a semidirect product of Lie algebras to a semidirect product of Lie groups, topologically the
corresponding Lie group is the product of its factors. The only factors we will use here arise
from abelian Lie algebras, hence are products of copies of R or C.

If g is nilpotent, then ad(X) is nilpotent for every X ∈ g. What about the converse?

Theorem 7.3. (Engel) Let g ⊆ gl(V ) be a Lie subalgebra of a general linear Lie algebra.
Suppose that every X ∈ g is a nilpotent linear operator. Then the invariant subspace V g is
nonzero; that is, there exists v ∈ V such that Xv = 0∀X ∈ g.

This is true over an arbitrary ground field.

Proof. First we make the following observation. Regard V as a representation of g. Then
the dual V ∗ is again a representation, with

(Xϕ)(v) = ϕ(−Xv), v ∈ V, ϕ ∈ V ∗. (87)
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Hence the tensor product V ⊗ V ∗ is again a representation, with

X(v ⊗ ϕ) = Xv ⊗ ϕ+ v ⊗Xϕ. (88)

But this is precisely the restriction of the adjoint representation of gl(V ) to g (which in
particular contains the adjoint representation of g). Now we compute that if Xn = 0, then

X2n(v ⊗ ϕ) =
2n∑
k=0

(
2n

k

)
Xkv ⊗X2n−kϕ = 0 (89)

hence if X is nilpotent, then ad(X) is nilpotent.
Now the proof of the theorem proceeds by induction on dim g. It is clear for dim g = 1.

In general, we claim that any maximal proper subalgebra h ( g is an ideal of codimension
1. To see this, consider the adjoint representation ad : h→ gl(g). Since h is invariant under
this action, we can consider the quotient representation on g/h and the representation on h
and apply Engel’s theorem to these by the inductive hypothesis (since we know that if X is
nilpotent then ad(X) is nilpotent).

This gives us a nonzero element X 6∈ h such that [h, X] ⊆ h. Now kX ⊕ h is a bigger
subalgebra of g containing h, so kX ⊕ h = g and h is an ideal of codimension 1 as desired.

Now we finish the proof. With g, V as in the problem, g has a maximal proper subalgebra
h which must be an ideal of codimension 1. By the inductive hypothesis, V h is nonzero. For
h ∈ h, v ∈ V h, Y ∈ g \ h, write

hY v = Y hv + [h, Y ]v = 0 (90)

since hv = 0 and [h, Y ] ∈ h. Hence Y maps V h to V h. Since Y is nilpotent, it has an
invariant subspace 0 6= V g ⊆ V h, and the conclusion follows.

Corollary 7.4. Under the above hypotheses, there exists a complete flag

0 = V0 ⊂ V1 ⊂ ... ⊂ Vn = V (91)

of subspaces of V (where dimVi = i) such that gVi ⊆ Vi−1.

This follows by induction. By choosing a basis compatible with such a flag, we may
equivalently say that g can be conjugated to be a subalgebra of the strictly upper triangular
matrices n(V ).

Corollary 7.5. Let g be a Lie algebra such that ad(X) is nilpotent for all X ∈ g. Then g is
nilpotent.

Proof. g is the middle term of a short exact sequence

0→ Z(g)→ g→ im(ad)→ 0 (92)

where Z(g) is central, in particular abelian, and im(ad) is the image of the adjoint
representation g→ Der(g). We can apply the corollary of Engel’s theorem to im(ad), and it
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follows that im(ad) is nilpotent. If im(ad) is nilpotent of order n, then Dn(g) ⊆ Z(g), hence
Dn+1(g) = 0 as desired.

Lie’s theorem is an analogue of Engel’s theorem for solvable Lie algebras, but we need to
assume that our ground field k has characteristic zero and is algebraically closed.

Theorem 7.6. (Lie) Let g ⊆ gl(V ) be a solvable subalgebra. Then every element of g acting
on V has a common eigenvector; that is, there is a nonzero v ∈ V such that Xv = λ(X)v
for all X ∈ g and some scalars λ(X).

Here λ(X) is also referred to as a weight. Note that λ must be linear and must factor
through the abelianization g/[g, g].

Proof. We proceed by induction on dim g. Let h ⊆ g be an ideal of codimension 1. If λ ∈ h∗,
consider the weight space

Vλ = {v ∈ V : hv = λ(h)v∀h ∈ h} (93)

as well as the generalized weight space

Ṽλ = {v ∈ V : (h− λ(h))nv = 0∀h ∈ h} (94)

(we can take n = dimV ). These are always invariant under the action of h. By the
inductive hypothesis, we can find λ such that Vλ is nonzero.

We claim that Ṽλ is g-invariant. To see this, for h ∈ h, X ∈ g, v ∈ Ṽλ consider

(h− λ(h))Xv = X(h− λ(h))v + [h,X]v ∈ Ṽλ ≡ X(h− λ(h)) mod Ṽλ (95)

which gives

(h− λ(h))nXv ≡ X(h− λ(h))nv mod Ṽλ (96)

and by multiplying both sides by (h−λ(h))m for m sufficiently large m, as well as taking
n sufficiently large, it follows that Xv ∈ Ṽλ as desired.

Now we claim that Vλ is g-invariant. We know that if h ∈ h is a commutator then its
trace is zero. On the other hand, the trace of h acting on Ṽλ is (dim Ṽλ)λ(h), hence λ(h) = 0
in this case. Now, with h ∈ h, X ∈ g, v ∈ Vλ we have

hXv = Xhv + [h,X]v = Xλ(h)v + λ([h,X])v = λ(h)Xv (97)

hence Xv ∈ Vλ as desired.
Now we finish the proof. We know that g = kX⊕h and that g has an invariant subspace

Vλ where h acts on Vλ by the weight λ(h). Now we can find an eigenvector for the action of
X in Vλ, and the conclusion follows.
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Corollary 7.7. With hypotheses as above, there exists a complete flag

0 = V0 ( V1 ( ... ( Vn = V (98)

such that g(Vi) ⊆ Vi. Equivalently, g is conjugate to a subalgebra of the Borel subalgebra
b(V ) of upper triangular matrices.

Corollary 7.8. With hypotheses as above, [g, g] is nilpotent.

(We only need to use the adjoint representation here; the fact that the adjoint represen-
tation is faithful is not an issue because its kernel is the center.) By extension of scalars this
result is also true for a ground field of characteristic 0, not necessarily algebraically closed.

7.5 Semisimple Lie algebras

Lemma 7.9. If m, n are solvable ideals in g, then m + n is also solvable.

Proof. Observe that

[m + n,m + n] ⊆ [m,m] + [n, n] + m ∩ n (99)

so we can proceed by induction on the solvability degrees of m and n.

Consequently every Lie algebra has a maximal solvable ideal.

Definition The maximal solvable ideal of a Lie algebra g is its radical rad(g). A Lie algebra
is semisimple if rad(g) = 0.

Proposition 7.10. g/rad(g) is semisimple.

Proof. We have a short exact sequence

0→ rad(g)→ g
p−→ g/rad(g)→ 0. (100)

If h = rad(g/g) then this restricts to a short exact sequence

0→ rad(g)→ p−1(h)→ h→ 0. (101)

But p−1(h) is solvable, hence the map from rad(g) is an isomorphism and h = 0 as
desired.

To continue our study of structure theory we will decompose an arbitrary Lie algebra into
its radical and its semisimple quotient, and then we will classify semisimple Lie algebras.

Definition A symmetric bilinear form B on a Lie algebra g is invariant if

B(adX(Y ), Z) +B(Y, adX(Z)) = 0 (102)

or equivalently if

B([X, Y ], Z) = B(X, [Y, Z]). (103)
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This is the infinitesimal form of the invariance condition B(Adg(Y ),Adg(Z)) = B(Y, Z)
one would expect on representations of groups.

An invariant form has the following properties.

1. Ker(B) is an ideal.

2. B(Z(g), [g, g]) = 0.

3. If j is an ideal, its orthogonal complement

j⊥ = {X ∈ g : B(J,X) = 0∀J ∈ j} (104)

is also an ideal.

Example Let ρ : g→ gl(V ) be a representation of g. Then the form

BV (X, Y ) = trV (ρ(X)ρ(Y )) (105)

is invariant. To verify this it suffices to verify this for gl(V ), but

tr([X, Y ]Z) = tr(XY Z)− tr(Y XZ) = tr(X[Y, Z]) = tr(XY Z)− tr(XZY ) (106)

by the cyclic invariance of the trace.

Definition The Killing form on a Lie algebra g is the invariant form obtained as above
from the adjoint representation:

Bg(X, Y ) = trg(adXadY ). (107)

Proposition 7.11. Let j ⊆ g be an ideal. Then the restriction of the Killing form Bg to j
agrees with Bj.

Proof. The adjoint representation of j on g has j as a subrepresentation. j acts trivially on
the quotient representation, so the contribution to the trace from the quotient is zero. Hence
the only contribution is from the adjoint representation of j.

Proposition 7.12. Under the same hypotheses as in Lie’s theorem, BV (g, [g, g]) = 0.

Proof. By Lie’s theorem g is conjugate to a subalgebra of b(V ), hence [g, g] is conjugate
to a subalgebra of n(V ). The product of an upper-triangular and strictly upper-triangular
matrix is strictly upper-triangular, hence has trace zero.

Theorem 7.13. (Cartan’s criterion) The converse holds. That is, a subalgebra g ⊆ gl(V )
is solvable iff BV (g, [g, g]) = 0.

Cartan’s criterion follows in turn from the following.
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Proposition 7.14. If BV (g, g) = 0, then g is solvable.

To see this it suffices to observe that under the hypotheses of the nontrivial direction of
Cartan’s criterion we have

BV ([g, g], [g, g]) = 0 (108)

so [g, g] is solvable. But then g is solvable. It suffices to prove the proposition. First we
will need the following lemma.

Lemma 7.15. (Jordan decomposition) If X ∈ End(V ), where V is a finite-dimensional
vector space over an algebraically closed ground field k, then there is a unique decomposition

X = Xs +Xn (109)

where Xs is diagonalizable ( semisimple), Xn is nilpotent, and [Xs, Xn] = 0. Moreover,
there exist p(t), q(t) ∈ k[t] with p(0) = q(0) = 0 such that Xs = p(X), Xn = q(X).

Proof. Let λ1, ...λk be the eigenvalues of X. Then V is a direct sum of generalized eigenspaces

V =
k⊕
i=1

Ṽλk . (110)

Then the restriction of Xs to each generalized eigenspace must be λk, and so the restric-
tion of Xn to each generalized eigenspace must be X −Xs. This gives uniqueness, and now
it suffices to prove existence. To get existence, let p(t) be a polynomial such that

p(t) ≡ λk mod (t− λk)dim Ṽλk (111)

and, if none of the λi are zero, also such that p(t) ≡ 0 mod t. Such a p exists by the
Chinese remainder theorem. We can compute p(X) blockwise, and p(X) restricted to Ṽλk is
λk, hence we can take Xs = p(X), Xn = X − p(X) as desired.

Now we will prove the proposition.

Proof. Let g ⊆ gl(V ) be a Lie subalgebra, with hypotheses as above. Then X ∈ g admits a
Jordan decomposition Xs + Xn. We readily check that ad(Xs) is semisimple as an element
of End(gl(V )) and that ad(Xn) is nilpotent. Hence ad(X)s = ad(Xs) and ad(X)n = ad(Xn),
so we can write ad(Xs) = p(ad(X)) for some polynomial p. In particular, since adX(g) ⊆ g,
we conclude that

adXs(g) ⊆ g. (112)

So the adjoint representation extends to semisimple and nilpotent parts.
We want to show that X ∈ [g, g] is nilpotent. Then we would be done by Engel’s

theorem. To see this, write X = Xs + Xn and decompose V as a direct sum of eigenspaces
Vλi of Xs (we’ll count the eigenvalues λi according to their multiplicities ni = dimVλi).
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Writing End(V ) = V ∗ ⊗ V , the action of Xs restricted to V ∗λi is as multiplication by −λi,
hence the decomposition of End(V ) under the action of Xs takes the form

V ∗ ⊗ V =
⊕
µ

⊕
λi−λj=µ

V ∗λj ⊗ Vλi . (113)

Define Xs to be the matrix with eigenvalues the conjugate of those of Xs (and with the
same eigenvectors). The decomposition of End(V ) induces a decomposition

g =
⊕
µ

gµ (114)

of g into subspaces preserved by Xs. These are therefore also preserved by Xs, so
ad(Xs)(g) ⊆ g.

We compute that

BV (X,Xs) =
∑

n2
i |λi|2. (115)

By assumption, X ∈ [g, g], so we can write X =
∑

i[Yi, Zi]. Then by invariance

BV (X,Xs) =
∑
i

BV ([Yi, Zi], Xs) =
∑
i

BV (Yi, [Zi, Xs]). (116)

But by the hypothesis this is equal to zero. Hence the λi must be equal to zero and
X = Xn as desired.

Corollary 7.16. If g ⊆ gl(V ) is semisimple, then BV is nondegenerate on g.

Proof. The kernel of BV is an ideal, and by the Cartan criterion it is a solvable ideal.

Corollary 7.17. g is semisimple iff the Killing form Bg is nondegenerate.

Proof. Assume that Bg is nondegenerate but that rad(g) 6= 0. Then g has a nonzero abelian
ideal, but any such ideal must lie in the kernel of Bg, since as before there is no contribution
to the trace from either the ideal or the quotient.

Definition A Lie algebra g is simple if g is not abelian and has no proper nonzero ideals.

Corollary 7.18. A semisimple Lie algebra is the direct sum of its simple ideals.

Proof. Let g be semisimple and let h be a minimal nonzero ideal. The radical of h is g-
invariant, so must vanish, hence h is semisimple. The restriction of the Killing form of g to
h is the Killing form of h, which is nondegenerate on h, so we can decompose g into a direct
sum

g = h⊕ h⊥ (117)
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where h⊥ is also an ideal. But then this must be a direct sum of Lie algebras, and we
conclude that g is the direct sum of some simple ideals

g =
⊕
i

gi. (118)

But then any ideal of g must be a direct sum of some of the gi by simplicity. In particular,
all of the simple ideals must appear and this decomposition is unique.

8 Basic representation theory

Let V be a representation of g, or equivalently a g-module; we will use the two terms
interchangeably. V is not necessarily finite-dimensional. Recall that the direct sum V ⊕W
and tensor product V ⊗W of representations gives another representation, with

X(v ⊗ w) = Xv ⊗ w + v ⊗Xw (119)

and that the dual V ∗ of a representation is another representation, with

Xf(v) = −f(Xv) (120)

(where the negative sign corresponds to taking inverses when defining dual representa-
tions of group representations). Moreover, the space Homk(V,W ) of k-linear maps between
V and W is a representation with

Xϕ = [X,ϕ]. (121)

If V is finite-dimensional this is just V ∗ ⊗W .
There is a functor

g-mod 3 V 7→ V g ∈ Vect (122)

which sends a representation to its invariant subspace. This functor is left exact; in fact
it is just the functor Homg(k, V ) where k is the 1-dimensional trivial g-module. Hence it has
right derived functors, and we will use these to define Lie algebra cohomology. Note that

Homg(V,W ) = Homk(V,W )g. (123)

Definition A g-module V is simple or irreducible if V is nonzero and has no proper nonzero
submodules.

Note that g is a simple Lie algebra if and only if its adjoint representation is irreducible.

Lemma 8.1. (Schur) Let V,W be simple g-modules. Then:

1. Any ϕ ∈ Homg(V,W ) is either zero or an isomorphism.
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2. In particular, Endg(V ) is a division algebra over k.

3. In particular, if dimV <∞ and k is algebraically closed then Endg(V ) ∼= k.

Proof. The kernel and image of ϕ are submodules, so they must be all of V resp. W or zero.
The second claim is clear. For the third claim it suffices to observe that any finite-dimensional
division algebra over an algebraically closed field k is k.

Definition A g-module V is semisimple or completely reducible if the following equivalent
conditions are satisfied:

1. Any submodule W ⊆ V has a complement W ′ ⊆ V such that V ∼= W ⊕W ′.

2. V =
⊕

i Vi where each Vi is simple.

3. V =
∑

j Vj where each Vj is simple.

Theorem 8.2. Any finite-dimensional representation of a semisimple Lie algebra g is semisim-
ple.

To prove this theorem we will use a little Lie algebra cohomology.

9 Lie algebra cohomology

Let g be a Lie algebra and V a module.

Definition Cn(g, V ) (n-cochains of g with coefficients in V ) is the module Homk(Λ
n(g), V )

of alternating multilinear functions gn → V . There is a differential d : Cn(g, V ) →
Cn+1(g, V ) making this a cochain complex given by

(dϕ)(X1, ...Xn+1) =
∑

1≤i<j≤n+1

(−1)i+j−1ϕ([Xi, Xj], X1, ..., X̂i, ..., X̂j, ..., Xn+1) (124)

+
∑
i

(−1)iXiϕ(X1, ..., X̂i, ..., Xn+1) (125)

where X̂ indicates that X is omitted.

It is an exercise to check that d2 = 0. It helps to write d = d0 + d1 where d0 is the first
sum above and d1 is the second. Then d2

0 = 0 by the Jacobi identity and d0d1 +d1d0 +d2
1 = 0

because V is a module.

Definition The (nth) cohomology Hn(g, V ) of g with coefficients in V is the nth cohomology
of the above cochain complex. Explicitly, it is the quotient of ker(d)∩Cn(g, V ) (the n-cocycles
Zn(g, V )) by im(d) ∩ Cn(g, V ) (the n-coboundaries Bn(g, V )).
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What is H0(g, V )? The beginning of the cochain complex is

0→ V
d−→ Homk(g, V )→ ... (126)

where d acts on V by (dv)(X) = −Xv. Hence

H0(g, V ) ∼= V g (127)

is the invariant submodule. In general Lie algebra cohomology is the derived functor of
taking invariants.

What is H1(g, V )? The differential C1 → C2 has the form

(dϕ)(X, Y ) = ϕ([X, Y ])−Xϕ(Y ) + Y ϕ(X). (128)

If V is a trivial module, the second two terms disappear, so 2-cocycles are maps ϕ which
vanish on the commutator [g, g] and 2-coboundaries are trivial. Hence in particular

H1(g, k) ∼= (g/[g, g])∗. (129)

What if V is the adjoint representation? Then 2-cocycles are maps ϕ : g→ g such that

ϕ([X, Y ]) = [X,ϕ(Y )] + [ϕ(X), Y ] (130)

hence are precisely derivations. 2-coboundaries are derivations of the form X 7→ [Y,X],
hence are the inner derivations. Hence

H1(g, g) ∼= Der(g)/Inn(g) ∼= Out(g) (131)

consists of outer derivations of g.
H1 controls extensions of modules in the following sense. Suppose

0→ W → U → V → 0 (132)

is a short exact sequence of g-modules. Any such sequence splits as a short exact sequence
of vector spaces, so we can write U = V ⊕W (as vector spaces). The action of g on U then
takes the form

X(v, w) = (Xv,Xw + ϕ(X)v) (133)

where ϕ(X) is some linear map V → W , since the action must be compatible with both
the inclusion of W and the quotient into V . The condition that this is an action places
additional constaints on ϕ: we compute that

XY (v, w) = X(Y v, Y w + ϕ(Y )v) (134)

= (XY v,XY w +Xϕ(Y )v + ϕ(X)Y v) (135)

and similarly that
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Y X(v, w) = (Y Xv, Y Xw + Y ϕ(X)v, ϕ(Y )Xv) (136)

and

[X, Y ](v, w) = ([X, Y ]v, [X, Y ]w + ϕ([X, Y ])v). (137)

The condition that we have an action gives (XY −Y X)(v, w) = [X, Y ](v, w), which gives

ϕ([X, Y ])v = [X,ϕ(Y )]v + [Y, ϕ(X)]v. (138)

This is precisely the condition that ϕ ∈ Z1(g,Homk(V,W )) is a 1-cocycle with coefficients
in Homk(V,W ). But there is also a natural equivalence relation on the possible choices of
ϕ: namely, by choosing a different splitting of U , we we can apply automorphisms of U of
the form R(v, w) = (v, w + θ(v)), where θ ∈ Homk(V,W ). We want to say that two actions
Xϕ, Xψ associated to two cocycles ϕ, ψ are equivalent if

R ◦Xϕ = Xψ ◦R. (139)

Expanding gives

(Xv, θ(Xv) + ϕ(X)v +Xw) = (Xv,Xθ(v) +Xw + ψ(X)v) (140)

or

ϕ(X)− ψ(X) = [X, θ] = dθ(X). (141)

Hence, up to equivalence, short exact sequences with first and last term V and W are
classified by H1(g,Homk(V,W )).

9.1 Semisimplicity

Theorem 9.1. The following conditions on a Lie algebra g are equivalent:

1. Every finite-dimensional g-module is semisimple (completely reducible).

2. H1(g,M) = 0 for any finite-dimensional g-module M .

3. H1(g,M) = 0 for any finite-dimensional simple g-module M .

Proof. 1⇔ 2 is clear by the computation we did above: both are equivalent to the claim that
any short exact sequence of finite-dimensional g-modules splits. 2⇒ 3 is straightforward. It
remains to show 3⇒ 2, which we can do by using long exact sequences as follows. If

0→ K
i−→M

p−→ N → 0 (142)

is a short exact sequence of modules, then we get a long exact sequence
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...→ Hn(g, K)
i∗−→ Hn(g,M)

p∗−→ Hn(g, N)
∂−→ Hn+1(g, K)→ ... (143)

which we can use to show 3⇒ 2 by induction on the dimension.

Below we will assume that we are working over a field k of characteristic zero.

Theorem 9.2. Let g be a semisimple Lie algebra and V a finite-dimensional irreducible
faithful representation of g. Then H i(g, V ) = 0 for all i ≥ 0.

Proof. Assume first that k is algebraically closed.
The inclusion g ⊆ gl(V ) gives us an invariant bilinear form BV : g× g→ k. Since BV is

non-degenerate, if e1, ..., en is any basis of g we can associate to it a dual basis f1, ..., fn such
that BV (ei, fj) = δij. Now we can define the Casimir operator

C =
n∑
i=1

eifi ∈ Endk(V ). (144)

It is an exercise to show that the Casimir operator does not depend on the choice of basis
ei.

Lemma 9.3. C ∈ Endg(V ). That is, C commutes with the action of g.

Proof. For X ∈ g we compute that

[X,
∑
i

eifi] =
∑
i

(
[X, ei]fi +

∑
ei[X, fi]

)
(145)

=
∑
i,j

BV ([X, ei], fj)ejfi +
∑
i,j

eiBV ([X, fi], ej)fj (146)

=
∑
i,j

(BV ([X, ei], fj) +BV ([X, fj], ei)) ejfi (147)

which vanishes since BV is invariant. Here we use the fact that

X =
∑

BV (X, fi)ei (148)

=
∑

BV (X, ei)fi. (149)

Since k is algebraically closed, C acts as a scalar by Schur’s lemma. By taking the trace
we can show that this scalar is dim g

dimV
; in particular, it is nonzero.

We will now prove the theorem by writing down an explicit contracting homotopy h :
Cp(g, V )→ Cp−1(g, V ) as follows:

hϕ(X1, ...Xp−1) =
∑
i

fiϕ(ei, X1, ...Xp−1). (150)
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Lemma 9.4. (hd+ dh)ϕ = −Cϕ.

Proof. Exercise. The calculation is similar to the calculation we did above.

It follows that C•(g, V ) is contractible.

Theorem 9.5. The above is true without the assumption that V is faithful.

Proof. If V is such a module, we can write g = h⊕m where m is the kernel of the represen-
tation and h acts faithfully on V (because we can take the complement with respect to the
Killing form). We have

Ck(g, V ) =
⊕
p+q=k

Cp(h, V )⊗ Cq(m, k). (151)

The RHS can be upgraded to a bicomplex Cp,q, with differentials d1,0 : Cp,q → Cp+1,q and
d0,1 : Cp,q → Cp,q+1, and then the LHS is its total complex equipped with the differential
d = d1,0 + d0,1.

Let ϕ ∈ Ck(g, V ) be a cocycle. Write ϕ =
∑
ϕp where ϕp ∈ Cp(h, V )⊗Cq(m, k). Choose

p maximal such that ϕ 6= 0. Since we know that C•(h, V ) is contractible, dϕ = 0 implies that
d1,0ϕp = 0, hence ϕp = d1,0(ψp−1). Then ϕ − d(ψp−1) is also a cocycle, but with a smaller
value of p. Eventually there is no such p.

Corollary 9.6. (Weyl) Every finite-dimensional representation of a semisimple Lie algebra
is completely reducible.

Proof. We now know that H1(g, V ) = 0 for i ≥ 0 and V a nontrivial simple module. In
the trivial case H1(g, k) ∼= (g/[g, g])∗ = 0, so we conclude that H1(g, V ) = 0 for any finite-
dimensional simple V , and this gives semisimplicity of the finite-dimensional representation
theory.

Corollary 9.7. The above is true without the assumption that k is algebraically closed.

Proof. It suffices to observe that

H i(g, V )⊗ k̄ ∼= H i(g⊗k k̄, V ⊗k k̄). (152)

Corollary 9.8. If g is a semisimple Lie algebra (over R), then there exists a Lie group G
with Lie algebra g.

Proof. If g is semisimple then

H1(g, g) = Der(g)/Inn(g) = 0 (153)

from which it follows that Der(g) ∼= g. But now Der(g) is the Lie algebra of the Lie group
Aut(g).
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Corollary 9.9. If g ⊆ gl(V ) is semisimple and X ∈ g has Jordan decomposition Xs + Xn,
then Xs, Xn ∈ g.

Proof. ad(Xs) ∈ Der(g), hence must be ad(Y ) for some Y ∈ g.

Corollary 9.10. If g is semisimple, then X ∈ g is semisimple (resp. nilpotent) iff ad(X) is
semisimple (resp. nilpotent).

Corollary 9.11. If g is semisimple, ρ : g → gl(V ) is a representation, and X ∈ g is
semisimple, then ρ(X) is semisimple.

9.2 Extensions

Let

0→ a→ ĝ→ g→ 0 (154)

be a short exact sequence of Lie algebras with a abelian. The the adjoint representation
restricts to a representation ĝ → gl(a) which factors through a representation g → gl(a).
Thus studying such short exact sequences is equivalent to studying g-modules a together
with brackets on ĝ = g ⊕ a (here the vector space direct sum) compatible with the action.
Explicitly, the action should have the form

[(X1, Y1), (X2, Y2)] = ([X1, X2], X1Y2 −X2Y1 + ϕ(X1, X2)) (155)

where ϕ is some bilinear map. The Lie algebra axioms then impose conditions on ϕ, and
it turns out that these conditions say precisely that ϕ is a 2-cocycle in Z2(g, a). This follows
from the Jacobi identity. Two such cocycles give isomorphic extensions if and only if they
are related by a map of the form R(X, Y ) = (X, Y − θ(X)), and we can compute that this
turns out to be the case if and only if ϕ1 − ϕ2 = dθ is a 2-coboundary in B2(g, a).

Hence to any short exact sequence above we can associate an element of H2(g, a), and
this element classifies extensions of g by a (provided that the action is fixed). In particular,
the short exact sequence splits as a semidirect product g o a if and only if this element is
equal to zero.

Proposition 9.12. (Whitehead) If g is semisimple and V is a finite-dimensional g-module,
then H2(g, V ) = 0.

Proof. By previous results, it suffices to prove this in the case V = k. Here we are dealing
with a central extension

0→ k → ĝ→ g→ 0. (156)

The adjoint representation factors through a representation g→ gl(ĝ) by centrality, hence
it is completely reducible, so we can write ĝ ∼= k ⊕ g as g-modules and hence as ideals.

An alternative proof proceeds by constructing an isomorphism H1(g, g) ∼= H1(g, g∗) ∼=
H2(g, k) using the Killing form.
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In particular, any extension of a semisimple Lie algebra is a semidirect product.
Once again the characteristic of the ground field is zero.

Theorem 9.13. (Levi) Let g be a finite-dimensional Lie algebra. Then g is a semidirect
product gs o rad(g) where gs ∼= g/rad(g) is semisimple (a Levi subalgebra of g). Any two
Levi subalgebras are conjugate by the Lie subgroup of Aut(g) corresponding to the adjoint
representation.

Proof. We induct on the length of the derived series of g. We already know this in the case
that rad(g) is abelian. In general, let r = rad(g). The short exact sequence

0→ r/[r, r]→ g/[r, r]→ gs → 0 (157)

splits because r/[r, r] is abelian. Let p : g → g/[r, r] be the quotient map. Then the
splitting above lets us think of gs as living in g/[r, r], and from here we can write down a
short exact sequence

0→ [r, r]→ p−1(gs)→ gs → 0. (158)

By the inductive hypothesis this splits.
Let gs, g

′
s be two Levi subalgebras. The particular form of the isomorphism gsor ∼= g′sor

implies that

g′s = {X + ϕ(X)|X ∈ gs} (159)

for some ϕ ∈ Homk(gs, r). We again induct. If r is abelian, then

[X, Y ] + ϕ([X, Y ]) = [X + ϕ(X), Y + ϕ(Y )] (160)

implies that ϕ is a cocycle in Z1(gs, r). Since H1 vanishes, ϕ is a coboundary, hence has
the form ϕ(X) = [ξ,X] where ξ ∈ r. But then g′s = exp(adξ)gs.

It follows that in the general case we have

gs ∼= g(g′s) mod [r, r]. (161)

But then the induction works the same as before.

Corollary 9.14. (Lie’s third theorem) Every finite-dimensional Lie algebra g over R (resp.
C) is the Lie algebra of a real (resp. complex) Lie group G.

Proof. We already know this for solvable Lie algebras and for semisimple Lie algebras. The
general case follows by Levi decomposition.

Example SL2(R) is a Lie group. It is not simply connected: its fundamental group is Z.
Its universal cover is the simply connected Lie group associated to sl2(R), and it is a larger

group S̃L2(R) fitting into a short exact sequence
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0→ Z→ S̃L2(R)→ SL2(R)→ 0. (162)

The group S̃L2(R) does not have a faithful (finite-dimensional) representation! To see
this, note that by the semisimplicity of sl2(R), any complex representation V is a direct sum
of irreducible representations V1 ⊕ ... ⊕ Vn. By Schur’s lemma, a generator γ of Z acts by
some scalar λi on each Vi. But since sl2(R) is perfect (equal to its own commutator), any
representation lands in traceless matrices, so any representation of the group lands in SL. It
follows that λdimVi

i = 1, so the action of Z cannot be faithful.
As it turns out, this does not happen over C.

10 Universal enveloping algebras

Below by algebra we mean associative algebra.
Any algebra A is a Lie algebra under the commutator bracket [a, b] = ab − ba. In

particular, if V is a vector space then End(V ) is a Lie algebra which we have been caling
gl(V ). This defines a functor from algebras to Lie algebras, and the universal enveloping
algebra construction is the left adjoint of this functor.

Definition An algebra U(g) is the universal enveloping algebra of g if it is equipped with
a morphism ε : g→ U(g) of Lie algebras which is universal in the sense that any homomor-
phism g→ A of Lie algebras, where A is an algebra, factors uniquely through ε.

U(g) is unique up to unique isomorphism. It can be explicitly constructed as follows: we
first take the tensor algebra

T (g) =
⊕
n≥0

g⊗n ∼=
⊕
n≥0

T n(g), (163)

which is the free algebra on g regarded as a vector space, and then quotient by the ideal
generated by the commutation relations XY − Y X = [X, Y ], where X, Y ∈ g.

There is a canonical equivalence g-mod ∼= U(g-mod which in principle reduces the study
of the representation theory of Lie algebras to the study of the module theory of noncommu-
tative rings. This is because morphisms g→ gl(V ) of Lie algebras can be naturally identified
with morphisms U(g)→ End(V ) of algebras.

By construction we have U(g⊕h) ∼= U(g)⊗U(h). The diagonal embedding ∆ : g 7→ g⊕g
induces a map ∆ : U(g)→ U(g)⊗U(g) given by ∆(X) = X⊗ 1 + 1⊗X on elements X ∈ g.
This map makes U(g) a bialgebra.

U(g) has three natural g-module structures. The first one is given by left multiplication
ε(X)Y , the second one is given by right multiplication −Y ε(X) (we take negatives to convert
left modules to right modules), and the third one is given by the adjoint action ε(X)Y −
Y ε(X).

Example Let g be abelian. Then U(g) ∼= S(g), or equivalently the algebra of polynomial
functions on g∗.
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In general U(g) can be thought of as a noncommutative deformation of S(g) as follows.
We can define

Ut(g) ∼= T (g)/(XY − Y X − t[X, Y ]) (164)

for all t. When t 6= 0 these are all isomorphic to the universal enveloping algebra, but
when t = 0 we get the symmetric algebra.

Definition Let A be an algebra. A filtration on A is an increasing sequence F 0(A) ⊆
F 1(A) ⊆ ... of subspaces of A with A =

⋃
F k(A) such that F i(A)F j(A) ⊆ F i+j(A). A

filtered algebra is an algebra together with a filtration. The associated graded of a filtered
algebra is

Gr(A) =
∞⊕
k=0

F k(A)/F k−1(A). (165)

The associated graded is naturally a graded algebra with product inherited from that of
A. There is a natural map A→ Gr(A) which is an isomorphism of vector spaces. Using this
isomorphism we can think of the multiplication on A as a multiplication on Gr(A) which
begins with its given multiplication but continues with lower order terms.

Example Let V be any vector space. The subspaces

F k(T (V )) =
k⊕
i=0

V ⊗i (166)

form a filtration of T (V ). Then we have a canonical isomorphism T (V ) ∼= Gr(T (V )).

Example The universal enveloping algebra U(g) inherits a filtration from T (g) as above.
Its associated graded is never isomorphic to U(g) if g is nonabelian. In this case U(g) is
noncommutative, but Gr(U(g)) is always commutative. It suffices to check this on generators
X, Y ∈ g. Here

XY = Y X + [X, Y ] (167)

where XY, Y X ∈ F 2 but [X, Y ] ∈ F 1, hence XY ≡ Y X mod F 1.

Below we make no assumptions about the base field or about the dimension of g.

Theorem 10.1. (Poincaré-Birkhoff-Witt) Gr(U(g)) ∼= S(g).

Proof. Choose a totally ordered basis {Xi : i ∈ I} of g. This induces a basis of S(g)
consisting of monomials Xi1 ...Xik where i1 ≤ i2 ≤ ... ≤ ik. The PBW theorem is equivalent
to the assertion that these products also serve as a basis of Gr(U(g)), hence, by transporting
along the map U(g)→ Gr(U(g)), a basis of U(g). This is what we will prove.
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First we want to show that the monomials span U(g). If XjXi1 ...XikXik+1
...Xin is such

that ik ≤ j ≤ ik+1, then we we can commute it past to get

Xi1XjXi2 ...Xin + [Xj, Xi]Xi2 ...Xin . (168)

Repeating this k times we get that this is equivalent to Xi1 ...XikXjXik+1
...Xin modulo

terms of lower order. So by induction on the order we get spanning.
The hard part is to show that the monomials are linearly independent. To do this we will

construct a g-module structure on S(g). We will do this inductively and using linearity. We
will also denote the action by X · v and we will distinguish elements X ∈ g from elements
X ∈ S(g). First, define

Xi · v = Xi. (169)

Next, define

Xi ·Xj · v =

{
XiXjv if i ≤ j

Xj ·Xi · v + [Xi, Xj] · v if i > j
. (170)

Secretly we are reconstructing the left action of U(g) on itself. But the hard part now is
to check that this is actually an action, or equivalently that

Xi ·Xj · v −Xj ·Xi · v = [Xi, Xj] · v. (171)

We will check this by inducting on the degree of v and using linearity. This reduces to
checking that

Xi ·Xj ·Xkv −Xj ·Xi ·Xkv = [Xi, Xj] ·Xkv. (172)

There are three cases i ≤ j ≤ k, i ≤ k ≤ j, and k ≤ i ≤ j. We will only explicitly write
down what happens in the third case. Here we get

Xj ·Xi ·Xkv = Xj ·XiXkv (173)

= Xi ·Xj ·Xkv + [Xj, Xi] ·Xkv (174)

where Xkv is already a monomial. But in general Xkv = Xkv + lower order terms, and
by the inductive hypothesis everything is fine for lower order terms, so we conclude that

Xj ·Xi ·Xk · v −Xj ·Xi ·Xk · v = [Xi, Xj] ·Xk · v (175)

regardless of the relationship between Xk and v. Of the three cyclic permutations of this
identity, we know two of them by the cases above. It suffices now to verify that the sum of
the three identities holds. The LHS of this sum is

Xk · [Xi, Xj] · v +Xi · [Xj, Xk] · v +Xj · [Xk, Xi]v. (176)
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By the inductive hypothesis we can write this as [Xk, [Xi, Xj]] · v + [Xi, Xj] · Xk · v +
cyclic permutations, and when we add these cyclic permutations the triple commutator dis-
appears by the Jacobi identity. What remains is the RHS of the sum, so we have verified
the identity.

Now suppose there is a linear dependence
∑
ai1...ikXi1 ...Xik = 0 among the monomials.

Then ∑
ai1...ikXi1 · ... ·Xik · 1 =

∑
ai1...ikXi1 ...Xik = 0 (177)

implies that the coefficients ai1...ik are all equal to 1 as desired.

In particular, the natural map ε : g→ U(g) is an injection. From now on we will regard
g as a subspace of U(g).

Various properties of a filtered ring A are inherited from its associated graded. For
example, if Gr(A) has no zero divisors or is left or right Noetherian, then the same is true
of A. In particular U(g) has no zero divisors and is left and right Noetherian.

If h ⊆ g is a Lie subalgebra there is an inclusion U(h) ⊆ U(g). In fact U(g) is a free
U(h)-module; this follows from a suitable choice of PBW basis, which allows us to write
U(g) ∼= U(h)⊗ S(g/h) as a U(h)-module.

Let f : A→ B be a morphism of rings. Then there is a restriction functor Res : B-mod→
A-mod and an induction functor

Ind : A-mod 3M 7→ B ⊗AM ∈ B-mod (178)

which is its left adjoint; that is,

HomB(Ind(M), N) ∼= HomA(M,Res(N)). (179)

In the particular case that f is an inclusion U(h)→ U(g), the isomorphism above gives

Ind(M) ∼= U(g)⊗U(h) M ∼= S(g/h)⊗k M (180)

(k the base field). Even if M is finite-dimensional this will be infinite-dimensional in
general, but it is the appropriate notion of induction for representations of Lie algebras.

Example Consider sl2 with basis H,X, Y as usual. Let b be the Borel subalgebra, spanned
by H and X. This is solvable, so its simple modules are all 1-dimensional. Write Cλ = kv
for the module spanned by a vector v satisfying Hv = λv,Xv = 0, and let

Mλ = U(g)⊗U(b) Cλ ∼= S(kY )⊗k Cλ. (181)

What is the module structure on this? We have Y (Y n ⊗ v) = Y n+1 ⊗ v and

H(Y n ⊗ v) = adH(Y n)⊗ v + Y n ⊗Hv (182)

= (−2nY n)⊗ V + Y n ⊗ λv (183)

= (λ− 2n)Y n ⊗ v (184)
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where we used the Leibniz rule

adH(XY ) = adH(X)Y +XadH(Y ). (185)

Finally we have

X(Y n ⊗ v) = adX(Y n)⊗ v + Y n ⊗Xv. (186)

The second term vanishes. To compute the first term we apply the Leibniz rule again,
using the fact that adX(Y ) = H, to get

adX(Y n)⊗ v =
n−1∑
k=0

Y kHY n−k−1 ⊗ v (187)

= n(λ− (n− 1))Y n−1 ⊗ v. (188)

If λ is not a non-negative integer, the action of X eventually reproduces v starting with
any vector, and so Mλ is irreducible. If λ is a non-negative integer m, the action of X
eventually annihilates a vector. The vector we obtain before annihilation gives an inclusion
Mλ−2m−2 → Mλ. The quotient Vλ is irreducible, and any finite-dimensional irreducible
sl2-module is of this form.

To see this, let V be such a module. Then V contains an eigenvector v for the action of
b. This gives a nontrivial map Cλ → V of U(b)-modules, hence by adjointness a nontrivial
map Mλ → V of U(sl2)-modules, and Vλ is the unique nontrivial finite-dimensional quotient
of Mλ.

The above discussion can be summarized as follows.

Proposition 10.2. The irreducible finite-dimensional representations of sl2 are in bijection
with the non-negative integers. On the representation Vn corresponding to n, H acts with
eigenvalues n, n− 2, ...,−n+ 2,−n. In particular, dimVn = n+ 1.

It turns out that Vn = Sn(V1).

10.1 Free resolutions

We want to resolve the trivial g-module k as a U(g)-module, by free U(g)-modules. It turns
out that there exists a particularly nice such resolution, the Koszul complex

· · · → U(g)⊗ Λ2(g)→ U(g)⊗ g→ U(g)→ k → 0. (189)

The differentials in this resolution are given by
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∂(Y ⊗X1 ∧ ... ∧Xk) =
k∑
i=1

(−1)iY Xi ∧X1 ∧ ... ∧ X̂i ⊗Xn (190)

+
∑

1≤i<j≤k

(−1)i+j−1Y ⊗ [Xi, Xj] ∧ ... ∧ X̂i ∧ ... ∧ X̂j ∧ ... ∧Xn.(191)

There are three things to verify: ∂ is a morphism of g-modules, ∂2 = 0, and the complex
is exact. We will verify the third thing. First, note that the filtration F d(U(g)) on U(g)
induces a filtration F d(K) = F d(U(g)) ⊗ Λ•(g) on the Koszul complex K. Then K has an
associated graded complex Gr(K) on which an associated graded version Gr(∂) = δ of ∂
acts. This is precisely the Koszul complex S(g)⊗ Λ•(g), which is well-known to be exact.

To see this, we break up δ using a second grading. Its components have the form Sp⊗Λq →
Sp+1 ⊗ Λq−1, and we can write down a homotopy going the other way of the form

h(x1...xp+1 ⊗ y1 ∧ ... ∧ yq−1) =
∑
i

(x1...x̂i...xp+1 ⊗ x1 ∧ y1 ∧ ... ∧ yq−1). (192)

Then h∂ + ∂h = (p+ q)id. But by induction on the degree, if the associated graded of a
filtered complex is exact then so is the original complex.

Another way to state this argument is to use Ut(g), the version of the universal enveloping
algebra depending on a parameter, to write down a one-parameter family of complexes.
When t = 0 this is the commutative Koszul complex, and when t 6= 0 this is isomorphic
to the noncommutative Koszul complex. When we do this we are studying Ker(∂t)/Im(∂t)
where ∂t is a linear operator depending polynomially on a parameter t. But the dimension
of this can only increase at a particular value of t (relative to its value in a neighborhood),
not decrease; in other words it is upper-semicontinuous. Hence to verify that there is no
cohomology anywhere it suffices to verify it at t = 0.

Now we can compute the derived functor ExtiU(g)(k, V ) by resolving k using the Koszul res-

olution, applying HomU(g)(−, V ), and taking cohomology. But HomU(g)(U(g)⊗ Λk(g), V ) ∼=
Hom(Λk(g), V ); moreover, the induced differential agrees with the differential we wrote down
earlier to define Lie algebra cohomology. Hence

H i(g, V ) ∼= ExtiU(g)(k, V ). (193)

It follows that H i(g, V ) are the derived functors of invariants H0(g, V ) ∼= Homg(g, V ) ∼=
V g. What we did earlier involving extensions amounted to showing this identity when i = 1
by hand, after noting that

ExtiU(g)(M,N) ∼= ExtiU(g)(k,M
∗ ⊗N) (194)

if M is finite-dimensional.
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10.2 Bialgebras

The diagonal embedding g → g ⊕ g induces a comultiplication ∆ : U(g) → U(g) ⊗ U(g)
given by ∆(X) = X ⊗ 1 + 1 ⊗ X on elements X ∈ g. Together with this comultiplication
U(g) becomes a bialgebra.

Definition A is a bialgebra if it is an algebra equipped with a comultiplication ∆ : A →
A ⊗ A such that ∆(ab) = ∆(a)∆(b) and such that ∆ is coassociative in the sense that the
diagram

A

∆
��

∆ // A⊗ A
∆⊗id
��

A⊗ A id⊗∆
// A⊗ A⊗ A

(195)

commutes.

(We also need a counit ε : A→ k but this is less important for the time being. For U(g)
this is the augmentation map U(g)→ k which kills all positive-degree terms.)

Definition Let A be a bialgebra. An element x ∈ A is primitive or Lie-like if ∆x =
x⊗ 1 + 1⊗ x. The primitive elements of A are denoted Prim(A).

The subspace of primitive elements of a bialgebra is closed under the commutator bracket,
making it a Lie algebra. To see this, we compute that

∆[X, Y ] = ∆X∆Y −∆Y∆X (196)

= (X ⊗ 1 + 1⊗X)(Y ⊗ 1 + 1⊗ Y )− (Y ⊗ 1 + 1⊗ Y )(X ⊗ 1 + 1⊗X)(197)

= XY ⊗ 1 + 1⊗XY − Y X ⊗ 1− 1⊗ Y X (198)

= [X, Y ]⊗ 1 + 1⊗ [X, Y ]. (199)

Proposition 10.3. If the ground field has characteristic zero, then Prim(U(g)) = g.

Proof. First let g be abelian. In this case U(g) ∼= S(g) is the algebra of polynomial functions
on g∗ and the comultiplication ∆ exhibits the addition map g∗ × g∗ → g∗ in the sense that
(∆f)(X, Y ) = f(X + Y ). Hence f is primitive iff f(X + Y ) = f(X) + f(Y ). By degree
considerations this is true iff f is linear, and the linear f are precisely the elements of g. (In
positive characteristic we might have f(X) = Xp.)

Consider the filtration on U(g)⊗ U(g) given by

F i(U(g)⊗ U(g)) =
∑
p+q=i

F p(U(g))⊗ F q(U(g)). (200)

Then the comultiplication induces a map Gr(U(g))→ Gr(U(g))⊗Gr(U(g)) on associated
gradeds. Furthermore, if X ∈ U(g) is primitive, then its leading term X ∈ Gr(U(g)) (we
need to make some choices here) is also primitive.
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10.3 The Baker-Campbell-Hausdorff formula

Let k be a ground field of characteristic zero.

Definition Let V be a vector space. The free Lie algebra on V is the universal Lie algebra
L(V ) equipped with a linear map V → L(V ) from V . The free Lie algebra on a set S is the
free Lie algebra on the free vector space on S.

What is U(L(V ))? There is a canonical map L(V ) → U(L(V )) and a canonical map
V → L(V ) giving a canonical map V → U(L(V )). This map exhibits U(L(V )) as the free
algebra T (V ) on V by looking at the universal properties (Hom(U(L(V )),−) is linear maps
from V ). Hence by PBW we can think of L(V ) as the Lie subalgebra of T (V ) generated by
V under commutators. Moreover, we can recover L(V ) inside T (V ) as the Lie algebra of
primitive elements, since T (V ) ∼= U(L(V )) is a Hopf algebra. Here the comultiplication is
generated by

T (V ) ⊇ V 3 x 7→ x⊗ 1 + 1⊗ x ∈ T (V )⊗ T (V ). (201)

The Baker-Campbell-Hausdorff formula is a formula of the form

log eXeY = X + Y +
[X, Y ]

2
+

[X, [X, Y ]]

12
+

[Y, [Y,X]]

12
+ ... (202)

which expresses the group multiplication on a Lie group in a suitably small neighborhood
of the identity entirely in terms of the Lie bracket. We can show the existence of the BCH
formula using the above, but we need to produce a completion. The ideal m =

⊕∞
i=1 T

i(V )
is a two-sided ideal in T (V ), and we want to take the m-adic completion of T (V ). This is
done by giving T (V ) a topology where the neighborhoods of the identity are the powers mn

and translating to get neighborhoods of any point. This topology is metrizable by a natural
m-adic metric and we can consider the completion with respect to this metric. This gives a
ring

T̂ (V ) =
∞∏
i=0

T i(V ) (203)

of noncommutative formal power series with a two-sided ideal m̂ of formal power series
with zero constant term. Now, the comultiplication ∆ : T (V ) → T (V ) ⊗ T (V ) respects
gradings (if T (V )⊗ T (V ) is given its natural grading). In T (V )⊗ T (V ) we can consider the

ideal n = m⊗ 1 + 1⊗m and complete with respect to it, giving a completion ̂T (V )⊗ T (V ).

The comultiplication then extends to a continuous map T̂ (V )→ ̂T (V )⊗ T (V ).

Example If dimV = 1, we get formal power series k[[x]] in one variable. The comultiplica-
tion ∆ : k[x]→ k[x, y] then extends to a continuous map k[[x]]→ k[[x, y]].
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We can now consider a completion L̂(V ) given by the closure of L(V ) in T̂ (V ). These

are formal power series in Lie monomials, and can be identified with Prim(T̂ (V )).
We have a well-defined exponential map exp : m̂ → 1 + m̂ defined by the usual formula

and similarly a well-defined inverse map, the logarithm log : 1 + m̂→ m̂.

Definition An element a of a bialgebra A is grouplike if ∆a = a⊗ a.

We’ll denote the set of all grouplike elements of a bialgebra A by Grp(A). In T̂ (V ), we
have

∆X = X ⊗ 1 + 1⊗X ⇒ ∆eX = e∆X = eX ⊗ eX (204)

so the exponential of a primitive element is grouplike, and conversely the logarithm
of a grouplike element is primitive. Moreover, the grouplike elements are closed under
multiplication.

Now, let V be a 2-dimensional vector space with basis X, Y . In T̂ (V ), eX and eY are
grouplike, hence so is eXeY , hence log(eXeY ) is a primitive element and so must be a sum
of Lie monomials.

This establishes the existence, abstractly, of the Baker-Campbell-Hausdorff formula. But
how do we actually compute terms in it? The idea is to construct a projection

π : m̂→ L̂(V ) = Prim(T̂ (V )) (205)

as follows. First, let

ϕ(X1X2...Xn) = [X1, [X2, [..., Xn]]] (206)

and let Ln(V ) = L(V ) ∩ T n(V ), where L(V ) is regarded as a subspace of T (V ).

Lemma 10.4. If u ∈ Ln(V ), then ϕ(u) = nu.

Proof. We compute that ϕ(uv) = adu(ϕ(v)) (it suffices to check this on generators). Now
inductively, we may assume WLOG that u = [v, w] where v ∈ Lp(V ), w ∈ Lq(V ), and
p+ q = n. Then

ϕ([v, w]) = ϕ(vw − wv) (207)

= adv(ϕ(w))− adw(ϕ(v)) (208)

= q[v, w]− p[w, v] (209)

= (p+ q)[v, w]. (210)
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Now we can define π by defining π on elements of Ln(V ) as ϕ(u)
n

. This is continuous and

hence extends to a map on completions π : m̂→ L̂(V ).
Now we can compute terms in the Baker-Campbell-Hausdorff formula by expanding out

log

(
1 +X +

X2

2!
+ ...

)(
1 + Y +

Y 2

2!
+ ...

)
(211)

and applying π to the result. This is an algorithmic, if tedious, solution, and gives another
method for proving the existence of Lie groups with Lie algebra a given finite-dimensional
Lie algebra.

11 Structure theory of semisimple Lie algebras

11.1 Weights, roots, and Cartan subalgebras

Let V be a finite-dimensional vector space over an algebraically closed field k of characteristic
zero and let X ∈ End(V ). Then we have a Jordan decomposition into weight spaces V =⊕

V X
λ where

V X
λ = ker(X − λ)dimV =

∞⋃
m=1

ker(x− λ)m. (212)

If n is a nilpotent Lie subalgebra of End(V ) then we have a similar decomposition V =⊕
Vλ, but instead of ranging over eigenvalues λ now ranges over linear functionals λ ∈ n∗

(weights), and the weight spaces have the form

Vλ =
⋂
X∈n

ker(X − λ(X))dimV . (213)

We prove this by observing that V X1
λ is invariant under X2 if [X1, X2] = 0, where Xi ∈ n,

and inducting.
If V =

⊕
Vλ and W =

⊕
Wµ, then the weight space decomposition of their tensor

product has the form

(V ⊗W )ν =
⊕
λ+µ=ν

Vλ ⊗Wµ. (214)

We would like to apply this idea in general. We will do this by looking at nilpotent
subalgebras of a Lie algebra.

Definition A Cartan subalgebra of a Lie algebra g is a nilpotent subalgebra h equal to its
normalizer

N(h) = {X ∈ g|[X, h] ⊆ h}. (215)
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If g has a Cartan subalgebra h, then the adjoint action of h on g induces a decomposition

g =
⊕
λ∈h∗

gλ. (216)

Because h is its own centralizer we have g0 = h, so the weight spaces associated to nonzero
weights are the interesting ones.

Definition A root is a nonzero weight λ such that dim gλ 6= 0.

The above decomposition of g is the root decomposition.

Example Let g = sl3. The subalgebra h of diagonal matrices turns out to be a Cartan
subalgebra. If eij is the matrix with all entries 0 except the ij-entry, then we compute that d1 0 0

0 d2 0
0 0 d3

 , eij
 = (di − dj)eij. (217)

The weight space h∗ contains three linear functionals d1, d2, d3 with relation d1 +d2 +d3 =
0. In this space, the roots are the linear functionals di − dj, i 6= j; in particular there are
6 of them. They can be drawn as the vertices of a regular hexagon (there is a Euclidean
structure here but it is not obvious yet).

Note that [gλ, gµ] ⊆ gλ+µ. Hence the Cartan subalgebra induces a nice grading of g.

Theorem 11.1. Every finite-dimensional Lie algebra has a Cartan subalgebra. If G is a Lie
group with Lie algebra g then any two Cartan subalgebras of g are conjugate by the adjoint
action of G.

We will prove this over C (it is false over R). It is actually true over an algebraically
closed field of characteristic zero, but we need to replace Lie groups with algebraic groups.

We first need some preliminary facts. Let X ∈ g. Then adX ∈ End(g) is never invertible
because X is in its nullspace. Write

det(t− adX) = tn + cn−1(X)tn−1 + ...+ cm(X)tm. (218)

Definition The rank of g is the minimal r such that cr(X) is not identically zero. X ∈ g is
regular if cr(X) 6= 0, where r is the rank of g.

Example Let g = sl2. We compute that

det(t− adH) = (t− 2)(t+ 2)t = t3 − 4t. (219)

The rank cannot be zero, so it is 1. The set of regular elements of sl2 is the set of X such
that det(X) 6= 0.
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The set greg of regular elements of g is the complement of the variety cr(X) = 0. In
particular, it is open and dense in the Euclidean topology. Since the variety has codimension
2, it is also connected.

Now we prove the theorem.

Proof. Let X be a regular element of g and consider the Jordan decomposition

g =
⊕

gXλ (220)

under the adjoint action of X. We claim that h = gX0 is a Cartan subalgebra. Write
g = h⊕W where W is the sum of the nonzero root spaces. Since [h, gλ] ⊆ gλ, for any Y ∈ h
we can write

ad(Y ) = ad1(Y ) + ad2(Y ) (221)

where ad1 is the part acting on h and ad2 is the part acting on W . Let

V = {Y ∈ h|ad1(Y ) nilpotent} (222)

U = {Y ∈ h|ad2(Y ) invertible}. (223)

Since X is regular we have U ⊆ V . But U is open and V is Zariski closed, so in fact
V = h.

So h is nilpotent. The normalizing condition is straightforward to check, and it follows
that h is a Cartan subalgebra.

We now need a lemma.

Lemma 11.2. Let h be a Cartan subalgebra, g = h ⊕W be as above, ad1, ad2 be as above,
and U as above. Then U is nonempty.

But this is straightforward: W is a sum of weight spaces associated to finitely many
weights λ1, ..., λm, and we can take the complement of the union of their kernels, which are
hyperplanes.

Now consider the map

Φ : U ×W 3 (v, w) 7→ exp(ad(w))v ∈ g. (224)

The differential dΦ(v, 0) may be regarded as an operator h⊕W → h⊕W , and as such
an operator it is the identity on h and ad2(v) on W . In particular, it is surjective. Hence Φ
is locally surjective.

It follows that any Cartan subalgebra in g equals gX0 for some X ∈ greg. To see this, we
use the fact that (Ad(G))(U) contains an open set, hence contains a regular element Y , and
then Ad(g)(h) (h a Cartan subalgebra) is gY0 for some g.

Consider the equivalence relation on greg given by X ∼ Y if gX0 is conjugate to gY0 . We
want to show that there is only one equivalence class. But by the local surjectivity of Φ it
follows that each equivalence class is open, hence by the connectedness of greg the conclusion
follows. (This is the only place where the theorem fails over R; in this case greg is not
necessarily connected.)
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In this situation it is typical to concentrate attention on the semisimple case.

11.2 The semisimple case

Let g be semisimple, B be the Killing form, and

g = h⊕
⊕
α∈∆

gα (225)

be the root decomposition, where h is a Cartan subalgebra and ∆ ⊂ h∗ \ {0} is the set
of roots.

Proposition 11.3. 1. B(gα, gβ) = 0 unless α + β = 0.

2. The restriction of B to h is nondegenerate.

3. h is abelian.

4. h consists only of semisimple elements.

Proof. To establish the first claim we compute that, for H ∈ h, X ∈ gα, Y ∈ gβ, if X, Y are
eigenvectors for H we have

B([H,X], Y ) +B(X, [H, Y ]) = (α(H) + β(H))B(X, Y ) = 0. (226)

If α+β 6= 0 there exists H such that α(H)+β(H) 6= 0, hence B(X, Y ) = 0. To establish
the claim for generalized eigenvectors we work by induction.

The second claim follows from the first claim, which shows that h is orthogonal to⊕
α∈∆ gα with respect to the Killing form.
The third claim follows from the second claim, since B(h, [h, h]) = 0 implies [h, h] = 0.
To establish the fourth claim, recall that for X ∈ g the semisimple and nilpotent parts

Xs, Xn have the property that ad(Xs), ad(Xn) are polynomials in ad(X). In particular, if
X ∈ h then ad(X) preserves the root decomposition, hence so do polynomials in it, hence
(by the self-normalizing condition) Xs, Xn ∈ h as well. But if Xn ∈ h then Xn = 0 since by
Lie’s theorem every ad(X), X ∈ h can be simultaneously upper-triangularized and ad(Xn)
is strictly upper-triangular.

Corollary 11.4. In a semisimple Lie algebra, regular elements are semisimple.

The definition of regular is sometimes different in the literature: it sometimes means
that the dimension of the centralizer is the minimum possible. These elements are also
called principal.

Corollary 11.5. gα is the usual (not generalized) weight space

{X ∈ g|[H,X] = α(H)X∀H ∈ h}. (227)
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By the nondegeneracy of B, if α ∈ ∆ is a root then so is −α. Let hα = [gα, g−α] ⊆ h.
We compute that if H ∈ h, X ∈ gα, y ∈ g−α, then

B(H, [X, Y ]) = B([H,X], Y ) = α(h)B(X, Y ). (228)

In particular, B(ker(α), hα) = 0, and by nondegeneracy of B it follows that dim hα = 1.
Suppose by contradiction that α is zero when restricted to hα. Then we can choose

H 6= 0 ∈ hα, X ∈ gα, Y ∈ g−α such that [X, Y ] = H, [H,X] = 0, [H,Y ] = 0. These generate
the Heisenberg algebra, which is nilpotent, so ad(H) acts nilpotently. But this contradicts
semisimplicity.

Hence it follows that α is nonzero when restricted to hα. Let Hα ∈ hα be such that
α(Hα) = 2. Then we can find Xα ∈ gα, Yα ∈ g−α such that

Hα = [Xα, Yα] (229)

[Hα, Xα] = 2Xα (230)

[Hα, Yα] = −2Yα. (231)

This is a copy (sl2)α of sl2 in g which we will call an sl2-triple. Because sl2 is semisimple,
every finite-dimensional representation of it is completely reducible. We also know that the
irreducible representations V (m) of sl2 are parameterized by the non-negative integers, and
on V (m), H acts semisimply with integer eigenvalues. In fact we know that V (m) admits a
basis on which H acts with eigenvalues −m,−(m − 2), ...,m − 2,m, and X and Y shift up
and down weight spaces by 2 respectively. Moreover, if Hv = λv and Y v = 0 then λ ≤ 0,
and if Hv = λv and Xv = 0 then λ ≥ 0. Applied to (sl2)α, it follows in particular that
β(Hα) ∈ Z for all roots β.

Proposition 11.6. dim gα = 1.

Proof. Suppose otherwise. Consider Hα, Xα, Yα as above. Then there exists X ∈ gα such
that [Yα, X] = 0, so ad(Hα)(X) = 2X, but this contradicts our observation above that if
Y v = 0 then λ ≤ 0.

A homework problem implies that the Hα span h. Let hR be the real span of the Hα.
Then the Killing form B is positive definite on hR, since for all H ∈ hR we have B(H,H) =
tr(ad(H)2) > 0 since we know H acts with real (in fact integer) eigenvalues on g.

Let α, β be roots. Suppose β(Hα) = m > 0. Then we know from properties of sl2 actions
that (ad(Yα))mXβ ∈ gβ−mα is nonzero, so β −mα is a root. Similarly, if β(Hα) = m < 0,
then (ad(Xα))mXβ ∈ gβ+mα is nonzero, so β +mα is a root. We find that

α, β ∈ ∆⇒ β − β(Hα)α ∈ ∆. (232)

We now define certain linear transformations rα on the space spanned by the roots as
follows. Define rα(β) = β − β(Hα)α if β 6= α, and define rα(α) = −α. This is reflection
across the hyperplane perpendicular to α with respect to the following inner product.
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First, notice that sinceB is nondegenerate we can identify h with h∗ using it, and moreover
B induces a nondegenerate form (−,−) on h∗. The image of Hα under this identification
must be proportional to α, and in fact it is precisely 2α

(α,α)
= α∨ (the coroot corresponding to

the root α). We can now rewrite rα as

rα(ξ) = ξ − 2(ξ, α)

(α, α)
α (233)

which is precisely a reflection. In particular, r2
α = id. (Here we are thinking of the real

span of the Hα and the α∨.) These reflections generate a finite group W acting on ∆ called
the Weyl group of g.

The situation now is that we have identified various interesting data - roots and a Weyl
group - associated to a semisimple Lie algebra. We can now attempt to classify all such data
in order to classify semisimple Lie algebras.

Definition Let V be a finite-dimensional real inner product space. A root system is a finite
subset ∆ ⊂ V \ {0} such that

1. ∆ spans V ,

2. If α, β ∈ ∆, then 2(α,β)
(α,α)

∈ Z,

3. If α, β ∈ ∆, then rα(β) ∈ ∆.

The rank of ∆ is dimV .

Example Let g = sl3. All roots α satisfy (α, α) = 2. We can find roots α, β with (α, β) = 1
(they are 60◦ apart). The Weyl group turns out to be S3.

Example Let g = sln(C). A Cartan subalgebra h is given by the diagonal matrices. These
have n diagonal entries. Let h̃ be the diagonal matrices in gln(C); then we can think of the
n diagonal entries as n elements ε1, ..., εn ∈ h̃∗, which define elements εi − εj ∈ h∗ for i 6= j
Each of these are roots with root space spanned by the elementary matrix eij. The εi are
an orthogonal basis with respect to the inner product on h∗.

We can now compute the Weyl group. The simple reflection rεi−εj acting on h̃∗, which
we identify with Cn via the basis εi, permutes the entries i and j. The same is true of the
action on h∗, which is a quotient of the above. Hence the Weyl group in this case is Sn.

The root system associated to sln(C) is the one of type An−1; in general the index is the
rank.

Example The root decomposition of g = so(n) depends on the parity of n. First we need
to choose a Cartan subalgebra. It is convenient to use the diagonal subalgebra in some basis,
but the obvious basis is bad. When n = 2k we will instead do the following. Let B be the
block matrix
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B =

[
0n 1n
1n 0n

]
. (234)

Then so(n) is isomorphic to the Lie algebra of real n× n matrices X satisfying XTB +
BX = 0. These are precisely the block matrices of the form

X =

[
A C
D −AT

]
(235)

where C,D are skew-symmetric. In particular, we get a diagonal subalgebra of dimension
k which is a Cartan subalgebra.

The root system here is the one of type Dk. First, we have k weights ε1, ..., εk ∈ h∗

coming from looking at diagonal entries giving us roots εi − εj, i 6= j with root spaces the
(block-diagonal) elementary matrices as before. However, there are also root spaces coming
from the C and D parts, giving us roots εi + εj, i 6= j and −εi − εj, i 6= j. Some examples:

1. When k = 1 we have a degenerate case since so(2) is abelian; there are no roots.

2. When k = 2 we have 4 roots ±ε1±ε2. Drawing these gives the four vertices of a square;
in particular, two of the roots are orthogonal to the other two, so the corresponding
root spaces commute; in other words, there is a decomposition D2

∼= A1 × A1 of root
systems. This reflects the isomorphism so(4) ∼= so(3)× so(3).

3. When k = 3 we have 12 roots ±εi ± εj. This is the same number of roots as in the
root system A3 associated to sl4, and in fact the root systems are isomorphic. This
reflects the isomorphism so(6) ⊗ C ∼= sl4(C) which we can see as follows. Let V be
the defining 4-dimensional representation of SL4(C). Then Λ2(V ) is a 6-dimensional
representation equipped with a nondegenerate bilinear form given by the wedge product
Λ2(V )⊗ Λ2(V )→ Λ4(V ). The latter is the trivial representation of SL4(C) because it
is the determinant representation, so SL4 preserves a nondegenerate bilinear form on
Λ2(V ), giving a homomorphism SL4 → SO(6,C). The kernel of this map is ±1 and
the two Lie algebras have the same dimension, so this is a covering map and induces
an isomorphism of Lie algebras.

When n = 2k + 1 is odd the picture is less nice. Now we will take B to be the block
matrix

B =

 1 0 0
0 0k 1k
0 1k 0k

 . (236)

Then the elements of so(2k + 1) have the form

X =

 0 x1, ..., xk y1, ..., yk
−y1, ..., yk A C
−x1, ..., xk D −AT

 . (237)
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There is an inclusion so(2k)→ so(2k+ 1) which induces an inclusion of root systems; we
have the same root systems as above but we also have the roots ±ε1, ...,±εk.

The root system here is the one of type Bk. We can compute the Weyl group as follows.
The simple reflections rεi−εj again act by transposition. The simple reflections rεi+εj act
by transposition and then a −1 on the transposed entries. The simple reflections rεi act
by −1 on the ith entry. The corresponding group W (Bk) is the hyperoctahedral group,
or equivalently the group of symmetries of a k-cube. It may be presented as permutation
matrices with entries ±1, or equivalently as a wreath product Z2 o Sk, which is a semidirect
product (Z2)k o Sk.

This lets us compute the group W (Dk): it is the subgroup of index 2 of the above group
where there are an even number of sign changes. Abstractly it is a semidirect product
(Z2)k−1 o Sk.

In particular, the isomorphism D3
∼= A3 of root systems implies that (Z2)2 o S3 is

isomorphic to S4.

Example Let g = sp(2n) be the Lie algebra of 2n×2n matrices preserving a skew-symmetric
bilinear form. With respect to the block matrix

J =

[
0n 1n
−1n 0n

]
(238)

we can write g as the collection of matrices X satisfying XTJ + JX = 0. Here we again
can write all such matrices in the form

X =

[
A C
D −AT

]
(239)

but now C,D are symmetric. Again we have a diagonal Cartan subalgebra with associated
roots ±εi ± εj, but the diagonal entries of C and D give us new roots ±2εi.

The root system here is the one of type Cn. It can be obtained from the one of type
Bn by multiplying the short roots ±εi by 2, so in particular W (Cn) ∼= W (Dn). There is an
isomorphism of root systems B2

∼= C2 reflecting an isomorphism so(5)⊗ C ∼= sp(4)⊗ C.

11.3 Root systems

Definition A root system ∆ is called irreducible if it cannot be written as a disjoint union
∆1 t∆2 where (∆1,∆2) = 0.

Every root system is uniquely a disjoint union of irreducible root systems.

Definition A root system is reduced if α, pα ∈ ∆ implies p = ±1.

We proved on the homework that all root systems arising from Lie algebras have this
property.

Example The root system BCn = Bn ∪ Cn is non-reduced.
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If ∆ is a root system and α ∈ ∆ is a root, define α∨ = 2α
(α,α)

, so that (α, β∨) = 2(α,β)
(β,β)

∈ Z.
Then

∆∨ = {α∨|α ∈ ∆} (240)

is also a root system. An and Dn are self-dual, while B∨n = Cn. This is related to
Langlands duality.

Let α, β ∈ ∆ be two roots in a root system. Define

m(α, β) = (α, β∨)(β, α∨) (241)

=
4(α, β)2

(α, α)(β, β)
(242)

= 4 cos2 θ (243)

where θ is the angle between α and β. We know that this quantity must be an integer. It
follows that we can only have m(α, β) = 0, 1, 2, 3, 4. This gives θ = π

2
, π

3
, 2π

3
, π

4
, 3π

4
, π

6
, 5π

6
, 0, π

(but in the last two cases α, β are proportional and this is uninteresting).
If m(α, β) = 1, 2, 3 then of the two numbers (α, β∨) and (β, α∨) one of them must be ±1

and the other must be ±m(α, β).

Corollary 11.7. If (α, β) > 0, then α− β ∈ ∆.

Proof. In this case (α, β∨) = 1, so rβ(α) = α− β ∈ ∆.

We already have enough information to classify rank 2 root systems. Here there are two
roots α, β which are not a scalar multiple of each other. If m(α, β) = 0 then we get A1 tA1.
If m(α, β) = 1 then we get A2. If m(α, β) = 2 then we get B2 = C2. The most interesting
case is when m(α, β) = 3, in whih case we get an exceptional root system G2 associated to
an exceptional Lie algebra.

If S is a subset of the roots of ∆ and we intersect ∆ with the span of S, the result is
another root system.

Definition A subset S = {α1, ..., αn} of ∆ is a base if

1. S is a basis of the ambient vector space V ,

2. If β ∈ ∆ then β =
∑
niαi where either all ni ∈ Z≥0 or all ni ∈ Z≤0.

Bases can be constructed as follows.

Definition Choose t ∈ V such that (t, α) 6= 0 for all α ∈ ∆. Let

∆+ = {α ∈ ∆|(t, α) > 0} (244)

be the positive roots and let
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∆− = {α ∈ ∆|(t, α) < 0} (245)

be the negative roots. A positive root α ∈ ∆+ is simple if α cannot be written in the
form β + γ where β, γ ∈ ∆+.

Proposition 11.8. The set S of simple roots is a base.

Proof. The second property of a base follows more or less by construction. The first property
is more difficult. We want to show that if α, β ∈ S then (α, β) ≤ 0. Suppose otherwise; then
α− β ∈ ∆ by the above. WLOG α− β ∈ ∆+, but then α = β + (α− β) is not simple.

Any linear dependence among the elements of S can be written in the form
∑
aiαi =∑

bjαj where ai, bj ≥ 0. Taking inner products we get

(
∑

aiαi,
∑

aiαi) = (
∑

bjαj,
∑

aiαi) ≤ 0 (246)

hence all the ai are equal to zero, and similarly all of the bj are equal to zero.

Example In An−1, a choice of t = t1ε1 + ... + tnεn satisfies the above condition iff ti 6= tj
for all i 6= j. Let’s take t1 > t2 > ... > tn, so

∆+ = {εi − εj, i < j} (247)

and the simple roots are εi − εi+1, i = 1, 2, ...n − 1. The reflections associated to simple
roots are called simple reflections, and here these are the simple transpositions swapping i
with i+ 1. In this case we see that W is generated by simple reflections; this will be true in
general. It is also true in general that W acts freely and transitively on the set of bases.

From now on we assume that ∆ is reduced.

Lemma 11.9. Fix a choice of ∆+. Let S be the set of simple roots and let α ∈ S. Then

rα(∆+) = (∆+ \ {α}) ∪ {−α}. (248)

Proof. We induct on the number of simple roots needed to add up to a positive root. Let
β ∈ S. Then rα(β) = β − (β, α∨)α = β +mα where m ≥ 0. Hence this is a positive root.

Let β be a non-simple positive root. Then β = β1 + β2 where β1, β2 are positive. If
neither is equal to α then we are done by induction. If β = β1 + α then rα(β) = rα(β1)− α.

The following general fact is true: if γ ∈ ∆+ and α ∈ S with γ 6= α, then γ − α ∈ ∆
implies γ − α ∈ ∆+. This is true since otherwise α− γ ∈ ∆+ contradicts α simple.

It follows that rα(β1)− α ∈ ∆+ as desired.

Lemma 11.10. Let t1, t2 be associated to two choices ∆+
1 ,∆

+
2 of positive roots. Then there

exists some w ∈ W such that ∆+
2 = w(∆+

1 ).

Proof. Let d = |∆+
1 ∩∆−2 |. We induct on d. If d = 0 then ∆+

1 = ∆+
2 . If d > 0 then we can

find α ∈ S1 such that α 6∈ ∆+
2 . Then |rα(∆+

1 )∩∆−2 | = d−1, and by the inductive hypothesis
we are done.
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Moreover, the above construction of bases exhausts all possible bases. This is because
every base must be contained in some half-space.

Corollary 11.11. W acts transitively on the set of bases.

Note that any root is contained in some base.

Corollary 11.12. W is generated by simple reflections.

(Exercise.)
We can now attempt to classify root systems using simple roots. Recall that we know

there are only a few possibilities for the angle between any two such simple roots αi, αj,
namely 90◦, 120◦, 135◦, 150◦. We can encode this information as follows.

Definition The Coxeter graph of a root system has vertices a set S of simple roots such
that the number of edges between two vertices αi, αj is 0, 1, 2, 3 respectively in the above
four cases. Equivalently, the number of edges between αi, αj is

m(αi, αj) = (αi, α
∨
j )(αj, α

∨
i ). (249)

The Dynkin diagram is the Coxeter graph together with a direction on edges if αi and
αj have different lengths, from the longer root to the shortest.

Example Consider A2. After choosing a hyperplane we get two simple roots an angle of
120◦ from each other, so the Coxeter graph is • • .

Example Consider B2. After choosing a hyperplane we get two simple roots an angle of
135◦ from each other, so the Coxeter graph is • • . The Dynkin diagram is • +3 •
because the two simple roots have different lengths.

Definition A root system is simply laced if its Dynkin diagram has no multiple edges or
directed edges and is connected.

Definition The Cartan matrix C(∆) of a root system is the matrix with entries

aij = (αj, α
∨
i ) =

2(αi, αj)

(αi, αi)
. (250)

Note that aii = 2 and aij ≤ 0 if i 6= j. If ∆∨ is the dual root system then C(∆∨) = C(∆)T .
Furthermore, the data of the Cartan matrix is equivalent to the data of the Dynkin diagram.
In one direction this is clear since the number of edges between αi and αj is aijaji.

On your homework you’ll show that the Coxeter graph of ∆ is connected iff ∆ is irre-
ducible. We’ll try to classify root systems by classifying irreducible root systems, or equiv-
alently connected Dynkin diagrams. A sequence of observations (all Coxeter graphs and
Dynkin diagrams below are connected):
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1. A full subgraph (a subgraph on some set of vertices with every edge between those
vertices) of a Dynkin diagram is again a Dynkin diagram.

2. A Coxeter graph cannot contain cycles. To see this, let ui be the unit vector in the
direction αi. If u1, ..., um is a cycle in a Coxeter graph Γ, then

(u1 + ...+ um, u1 + ...+ um) = m+ 2
∑
i<j

(ui, uj). (251)

By cyclicity, at least m of the terms (ui, uj) are nonzero. They are all nonpositive, and
the nonzero terms are less than or equal to −1

2
, so this scalar product is nonpositive;

contradiction.

3. If Γ is a Coxeter graph obtained by joining a vertex α1 of a graph Γ1 to a vertex αp
of a graph Γ2 by a bridge α1, ..., αp, then the graph obtained by wedging Γ1 and Γ2

along the vertices α1, αp is also a Coxeter graph. To see this, we replace α1, ..., αp with
β = α1 + ...+ αp, which has the same inner product with every vertex in Γ1 as α1 and
has the same inner product with every vertex in Γ2 as αp.

4. • • • is not a Coxeter graph. If u1, u2, u3 are the corresponding unit vectors
associated to the roots then the angles between them are 90◦, 120◦, 150◦, which add up
to 360◦, so the vectors must lie in a plane and this contradicts linear independence.
Similarly any graph containing the above (with more multiple edges) or the graph
• • • is not a Coxeter graph.

5. If Γ has a triple edge, then Γ is G2 with Coxeter graph • • . This follows from
the above.

6. If Γ has a double edge, it has at most one. This again follows from the above (we
consider an appropriate full subgraph containing two double edges and a bridge between
them, then contract the bridge).

7. The product of the Cartan matrix C by the matrix with diagonal entries (αi,αi)
2

is the
matrix of the scalar product in S. In particular, detC > 0. In particular, the graphs

• •

•

• •

(252)

and
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•

• •

•

(253)

are not Coxeter graphs (the corresponding determinants vanish).

The following lemma is useful for computing determinants of Cartan matrices. Let
Γ be a Dynkin diagram. Let α be a vertex of Γ which is connected to exactly one
other vertex β. Let Γ \ α denote the Dynkin diagram obtained by removing α (and
any corresponding edges), and let Γ \ {α, β} denote the Dynkin diagram obtained by
removing α and β (and any corresponding edges). For Γ a Dynkin diagram, let C(Γ)
denote its Cartan matrix. Then

detC(Γ) = 2 detC(Γ \ α)−m(α, β) detC(Γ \ {α, β}). (254)

8. By contracting bridges, we see that a Coxeter graph which is not G2 must consist of a
path of length p, a double edge, and a path of length q, or else must consist of a path
of length p, a path of length q, and a path of length r connected at a vertex. Now we
just need to compute the determinants of the Cartan matrices.

9. In the double edge case, we get Bn or Cn if one of the paths has length zero, depending
on which direction the double edge is oriented. Here detC(Bn) = detC(Cn) = 2. The
Dynkin diagrams have the form

• • · · · • • +3 • (255)

and

• • · · · • • ks • . (256)

There is one additional case, the Dynkin diagram

• • +3 • • (257)

which is associated to a root system called F4. This is the subject of a homework
problem.

10. In the triple edge case, we compute that detC = 2pqr−qr(p−1)−pq(r−1)−pr(q−1).
This is positive iff 1

p
+ 1

q
+ 1

r
> 1. There is an infinite family (2, 2, n) of solutions to

this inequality which give the root systems Dn with Coxeter graphs of the form
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•

• • · · · • •

•

. (258)

There are three exceptional solutions (2, 3, 3), (2, 3, 4), (2, 3, 5) giving root systemsE6, E7, E8

whose Dynkin diagrams have the following forms:

•

• • • • •

(259)

•

• • • • • •

(260)

•

• • • • • • •

(261)

To get the corresponding root systems it suffices to construct E8 since E6, E7 are full
subgraphs of E8. The root lattice is the lattice in R8 obtained by considering the
lattice L spanned by ε1, ..., ε8,

ε1+...+ε8
2

and then considering the sublattice L′ of vectors∑
aiεi ∈ L such that

∑
ai ∈ 2Z. The root system is ∆ = {α ∈ L′|(α, α) = 2}.

The determinants of Cartan matrices contain important information. For example,
detC(An) = n + 1 is the order of the center of the simply connected complex Lie group
with Lie algebra sln+1(C). The corresponding Dynkin diagrams are paths

• • · · · • • . (262)

There are two additional questions: which root systems actually arise from semisimple
Lie algebras, and does the root system actually determine the Lie algebra?

Theorem 11.13. Let ∆ be a reduced irreducible root system. Then there exists a simple Lie
algebra g, unique up to isomorphism, whose root system is ∆.

Proof. The idea is to assume that g is a simple Lie algebra with root system ∆ and to see what
it must look like. Let S = {α1, ..., αn} be a base. For a simple root αi let (Hi, Xi, Yi) be the
corresponding sl2-triple. We have the following relations among these, where aij = (α∨i , αj):
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• [Hi, Xj] = aijXj (by definition)

• [Hi, Yj] = −aijYj (by definition)

• [Hi, Hj] = 0 (since the Hi are in h)

• [Xi, Yj] = δijHi (since αi − αj is not a root).

These are the Chevalley relations, and they are not enough. To get more, we will use more
facts about sl2-representations. Recall that if V is a finite-dimensional such representation
and v ∈ V with Hv = λv, then Xv = 0 implies λ ∈ Z≥0 and Y (1+λ)v = 0, and Y v = 0
implies λ ∈ Z≤0 and X(1−λ)v = 0. Applied to the sl2-triple (Hi, Xi, Yi) with v = Yj, j 6= i,
we get additional relations

• (adYi)
1−aij(Yj) = 0

• (adXi)
1−aij(Xj) = 0.

These are the Serre relations. In particular, if aij = 0, then [Yi, Yj] = [Xi, Xj] = 0.
The Chevalley and Serre relations describe an abstract Lie algebra. Our goal is to show

that it is finite-dimensional and simple with root system ∆.
First, we will only impose the Chevalley relations, getting a Lie algebra g̃ which is the

quotient of the free Lie algebra on the (Hi, Xi, Yi) by the ideal generated by the Chevalley
relations.

Lemma 11.14. 1. h̃ = span(H1, ..., Hn) is an abelian subalgebra of g̃ which acts semisim-
ply on g̃.

2. Let ñ+ resp. ñ− be the subalgebras in g̃ generated by X1, ..., Xn resp. Y1, ..., Yn. Then
g̃ is the vector space direct sum

ñ+ ⊕ h̃⊕ ñ−. (263)

Moreover, ñ+ and ñ− are free Lie algebras on the Xi resp. the Yi.

Proof. 1. The first statement is clear. For the second statement, let H ∈ h̃ and suppose
X, Y are eigenvectors of adH with eigenvalues α, β. Then [X, Y ] is an eigenvector with
eigenvalue α + β. Since g̃ is generated under commutator by eigenvectors of adH , the
conclusion follows.

2. First observe that g̃ admits an involution σ given by σ(Hi) = −Hi, σ(Xi) = Yi, σ(Yi) =
Xi. Hence to prove something about ñ± it suffices to prove it for ñ+. Observe that by
induction we have

[Xi, ñ
+] ⊂ ñ+, [h̃, ñ+] ⊂ ñ+, [Yi, ñ

+] ⊂ h̃ + ñ+ (264)
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by applying the Chevalley relations. The same conclusion for ñ− shows that g̃ is the
not-necessarily-direct sum of the three terms we want.

Note that g̃ has a weight decomposition

g̃ = h̃⊕
⊕

g̃λ (265)

with respect to h̃, giving us a set ∆̃ of roots of g̃. Using the weight decomposition, we
now construct a module M over g̃ which, as a vector space, is the tensor product

M = T (span(Y1, ..., Yn))⊗ S(span(H1, ..., Hn)) (266)

of a tensor algebra and a symmetric algebra. Each Yi acts by left multiplication. Each
Hi acts on terms Y ⊗ v, where Y is a monomial, via

Hi(Y ⊗ v) = λ(Hi)Y ⊗ v + Y ⊗Hiv (267)

where λ is the weight of Y (1 has weight 0). Each Xi acts as follows: inductively define
Xi(1⊗ v) = 0 and

Xi(YjY ⊗ v) = δijHi(Y ⊗ v) + Yj(Xi(Y ⊗ v)). (268)

We will not check it in class, but it is true, that this is a g̃-module. Using this action
we can now check that ñ− ∩ (h̃ + ñ+) = 0 and that h̃ ∩ ñ+. Moreover, U(ñ−)(1⊗ 1) is
the tensor algebra on Y1, ..., Yn, and hence ñ− is free (hence ñ+ is free).

With respect to the root decomposition, we have

ñ± =
⊕
λ∈∆̃±

gλ (269)

where ∆̃± is a choice of positive resp. negative roots for ∆̃.

Lemma 11.15. Let j ⊆ g̃ be a proper ideal. Then j ∩ h̃ = 0 and

j = (j ∩ ñ+)⊕ (j ∩ ñ−). (270)

Proof. Suppose by contradiction that H ∈ j ∩ h̃ is nonzero. Then there exists αi such that
αi(H) 6= 0. Hence Xi, Yi ∈ j, so Hi ∈ j, and there exists αj such that αj(Hi) 6= 0. By
repeating this argument and using the connectedness of the Coxeter graph we see that j = g̃.

Now by semisimplicity j has a root decomposition

j =
⊕
λ∈∆̃

(j ∩ gλ) (271)

and we can split it into positive and negative parts.
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Corollary 11.16. g̃ has a unique proper maximal ideal j. Hence the quotient g = g̃/j is the
unique simple Lie algebra satisfying the Chevalley relations associated to the root system ∆.

It remains to show that the root system of g is the root system ∆ we started with and
that g is finite-dimensional.

First we claim that g satisfies the Serre relations. Equivalently, if Tij = (adYi)
1−aijYj ∈ g̃,

then Tij ∈ j. It suffices to check that [Xk, Tij] = 0, since the Hk act by scalars and the Yk
preserve ñ−; this implies that Tij generates a proper ideal.

If k 6= i, j then Xk commutes with Yi, Yj so there is no issue. If k = j then

ad(Xj)(Tij) = ad(Xj)ad(X
1−aij
i )(Yj) (272)

= ad(X
1−aij
i )[Xj, Yj] (273)

= ad(X
1−aij
i )Hj. (274)

If aij ≤ −1 then this vanishes and if aij = 0 then [Xi, Hj] = −aijXi = 0. If k = i then

ad(Xi)ad(Yi)
1−aij(Yj) = 0 (275)

by inspecting the action of the sl2-triple (Hi, Xi, Yi) on Yj.
The proof above also applies to the Chevalley relations involving the Xi

Recall that a linear operator T is locally nilpotent if for every v there is some n such that
T nv = 0. We claim that ad(Xi) and ad(Yi) are locally nilpotent. They are locally nilpotent
acting on the Hi, Xi, Yi by a straightforward calculation, and another calculation shows that
ad(Xi)

nA = 0, ad(Xi)
mB = 0, then ad(Xi)

n+m[A,B] = 0, so the conclusion follows (the
same argument applies to the Yi).

By local nilpotence exp ad(Xi), exp ad(Yi) are well-defined automorphisms of g. Let

si = exp ad(Xi) exp(−ad(Yi)) exp ad(Xi). (276)

We leave it as an exercise that si(Hj) = Hj−ajiHi. In particular, si preserves the Cartan
subalgebra h. Hence it must permute weight spaces, and in fact the above implies that

si(gα) = gri(α) (277)

where ri ∈ W is the corresponding simple reflection. It follows that the root system ∆(g)
of g is W -invariant and that dim gw(α) = dim gα where w ∈ W . (In fact we can define the
Weyl group in this way.) Hence ∆ embeds into ∆(g). Moreover, the root spaces of the simple
roots (spanned by the Xi and Yi) are 1-dimensional, so if we can prove that ∆(g) = ∆(g)
then all of the root spaces are 1-dimensional and g is finite-dimensional as desired.

Write g = n− ⊕ h⊕ n+ where each piece is the quotient of the corresponding piece for g̃.
Let ∆±(g) be the roots associated to n±. We claim that

w(∆+(g)) = ∆+(g) \ A ∪ −A (278)
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where A ⊂ ∆ (not ∆(g)). To see this we prove using the same proof as before that
ri(∆

+(g)) = ∆+(g)\{αi}∪{−αi} and induct on the length. Hence W preserves the positive
roots of ∆(g) not in ∆, and similarly for the negative roots.

Now suppose by contradiction that ∆ is not all of ∆(g). Then there is some δ ∈ ∆+(g) \
∆+. There is also some w0 ∈ W such that w0(∆+) = ∆−. But w0(δ) ∈ ∆+(g). So w0(δ) is
both positive and negative, and this is a contradiction after writing δ as a sum of positive
roots.

We can repeat the above argument with a more general Cartan matrix associated to a
more general Dynkin diagram. If it is not the Cartan matrix or Dynkin diagram of a finite-
dimensional simple or semisimple Lie algebra then we get interesting Lie algebras, e.g. affine
and Kac-Moody Lie algebras.

11.4 Kac-Moody algebras

Let aij be a square matrix with aii = 2 and aij ∈ Z≤0 if i 6= j such that if aij = 0 then
aji = 0. We can still consider the quotient by the Chevalley relations to get a Lie algebra g̃
with decomposition ñ−⊕ h̃⊕ ñ+ as above; our proof did not depend on any other properties
of the matrix aij. Rather than quotient by the unique maximal ideal, in general we want to
quotient by the unique maximal ideal j such that j ∩ h̃ = 0, which exists. This gives a Lie
algebra g, and the same proof as above shows that the Serre relations hold in g.

We can even consider the action of Weyl group on roots as before, but what happens in
the general case is that ∆(g) usually has more roots than can be obtained by considering W
acting on simple roots.

Example Consider the Cartan matrix

[
2 −2
−2 2

]
. Here C = H1 + H2 is central. In

addition we have α1 = −α2 and this seems bad. To fix this we introduce a new element
D with trivial commutator with every generator except [D,X2] = X2, [D, Y2] = −Y2. This
gives us a 3-dimensional Cartan subalgebra span(H1, H2, D).

When applying reflections we get r1(α2) = α2 + 2α1 and similarly r2(α1) = α1 + 2α2.
The root δ = α1 + α2 is fixed, so r1(α1 + 2α2) = 3α1 + 2α2, and so forth. We get roots of
the form nα1 + (n ± 1)α2 (real roots) and roots of the form nα1 + nα2 (imaginary roots).
In particular r1r2 has infinite order and we cannot reach an imaginary root from α1 or α2.

A geometric construction of this Lie algebra is as follows. Consider the loop algebra

sl2 ⊗ C[t, t−1]⊕ Cc (279)

with c central and commutator

[a⊗ tk, b⊗ t`] = [a, b]⊗ tk+` + kδk,−`tr(ab)c. (280)

With respect to the usual presentation of sl2 we have

H1 = H,X1 = X, Y = Y (281)
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H2 = H1 + C,X2 = Y t, Y2 = Xt−1. (282)

The extra element D corresponds to the derivation t ∂
∂t

.
This algebra is called the loop algebra because we can think of sl2 ⊗C[t, t−1] as a model

of the Lie algebra of the group of loops S1 → SL2. We get a more general construction by
replacing sl2 with a simple Lie algebra g and replacing tr(ab) with the Killing form.

Example Now consider the Cartan matrix

[
2 −3
−3 2

]
. The two roots α1, α2 satisfy

(α1, α1) = (α2, α2) = 2 and (α1, α2) = −3, so the quadratic form has eigenvalues −1, 5,
hence the roots we obtain lie on a hyperbola. In fact the real roots give us all solutions to
the Pell’s equation 5x2 − y2 = 4 (by diagonalizing the quadratic form suitably). They can

be identified with the α ∈ Z
[

1+
√

5
2

]
of norm −1, and the Weyl group can be identified with

the unit group. The other roots have positive norm.
The multiplicities dim gα are not known in general if α is not real.

11.5 More about root systems

Let ∆ be a reduced root system. Let hR be the real span of the roots and (−,−) the inner
product on hR. The Weyl group W acts transitively on bases.

Theorem 11.17. 1. The action of W on bases is free (so the stabilizer is trivial).

2. The Weyl chamber

C+ = {ξ ∈ hR|(α, ξ) ≥ 0∀α ∈ ∆+} (283)

is a fundamental domain for the action of W on hR (any W -orbit intersects in exactly
one point).

Proof. Suppose w stabilizes ∆+. Write w = r1...r` where the ri are simple reflections and
` is minimal possible. Let ri = rαi , let wp = r1...rp, and let βp = wp−1(αp). Then βp is a
simple root for wp−1(∆+), and using the relation wrα = rw(α)w we can write

w = rβ` ...rβ1 . (284)

We have

rβp(wp−1(∆+)) = wp−1(∆+) \ βp ∪ {−βp} (285)

so each rβi acts by negating a root. Since w preserves ∆+ then there must be some p
such that β1 = βp; let’s take the minimal such p. Then

w = r1ur1v = uv (286)
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but this contradicts the minimality of `. This argument in fact shows that the length
function

W 3 w 7→ `(w) ∈ Z≥0, (287)

which assigns to w the length of the minimal product representation of w as a product
r1...r`(w) of simple reflections, can be computed as

`(w) = |w∆+ ∩∆−|. (288)

Example Let ∆ = An, so W = Sn+1. With respect to the choice of positive root {εi−εj|i <
j} we have that |w(∆+) ∩∆−| is the number of inversions of w.

We also know now that if w is not the identity then w∆+ has at least one root in ∆−,
hence

int(wC+) ∩ int(C+) = ∅. (289)

So the interiors of the translates of the Weyl chambers are disjoint. Because W acts
transitively on bases (and every element of hR is positive with respect to some basis) w esee
that any W -orbit intersects C+.

It remains to show that every W -orbit intersects C+ exactly once. This is clear for
interior points. For points on the boundary we can show that if a point on the boundary is
sent by the action of W to another point on the boundary then we can perturb it to a point
in the interior, and possibly after applying another reflection the perturbed point is sent to
another point in the interior.

It follows that we can cover hR by translates of the Weyl chamber, labeling the interior
of each region by a unique element of W .

We can associate to any root system ∆ two lattices.

Definition The root lattice Q is the lattice given by the integer span of the roots. The
weight lattice P is

P = {ξ ∈ hR|(ξ, α∨i ) ∈ Z}. (290)

The basis of P dual to the basis α∨1 , ..., α
∨
n is the basis of fundamental weights ω1, ..., ωn.

The coroot lattice is the dual of the root lattice of ∆∨. Note that by definition Q ⊂ P ,
and in fact it has finite index. In terms of the fundamental weights, the simple roots can be
expressed as

αi =
∑

ajiωj (291)

where aij is the Cartan matrix. Hence |P/Q| = det(aij).
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Example Let ∆ = An. We realized the roots as εi−εj, i 6= j with simple roots εi−εi+1, i =
1, ..., n. We can write

Q = {
∑

niεi|
∑

ni = 0}. (292)

Write ε 7→ ε for the orthogonal projection of the εi from Rn+1 to Rn, so

ε1 = ε1 −
ε1 + ...+ εn+1

n+ 1
(293)

and so forth. Then we can write

ω1 = ε1, ω2 = ε1 + ε2, ..., ωn = ε1 + ...+ εn. (294)

The root lattice Q has index n+ 1 in the weight lattice P , so |P/Q| = det(aij) = n+ 1.
This reflects the fact that the center of SLn+1(C), the simply connected complex Lie group
with Lie algebra sln+1(C), is Z/(n+ 1)Z.

Definition The Weyl vector ρ is

ρ = ω1 + ...+ ωn =
1

2

∑
α∈∆+

α. (295)

We have (ρ, α∨i ) = 1 for i = 1, ..., n and hence ri(ρ) = ρ− αi.

Definition The set of dominant weights is P+ = C+ ∩ P .

Note that every W -orbit of P intersects P+ exactly once. We will show next time
that when ∆ is the root system of a semisimple Lie algebra g, the dominant weights P+

parameterize the set of finite-dimensional irreducible representations of g.

12 Highest weight theory

Let g be a semisimple finite-dmensional Lie algebra over C.

Definition A weight module is a g-module M which is semisimple as an h-module, hence
which has a weight decomposition

M =
⊕
λ∈h∗

Mλ (296)

where

Mλ = {m ∈M |Hm = λ(h)m∀h ∈ h}. (297)

Some comments:
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• In particular, since h consists of semisimple elements and these act semisimply in finite-
dimensional representations, every finite-dimensional g-module is a weight module.

• By the standard calculation, gαMλ ⊆Mλ+α.

• The direct sum M ⊕N of two weight modules M,N is a weight module with weights
P (M ⊕ N) the union P (M) ∪ P (N) (with multiplicity) of the weights of M,N . The
tensor product M ⊗N of two weight modules is also a weight module with weights the
sum of the sets of weights of M,N ; more precisely,

(M ⊗N)λ ∼=
⊕
µ+ν=λ

Mµ ⊗Nν . (298)

• Submodules and quotient modules of weight modules are weight modules.

• If M is a finite-dimensional g-module then P (M) lies in the weight lattice P . To see
this, note that λ ∈ P iff (λ, α∨i ) ∈ Z iff λ(Hi) ∈ Z, and this follows from looking at the
action of the sl2-triple (Hi, Xi, Yi).

Example Earlier we saw an infinite-dimensional example of a weight module, namely the
Verma module

M(λ) = U(sl2)⊗U(b) Cλ (299)

for sl2 associated to λ. The weights of this module were λ− 2n for n ∈ Z≥0.

Fix a choice of positive roots ∆+ and consider the corresponding triangular decomposition

g = n− ⊕ h⊕ n+ (300)

of g. Then n+ is nilpotent (repeatedly adding positive roots eventually gets us out of the
root system) and b = h ⊕ n+, the Borel subalgebra, is solvable, and n+ = [b, b], hence the
abelianization of b is h.

We can apply Lie’s theorem to obtain the following.

Lemma 12.1. If M is a finite-dimensional g-module, there is some λ and some v ∈ Mλ

such that hv = λ(h)v for all h ∈ h and n+v = 0. Equivalently, if Cλ is the corresponding
1-dimensional representation of b, there is some λ such that

Homb(Cλ,M) 6= 0. (301)

v is called a highest weight vector of M and λ is called a highest weight.

Lemma 12.2. If M is a finite-dimensional irreducible g-module, then M has a unique highest
weight and a unique, up to scale, highest weight vector.
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Proof. Suppose v ∈Mλ, w ∈Mµ are two highest weight vectors. The triangular decomposi-
tion induces a decomposition U(g) = U(n−1)U(h)U(n+) which implies that M(v) = U(g)v =
U(n−1)v. Hence the weights of M(v) lie in the set λ −∆+, and the same is true of M(w),
hence λ−µ and µ−λ are both in ∆+, but this is possible iff λ = µ; moreover, M(v) consists
of span(v) and then weight spaces with strictly lower weight than λ (with respect to the
ordering determined by ∆+), so if λ = µ then w ∈ span(v).

Hence we have a map which assigns to an irreducible finite-dimensional representation a
highest weight. We want to know which weights occur as highest weights.

Lemma 12.3. A highest weight λ must lie in P+ (the dominant weights).

This follows because λ(Hi) = (λ, α∨i ) ≥ 0 for a highest weight λ by inspection of the
corresponding sl2-triple.

The big theorem is the following.

Theorem 12.4. The map assigning to an irreducible finite-dimensional representation its
highest weight in P+ is a bijection.

To prove surjectivity we work as follows.

Definition Let λ ∈ h∗. The Verma module with highest weight λ is

M(λ) = U(g)⊗U(b) Cλ. (302)

Theorem 12.5. If V is an irreducible finite-dimensional representation of g with highest
weight λ, then V is a quotient of M(λ).

Proof. An application of the tensor-hom adjunction (which can be thought of as Frobenius
reciprocity here) gives

Homb(Cλ, V ) ∼= Homg(Mλ, V ). (303)

The LHS is nonzero, so the RHS is also nonzero. But the image of any nonzero morphism
into an irreducible representation is surjective.

The decomposition g = n− ⊕ b gives U(g) ∼= U(n−)⊗ U(b), hence M(λ) ∼= U(n−)⊗ Cλ.
The action of h ∈ h on this module is

h(X ⊗ v) = ad(h)(X)⊗ v +Xh⊗ v (304)

= ad(h)(X)⊗ v +X ⊗ hv (305)

= ad(h)(X)⊗ v + λ(h)X ⊗ v. (306)

If α ∈ ∆+ and Yα ∈ g−α, by picking an ordering we can construct a PBW basis Yβ1 ...Yβk
of monomials with β1 ≤ ... ≤ βk in U(n−). The action of h ∈ h on this basis is

ad(h)(Yβ1 ...Yβk) =
∑

Yβ1 ...ad(h)(Yβi)...Yβk (307)

= −(β1 + ...+ βk)(h)Yβ1 ...Yβk . (308)
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So U(n−), and therefore M(λ), is a weight module, and the set of weights is λ − Q+

where Q+ is the span of the positive roots. Moreover,

dimM(λ)λ−γ = K(γ) (309)

does not depend on λ; it is the Kostant partition function counting the number of ways to
write γ as a sum of positive roots. This is in particular finite, and in addition dimM(λ)λ = 1;
moreover M(λ) is generated by this weight space. It follows that if N is a proper submodule
then Nλ = 0. Hence the sum of all proper submodules is a proper submodule, from which
it follows that M(λ) has a unique maximal proper submodule N(λ), hence a unique simple
quotient

L(λ) = M(λ)/N(λ). (310)

We would like to know when L(λ) is finite-dimensional. So far we know that if this is
the case then λ ∈ P+.

Definition A weight vector w is singular if n+w = 0.

Lemma 12.6. Let w ∈M(λ)µ be a singular vector, with λ 6= µ. Then w ∈ N(λ).

Proof. The set of weights of U(g)w lies in µ− Q+, which does not contain λ, hence U(g)w
is a proper submodule.

Write λ(Hi) = (λ, α∨i ) = m ∈ Z≥0.

Lemma 12.7. Let vλ ∈ Cλ be nonzero. Then Y m+1
i ⊗ vλ ∈M(λ)−λ−(m+1)αi is singular.

Proof. If j 6= i then Xj commutes with Y m+1
i and the statement is clear. If j = i then this

computation reduces to a computation involving the sl2-triple (Hi, Xi, Yi) which we’ve done
already.

Corollary 12.8. If λ ∈ P+ then X1, ..., Xn, Y1, ..., Yn act locally nilpotently on L(λ).

Proof. The Xi already act locally nilpotently on M(λ), since they eventually escape the set
of weights. To show that the Yi also act locally nilpotently, let v ∈ L(λ)λ be nonzero. We
showed that Y mi+1

i v = 0 where mi = λ(Hi). Any other w ∈ L(λ) is of the form Y v where
Y ∈ U(n−). We have

YiY v = ad(Yi)(Y )v + Y Yiv. (311)

Since n− is nilpotent, ad(Yi) acts locally nilpotently on U(n−). The adjoint action on the
left and right multiplication commute, so we can write

Y a
i Y v =

∑(
a

b

)
ad(Yi)

a−b(Y )Y b
i v (312)

and we conclude that this vanishes for sufficiently large a.
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This lets us write down the exponentials

gi = expXi exp(−Yi) expXi ∈ End(L(λ)) (313)

and

si = exp ad(Xi) exp(−ad(Yi)) exp ad(Xi) = Ad(gi) ∈ End(g) (314)

as before. If v ∈ L(λ)µ we compute that

hgiv = gig
−1
i hgiv (315)

= gis
−1
i (h)v (316)

= µ(s−1
i (h))giv (317)

hence that giL(λ)µ = Lri(µ), so the set of weights of L(λ) is W -invariant. Since P+ is a
fundamental domain for the action of W on P , the set of weights P (L(λ)) satisfies

P (L(λ)) =
⋃
w∈W

w(P (L(λ)) ∩ P+). (318)

Lemma 12.9. (λ−Q+) ∩ P+ is finite.

Proof. let ρ be half the sum of the positive roots before. Every element of P+ satisfies
(−, ρ) ≥ 0. If λ−

∑
niαi ∈ λ−Q+ has this property, then it satisfies

(λ, ρ) ≥
∑

ni
(αi, αi)

2
. (319)

But there are only finitely many possibilities here since ni ∈ Z≥0.

Corollary 12.10. If λ ∈ P+, then L(λ) is finite-dimensional.

12.1 Fundamental weights

Every weight in P+ is a non-negative integer linear combination of the fundamental weights
ω1, ..., ωn.

Definition Li = L(ωi) are the fundamental representations of g.

Lemma 12.11. Any irreducible finite-dimensional representation of g is a subrepresentation
of a tensor product of fundamental representations.

Proof. Suppose ω =
∑
miωi ∈ P+. The tensor product⊗

i

L⊗mii (320)

69



contains a vector

w =
⊗
i

v⊗mii (321)

of weight ω, hence contains L(ω) as a subrepresentation.

Example (Type An) Let g = sln+1 with fundamental weights ωi = ε1 + ...+ εi. With V
the defining representation of g, it turns out that

Lk ∼= Λk(V ). (322)

We can verify this by finding a heighest weight vector in Λk(V ). Let v1, ..., vn ∈ V have
weights ε1, ..., εn. Then v1∧ ...∧vk ∈ Λk(V ) has the desired weight, and it is not hard to show
that Λk(V ) is irreducible. These representations have the property that they are minuscule:
the set of weights P (L(λ)) is smallest possible, namely the orbit Wλ of the action of W on
λ.

We now know that every representation of sln+1 is contained in a tensor product of copies
of the exterior powers of V . In fact they are contained in a tensor product of copies of V .
This is the story of Schur-Weyl duality.

The adjoint representation of sln+1 is naturally a subrepresentation of V ⊗ V ∗, and
V ∗ ∼= Λn(V ).

Example (Type Cn) Let g = sp(2n) with defining representation V ∼= C2n. Fix a basis
v1, ..., v2n and skew-symmetric form ω such that ω(vi, vi+n) = 1 and ω(vi, vj+n) = 0 if i 6= j.
The simple roots are εi − εi+1, 1 ≤ i ≤ n − 1 and 2εn. The fundamental weights are ωi =
ε1 + ...+ εi. The basis above has weights ε1, ..., εn,−ε1, ...,−εn, hence we have fundamental
representations

Lk ( Λk(V ), 1 ≤ k ≤ n. (323)

If we take higher exterior powers we get isomorphisms

Λk(V ) ∼= Λ2n−k(V ) (324)

so we get nothing new. When k = 2 we have

Λ2(V ) ∼= Cw ⊕ L2 (325)

where w =
∑
vi∧vi+n is the bivector dual to the skew-symmetric form, hence is preserved

by the action of g. Wedging with w gives g-invariant maps

Λk−2(V ) 3 γ 7→ γ ∧ w ∈ Λk(V ) (326)

and these are injections for k ≤ n. The corresponding quotients are Lk. Said another
way, contracting with ω gives g-invariant maps Λk(V ) → Λk−2(V ), and the corresponding
kernels are Lk.
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The adjoint representation lies in V ⊗ V since V is self-dual. It has highest weight 2ε1,
and in fact is S2(V ).

Example (Type Dn) Let g = so(2n) with defining representation V ∼= C2n. The simple
roots are εi − εi+1, 1 ≤ i ≤ n − 1 together with εn−1 + εn. The corresponding fundamental
weights are ωi = ε1 + ...+ εi, 1 ≤ i ≤ n− 2 and two exceptional weights

ωn−1 =
ε1 + ...+ εn−1 − εn

2
, ωn =

ε1 + ...+ εn−1 + εn
2

. (327)

The corresponding irreducible representations cannot be realized as subrepresentations of
tensor powers of V . This reflects the fact that all such subrepresentations are representations
of SO(2n), which is not simply connected, and there are some extra representations of the
universal cover Spin(2n), the spin group, on which the fundamental group acts nontrivially.
Ln−1 and Ln are spinor representations.

Here the adjoint representation is Λ2(V ) with highest weight ε1 + ε2.

Example (Type Bn) Let g = so(2n + 1) with defining representation V ∼= C2n+1. The
fundamental weights are ωi = ε1 + ...+ εi, 1 ≤ i ≤ n− 1 and one exceptional weight

ωn =
ε1 + ...+ εn

2
(328)

corresponding to one spinor representation. The orbit of the Weyl group action on ωn
consists of weights of the form ±ε1±...±εn

2
. These are the vertices of a cube containing no

integral weights. There are dimLn = 2n of them. We will construct this representation
using Clifford algebras.

12.2 Clifford algebras

We work over a base field of characteristic zero, which can be taken to be C, and which is
algebraically closed unless otherwise stated.

Definition Let V be a finite-dimensional vector space and b be a symmetric bilinear form
on V . The Clifford algebra Cl(V, b) is the quotient of the tensor algebra T (V ) by the relations

v ⊗ w + w ⊗ v = b(v, w). (329)

We denote Clifford multipliation by ·.

Example Suppose V = R2 with basis i, j and b satisfies b(i, j) = 0, b(i, i) = b(j, j) = −2.
The corresponding relations are ij + ji = 0, i2 = −1, j2 = −1, and so Cl(V, b) is the
quaternions.

If b is nondegenerate, then all Clifford algebras of the same dimension are isomorphic. In
fact the following is true.
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Proposition 12.12. If b is nondegenerate and dimV = 2n, then Cl(V, b) ∼= M2n (the ring
of 2n × 2n matrices).

Proof. Write V = V+ ⊕ V− as the direct sum of two maximally isotropic subspaces (so
b(V+, V+) = b(V−, V−) = 0). We will construct a representation of Cl(V, b) on Λ(V+). Any
v ∈ V+ acts by the wedge product

v(u) = v ∨ u. (330)

Any w ∈ V− acts inductively via w(1) = 0 and

w(v ∨ u) = b(w, v)u′ − v ∧ w(u′). (331)

We can think of this action as an action by differential operators; the Clifford algebra is
analogous to the Weyl algebra here. In particular the elements of V− act by derivations and
the elements of V+ act by multiplication. By first acting by derivations and then acting by
multiplications we can show that Λ(V+) is an irreducible representation. It is also faithful,
so we get a morphism

Cl(V, b)→ End(Λ(V+)) (332)

and either by a dimension count or by the Jacobson density theorem it follows that this
map is an isomorphism.

A philosophical remark. For V as above it is clear that SO(2n) ∼= SO(V, b) acts on
Cl(V, b). In general, suppose R is a finite-dimensional algebra, M is a simple R-module, and
G a group acting by automorphisms on R. Then we can twist M by g ∈ G to get a new
module gM . But if R has a unique simple module then gM ∼= M . Let Φg ∈ Aut(M) be the
corresponding isomorphism, hence

g(r)m = ΦgrΦ
−1
g m. (333)

By Schur’s lemma, Φg is unique up to scalars, hence we obtain a projective representation
Φ : G→ PGL(M). In the case above we obtain a representation

SO(2n)→ PSL(Λ(V+)) (334)

which lifts to simply connected covers

Spin(2n)→ SL(Λ(V+)). (335)

These are spin representations.
Here is a second construction. This time we will embed g ∼= so(2n) into Cl(2n). Looking

at V ⊂ Cl(2n) we claim we can take g to be the span [V, V ] of the commutator brackets
[v, w] with v, w ∈ V . First, note that [v, w] = vw − wv = 2vw + b(v, w). We compute that
for x ∈ V we have
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ad(vw)x = vwx− xvw (336)

= vwx+ vxw + b(v, x)w (337)

= vb(w, x) + b(v, x)w ∈ V. (338)

Similarly, we compute that [[V, V ], [V, V ]] ⊆ [V, V ]. Hence [V, V ] is a Lie subalgebra of
Cl(2n) which we can explicitly verify must be so(2n).

The action of [V, V ] only changes degree by a multiple of 2, hence as a representation of
[V, V ], the representation Λ(V+) breaks up into a sum Λ0(V+)⊕ Λ1(V+) of its even and odd
parts. These are the two spin representations we found earlier using highest weights, and we
can verify this by introducing suitable coordinates everywhere.

Now, V ⊕ [V, V ] is a Lie algebra containing so(2n) such that V has nontrivial commutator
with [V, V ]. In fact it must be so(2n + 1), and so we have also constructed the spinor
representation Λ(V+) of so(2n+ 1).

13 Back to Lie groups

13.1 Centers

Let g be a semisimple Lie algebra over C with triangular decomposition n+⊕ h⊕ n−. Let P
be its weight lattice and Q its root lattice, which live in h∗. From these we can write down
dual lattices

Q∗ = {h ∈ h|αi(h) ∈ Z∀i} (339)

P ∗ = {h ∈ h|ωi(h) ∈ Z∀i} (340)

which sit inside h. The groups P/Q and Q∗/P ∗ are noncanonically isomorphic.

Theorem 13.1. Let G be a complex connected Lie group with Lie algebra g.

1. G is an algebraic subgroup of some GL(V ).

2. If G is simply connected, then Z(G) ∼= Q∗/P ∗.

3. Connected complex Lie groups with Lie algebra g are naturally in bijection with sub-
groups of Q∗/P ∗.

Note that the first statement fails over R since, for example, S̃L2(R) has no faithful
finite-dimensional representations.

First we will need a lemma.

Lemma 13.2. If G has a faithful representation V , then G is an algebraic subgroup of
GL(V ).
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Proof. We first consider the case that V is irreducible.
Since g is semisimple, any representation G → GL(V ) lands in SL(V ). Consider the

normalizer

NSL(V )(g) = {g ∈ SL(V )|Adg(g) = g}. (341)

Since this is an algebraic condition, we get an algebraic subgroup. Its connected compo-
nent of the identity N0

SL(V ) is also an algebraic subgroup. We want to show that it coincides

with G. It suffices to show that the Lie algebras coincide, or equivalently that Nsl(V )(g) = g
(g coincides with its normalizer in sl(V )). Since g is semisimple, it acts semisimply on sl(V ),
hence we can write

sl(V ) ∼= g⊕m (342)

where [g,m] ⊆ m. Since [g, g] = g, if we can find X ∈ sl(V ) not in g such that [X, g] ⊆
g, then we can find X satisfying the stronger condition [X, g] = 0. But then X is a g-
endomorphism of V , so by Schur’s lemma is multiplication by a scalar, and since X ∈ sl(V )
it has trace zero and hence is zero.

In the general case we apply the above to each irreducible summand.

Lemma 13.3. Let Y ( X be a proper inclusion of Zariski closed subsets of CN .

1. If X is smooth and connected then X \ Y is connected.

2. The map π1(X \ Y )→ π1(X) is surjective.

Proof. It suffices to show that if γ : [0, 1] → X is a path such that γ(0), γ(1) 6∈ Y then we
can perturb γ such that it entirely avoids Y . This proves both of the above statements.

We can show that it is possible to choose γ to be piecewise analytic. Then γ intersects
Y at at most finitely many points, and we can avoid these one at a time.

Lemma 13.4. In GL(V ) consider the Borel subgroup B of upper triangular matrices and
the subgroup N− of lower triangular matrices with 1s on the diagonal. The multiplication
map

N− ×B → GL(V ) (343)

is injective with Zariski open image.

Proof. If all principal minors of an element of GL(V ) are nonzero then we can perform
Gaussian elimination, which gives a unique element of N− and a unique element of B.
Otherwise there are no such elements.

Proposition 13.5. Let G̃ be a simply connected Lie group with Lie algebra g and let V =
L1 ⊕ ... ⊕ Ln be the sum of its fundamental representations. Then ρ : G̃ → GL(V ) is an
embedding, and in particular V is a faithful representation.
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Proof. Let G = ρ(G̃). Since all the generators corresponding to simple roots of g act non-
trivially on V , we know that V is a faithful representation of g, hence G also has Lie algebra
g and it suffices to show that π1(G) is trivial.

With respect to the triangular decomposition of g, choose a basis of V such that n+

is upper-triangular, n− is lower-triangular, and h is diagonal. Let B = G ∩ BGL(V ) and
N− = G∩N−GL(V ). Let U ∈ GL(V ) be the image of the multiplication map N−×B → GL(V ),

and let G′ = U ∩G. Since G′ is G minus a Zariski closed set, G′ is connected.
We claim that if g ∈ G′ then g = xy where x ∈ N−, y ∈ B (this is slightly stronger than

what we get from the fact that g ∈ U). In a sufficiently small neighborhood of the identity
this follows because we can write such neighborhoods in the form exp n−×exp b. Analyticity
lets us conclude that this is true everywhere.

We now have a surjection π1(G′)→ π1(G), so to show that the latter is trivial it suffices
to show that the former is trivial. But G′ = exp n−×exp h×exp n+ where exp n− and exp n+

are contractible, so letting T = exp h it follows that π1(T ) ∼= π1(G′), so there is a surjection
π1(T )→ π1(G).

The sl2-triples (Hi, Xi, Yi) in g give a multiplication map

SL2(C)n → G (344)

which realizes T as the product T1 × ... × Tn of the exponentials of H1, ..., Hn. The
inclusion T → G factors through the above map, hence the induced map on π1 is surjective,
but SL2(C)n is simply connected and the conclusion follows.

Above we constructed a decompositionG′ = N−TN+ whereN− = exp n−, T = exp h, N+ =
exp n+. What is the kernel of exp : h → T? Looking at the weight decomposition, this is
the set of h ∈ h such that eµ(h) = 1 for all weights µ of V . Since V contains all fundamental
weights, this is equivalently

{h ∈ h|ωi(h) ∈ 2πiZ} (345)

hence is 2πi times the lattice P ∗. On the other hand, by Schur’s lemma Z(G) ⊆ T , hence
Z(G) = ker(Ad(T )). Hence we have a diagram of short exact sequences

0 // 2πiP ∗

��

// h
exp

//

id
��

T

��

// 0

0 // ? // h
exp ad
// Ad(T ) // 0

(346)

where the mystery group is 2πiQ∗ by the same analysis as above, and this gives Z(G) ∼=
Q∗/P ∗.

P can be interpreted as the lattice of characters of T , and Q can be interpreted as the
lattice of characters of Ad(T ). Moreover, any subgroup in Z(G) corresponds to a sublattice
between P ∗ and Q∗, and we can use this to determine how many and which connected
complex Lie groups have a given semisimple Lie algebra.
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13.2 Characters

Definition Let M be a finite-dimensional representation of a semisimple Lie algebra g. Its
(formal) character is the formal expression

ch(M) =
∑

µ∈P (M)

(dimMµ)eµ (347)

in the group ring R = Z[P ] of P , written multiplicatively (so eµ+ν = eµeν).

We can think about formal characters as functions on T by interpreting eµ to be the
function exp(h) 7→ eµ(h).

Definition Let M be a finite-dimensional representation of a Lie group G. Its character is
the function

χM(g) = trM(g) (348)

on G.

If G has semisimple Lie algebra g, then the two definitions agree when restricted to
T = exp h. Note that characters are conjugation-invariant and that GTG−1 is dense in G,
so the restriction of a character to T uniquely determines it.

The (formal) character ch is additive and multiplicative with respect to direct sum and
tensor product. It is also W -invariant. Hence it defines a homomorphism from the represen-
tation ring of g to the invariant subring RW .

Example Let g = sl2, so P = Zω where ω = α
2
. Write R as Z[z]. The Weyl group action

is z 7→ z−1, so all characters must be symmetric Laurent polynomials. In fact they have the
form zn + zn−2 + ...+ z−(n−2) + z−n.

Theorem 13.6. If g is a semisimple Lie algebra the characters ch(L(λ)) form a basis of
RW .

Proof. First observe that the sums 1
|Stab(λ)|

∑
w∈W ew(λ) form a basis of RW . Consider the

partial order µ ≤ λ⇔ λ− µ ∈ Q+. Then

ch(L(λ)) =
1

|Stab(λ)|
∑
w∈W

ew(λ) +
∑

µ∈P+,µ<λ,w∈W

cµ
|Stab(µ)|

ew(µ) (349)

so the matrix describing these characters in terms of the basis is triangular with entries
1 on the diagonal, hence is invertible.

Theorem 13.7. (Weyl character formula) For λ ∈ P+, the character of L(λ) is given by

ch(L(λ)) =

∑
w∈W sgn(w)ew(λ+ρ)∑
w∈W sgn(w)ew(ρ)

(350)

where sgn(w) is alternatively either (−1)`(w) or det(w) and ρ = ω1 + ...+ ωn as before.
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Note that characters are W -invariant but the Weyl character formula expresses a charater
as a quotient of two W -skew-invariant expressions. If we let

Dµ =
∑
w∈W

sgn(w)ew(µ) (351)

then we can show that, as µ ranges over the interior P++ of P+, then Dµ forms a basis
of the W -skew-invariants RW

alt. Multiplication by Dρ gives a map

Dρ : RW → RW
alt (352)

and with respect to the basis Sµ of RW we constructed earlier we have SµDρ = Dµ+ρ +

lower terms, hence multiplication by Dρ gives an isomorphism. In particular,
Dλ+ρ
Dρ
∈ RW ,

so the expression in the Weyl character formula lands in the correct space.

Example let g = sln. Then R can be identified with the quotient of the algebra of Laurent
polynomials in n variables z1, ..., zn by the relation z1...zn = 1. The invariant subring RW

consists of the symmetric polynomials. Here

ρ = ω1 + ...+ ωn−1 = (n− 1)ε1 + (n− 2)ε2 + ...+ εn−1 (353)

so we can write

eρ = zn−1
1 zn−2

2 ...zn−1. (354)

The elements of P+ have the form a1ε1 + ... + an−1εn−1 where a1 ≥ ... ≥ an−1 ≥ 0. If
µ = b1ε1 + ...+ bnεn, then Dµ can be expressed as a determinant

Dµ = det(z
bj
i )|ni,j=1. (355)

In particular, Dρ is the Vandermonde determinant
∏

i<j(zi − zj). So here the Weyl
character formula tells us that the character of L(λ) is a ratio of two determinants. These
ratios define the Schur polynomials.

Definition Dρ is the Weyl denominator.

The following generalizes our observation above about the Vandermonde determinant.

Theorem 13.8. (Weyl denominator formula) We have

Dρ =
∏
α∈∆+

(eα/2 − e−α/2) (356)

= eρ
∏
α∈∆+

(1− e−α). (357)
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Proof. Let R =
∏

α∈∆+(eα/2−e−α/2). If ri is a simple reflection then it permutes the positive
roots not equal to αi and sends αi to its negative. Hence riR = −R, from which it follows
that R is W -skew-invariant. Hence, after making sure that the constants match, we have

R = Dρ +
∑

µ∈P++,µ<ρ

cµDµ. (358)

But in fact if µ < ρ then, writing µ =
∑
aiωi, at least one ai is less than or equal to 0,

so µ 6∈ P++. The conclusion follows.

We now turn to the proof of the Weyl character formula itself.

Proof. We first compute the characters of Verma modules. We know, from the structure of
U(n−), that these have the form

ch(M(λ)) =
∑

(dimM(λ)µ)eµ (359)

= eλ
∏
α∈∆+

(
1 + e−α + e−2α + ...

)
(360)

= eλ
∏
α∈∆+

1

1− e−α
(361)

=
eλ+ρ

Dρ

(362)

where this character lies, not in R, but in a completion R̃ where we allow formal power
series in the negative direction. More formally, we want to allow formal sums

∑
µ∈P aµe

µ

where there exist λ1, ..., λk such that if aµ 6= 0 then µ ≤ λi for some i. We now see that
the Weyl character formula expresses ch(L(λ)) as an alternating sum of characters of Verma
modules

ch(L(λ)) =
∑
w∈W

sgn(w)M(w(λ+ ρ)− ρ). (363)

Note that some of these Verma modules are of the form M(λ) for λ ∈ P \P+. We showed
that even these Verma modules have unique simple quotients L(λ). It turns out that the
Casimir Ω ∈ Z(U(g)) acts by scalars on all Verma modules. To show this we will compute
the Casimir with respect to a very specific basis, namely an orthonormal basis ui of h and
the elements Xα, Yα for α ∈ ∆+. The dual basis is ui again and the elements Yα, Xα, hence
the Casimir is

Ω =
∑
α∈∆+

(XαYα + YαXα) +
n∑
i=1

u2
i (364)

=
∑
α∈∆+

(2YαXα +Hα) +
n∑
i=1

u2
i . (365)
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If vλ is a highest weight vector generating M(λ) then, since Xαvλ = 0 for all α ∈ ∆+, we
compute that

Ωvλ =
∑
α∈∆+

Hαvλ +
n∑
i=1

u2
i vλ (366)

=

(∑
α∈∆+

λ(Hα) +
∑

λ(ui)
2

)
vλ (367)

= (λ+ 2ρ, λ)vλ. (368)

This constant f(λ) is also conveniently written (λ+ ρ, λ+ ρ)− (ρ, ρ).
For a given λ define

Oλ = {µ ∈ P |f(λ) = f(µ)}. (369)

This set is finite since it is the intersection of a sphere and a lattice.
Recall that a module is said to have finite length if it admits a finite filtration with simple

quotients.

Lemma 13.9. Any Verma module has finite length.

Proof. Let N ⊂M(λ) be a submodule. The set of weights P (N) contains a maximal weight
µ. Let N ′ be the sum of all submodules of N not containing a vector of weight µ. Then we
have a short exact sequence

0→ N ′ → N → L(µ)→ 0. (370)

But since the Casimir Ω acts by f(λ) on M(λ) we know that µ ∈ Oλ, hence only finitely
many simple modules can occur this way.

Corollary 13.10. The character of a Verma module has the form

ch(M(λ)) = ch(L(λ)) +
∑

µ<λ,µ∈Oλ

cλµch(L(µ)) (371)

where

cλµ =

{
0 if µ � λ

1 if µ = λ.
(372)

Here we use the fact that characters are additive in short exact sequences. By inverting
the matrix cλµ we obtain the following.
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Corollary 13.11. The character of L(λ) has the form

ch(L(λ)) = ch(M(λ)) +
∑

µ<λ,µ∈Oλ

bλµch(M(µ)) (373)

where bλµ ∈ Z.

Multiplying both sides by Dρ then gives

Dρch(L(λ)) = eλ+ρ +
∑

µ<λ,µ∈Oλ

bλµe
µ+ρ. (374)

Since the LHS is a product of a W -invariant and W -skew-invariant element, the RHS
must be W -skew-invariant, hence

Dρch(L(λ)) = Dλ+ρ +
∑

µ∈P+,µ∈Oλ,µ<λ

b′λµDµ+ρ (375)

where b′λµ = sgn(w)bλ(w(µ+ρ)−ρ), but we don’t need this because there is no µ such that
µ ∈ P+, µ < λ, and (µ+ ρ, µ+ ρ) = (λ+ ρ, λ+ ρ). To see this, we subtract, giving

(λ+ µ+ 2ρ, λ− µ) = 0. (376)

On the other hand, λ − µ =
∑
niαi where ni ∈ Z≥0 and at least one ni > 0. So

λ− µ ∈ P+. We also have λ+ µ+ 2ρ ∈ P++, which contradicts the above. Hence

ch(L(λ)) =
Dλ+ρ

Dρ

(377)

as desired.

A more conceptual proof of the Weyl character formula proceeds via the BGG resolution.
When λ ∈ P+ this is a resolution of L(λ) via sums of Verma modules. Writing w · λ =
w(λ+ ρ)− ρ, this resolution takes the form

· · · →
⊕
λ(w)=k

M(w · λ)→ · · · →
n⊕
i=1

M(ri · λ)→M(λ)→ L(λ)→ 0 (378)

and writing down the alternating sum of its characters gives the Weyl character formula.
We can try to use the Weyl character formula to compute the dimension of L(λ), but

the numerator and denominator of the Weyl character formula both vanish to high order at
h = 0 (where h ∈ h). We need to take a limit. It is convenient to take h = ρ∨t and let t→ 0,
which gives
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dimL(λ) = lim
t→0

∑
w∈W sgn(w)e(w(λ+ρ),ρt)∑
w∈W sgn(w)e(w(ρ),ρt)

(379)

= lim
t→0

∑
w∈W sgn(w)e((λ+ρ)t,wρ)∑
w∈W sgn(w)e(w(ρ),ρt)

(380)

= lim
t→0

∏
α∈∆+ e(α/2,λ+ρ)t − e−(α/2,λ+ρ)t∏

α∈∆+ e(α/2,ρ)t − e−(α/2,ρ)t
(381)

by the Weyl denominator formula. This gives the Weyl dimension formula

dimL(λ) =

∏
α∈∆+(λ+ ρ, α)∏
α∈∆+(ρ, α)

. (382)

14 Compact groups

Some of the following material can be found in a book of Helgason.

Theorem 14.1. Let K be a connected compact Lie groups. Then there is a biinvariant (left-
and right- invariant) volume form on K which is unique if we impose the condition that the
total volume

∫
K
dg is equal to 1.

Biinvariance is equivalent to the condition that∫
K

ϕ(gh) dg =

∫
K

ϕ(hg) dg =

∫
K

ϕ(g) dg (383)

for any smooth function ϕ : K → R.

Proof. Let ωe ∈ Λdim k(k∗) where k is the Lie algebra of K. By left or right translating ωe we
obtain left and right invariant forms ωrg, ω

`
g on K (this does not require compactness), and

the claim is that these coincide (this requires compactness). This is equivalent to the claim
that the adjoint action on ωe is trivial, but its image would be a closed connected subgroup
of R+, which must be trivial.

This gives the existence of Haar measure for compact Lie groups, which lets us take aver-
ages and makes the representation theory similar to the representation theory of finite groups.
Below K is a connected compact Lie group, although connectedness is often unnecessary.

Theorem 14.2. Let V be a finite-dimensional representation of K (over R or C). Then V
admits a K-invariant inner product (over R or C).

Proof. Begin with any inner product 〈−,−〉 on V and consider the averaged inner product

〈v, w〉K =

∫
K

〈gv, gw〉 dg. (384)
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Corollary 14.3. Any finite-dimensional representation of K is completely reducible.

Proof. If V is such a representation, we can first give it a K-invariant inner product and
then take orthogonal complements of subrepresentations.

Corollary 14.4. The Lie algebra k of K is reductive.

Proof. By the above, the adjoint representation is completely reducible.

The abelian compact groups are precisely the tori Rn/Γ where Γ is a lattice in Rn of rank
n.

Corollary 14.5. If K is simply connected, then k is semisimple; moreover, the Killing form
B on k is negative definite.

Proof. Since k is reductive we can write k ∼= k′ ⊕ Z(k). If K ′ is the simply connected Lie
group with Lie algebra k′, then K must be a quotient of K ′×Rn (n = dimZ(k)) by a discrete
subgroup Γ of the center. Γ must have the property that Γ ∩ Rn has full rank or else the
quotient will fail to be compact. But Γ is the fundamental group of K, which we assumed
was trivial, hence n = 0 and k is semisimple.

The adjoint representation of K lands in SO(k) where we have chosen some invariant
inner product on k. Hence if X ∈ k it follows that ad(X) is skew-symmetric, hence has
purely imaginary eigenvalues. Hence

B(X,X) = tr(ad(X)2) < 0 (385)

if X 6= 0 as desired.

Definition A Lie algebra k is compact if the Killing form B is negative definite.

A compact Lie algebra is in particular semisimple. Moreover, if K is a Lie group with
compact Lie algebra, then Ad(K) is compact. So now we want to classify compact Lie
algebras.

14.1 Real forms

Let k be a real Lie algebra and let g = k⊗C be its complexification. If k is semisimple then
so is g, so we can try to classify the former using the fact that we have classified the latter.

Definition If g ∼= k⊗ C then k is a real form of g.

Example There are two real Lie algebras with complexification sl2(C), namely sl2(R) and
su(2). The latter is compact but the former is not.
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The general way to understand forms is via Galois cohomology, but in this case since
Gal(C/R) is small we can be more explicit. If k is a real form of g then we can write

g ∼= k⊕ ik. (386)

Complex conjugation defines a map θ : g→ g which is skew-linear, squares to the identity,
and is an endomorphism of g; call such a thing an anti-involution. The real form k can be
recovered as the fixed points of θ. Conversely, if θ is an anti-involution, then its fixed points
are a real form of g. Hence if we find all anti-involutions we will find all real forms. Moreover,
if θ is an anti-involution then ϕθϕ−1 is also an anti-involution where ϕ ∈ Aut(g), and the
corresponding real forms are isomorphic. Hence we really want to classify anti-involutions
up to conjugacy.

Example Consider g = sl2(C) again. The anti-involution giving by θ(H,X, Y ) = H,X, Y
has fixed subalgebra sl2(R), the split form of sl2(C). (In general the split form is defined by
the anti-involution fixing the Chevalley basis.) But we can also consider

σ(H,X, Y ) = −H,−Y,−X (387)

and then the fixed subalgebra is su(2).

If B is the Killing form and θ an anti-involution, we can define a Hermitian form

Bθ(X, Y ) = B(θX, Y ) (388)

and the Killing form on gθ is negative definite (which is equivalent to gθ compact) iff Bθ

is negative definite.

Definition The Cartan involution is the anti-involution on a semisimple Lie algebra g given
on Chevalley generators by

σ(Hi) = −Hi, σ(Xi) = −Yi, σ(Yi) = −Xi. (389)

Proposition 14.6. gσ is a compact Lie algebra.

Proof. It suffices to check that Bσ is negative definite. This is clear on the subspace generated
by the Chevalley generators. If si = expXi exp(−Yi) expXi is a simple reflection then
σ(si) = si, so we conclude that

σ(Hα) = −Hα, σ(Xα) = −Yα, σ(Yα) = −Xα. (390)

The spaces CXα⊕CYα are orthogonal with respect to Bσ, so to check negative definiteness
it suffices to check on these subspaces, and the conclusion follows.

Theorem 14.7. Any compact real form of g is conjugate to gσ.
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Lemma 14.8. Let σ be the Cartan involution and let θ be some other anti-involution. Then
there exists ϕ ∈ Aut(g) such that ϕθϕ−1 and σ commute.

Proof. Let ψ = θσ. Then ψ is an automorphism with inverse σθ. We compute that

Bσ(ψX, Y ) = B(σθσX, Y ) = B(σX, θσY ) = Bσ(X,ψY ) (391)

hence that ψ is self-adjoint. By the spectral theorem it follows that ψ is diagonalizable
with real eigenvalues. If ζ = ψ2, then ζ is diagonalizable with positive eigenvalues, so ζt is
well-defined for any real t. In fact ζt = expXt where X ∈ p ∼= ik (where k = gσ).

Let ϕ = ζ1/4. Then σϕ = ϕ−1σ by the above, hence

σϕθϕ−1 = ϕ−1σθϕ−1 = σθϕ−2 (392)

and

ϕθϕ−1σ = ϕθσϕ = ϕ2θσ (393)

but (σθϕ−2)2 = 1, hence it is equal to its inverse and the conclusion follows.

Now we prove the theorem.

Proof. Let θ be an anti-involution such that gθ is compact. By the above lemma, we may
assume WLOG that θ and σ commute, so σθ = θσ. In particular, θ must preserve k = gσ.
Hence

gθ = k′ ⊕ p′ (394)

where k′ = gθ∩ k, p′ = gθ∩p. Since the Killing form is negative definite on gθ but positive
definite on p = ik, we must have p′ = 0, hence k′ = k.

Let G be the simply connected complex Lie group with Lie algebra g. We can lift the
Cartan involution σ to an involution of G. Let K = Gσ.

Proposition 14.9. K is compact and simply connected.

Proof. It’s clear that the Lie algebra of K is gσ = k. Consider the polar decomposition
g = k⊕ p and define P = exp(p). Then we claim that K is compact, that P is diffeomorphic
to p, and that the induced multiplication map K × P → G is a diffeomorphism.
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