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1 Vector bundles on the projective line

This semester we will be focusing on coherent sheaves on smooth projective complex

varieties. The organizing framework for this class will be a 2-dimensional topological

field theory called the B-model. Topics will include

1. Vector bundles and coherent sheaves

2. Cohomology, derived categories, and derived functors (in the differential graded

setting)

3. Grothendieck-Serre duality

4. Reconstruction theorems (Bondal-Orlov, Tannaka, Gabriel)

5. Hochschild homology, Chern classes, Grothendieck-Riemann-Roch

For now we’ll introduce enough background to talk about vector bundles on P1.

We’ll regard varieties as subsets of PN for some N . Projective will mean that we

look at closed subsets (with respect to the Zariski topology). The reason is that if

p : X → pt is the unique map from such a subset X to a point, then we can (derived)

push forward a bounded complex of coherent sheaves M on X to a bounded complex

of coherent sheaves on a point Rp∗(M).

Smooth will mean the following. If x ∈ X is a point, then locally x is cut out by

a maximal ideal mx of functions vanishing on x. Smooth means that dimmx/m
2
x =

dimX. (In general it may be bigger.) Intuitively it means that locally at x the variety

X looks like a manifold, and one way to make this precise is that the completion of

the local ring at x is isomorphic to a power series ring C[[x1, ...xn]]; this is the ring

where Taylor series expansions live.

If i : x → X is the inclusion of a point, we can take a (derived) pullback of a

bounded complex of coherent sheaves M on X to x, and we want the result to again

be a bounded complex of coherent sheaves Li∗x(M). This is true if and only if X is

smooth at x.

Vector bundles can be approached from both an algebraic and a geometric per-

spective. From a geometric perspective, recall that an n-dimensional vector bundle

π : E → X on a variety X is a variety E which is in some sense a vector space internal

to the category of varieties over X. This includes the data of an addition map
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+ : E ×X E → E (1)

and a scalar multiplication map

· : (C×X)×X E → E (2)

which should satisfy the vector space axioms. We also want to be able to specify

some n-dimensionality and some local triviality. In algebraic geometry there are

various notions of local triviality. The only one currently available is local triviality

over Zariski-open subsets.

More algebraically, we can tank about a rank-n locally free OX-module. X is a

locally ringed space, OX is its sheaf of rings, and an OX-module is a sheaf which is a

module over OX in a suitable sense. Another way to say locally free is projective.

Given a vector bundle π : E → X in the geometric sense, we can pass to the

OX-module E of sections of π, and this gives a vector bundle in the algebraic sense.

Over an open set U such that the vector bundle is trivial, a section is just a collection

of n functions.

Conversely, given a vector bundle E in the algebraic sense, the corresponding space

E ought to be the relative spectrum of Sym(E∨) (which is a sheaf of OX-algebras).

Exercise 1.1. Check this.

Alternatively, we can think in terms of transition functions. If Uα is an open cover

of X such that the vector bundle is trivial over all Uα, then we get transition functions

gαβ : Uα∩Uβ → GLn(C). These functions satisfy a cocycle condition, and we can use

them to glue together E. The upshot of this is that n-dimensional vector bundles are

classified by nonabelian cohomology H1(X,GLn(C)).

When n = 1 we talk about line bundles or invertible sheaves. Invertible sheaves are

those which are invertible with respect to the tensor product. The set of isomorphism

classes of line bundles on X is denoted by Pic(X) (the Picard group); it forms an

abelian group under tensor product and dual.

Example Vector bundles on a point are vector spaces. The Picard group of a point

is trivial.

Exercise 1.2. Show that Pic(P1) ∼= Z.
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Recall that P1 parameterizes lines through the origin in A2. It is equipped with

a canonical line bundle O(−1) whose fiber over a point is the line it parameterizes.

The corresponding total space is denoted L−1. This bundle should go to −1 ∈ Z.

The anticanonical line bundle O(1) is its dual, which should go to 1 ∈ Z. The

corresponding total space is denoted L1. In general, Lk denotes the line bundle

corresponding to k ∈ Z.

Theorem 1.3. (Grothendieck) If π : E → P1 is a rank-n vector bundle over P1, then

E is isomorphic to a direct sum of line bundles

E ∼= Lk1 ⊕ ...⊕ Lkn (3)

where, if we arrange k1 ≥ ... ≥ kn, then the ki are unique.

Proof. (Sketch) Think of P1 as a union of two copies A1
0,A1

∞ of A1 over Gm
∼= C∗.

We will use the transition function point of view, thinking of a vector bundle over P1

as glued together from two vector bundles over A1 by a transition function.

Lemma 1.4. Every vector bundle over A1 is trivial.

Proof. The ring of functions on A1 is a principal ideal domain, so locally free of finite

rank implies free.

In general there are plenty of nontrivial line bundles on affine varieties, e.g. an

elliptic curve minus a point. However, by a difficult theorem of Quillen and Suslin,

vector bundles on An are trivial.

In any case, if E is a vector bundle over P1, then by restricting to A1
0 and A1

∞ we

get two trivializations α0, α∞ and a transition function g0∞ : Gm → GLn(C). Other

choices of trivializations are given by maps

α′0 = g0 ◦ α0, α
′
∞ = g∞ ◦ α∞ (4)

where g0 : A1
0 → GLn(C) and g∞ : A1

∞ → GLn(C) are two functions. This gives

g′0∞ = g∞g0∞g
−1
0 (5)

so our nonabelian cohomology is given by equivalence classes of maps Gm →
GLn(C) up to the above equivalence relation. We can equivalently think of such

maps as elements of GLn(C[t, t−1]). Then g0 ∈ GLn(C[t]) and g1 ∈ GLn(C[t−1]).
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Thus isomorphism classes of n-dimensional vector bundles on P1 can be naturally

identified with double cosets GLn(C[t−1])\GLn(C[t, t−1])/GLn(C[t]). The rest of the

proof consists of the following exercise.

Exercise 1.5. (Birkhoff factorization) Each double coset has a unique representative

with diagonal elements tk1 , ...tkn up to permuting the diagonal entries.

Example OP1 is the trivial line bundle. It is specified by a 1× 1 transition matrix,

and any nonzero constant will do.

Example Ltaut is the tautological line bundle. It is specified by the 1× 1 transition

matrix t−1. To see this, we trivialize the line bundle over A1
0 = {[1; t]|t ∈ C} and

A1
∞ = {[w; 1]|w ∈ C}. On the intersection these two coordinates are related by

w = t−1. To trivialize the bundle over A1
0 we need to pick a vector in each line, and

one way to do this is to intersect the line with x0 = 1. This gives the vector (1, t).

Similarly, trivializing the bundle over A1
∞ gives the family of vectors (w, 1).

If [x0;x1] ∈ Gm lies in the intersection, then the first trivialization sends a point

(y0, y1) in the line over [x0;x1] to c(1, t) on the one hand, where t = x1

x0
, and to d(t−1, 1)

on the other hand, where t−1 = w = x0

x1
. This gives c = dt−1, so the transition matrix

is t−1 as desired.

Example KP1 is the cotangent bundle (whose sections are 1-forms). There is a global

1-form which in t-coordinates looks like dt and which in w-coordinates looks like −dw
w2 .

Hence the transition matrix is t−2.

Example TP1 is the tangent bundle (whose sections are vector fields). This is the

dual to the cotangent bundle, and taking duals corresponds to inverting the transition

matrix, hence the transition matrix is t2.

Exercise 1.6. Calculate the rank-2 vector bundles given by

g =

[
t−1 1

0 t

]
(6)

and

g =

[
t 1

0 t−1

]
. (7)
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Definition (Ad hoc) let L be a line bundle / invertible sheaf (which we will denote

by L) on P1. We define two cohomology groups H0(P1,L) and H1(P1,L) (it will be a

theorem later that there is no higher cohomology) by writing down a chain complex,

the Cech complex

C0 δ−→ C1. (8)

The first term C0 is just the direct sum of the space of sections on A1
0 and A1

∞.

The second term C1 is the space of sections on Gm. The map between them is

δ : (σ0, σ∞) 7→ σ0 − σ∞. (9)

Hence H0 = ker(δ) and H1 = coker(δ).

To compute these, note that the first component of the first term is a free module

of rank 1 over the space of functions on A1
0, or C[t]. We will write its generator as

e0. The second component is a free module of rank 1 over the space of functions on

A1
∞, or C[t−1] = C[w]. We will write its generator as e∞. The second term is a free

module of rank 1 over the space of functions on Gm, or C[t, t−1]. We will write its

generator as e. The structure of the line bundle L determines what the differential δ

looks like.

We will choose a normalization so that e0 and e are both the function that we

want to call 1 There is therefore a restriction map r0 from C[t] to C[t, t−1], which is

the inclusion, and also a second restriction map r∞.

Exercise 1.7. Suppose L is the line bundle corresponding to k ∈ Z. Then r∞(e∞) =

tke.

It follows from the definition that H0(P1,L) is just the space of global sections

Γ(P1,L) (since it consists of pairs of sections on the affine slices that agree on their

intersection). The first cohomology describes sections on Gm modulo sections coming

from the affine slices.

Exercise 1.8. Interpret the cohomology groups of the list of line bundles above in

terms of more classical data.

Define the Euler characteristic of a line bundle to be χ(P1,Lk) = dimH0−dimH1.

Theorem 1.9. (Riemann-Roch for P1) χ(P1,Lk) = 1 + k.
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The second term k is the first Chern class c1(L) (and the first term is what could

be called the zeroth Chern class c0(L)). This theorem was further generalized by

Grothendieck and Hirzebruch.

Theorem 1.10. (Serre duality for P1) There is a nondegenerate pairing

H0(P1,Lk)⊗H1(P1,L∨k ⊗KP1)→ C. (10)

This theorem was further generalized by Grothendieck. It may be regarded as an

analogue of Poincare duality.

Another important story in 20th-century mathematics is Hodge-de Rham theory.

The topological story is that the topological cohomology of the Riemann sphere has

dimension 1 in degrees 0 and 2 and no other degree.

Theorem 1.11. (Hodge-de Rham for P1) There is a canonical identification

H•top(P1,C) ∼= H0(P1,O)⊕H1(P1, KP1). (11)

Very vague observation: P1 is not affine. If it were affine, then the line bundle OP1

would know everything (in the sense that its endomorphism ring would be the ring

of global sections). Instead, there are two maps OP1(−1) → OP1 , and this diagram

knows everything.

A Tannakian comment: P1 is not affine, so it doesn’t have many global functions,

hence it can’t be reconstructed for them. However, it turns out that points of P1 can

be reconstructed in terms of tensor functors VectP1 → Vectpt.

In other words, we will take the point of view that for projective varieties, the

correct replacement of the ring of functions is the category of coherent sheaves.

2 Review of sheaves

Let X be a topological space (e.g. a complex variety with the Zariski topology)

regarded as a category whose objects are the open subsets of X and whose morphisms

are the inclusions.

Definition Let C be a category. A presheaf on X with values in C on X is a functor

Xop → C.
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In other words, it consists of a collection of objects F (U) of C for every open

subset of X and a restriction map ρUV : F (U) → F (V ) for every inclusion V ⊆ U

which is compatible with composition of inclusions. A morphism of presheaves is a

natural transformation, and this defines the category of presheaves on X with values

in C.

Definition Let F be a presheaf (where C is nice, e.g. has limits). F is a sheaf if it

satisfies the following additional property: if U is an open set and Uα an open cover

of U , then F (U) is the equalizer of the parallel pair of arrows∏
α

F (Uα) ⇒
∏
α,β

F (Uα ∩ Uβ) (12)

consisting of the two possible products of inclusions.

Example Consider the problem of solving an ODE such as
(
∂z − 1

2z

)
f(z) = 0 on C∗.

Locally the solutions are given by the branches of the square root function. However,

analytic continuation around the origin switches the two branches. This behavior is

captured by the statement that there is a nontrivial sheaf of solutions; it looks like

the constant sheaf C locally but not globally.

Definition Let f : X → Y be a continuous map of topological spaces. This induces

a functor f−1 : Y top → X top assigning preimages. The composition of this functor

with a sheaf on X is a sheaf f∗(F ) on Y , the pushforward.

Example There is a natural map An+1\{0} → Pn. The pushforward of the structure

sheaf turns out to be
⊕

k∈ZOPn(k).

Example There is a unique map Pn → pt, and the pushforward of the structure

sheaf is the constant sheaf C, which is the structure sheaf of a point.

Exercise 2.1. If X is a closed projective variety, then the pushforward of the structure

sheaf along the unique map to a point (global sections) is the constant sheaf C.

Proposition 2.2. If C is a nice category, the forgetful functor Sh(X)→ Psh(X) has

a left adjoint called sheafification F 7→ F+.
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Sheafification is defined as follows for a nice concrete category C: for each x ∈ X,

we define the stalk Fx as the colimit of the F (U) over all open sets U containing x.

We then define F+(U) to be the set of all assignments σx, where x ∈ U and σx ∈ Fx,
such that for all x ∈ U there is x ∈ V ⊆ U and σ ∈ F (V ) such that σ restricts to σy
for all y ∈ V .

Generally speaking, the category of sheaves with values in C inherits structure

from C.

Example Let X be a variety and consider the category of OX-modules (where OX
is the structure sheaf). It is possible to take direct sums, tensor products, and homs

of sheaves. The first operation can be done pointwise but it is necessary to sheafify

before performing the second two operations.

For example, take M = OP1(1) and N = OP1(−1). The pointwise tensor product

does not have the correct space of global sections. The correct tensor product is OP1 .

As another example, the category of OX-modules is an abelian category, so if

f : M → N is a map of OX-modules it has a kernel and a cokernel. The kernel does

not need to be sheafified (when computed as the pointwise kernel) but the cokernel

does (exercise). For example, let f = x0x1 from M = OP1 to N = OP1(2). This

morphism does not have a kernel. Its cokernel is the direct sum of two skyscraper

sheaves C{0} ⊕ C{∞}, hence

0→M → N → C{0} ⊕ C{∞} → 0 (13)

is a short exact sequence. Taking global sections of this sequence gives

0→ 0→ C→ C2 → 0 (14)

which is not a short exact sequence (hence global sections is not an exact functor);

it is exact on the left but not on the right (hence global sections is a left exact functor).

What’s missing is sheaf cohomology (the right derived functors of global sections).

In general, limits can be computed pointwise but colimits need to be sheafified.

2.1 Quasicoherent sheaves

Let X = Spec R where R is a (finite type?) C-algebra. There is a functor (localiza-

tion)
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R-Mod 3M → M̃ ∈ OX-Mod (15)

defined as follows: M̃(U) consists of all compatible collections of σp ∈Mp, where

Mp is the localization, satisfying the same condition as in sheafification. There is also

a functor (global sections) in the opposite direction.

Definition An OX-module M is quasicoherent if for all affine opens U = Spec R ⊂
X, the restriction M |U is the localization of an R-module.

Example Let X = A1 = Spec C[t] and consider the sheaf

F (U) =

OX(U) if 0 6∈ U
0 if otherwise

. (16)

Then this module is not quasicoherent because of the following proposition.

Proposition 2.3. Localization and global sections induce an equivalence of categories

between R-Mod and QCoh(Spec R).

Example By the above equivalence, studying quasicoherent sheaves on A1 is equiv-

alent to studying C[t]-modules. This is equivalently the category of C-vector spaces

equipped with an endomorphism. For example, the module C[t] itself localizes to the

structure sheaf OA1 . We can partially distinguish finite-dimensional modules using

the characteristic polynomial. It will turn out that in this case the localization functor

computes Jordan normal form in the following sense.

Let V be a C[t]-module. First, assume it has a single Jordan block with eigenvalue

λ. Suppose that we localize V away from λ; that is, we compute V ⊗C[t]C[t, (t−λ)−1].

Since t− λ acts nilpotently on V , inverting it kills V . Hence V is zero away from λ.

However, it has interesting structure near λ. For example, if V ∼= C[t]/(t− λ)2, then

it is still supported only at λ, but it is not just the skyscraper C[t]/(t− λ).

Geometrically, then, Jordan normal form corresponds to thinking of a (finite-

dimensional) quasicoherent sheaf on A1 as a direct sum of skyscraper sheaves sup-

ported at the eigenvalues with additional structure given by the sizes of the Jordan

blocks.
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Exercise 2.4. Giving a quasicoherent sheaf on X is equivalent to giving an R-module

M for each affine open Spec R ⊂ X compatible with restriction and satisfying the sheaf

axiom.

Proposition 2.5. Suppose f : X → Y is a morphism of varieties. Then the push-

forward f∗ takes quasicoherent sheaves on X to quasicoherent sheaves on Y .

Proof. By definition we have f∗M)(U) = M(f−1(U)). To show quasicoherence if M

is quasicoherent we need to show that if Spec S = V ⊂ U = Spec R is an affine open

then

f∗(M)(V ) = f∗(M)(U)⊗S R. (17)

To check this we just need to know that we can cover f−1(V ) by finitely many

affines and we can then induct on the number of such affines necessary.

Definition Let f : X → Y be a morphism of schemes. The pullback functor f ∗ :

QCoh(Y ) → QCoh(X) is defined as follows. First, if M is a quasicoherent sheaf on

QCoh(Y ), define f−1(M)(U) to be the colimit over all open V containing f(U) of

M(V ). Second, define

f ∗(M) = f−1(M)⊗f−1(OY ) OX . (18)

Exercise 2.6. f−1 is the left adjoint to pushforward of sheaves, and f ∗ is the left

adjoint to pushforward of O-modules (and quasicoherent sheaves when they can be

pushed forward).

Example Consider the inclusion i : A1 3 t 7→ (t2, t) ∈ A2 and the projection π :

A2 3 (z, t) 7→ z ∈ A1. With f = π ◦ i : A1 3 t 7→ t2 ∈ A1, let’s compute the

pushforward

π∗i∗OA1 = f∗OA1 . (19)

This is some quasicoherent sheaf on A1 which is therefore completely determined

by its global sections. We can compute global sections by pushing forward to a point,

which gives C[z] as a vector space. As a module, z acts by z2. This gives a free rank-2

module M .
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This is not very interesting from the point of view of Jordan canonical form, but

now we can regard the A1 we project onto as a parameter space and the A1 we map

from as the space we’re computing Jordan canonical forms on. To do this, we instead

compute

i∗εf∗OA1 = M ⊗R Cε = Mε (20)

where iε : pt→ A1 is the inclusion of the point ε. For fixed ε, Mε is a 2-dimensional

complex vector space. When ε 6= 0, the endomorphism t acts by

[
ε 0

0 −ε

]
, but when

ε = 0, the endomorphism t acts by

[
0 1

0 0

]
.

Exercise 2.7. Consider the cross X cut out by x2 = y2 in A2. If π : A2 → A1 is

as above, analyze π∗(OX). Try to find the geometry of the family of Jordan normal

forms t =

[
ε 0

0 −ε

]
.

Example Let f : P1 → P1 be a morphism. We can write f = p
q

where p, q are

two polynomials with no common factors. In the special case that f(z) = zd, we

have f ∗(OP1) = OP1 (the pullback of the structure sheaf is the structure sheaf). The

pushforward is more interesting. The restriction f0 : A1
0 → A1

0 is given by f0(z) = zd

and there is another restriction f∞ : A1
∞ → A1

∞.

The pushforward along f0 is the module C[t], where t acts by td. This is a free

module of rank d. The same thing is true of the pushforward along f1, hence the

pushforward is a vector bundle of rank d. Hence it is a direct sum of d line bundles.

Recall that we know something about the cohomology of line bundles on P1. If

we can compute the cohomology of the pushforward, we may be able to determine

the pushforward itself. So we will try to calculate

H∗(P1, f∗(OP1)). (21)

We do this by writing down the complex we wrote down previously, namely

Γ(A1
0, V )⊕ Γ(A1

∞, V )
r0−r∞−−−−→ Γ(Gm, V ) (22)

and computing its cohomology (where V = f∗(OP1)). This gives the complex
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C[t]⊕ C[t−1]
r0−r∞−−−−→ C[t, t−1] (23)

whose cohomology is C in degree 0 and 0 in degree 1; note that the cohomology

does not notice f because 0 is sent to 0 and ∞ is sent to ∞. This identifies a unique

sum of line bundles, namely d− 1 copies of L−1 and one copy of L0.

Exercise 2.8. Compute pushforwards along more complicated maps. Compute push-

forwards of more complicated vector bundles.

2.2 The canonical bundle

On any variety there is always a natural line bundle, namely the structure sheaf. On

a smooth variety X there is another natural line bundle, namely the top exterior

power of the cotangent bundle, called the canonical bundle

κX = ΛdimXΩ1
X . (24)

Recall that sections of the cotangent bundle are 1-forms. One way of thinking

about this is as follows. If X is a variety, we can look at the diagonal embedding

∆ : X → X ×X. In differential geometry, the normal bundle of X in X ×X is the

tangent bundle. In algebraic geometry, we instead consider the ideal sheaf I∆ ⊂ OX×X
of functions vanishing on the diagonal, so that OX ∼= OX×X/I∆ as sheaves.

We can instead look at OX×X/I2
∆. There is a sequence of sheaves on X

0→ I∆/I
2
∆ → OX×X/I2

∆ → OX → 0. (25)

and the leftmost term is Ω1
X .

As practice we would like to compute the canonical bundle of Pn. As context we

want the following.

Exercise 2.9. Show that Pic(Pn) ∼= Z with the isomorphism given by sending OPn(k)

to k.

So the canonical bundle is OPn(k) for some k and the problem is to compute k.

Let X ⊂ Pn be a degree-d hypersurface. Recall that sections of OPn(d) are homo-

geneous polynomials of degree d. Given such a section we can talk about the points

12



where it vanishes, and X is the zero locus of such a section. Restriction of forms gives

a map Ω1
Pn → Ω1

X fitting into a short exact sequence of sheaves on X

0→ N∨X/Pn → Ω1
Pn|X → Ω1

X → 0 (26)

where N∨X/Pn is an invertible sheaf called the conormal sheaf.

Lemma 2.10. The conormal bundle is isomorphic to the restriction of OPn(−d) to

X.

Proof. (Intuitive sketch) Equivalently, we want to show that NX/Pn ∼= OPn(d). Recall

that X is the zero section of a global section σ ∈ Γ(Pn,OPn(d)). Roughly speaking,

a section of the normal bundle of X is a way to wiggle X infinitesimally inside Pn.

We can wiggle X by wiggling σ. But the tangent space to a point in a vector space

is the vector space.

Recall that if 0 → A → B → C → 0 is a short exact sequence, then the top

exterior power of B is the top exterior power of A tensor the top exterior power of C.

Corollary 2.11. κPn|X ∼= κX ⊗OPn(−d)|X .

As an application, we can compute that

κPn ∼= OPn(−n− 1) (27)

by induction using the fact that Pn−1 is a linear (d = 1) hypersurface in Pn.

As another application, let E be a cubic curve in P2. Then

OP2(−3)|E ∼= κP2|E ∼= κE ⊗OP2(−3)|E (28)

from which it follows that κE ∼= OE; the canonical bundle is trivial. More gener-

ally, a variety with this property is called a Calabi-Yau variety. We can obtain such

things using degree-n+ 1 hypersurfaces in Pn.

In general, small-degree hypersurfaces look like projective space. At some point

they become Calabi-Yau. Beyond that, they become general type.
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2.3 More about line bundles

Let X be a smooth projective complex variety. We’ve discussed two line bundles, the

trivial line bundle OX and the canonical bundle κX . When X = Pn these generate

the Picard group. Today we will describe more line bundles on curves.

First, we can think of OX as sitting inside a much larger sheaf, the sheaf KX of

rational functions on X. This is a (locally) constant sheaf. It is also quasicoherent.

We will define other line bundles as subsheaves of this giant sheaf.

Definition A divisor D on X is an element of the free abelian group Div(X) on the

(closed) points of X.

Divisors naturally occur as follows. If f is a regular function and x ∈ X is a

point, we can assign an order ordx(f) based on the x-adic valuation of f in the x-adic

completion of OX,x. More generally we can do this with rational functions. Hence we

can think of divisors as prescribing orders (zero / pole behavior). We can use this to

assign to each divisor a line bundle, giving a map

Div(X) 3 D 7→ OX(D) ∈ Pic(X) (29)

defined as follows: the sections of OX(D) are rational functions f such that

ordx(f) ≥ nx if D =
∑
nxx.

Exercise 2.12. OX(D) is locally free of rank 1.

Exercise 2.13. OX(0) = OX .

There is a map K×X → Div(X) assigning a rational function its divisor. Its image

is the subgroup of principal divisors PDiv(X).

Theorem 2.14. There is a short exact sequence

0→ PDiv(X)→ Div(X)→ Pic(X)→ 0 (30)

inducing an isomorphism Div(X)/PDiv(X) ∼= Pic(X).

Some intuition: consider dividing up a variety, in some formal sense, as the union

of the formal neighborhoods of each point (spectra of the corresponding formal power

series rings) and a generic point (spectra of the rational functions). On each such
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open set, a line bundle is trivializable. The gluing data joining together all of these

trivializations gives more or less the above description (where we think of the order

of a rational function at a point as an element of K×x /O×X,x).

Proof. We want to show that the map Div(X)/PDiv(X) → Pic(X) is a homo-

morphism, injective, and surjective. The first statement means OX(D1 + D2) ∼=
OX(D1) ⊗ OX(D2). There is a map in the other direction given by multiplying

f1 ∈ OX(D1) by f2 ∈ OX(D2). To check that this is an isomorphism it suffices

to check on small open sets or even stalks. There is a small lemma necessary here,

namely that we can find meromorphic functions with arbitrary order at a given point.

Here is a slick proof of the rest. We can think of Div(X) as the sheaf K×X/O
×
X .

We also have Pic(X) ∼= H1(X,O×X). There is a short exact sequence of sheaves

0→ O×X → K
×
X → Div(X)→ 0 (31)

and the corresponding long exact sequence in cohomology gives

H1(X,O×X) ∼= H0(Div(X))/H0(K×X) (32)

which gives the conclusion.

Exercise 2.15. Let E be an elliptic curve. There is an isomorphism Z×E → Pic(E)

which sends (k, x1) 7→ OX(x1 − (k + 1)x0) where x0 is the identity of E.

In particular, Pic(E \ {x0}) is an affine variety with nontrivial line bundles on it.

3 Homological algebra

Pushforward and pullback do not behave quite the way we want them to; we should

be taking the derived pushforward and pullback instead.

Let f : X → Y be a map of complex varieties. f determines an adjunction

(f ∗, f∗) : QCoh(Y ) → QCoh(X). The pullback f ∗ is more of an algebraic operation

(the interesting part is the tensor product), while the pushforward f∗ is more of a

topological operation.

The pullback is the left adjoint and the pushforward is the right adjoint. Left

adjoints preserve colimits, hence the pullback is right exact and has left derived
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functors. Right adjoints preserve limits, hence the pullback is left exact and has right

derived functors.

Example Let X be a point and let Y = P1. The subsheaf of sections of the structure

sheaf on Y vanishing at X is OP1(−1), giving a short exact sequence

0→ OP1(−1)→ OP1 → CX → 0 (33)

of sheaves on Y . Pulling back to X gives

C 0−→ C→ C→ 0 (34)

which is right exact but not exact.

Example Let X = P1 and let Y be a point. Consider the short exact sequence

0→ OP1(−2)→ OP1(−1)→ Cpt → 0 (35)

of sheaves on X, where the first sheaf is functions with a zero of order at least 2

at a point and the second sheaf is functions with a zero of order at least 1 at a point.

Pushing forward to Y means taking global sections, which gives

0→ 0→ 0→ C (36)

which is left exact but not exact.

We will fix this failure of exactness as follows. Instead of working with sheaves,

we will work with (certain) complexes of sheaves.

Definition An object P in an abelian category is projective if Hom(P,−) is exact.

Dually, an object I is injective if Hom(−, I) is exact.

Definition Let f ∗ be a right exact functor. Its left derived functor Lf ∗(N) is given

by the cohomology of f ∗(P •) where P is a projective resolution of N (a complex

consisting of projective objects which is quasi-isomorphic to N).

Dually, we can define the right derived functors Rf∗(M) by taking the cohomology

of f∗ applied to an injective resolution I• of M .
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Before we take cohomology, we have an operation that takes as input a sheaf and

produces as output a complex of sheaves. This complex depends on the choice of

projective resolution, although its cohomology does not. We would like to work in a

setting that does not require passing to cohomology to get something that does not

depend on a choice of projective resolution.

Example Consider the inclusion of a point X = {0} into Y = A1 and consider the

short exact sequence

0→ OA1
y−→ OA1 → C0 → 0 (37)

or, more algebraically,

0→ C[y]
y−→ C[y]→ C[y]/(y)→ 0. (38)

The pullback is tensoring by C[y]/y. We do not need to resolve C[y] before

tensoring, but we do need to resolve C[y]/y (using the above short exact sequence).

Applying the left derived functor now gives a long exact sequence

0→ C[y]/y → C[y]/y
0−→ C[y]/y → C[y]/y → 0. (39)

Example Consider again the map from X = P1 to a point Y . To compute derived

pushforward we need an injective resolution. These are usually messy. One option is

to take the Godement resolution, which is defined as follows.

First, the topological step. If F is a sheaf on a space X and ix : x → X is the

inclusion of a point, we can consider (ix)∗(ix)
∗F , which is just the stalk Fx of F at x.

There is a natural map F → Fx, and for starters we can look at the map

F →
∏
x

Fx. (40)

This is an injection.

Next, the algebraic step. Insert each Fx into its injective hull I(Fx). This gives a

map

F →
∏
x

I(Fx). (41)

We can now take the cokernel of this map and repeat.
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We will not do this in practice. Instead of using injective resolutions, it turns out

that we can resolve by objects that have no extra derived cohomology. If i0, i∞ are

the inclusions of the two affines into P1 and i is the inclusion of Gm, then there is a

resolution of OP1(−2) of the form

OP1(−2)→ (i0)∗(i0)∗OP1(−2)⊕ (i∞)∗(i∞)∗OP1(−2)→ i∗i
∗OP1(−2) (42)

which is essentially the Cech resolution, and computing the derived pushforward

Rf∗ with this resolution reproduces the Cech definition of sheaf cohomology we gave

earlier.

We can in general compute the derived pushforward using Cech resolutions. Let

X be a topological space, F a sheaf on X (of abelian groups, for example), and U a

cover of X by open sets. The Cech complex is∏
α

F (Uα)→
∏
α,β

F (Uα ∩ Uβ)→
∏
α,β,γ

F (Uα ∩ Uβ ∩ Uγ)→ ... (43)

where by convention we only consider distinct Uα and each differential is an alter-

nating sum of inclusions. The Cech cohomology H•U(X;F ) is the cohomology of this

complex.

Specialize to the case that X is a complex variety, U is a cover by affines, and F

is a quasicoherent sheaf.

Theorem 3.1. H•U(X;F ) calculates Rf∗(F ) where f : X → pt is the unique map to

a point (sheaf cohomology).

Exercise 3.2. Check that H•U(X;F ) does not depend on the choice of open cover U .

Corollary 3.3. If X is affine, then H i(X;F ) ∼= Rif∗F = 0 for i > 0.

So derived pushforward detects topology. On the other hand, derived pullback is

interesting even on affines.

Serre’s criterion gives a converse to the above: if H i(X;F ) = 0 for i > 0 and all

F ∈ QCoh(X), then X is affine.

Exercise 3.4. Show that X = C2 \ {(0, 0)} is not affine (because OX has higher

cohomology).
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Corollary 3.5. Let X be a (projective) variety with dimX = k. Then H i(X;F ) = 0

for i > k.

Proof. If X is projective, embed X into PN . Choose k + 1 hyperplanes H0, ...Hk in

general position such that their intersection misses X. Take the affine cover Ui =

X ∩ (PN \Hi).

Theorem 3.6. The cohomology of line bundles on projective space is the following:

dimH0(Pn,OPn(m)) =

(
n+m

m

)
,m ≥ 0 (44)

dimHn(Pn,OPn(m)) =

(
−m− 1

−n−m− 1

)
,m ≤ −n− 1 (45)

and all other n,m give zero.

Global sections are reasonable; global sections of OPn(m) are given by homoge-

neous polynomials of degree m in n+ 1 variables. Hn turns out to be determined by

Serre duality.

Example Consider P2. Describe it with homogeneous coordinates x0, x1, x2 and

consider the corresponding affine opens U0, U1, U2, all isomorphic to C2. Their triple

intersection is (C∗)2 and their double intersections are C∗ × C.

The following visualization may be helpful for computing the relevant cohomology.

Consider the monoid generated by t1 = x1

x0
and t2 = x2

x0
. Its elements can be visualized

as lattice points in R2, and collections of such points describe functions holomorphic

on various pieces above.

Corollary 3.7. Let f : X → Y be a projective morphism of complex varieties and let

F be a coherent sheaf (locally finitely presented) on X. Then Rif∗F is coherent and

vanishes for sufficiently large i.

This is why we like projective things; in general, pushforwards of finite things will

not be finite. For example, the pushforward of the structure sheaf from A1 to a point

is C[t].

We will focus on the case Y = pt (in which case X is projective and the derived

pushforward is sheaf cohomology). For the proof we will need the following.
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Exercise 3.8. If F is a coherent sheaf on X and we embed X as a closed subspace

of Pn, then there is a short exact sequence

0→ K → OPn(m)⊕I → F → 0 (46)

where K is also coherent.

We now return to the proof.

Proof. Consider the long exact sequence associated to the above short exact sequence.

The associated cohomologies vanish in sufficiently large degrees and by induction we

can get finite-dimensionality.

Definition Let F be a coherent sheaf on a projective variety X. Its Euler charac-

teristic is

χ(X;F ) =
∑

(−1)i dimH i(X;F ). (47)

Proposition 3.9. (Vaguely speaking) Let XU → Pn × U be a U-family of projective

varieties. Then χ(Xu;OXu) is locally constant for u ∈ U .

Somewhat more precisely, suppose that X is a projective variety cut out by equa-

tions f1, ...fk of degrees m1, ...mk. Then we can write a short exact sequence

0→
k⊕
i=1

OPn(mi)→ OPn → OX → 0. (48)

Varying X in a family Xu means letting the fi vary algebraically depending on

u ∈ U .

Example Consider the family of elliptic curves given by the projective closures of

y2 = x3 + ax+ b. Here U = A2 with coordinates a, b.

Proof. The Euler characteristic is additive in short exact sequences, hence

χ(Pn) = χ(OXu) + χ(
⊕
OPn(mi)). (49)
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The Riemann-Roch theorem is the special case of Hirzebruch-Riemann-Roch for

curves, which is in turn the special case of Grothendieck-Riemann-Roch for maps to

a point. All of these theorems involve calculating Euler characteristics.

Let C be a smooth projective curve of genus g and let L be a line bundle over C.

Theorem 3.10. (Riemann-Roch) χ(C;L) = dimH0(C;L)−dimH1(C;L) = 1− g+

deg(L).

Here if L = OC(D) for a divisor D then deg(L) = deg(D). More invariantly,

deg(L) is the first Chern class c1(L). The genus g may be interpreted as dimH1(C;OC),

but it is also the topological genus of C.

Roughly speaking the LHS is algebraic and the RHS is topological.

Proof. We will reduce to the case that L = OC . The claim is that this formula is

true for L = OC(D) if and only if it’s true for L = OC(D + p) where p is a point.

Consider the short exact sequence

0→ OC(D)→ OC(D + p)→ Cp → 0. (50)

Taking Euler characteristics gives

χ(C,OC(D + p)) = χ(C,OC(D)) + 1. (51)

This gives

χ(C,OC(D)) = χ(C,OC) + deg(D) (52)

where χ(C,OC) = 1− dimH1(C;OC) as desired.

We now want to show that χ(C,OC) is in fact 1−g where g is the topological genus.

For example, if E is an elliptic curve, it can be described as a degree-3 hypersurface

in P2, giving a short exact sequence

0→ OP2(−3)→ OP2 → OE → 0. (53)

The Euler characteristics are 1, 1, 0 by additivity.

In general, we claim that a genus-g algebraic curve C can be degenerated (by

moving around equations defining it suitably) into a singular curve Csing with g sin-

gularities. It has a normalization which is just P1 = C̃sing. We have

21



χ(C;OC) = χ(Csing;OCsing
(54)

so it suffices to compute the latter. If π : P1 → Csing is the normalization map, we

have a short exact sequence

0→ OCsing
→ π∗OP1 →

g⊕
i=1

Cpi → 0 (55)

where the pi are the nodes. (The second map here reflects the fact that Csing is

obtained from P1 by gluing g pairs of points together, and while a function on P1 may

have different values on these pairs, a function on Csing must have the same value.)

Taking Euler characteristics, the result follows.

Exercise 3.11. Compute the Cech cohomology of the structure sheaf of Csing.

4 dg-categories

We’ve assigned to a complex varietyX its category QCoh(X) of quasicoherent sheaves.

In this category there’s a subcategory Coh(X) of coherent sheaves and a further sub-

category Vect(X) of vector bundles. If f : X → Y is a morphism, we’ve defined

an adjunction (f ∗, f∗) on quasicoherent sheaves, and we’ve also defined their derived

functors Lf ∗, Rf∗. The cohomologies Lif ∗ and Rif∗ take quasicoherent sheaves to

quasicoherent sheaves.

If f is Tor-finite (e.g. smooth; roughly speaking this means that fibers are smooth,

and precisely it refers to the relative cotangent bundle having the expected dimension;

the analogue in differential geometry is a fibration with smooth fibers) then Lif ∗

vanishes for large i and takes coherent sheaves to coherent sheaves. If f is proper

(e.g. projective) then Rif ∗ has the same property.

Example Let X = pt and let Y = {(x, y) ∈ A2 : xy = 0}. Let f : X → Y be the

inclusion of the origin. We want to compute Lf ∗(C(0,0)). Let R = C[x, y]/(xy) (so

that Y = Spec R). We can write down a free resolution of the form

· · · → R2 → R2 → R2 → R→ C(0,0) (56)

where the differentials alternate between sending (1, 0) to (x, 0) and (0, 1) to (0, y)

and sending (1, 0) to (y, 0) and (0, 1) to (0, x), the second differential sends (1, 0) to
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x and (0, 1) to y, and the first differential sends 1 to 1. Applying f ∗ to the resolution

gives

· · · → C2 → C2 → C2 → C (57)

where all of the maps are zero. Hence f is not Tor-finite and Lif ∗ does not vanish

in high degrees.

Example Let f : A1 → pt be the unique map. Then Rf∗(OA1) = C[t] in degree 0,

which is not coherent over pt.

We want a better way to organize derived functors. If f : X → Y is a nice map,

we would like to define categories Dcoh(X) so that the left and right derived functors

are adjoint functors Lf ∗ : Dcoh(Y )→ Dcoh(X) and Rf∗ : Dcoh(X)→ Dcoh(Y ). These

are going to be derived categories, and we would like to understand what they capture

about varieties. (This is a higher version of assigning to X the functions on X, which

can be pulled back and can occasionally be pushed forward.) If X has a reasonable

canonical bundle, it turns out to be possible to recover X from Dcoh(X).

Instead of working with derived categories, though, we are going to pass directly

to dg-categories.

Definition A differential graded category (over C), or dg-category, is a category C

enriched over the category Ch(C-Mod) of chain complexes of complex vector spaces.

In particular, for every x, y ∈ C there are complex vector spaces Homi(x, y) and dif-

ferentials d : Homi(x, y)→ Homi+1(x, y) with d2 = 0, and composition is a morphism

◦ : Hom(x, y)⊗ Hom(y, z)→ Hom(x, z) (58)

where ⊗ is the tensor product of chain complexes. A dg-functor between dg-

categories F : C → D is a Ch(C-Mod)-enriched functor.

Definition The homotopy category H(C) of a dg-category is the C-linear category

whose objects are the objects of C and whose morphisms are given by

HomH(C)(x, y) = H0(Hom(x, y)). (59)
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Similarly we can define the graded homotopy category H•(C) which keeps track

of all the cohomologies.

There is an obvious notion of equivalence of dg-categories which is not the one we

will use.

Definition A dg-functor F : C → D is a (weak) equivalence if H(F ) : H(C) →
H(D) is an equivalence and H•(F ) : H•(C) → H•(D) is an isomorphism on mor-

phisms (equivalently, H•(F ) is an equivalence).

Example A dg-category with one object is a dg-algebra. The endomorphism algebra

of any object in a dg-category is a dg-algebra. If M is a smooth manifold, the de

Rham complex Ω•(M) is naturally a dg-algebra.

Example If C is a dg-category, the opposite category Cop is also a dg-category. (This

requires that we know that chain complexes have a symmetric monoidal structure.)

Specialized to dg-algebras, we get the notion of the opposite algebra of a dg-algebra.

Exercise 4.1. Let C be a dg-category. The dg-category of dg-functors F : C →
Ch(C-Mod) is the dg-category of left dg-modules over C, and for Cop we get right dg-

modules. The dg-category structure comes from the fact that Ch(C-Mod) is enriched

over itself. This specializes to the intuitive notion of module when C has one object.

Definition The Yoneda embedding is the embedding

C 3 x 7→ Hom(−, x) ∈ Mod-C. (60)

It is fully faithful.

For a dg-algebra A, this embeds A into the category of right A-modules as the

automorphism dg-algebra of the right module AA. This is a form of Cayley’s theorem.

Among all dg-categories, categories of chain complexes have the following special

properties:

1. We can consider direct sums and take direct summands.

2. We can shift chain complexes C 7→ C[k], where C[k]n = Cn+k and d[k] =

(−1)kd.

24



3. We can take cones. If f : C → D is a morphism, the cone cone(f) is a complex

with components cone(f)n = Cn+1 ⊕ Dn and differential built from f and the

differentials of C and D. There is a natural inclusion D → cone(f) and a

natural projection cone(f)→ C[1]; these fit into a triangle.

Definition The triangulated hull or stabilization Cst of a dg-category C is obtained

from the image of the Yoneda embedding of C by adding finite direct sums, direct

summands, and cones (which includes shifts).

Definition A dg-category C is (pre)triangulated or stable if the embedding C → Cst

is an equivalence.

Exercise 4.2. There is a dg-category Ccone such that a dg-functor Ccone → C is the

same thing as a triangle in C.

Ccone has three objects X, Y, Z where Hom(X,X),Hom(Y, Y ) are C in degree 0

and Hom(Z,Z) is C ⊕ C in degree 0 and C in degree 1 with surjective differential.

Hom(X, Y ) is C in degree 1 and Hom(Y,X) is zero. Hom(Y, Z) and Hom(Z,X)

are C in degree 0. Hom(Z, Y ) and Hom(X,Z) is C in degrees 0 and 1 with iden-

tity differential. The graded homotopy category of this category has no interesting

compositions.

4.1 Chain complexes

Chain complexes are important; sometimes it does not suffice only to consider their

homology.

Example Consider two circles S1
a, S

1
b in S3. We cannot detect whether they are

linked using only the induced maps on homology. Nevertheless, there is an interesting

map H1(S1
a) ⊗ H1(S1

b ) → H0(S3) which detects linkedness, and we need to look at

chains instead of homology to see it. First consider chains C•(S
3) on S3. The circle

S1
a is trivial, but it is trivial for a reason; it is the boundary of some Da ∈ C2(S3).

This is not a homology class. We can now form the intersection Da ∩ S1
b ∈ C0(S3);

this is a Massey product m(γa ⊗ γb).

Example Consider S1 acting on S3 via the Hopf action (induced from the action of

C× on C2). This is a free action with quotient S2. How nontrivial is this action? We
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can look at the induced map H•(S
1) ⊗H•(S3) → H•(S

3) and it turns out that this

map is not interesting. We can instead look at an action

m1 : H1(S1)⊗ C•(S3)→ C•(S
3) (61)

on chains. Considering a point pt ∈ C0(S3), we get a circle m1(pt) ∈ C1(S3) which

bounds a disk D ∈ C2(S3). Note that D was not available in homology. Now we can

considerm1(D) ∈ C3(S3); this corresponds to filling up the 3-sphere with a solid torus,

and this is nontrivial. This gives us a secondary operation m3 : H0(S3) → H3(S3).

(In general operations like m3 are only defined on the kernel of operations like m1.)

Operations like this can also fall out of looking at spectral sequences.

4.2 Cones

In the theory of triangulated categories there is some extra structure that needs to be

attached to talk about triangles and cones. In the dg-category picture we can do this

more directly. There are two dg-categories Calg
cone and Ctop

cone which are equivalent and

both of which universally describe cones. These categories should have three objects

x, y, z with maps f : x → y, g : y → z, h : z → x where h has degree 1, and all

non-identity compositions are zero in homology. Starting from this data, we should

freely add morphisms F : y → x,G : z → y,H : x → z where H has degree −1. In

addition, we impose relations

df = 0, dg = 0, dh = 0 (62)

and

dH = g ◦ f, dG = f ◦ h, dF = h ◦ g. (63)

This situation has some nontrivial Massey products which we will set to zero by

setting

idx = F ◦ f − h ◦H, idY = G ◦ g − f ◦ F, idz = H ◦ h− g ◦G. (64)

(If we hadn’t done this, then after passing to homology we would get extra endo-

morphisms of x, y, z.) This defines Calg
cone. Roughly speaking what we did above was

identify two different reasons why compositions like h ◦ g ◦ f are zero after passing to
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homology.

Exercise 4.3. A dg-functor from Calg
cone to a dg-category C is the same thing as a

cone in C.

Ctop
cone is a full dg-subcategory of the category of sheaves of chain complexes on R.

x will be the sheaf of cochains on [0,∞), y will be the sheaf of cochains on (−∞,∞),

and z will be the sheaf of cochains on (−∞, 0).

4.3 Localization

Let C be a dg-category and N a full subcategory. We want to construct a quotient

dg-category C/N with the universal property that every object in N is sent to the

zero object.

Drinfeld’s construction of the quotient D has the same objects as C. The mor-

phisms are the same as in C except that we freely add morphisms εx of every object

x ∈ N of degree −1 such that dεx = idx.

Example Let C have one object x with endomorphisms CidX and let N = C. Then

C/N has one object x with endomorphisms Cεnx in degree−n. Furthermore, d(εn) = 0

for all n ≥ 2, so the cohomology of End(x) is trivial and C is (weakly) equivalent to

the zero category.

Definition Let A be a dg-algebra. In the module category Mod-A of A, consider

the subcategory N of acyclic modules. The unbounded derived category D(A) is the

quotient of Mod-A by N .

Exercise 4.4. The natural inclusions of both complexes of projective modules and

complexes of injective modules into D(A) are equivalences.

Remark Let C be the one-object dg-category associated to A. The stabilization Cst

sits as a fully faithful subcategory of D(A). Its image is sometimes called the category

Perf(A) of perfect complexes over A.

Lemma 4.5. Quotienting by acyclic modules is equivalent to inverting quasi-isomorphisms.
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Proof. One direction is clear (consider the unique map from an acyclic complex to the

zero complex). In the other direction, suppose f : X → Y is a quasi-isomorphism.

Then cone(f) is acyclic. If it is killed via an endomorphism εcone(f) of degree −1, then

the composition

Y → cone(f)
ε−→ cone(f)→ X (65)

(where the middle morphism has degree −1 but the right morphism has degree

+1) is an inverse to f in the derived category.

4.4 Application to algebraic geometry

Let X be a complex variety.

Definition The derived category of quasicoherent sheaves DQCoh(X) on X is the quo-

tient of the dg-category of complexes of quasicoherent sheaves by the acyclic sheaves.

Similarly, DCoh(X) is the quotient of hte dg-category of complexes of quasicoherent

sheaves with (bounded) coherent cohomology sheaves by the acyclic sheaves.

Exercise 4.6. DCoh(X) is equivalent to the quotient of the dg-category of bounded

complexes of coherent sheaves by the acyclic sheaves.

The original motivation for this definition is that if f : X → Y is a nice map, we

want to think about pushforward and pullback of quasicoherent sheaves, but these are

not exact functors. Passing to the left and right derived functors, which are naturally

defined on the derived categories, fixes this.

The new motivation for this definition is that DCoh(X) is easier to deal with than

Coh(X). If X is affine, then Coh(X) is the category of finitely-generated modules

over O(X), so is straightforward to deal with. If X is projective, then DCoh(X) is

also straightforward to deal with in this sense.

Example Let X = P1. The category Coh(P1) of coherent sheaves is complicated; it

consists of direct sums of vector bundles adn torsion sheaves (e.g. Jordan sheaves).

The derived category is substantially simpler; it is the category of perfect complexes

over the Kronecker quiver, or equivalently over the triangular ring

A =

[
C 0

C2 C

]
. (66)
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The derived category of coherent sheaves is a strong invariant and can be calcu-

lated; today we will calculate it for Pn. The ordinary category of coherent sheaves can

be recovered with additional structure (a t-structure), but many interesting equiva-

lences relating to other mathematics do not respect this structure.

What does it mean to calculate a derived category C? Our goal will be to find a

dg-algebra A such that C is equivalent to Perf(A). (A is not unique.)

Definition Let C ∼= Cst be a (pre)triangulated or stable category. An object c ∈ C
is a (strong, triangulated) generator if the natural inclusion from the stabilization of

the one-object full subcategory on c is an equivalence.

Proposition 4.7. Let C be stable and let c ∈ C be a strong generator. Let A =

Hom(c, c). Then the Yoneda map

C 3 d 7→ Hom(c, d) ∈ Perf(A) (67)

is an equivalence.

Proof. Resolve d by shifts and summands of c.

Exercise 4.8. Find an A with the above property for an elliptic curve.

Proposition 4.9. c = O(−1)⊕O ∈ DCoh(P1) is a strong generator.

The dg-algebra we want is therefore A = End(c). This is the triangular ring[
C 0

C2 C

]
(68)

because there are no morphisms O → O(−1) in the derived category but there

are two linearly independent morphisms O(−1) → O. This is the path algebra over

the Kronecker quiver •⇒ •.

Proof. Recall that Coh(P1) consists of direct sums of vector bundles, which we under-

stand by Grothendieck’s theorem, and torsion sheaves (direct sums of Jordan sheaves).

It suffices to show that all coherent sheaves are complexes of O ⊕ O(−1) and their

shifts. (Given a complex with bounded coherent cohomology, we can truncate it,

which gives a quasi-isomorphic complex that is bounded below. We can then start

resolving its cohomology one piece at a time.) First, we have a resolution
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O(−1)
f−→ O → Cpt (69)

giving us the structure sheaf of a point. Any torsion sheaf is obtained by a sequence

of extensions of such structure sheaves, so we can obtain any torsion sheaf.

It now suffices to show that we can obtain any line bundle. Tensoring the above

resolution by O(k) gives

O(k − 1)→ O(k)→ Cpt. (70)

A pair of inductions gives us every line bundle as desired.

Theorem 4.10. c = O ⊕O(−1)⊕ ...⊕O(−n) ∈ DCoh(Pn) is a strong generator.

A = End(c) is again a triangular ring. It is the path algebra of an acyclic quiver

with n+ 1 vertices.

Proof. We will give three versions of the proof.

Version 1: this story is local and takes place on An (Koszul resolution). Suppose we

want to resolve Cx by a complex of vector bundles. There is a surjection OAn → Cx.

The kernel can be generated by n elements, but writing down a surjection from n

copies of OAn is not very invariant. A better way to write this is OAn ⊗ Ω1
x (where

Ω1
x is 1-forms at x). This extends to a resolution

Cx ← OAn ← OAn ⊗ Ω1
x ← ...← OAn ⊗ Ωn

x. (71)

(The fact that this resolution is finite is equivalent to the statement that 0 is

smooth. This is the Auslander-Buchsbaum theorem.)

Version 2: we want to resolve a skyscraper Cx on Pn. Our first step is to write

down an epimorphism OPn → Cx. The next step is to write down an epimorphism

from OPn(−1)⊗ Ω1
x, and similar to the above we get a resolution

Cx ← OPn ← OPn(−1)⊗ Ω1
x ← ...← OPn(−n)⊗ Ωn

x. (72)

This is not the end of the story because there are more objects running around

than torsion sheaves and vector bundles.
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4.5 Integral transforms

We can think of sheaves as categorified functions. There are many interesting oper-

ations in analysis available on functions, e.g. pullback, multiplication, integration...

putting these operations together, we can define integral transforms

ΦK(f)(y) =

∫
X

f(x)K(x, y)x (73)

where K(x, y) is a function on a product space X × Y , f is a function on X, and

the integral transform is a function on y. The Fourier transform arises in this way.

We will categorify this formalism.

Let X, Y be nice varieties and consider the diagram

X
pX←− X × Y pY−→ Y. (74)

Given a kernel K ∈ DQCoh(X × Y ), we get an integral transform functor

DQCoh(X) 3M 7→ ΦK(M) = R(pY )∗
(
Lp∗X(M)⊗L K

)
∈ DQCoh(Y ) (75)

(so derived pullback, derived tensor product, then derived pushforward, which

categorifies the analytic picture). We can think of Φ as a functor in K, hence a

functor

Φ : DQCoh(X × Y )→ Functcont (DQCoh(X), DQCoh(Y )) (76)

where the RHS is continuous (direct-sum-preserving) dg-functors. This is an

equivalence. In other words, reasonable functors between derived categories can be

described using integral kernels. If X, Y are smooth and proper, we can replace quasi-

coherent with coherent everywhere above. Hence to write down derived equivalences

it suffices to write down suitable kernels.

Example Let f : X → Y be a map. To it we can associate functors Lf ∗ and

Rf∗ which ought to be representable by integral kernels. These turn out to both

correspond to the structure sheaf of the graph Γf of f in X × Y (alternately, Γf :

X → X × Y is a morphism and we want to take the derived pushforward of the

structure sheaf along this map).

Example Given F ∈ DCoh(X), we get a functor −⊗LF : DCoh(X)→ DCoh(X). The
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corresponding integral kernel is the (derived?) pushforward of F along the diagonal

embedding ∆ : X → X ×X.

Example Let K = K1 � K2 where K1 is a kernel on X and K2 is a kernel on Y .

Then it turns out that

ΦK(M) = K2 ⊗L
(
RΓ(K1 ⊗LM)

)
. (77)

This is a kind of projection.

We return to the third version of the proof above, which is due to Beilinson; the

resolution we will construct is called the Beilinson resolution. We have a resolution

of the skyscraper sheaves Cx. We would now like to vary x across the diagonal

∆ ⊂ Pn × Pn. This globalizes the above resolution to a resolution

O∆ ← OPn×Pn ← OPn(−1) � Ω1
Pn ← ...← OPn(−n) � Ωn

Pn (78)

(where by F1 � F2 we mean (Lp∗1F1)⊗L (Lp∗2F2)).

Let X, Y be nice varieties. Given a quasicoherent sheaf K ∈ DQCoh(X × Y ), we

get an integral transform as above. If K = O∆, then ΦK is the identity functor. But

we now have an interesting resolution of O∆, which gives us an interesting resolution

of the identity functor. We conclude that

M ∼= ΦO∆
(M) ∼= ΦB•(M) (79)

where B• is the resolution above. Applying ΦB• and keeping the above example

about integral kernels of the form F1 � F2 in mind, we conclude that M lies in the

stabilization of the full subcategory on O, ...O(−n) as desired.

Let V be a finite-dimensional real vector space equipped with a volume form. The

Fourier transform furnishes an isomorphism between functions on V and functions on

V ∗ given by

f̂(λ) =

∫
V

f(v)eiλ(v) dv. (80)

The Fourier transform is nontrivial; it sends delta functions to exponentials and

vice versa.

The Fourier-Mukai transform generalizes this to derived categories of abelian va-

rieties: for an elliptic curve E, it furnishes an integral transform
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ΦP : DCoh(E)→ DCoh(E∨) (81)

where E∨ is the dual abelian variety; here it can be thought of as Pic0(E), and

it is isomorphic to E. The integral kernel P ∈ DCoh(E × E∨) will be the universal

(tautological, Poincaré) line bundle defined as follows: a point in E∨ is a line bundle

L, and the restriction of P to points with coordinate L is L.

Theorem 4.11. ΦP is an equivalence. More precisely,

ΦP ◦ ΦP∨
∼= (−1)∗[− dimE]. (82)

(where −1 is the negation map E → E and [− dimE] is a shift.) ΦP takes

convolution to tensor product and takes tensor product to convolution shifted by 1.

(Convolution is given by taking the external product of two sheaves and pushing it

forward under the addition map.)

Proof. We want to compute a composition of integral transforms X → Y → Z.

Starting with a kernel KXY on X × Y and a kernel KY Z , the kernel describing the

composite is given by pulling back KXY and KY Z to X×Y ×Z, tensoring them, and

pushing it forward to X × Z. In symbols,

KXY ◦KY Z = Rp∗(Lf
∗KXY ⊗L Lg∗KY Z) (83)

where f : X × Y × Z → X × Y and g : X × Y × Z → Y × Z are the projections.

We want to compute F = P ◦P∨. This is an integral kernel on E∨×E∨ which is

the pushforward of some F̃ on E∨ × E × E∨. The sheaf F̃ is the line bundle whose

restrictions to the subspace with coordinates (L1,−, L2) is the tensor product L1⊗L2.

The claim now is that F = Rp∗(F̃ ) is OΓ−1 [−1] (the structure sheaf of the graph

of the −1 map, shifted by −1). Roughly speaking this is because a generic line

bundle on E of degree 0 has no global sections; indeed, by Riemann-Roch, the Euler

characteristic of a line bundle of degree 0 is 1 − 1 + 0 = 0, hence H0 is nontrivial

iff H1 is nontrivial. Hence L1 ⊗ L2 has global sections precisely when L2
∼= L∗1, and

taking duals of line bundles is the −1 map on E∨.

So far we’ve argued that F must be supported on the graph Γ−1. We can think

of F as a family of chain complexes over E∨ × E∨. Equivalently, we can think of F

as a chain complex of vector bundle terms with differential varying on E∨ × E∨; in
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fact, it has the form C0 d(L1,L2)−−−−−→ C1. The kernel of this map is a vector bundle, hence

is non-empty iff it is non-empty generically. Since it vanishes generically, it vanishes

on Γ−1.

(To be continued...)

4.6 Fourier-Mukai and flops

Today’s theme will be base change for varieties. Consider a diagram of the form

X ×Y Y ′

f ′

��

g′
// X

f
��

Y ′
g

// Y

(84)

and let F ∈ DQCoh(X). Assume that g is flat, so that OY ′,y′ is flat over OY,y
whenever g(y′) = y. The upshot of this is that Lg∗ = g∗.

Theorem 4.12. With setup as above, there is a natural isomorphism of functors

g∗Rf∗ ∼= Rf ′∗g
′ : DQCoh(X)→ DQCoh(Y

′). (85)

Proof. We work locally on Y, Y ′. Assume Y = Spec A, Y ′ = Spec A′. Then one of

these functors is RΓ(X,F )⊗A A′ and the other is

RΓ(X ×Y Y ′, g∗F ) ∼= RΓ(X ×Y Y ′, F ⊗A A′). (86)

Flatness implies that RΓ commutes with ⊗AA′ and the conclusion follows.

Alternately, we may assume that F is flat over Y in the sense that Fx is flat over

OY,y whenever f(x) = y.

Earlier we reduced the proof that the Fourier-Mukai transform is an equivalence

to the claim that Rp∗(F̃ ) ∼= OΓ−1 [−1]. Now, we have

Rp∗(F̃ )|(x,y)
∼= RΓ(E,Lx ⊗ Ly). (87)

If i denotes the inclusion of (x, y) into E∨ × E∨, then by base change we have

Li∗Rp∗(F̃0 ∼= RΓ(E,Lx ⊗ Ly) (88)
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which vanishes unless Lx ∼= L−1
y , from which it follows that the stalks of Rp∗(F̃ )

vanish off of Γ−1. On Γ−1 we must have Rp∗(F̃ ) ∼= OΓ−1 [−1] by a straightforward

computation.

(Something about flop equivalences.)

We also have the following reconstruction theorem: suppose X is a smooth pro-

jective variety such that ωX is ample. Then if DCoh(X) ∼= DCoh(Y ), then X ∼= Y .

4.7 Serre duality

Let X be a smooth proper variety of dimension n with canonical bundle Ωn
X . Let

ωX = ΩnX[n].

Theorem 4.13. (Serre duality) Let F ∈ DCoh(X). Then

H i(X;F ) ∼= Hn−i(X;F ∗ ∼= Ωn
X)∗. (89)

For example, setting X = P1 and F = O(n) this explains the relationship we saw

between H0 and H1 of line bundles. Serre duality can also be stated

H i(X,F ) ∼= H−i(X;F ∗ ⊗ ωX)∗. (90)

A special case, roughly speaking, is the isomorphism Hom(V,W ) ∼= V ∗ ⊗W for

V,W finite-dimensional vector spaces. In fact, Serre duality can also be stated in a

form like this. First, define

HomDCoh(X)
(V,W ) ∼= RΓ(X; Hom(V,W )). (91)

Then Serre duality implies and is equivalent to the claim that

HomDCoh(X)(V,W ) ∼= HomDCoh(X)(W,V ⊗ ωX)∗. (92)

This suggests the following definition.

Definition Let C be a (Hom-finite) dg-category. A Serre functor is a functor S :

C → C such that there is a natural isomorphism

Hom(x, y) ∼= Hom(y, S(x))∗. (93)
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So Serre duality is the claim that −⊗ ωX is a Serre functor.

Let f : X → pt be the unique map. Then

HomDCoh(pt)(Rf∗F, V ) ∼= (Rf∗F )∗ ⊗ V ∼= Rf∗(F ⊗W )⊗ V (94)

by Serre duality. This is in turn just HomDCoh(X)(F, ωX⊗V ). We can write ωX⊗−
as a functor f !, and then this is an adjunction.

Theorem 4.14. (Grothendieck-Serre duality) There is an adjunction (f∗, f
!) where

f : X → Y is smooth and proper. More specifically,

f ! : M 7→ (Lf ∗M)⊗ ωX/Y (95)

where ωX/Y is the relative canonical bundle.

4.8 The final project

The final project will be a research proposal. It should begin with some background

on something you’re interested in (e.g. Serre duality). It should continue with a

question or a conjecture. At the end, it should take some first steps (e.g. calculations).

Alternatively, the final project would be a ten-minute presentation. This should

happen on May 9th or so.

4.9 Analogy to Poincaré duality

Serre duality is analogous to Poincaré duality. The analogy proceeds as follows:

Smooth projective variety Smooth compact manifold

The structure sheaf OX The sheaf of locally constant functions CM

The derived category of coherent sheaves The derived category of local systems

Let X be a nice space. The fundamental groupoid Π1(X) has objects the elements

of X and morphisms the homotopy classes of paths between points of X. Isomorphism

classes correspond to path components. A local system on X is a functor Π1(X) →
FinVect. A local system may be presented as a locally constant sheaf, and then by

the derived category of local systems we mean the derived category of CM -modules

whose cohomologies are bounded and locally constant sheaves.
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Example Let M = S1. Then a local system on M is precisely a vector space

equipped with an automorphism. The derived category here is the obvious thing,

namely every object is isomorphic to a complex of local systems.

Example Let M = S2 and let h : S3 → S2 be the Hopf fibration. Then the derived

pushforward Rh∗CS3 is not a complex of local systems.

The cohomology H•(M ;L) of a manifold with values in a local system is the

derived pushforward of L to a point, as in the algebraic setting. There is also a more

classical picture. Take some topological space. We can think about 0-chains as dots

with numbers attached to them and 1-chains as oriented line segments with numbers

attached to them, and so forth. Instead of assigning numbers, we can think about

assigning elements of a local system.

Poincaré duality says that

H i(M ;L)∗ ∼= Hn−i(M,L∗ ⊗ orM) (96)

where orM is the orientation local system assigning to every point in the manifold

the (one-dimensional) vector space of orientations at that point. Equivalently, there

is a dualizing complex ωM = orM [n].

Poincaré duality is usually stated in terms of homology; here is the relationship.

Recall that cochains C•(Z) is the dual of chains C−•(Z). In fact there is a cap product

Ca(Z)⊗ C−b(Z)→ C−b−a(Z) (97)

and pushing forward C−b−a(Z)→ C−b−a(pt) gives the dual pairing. The local pic-

ture pairs sheaves of cochains and cosheaves of chains to get cosheaves of chains. We

like sheaves, so instead of cosheaves we can work with sheaves of Borel-Moore chains.

Borel-Moore chains on Y are the relative chains on the one-point compactification of

Y relative to infinity.

If Z is compact, then Borel-Moore chains are just chains. (This is interesting

because we are in some sense identifying a limit and a colimit.) If Z is smooth, then

Borel-Moore chains can be identified with orZ [dimZ]. This observation is in some

sense Poincaré duality.
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4.10 Dualizing complexes

Previously we showed that the (derived?) pushforward f∗ : DQCoh(X) → DQCoh(Y )

admits a right adjoint f !. If X is a variety and Y a point, then ωX = f !Cpt is a

dualizing complex for X (in that it manifests Serre duality for X).

Example If X = Pn, then ωX = Ωn
Pn [n] ∼= OPn(−n− 1)[n].

Theorem 4.15. Let X ⊂ Pn be a hypersurface of degree d. Then ωX ∼= OX(−n −
1 + d)[n− 1].

If X is smooth, we have ωX ∼= ΩdimX
X [dimX]. If X is not smooth, then ωX will

be more complicated. Roughly speaking we have the following set of analogies.

Smooth proper variety, ωX ∼= ΩdimX
X [dimX] Smooth compact manifold

Gorenstein, ωX is a line bundle shifted by dimX Topological manifold

Cohen-Macaulay, ωX is a sheaf shifted by dimX Locally a cone over a wedge of spheres

General case, ωX is a complex General case

Research problem: homology is right adjoint to cohomology in this class. ωX
independent of adjunction?

Example Let R = C[x]/x2 and let X = Spec R. X is Gorenstein. There is an

adjunction (f∗, f
!) between R-modules and C-modules defined by taking

f !(V ) = HomC(R, V ) ∼= R∗ ⊗C V ∼= R⊗C V. (98)

So in this case the dualizing complex is ωX ∼= R.

Example Let X be a cuspidal P1. Functions on X can be identified with the ring

C[t2, t3]. Check that

H•(X,OX(n)) ∼= H1−•(X,OX(−n)⊗OX
ωX)∗ (99)

where ωX ∼= OX [1].
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5 Reconstruction theorems

Theorem 5.1. (Bondal-Orlov) Let X be a smooth irreducible projective variety with

either ample or anti-ample canonical bundle. If DCoh(X) ∼= DCoh(X
′) then X ∼= X ′.

To prove this theorem we will need the following.

Definition Let C be a dg-category with a Serre functor S : C → C. An object

P ∈ C is a point object of codimension s if the following conditions hold:

1. SP ∼= P [s].

2. Hom<0(P, P ) ∼= 0.

3. Hom0(P, P ) ∼= C.

The structure sheaf of a point is a point-object of codimension dimX.

Proposition 5.2. Let C = DCoh(X) and let X be a smooth irreducible projective

variety with Ωn
X ample or anti-ample. then P ∈ DCoh(X) is a point object iff it has

the form Ox[k] for x ∈ X (in particular it has codimension n).

Definition Let C be a dg-category. L ∈ C is invertible if for any point object P ∈ C
there exists s ∈ Z such that

1. Homs(L, P ) ∼= C

2. Homi(L, P ) ∼= 0 for i 6= s.

Proposition 5.3. Let C = DCoh(X) and assume that point objects have the form

Ox[s]. Then L ∈ C is invertible iff it is a shift of a line bundle.

Proof. One direction is an exercise. In the other direction, look at the top cohomology

sheaf Htop(L). Then for x in the support of Htop(L) we have

Hom0(Htop(L),Ox) ∼= C (100)

and

Hom1(Htop(L),Ox) = 0. (101)

This follows from the invertibility of L. It follows that Htop(L) is locally free and

rank 1. Similarly we see that Htop−i(L) = 0 for i > 0.
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We now prove Bondal-Orlov. With C = DCoh(X), C ′ = DCoh(X ′), let PC , PC′ , PX , PX′

denote the sets of point objects in C,C ′, X,X ′ respectively. We know that PX ⊆ PC
and PX′ ⊆ PC′ . We also know that PC ∼= PC′ .

Step 1: We show that PX′ = PC′ . Suppose P is a point object in PC not in PX′ .

Then P = Ox[k] for some x ∈ X, but there are no nonzero homomorphisms between

P and Ox′ for any x′ ∈ X ′. But then P ∼= 0 since it has no stalks. We conclude that

X,X ′ have the same points up to shift.

Step 2: Applying the proposition, we conclude that X,X ′ have the same line

bundles up to shift.

Step 3: Fix L0 ∈ C which is invertible, shifted so that it is a line bundle on X ′.

Consider

pC = {p ∈ PC : Hom(L0, P ) = C} (102)

(without a shift). This can be identified with both the points of X (unshifted)

and the points of X ′ (unshifted).

Step 4: We want to produce the Zariski topology. Define

`C = `X = `X′ = {L ∈ LC : Hom(L, P ) = C∀p ∈ pC}. (103)

For L1, L2 ∈ `C take α ∈ Hom(L1, L2). It induces a map α∗P : Hom(L2, P ) →
Hom(L1, P ). The Zariski topology can be recovered by looking at those P such that

α∗P 6= 0.

Step 5: We want to find an embedding into projective space. Construct the

graded algebras

A =
⊕
i

HomC(L0, L0 ⊗ (Ωn
X)i) (104)

A′ =
⊕
i

HomC′(L0, L0 ⊗ Li) (105)
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where L is the line bundle such that −⊗L is the Serre functor. The Proj of these

graded algebras should give us the original varieties. We need to know that Ωn
X′ is

also ample.

6 Borel-Weil-Bott

The irreducible (finite-dimensional) representations of SL2(C) are in bijection with

the non-negative integers. They are given by Vn = Sn(C2), or equivalently the space

of homogeneous polynomials of degree n in two variables.

Exercise 6.1. Compute Vn ⊗ Vm.

Exercise 6.2. The representations Vn are all self-dual. Describe nondegenerate pair-

ings Vn × Vn → C.

The Borel-Weil-Bott theorem, among other things, lets us write down irreducible

representations systematically for reductive affine algebraic groups. Borel-Weil tells

us the following. Given a non-negative integer n we can associate to it the line bundle

O(n) on P1. These are in fact equivariant line bundles.

Definition Let X be a variety and let G be an affine algebraic group acting on X.

A sheaf F is equivariant if the pullback of F along either the projection or action

maps G × X → X are isomorphic and moreover, if α denotes this isomorphism, it

should be compatible with the commutative diagram

G×G×X
idG×a
��

m×p
// G×X

a
��

G×X a // X

. (106)

Exercise 6.3. There exists a unique SL2(C)-equivariant structure on O(n).

It follows that SL2(C) acts on global sections Γ(P1,O(n)). The Borel-Weil theorem

in this case says that this representation is Vn. Borel-Weil-Bott tells you that Vn is

also H1(P1,O(−n− 2)).

The generalization to SLn+1(C) is as follows. We should think of representations

as being parameterized by Nn ∼= Zn/Sn+1 where the action of Sn+1 comes from the

action of Zn+1 (but we take the subgroup of vectors summing to zero). We will assign
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to the vector in Nn with ith coordinate 1 and other coordinates 0 the ith exterior

power Λi(Cn+1) of the defining representation.

Let B be the Borel subgroup of upper triangular matrices in SLn+1(C). The

quotient X = SLn+1(C)/B is called a flag variety. It parameterizes complete flags

(nested sequences of subspaces) in Cn+1. This is a (smooth projective) variety because

it embeds into a product of Grassmannians and is cut out by certain equations, the

Plücker relations.

Exercise 6.4. SLn+1-equivariant line bundles on X are naturally in bijection with

Zn.

If λ ∈ Zn then we will denote the corresponding line bundle by O(λ). Borel-Weil

says that SLn+1(C) acts on H0(X;O(λ)) and that for λ dominant this is an irreducible

representation Vλ. Bott says that O(λ) either has trivial cohomology or cohomology

nontrivial in exactly one degree which gives an irreducible representation.

In general, the Bott picture suggests that we recenter our picture at the square

root of the canonical bundle. Drawing hyperplanes through this bundle we get various

Weyl chambers. Line bundles on the walls of these chambers have no cohomology;

otherwise, the nontrivial cohomology occurs in H i where i is the number of walls

necessary to cross to get to the chamber (and is an irreducible representation).

Let G be an algebraic group and let X be a variety on which G acts transitively.

Lemma 6.5. The category of equivariant coherent sheaves on X is precisely the

category of finite-dimensional representations of a stabilizer subgroup of a point of X.

In particular, G-equivariant line bundles are the same as characters of a stabilizer.

LetG = SLn(C) and let B be the Borel subgroup. ThenG-equivariant line bundles

on the flag variety G/B are the same as characters of B. And characters of B are

easy to understand; any such thing factors through B/U where U is the unipotent

subgroup. We will call this group H. The lattice we have been looking at is the

lattice of characters of H. The trivial bundle corresponds to the trivial character.

Now we need to find the canonical bundle.

First, the tangent bundle, as a representation of B, corresponds to g/b via the

adjoint action. The cotangent bundle corresponds to the dual (g/b)∗, so the canonical

bundle corresponds to Λn((g/b)∗).
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We can identify (g/b)∗ with u via an invariant inner product; for SLn(C) we can

take tr(ab). When n = 3 this representation will be a sum of three characters. Their

top exterior power is their tensor product, and this is the canonical bundle.

When G = SLn(C), and more generally, there is a Weyl group action on the lattice

of characters and we want to recenter it at the square root of the canonical bundle.

The Weyl group is generated by so-called simple reflections, which correspond to

simple roots and to simple P1 fibrations. These are defined as follows when G =

SLn(C). If X is the complete flag variety, for each i there is a map πi : X → Xi

where Xi is a partial flag variety in which we have ignored the ith subspace in a flag.

These are all P1 fibrations. Geometrically we might therefore hope to reduce the

general situation to the case of P1.

The relative canonical bundles of the πi turn out to correspond to the simple

roots. We want to apply relative Serre duality. It will turn out that if we take two

line bundles related by a simple reflection, then they are relatively Serre dual along

πi. Furthermore, we can push them forward along πi and the pushforwards will be

isomorphic up to a shift on Xi. This allows us to reduce Borel-Weil-Bott to the case

of dominant weights.

Remark Where does Borel-Weil-Bott come from, if you’re a representation theorist?

In representation theory we want to construct representations. Usually only the trivial

representation suggests itself. The regular representation is usually too big. The only

other method is induction. Borel-Weil-Bott can be seen in this framework.

First, CohG(pt) (G-equivariant coherent sheaves on a point) can be identified

with G-representations. Induction from K-representations to G-representations (K a

subgroup of G) is some functor CohK(pt)→ CohG(pt). Now, K-equivariant sheaves

can be identified with G-equivariant sheaves on G/K, and now induction should be

a functor CohG(G/K) → CohG(pt), and it should be adjoint to restriction. This

corresponds to pushforward (induction) and pullback (restriction) along the unique

map G/K → pt.

But we don’t have a pushforward of coherent sheaves unless G/K is proper. It’s

natural to try to induct from a maximal torus T , but G/T is not proper. G/B is a

version of G/T which is proper, and B has the same characters as T . So looking at

equivariant coherent sheaves on the flag variety G/B is very natural.
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