
239 Discrete Mathematics for the Life Sciences

Lior Pachter
Notes by Qiaochu Yuan

Spring 2013

1 Introduction

There are 20 (actually 21) amino acids which are coded from a 4-letter alphabet. This

is the largest possible size of a comma-free code on 4 letters, so it was tempting to

conclude that amino acids were coded via a comma-free code. However, this is not

true. In fact, amino acids are coded by multiple 3-letter words (codons); usually 4,

but sometimes 3, 2, or 1 (as in tryptophan). This genetic code is very nearly universal

(there are small variations in a handful of species).

Codons which code for the same amino acid are called synonymous. Synonymous

codons are usually the same in the first 2 letters and differ only in the third; this

seems like it might be useful because mutations in the third letter don’t affect the

resulting amino acid.

Codon explorer (http://bmf.coloradu.edu/codonexplorer/) is a tool for describing

frequencies of codons in various genomes. It returns, among other things, the Codon

Adaptation Index, which roughly speaking describes how close the codons are to being

the most common synonymous codon.

The mystery of the two straight lines is the following. If we measure how frequent

different nucleotides are in different positions in codons, this correlates linearly very

well with GC-content (percentage of bases that are either guanine or cytosine).

How do we fit lines to points in general? One way is the least-squares approxima-

tion. (It is easy to do such things with R.) Least-squares can be done by minimizing

the sum of the squares of the vertical or horizontal distances (if we want to fit lines to

points in a plane). Another is using principal component analysis, which minimizes

perpendicular distances to the data points instead. One way to interpret the PCA

line is that, after projecting all the points onto the line, it maximizes the remaining

variance in the data.

The human genome consists of 2.8 billion sites and there are 6.8 billion humans.

This can be combined into an enormous matrix on which it would then be possible

to perform PCA. Part of this matrix has been collected (for Europeans) and the two

largest principal components have been plotted; the result agrees very well with the

geography of Europe.

Codons not only determine what amino acids are made but how many. This

was tested using a synthetic library of GFP (green fluorescent protein) genes, whose

codons were randomly replaced by synonyms and then let loose to observe how of-

ten the corresponding proteins were produced. It turns out that replacing codons

1

with synonyms determines how RNA molecules (which are single-stranded) fold in on

themselves. Different folding structures have different free energies, and this correlates

to fluorescence (hence how much of the protein is created).

Nucleotides can be modified by a process called methylation, which adds a methyl

group to either cytosine or adenine. It’s known that methylation affects transcrip-

tion and therefore translation rates. Methylated cytosines also occasionally become

thymine.

2 The genome as a random object

Suppose we have a collection of N sequences (of either nucleotides or genes). We

suspect that they may have a subsequence in common of length w, and the problem

is to determine how likely this is. We don’t demand that the subsequences are exactly

the same, but only that they are similar. This is relevant to binding site motifs.

Probabilistically, we will think of a genome as randomly determined by proba-

bilities pi of a nucleotide appearing in a particular position, as well as probabili-

ties qj,A, qj,C , qj,G, qj,T (the position weight matrix or position-specific scoring matrix)

where j indexes positions in the motif. These probabilities determine how likely nu-

cleotides are to appear when the genome switches to expressing the motif. This is a

vaguely reasonable model because, although mutations occur randomly, binding sites

need to continue to exist. (This isn’t a great model but a lot of people use it.)

Weblogo is an online resource for visualizing binding sites. There are columns

of nucleotides for each binding site, and the height of a given letter, say A, is qi,ARi

where Ri = log2 4−(Hi+ei) and where Hi = −
∑
qi,A log2 qi,A is the Shannon entropy

and ei is a correction for small sample size.

We want an algorithm that will learn the pi and the qj,·, which we do as follows

(assuming that we know w). We first choose a random collection of starting positions

ak (where k runs over the N sequences). Next, we choose a random sequence z and

learn the pi and qj,· by counting starting from the ak in every sequence other than z.

Given these learned probabilities, we then compute the probability of every possible

starting position az in sequence z and pick a random start site in z according to that

distribution. We then repeat. This algorithm converges to the correct probabilities

and is a special case of the Metropolis-Hastings algorithm.

If w is not known, the problem of determining w is the problem of model selec-

2

tion. It is necessary to penalize for longer w because of the existence of additional

parameters (which leads to overfitting), but none of the standard method for doing

this appear to work in this case.

One drawback of this algorithm is that it assumes that motifs appear one in each

sequence. This is usually false. We can address this by adding new parameters

determining how often motifs appear in each sequence.

A variant of the algorithm involves cycling through the sequences rather than

choosing them at random.

(Lecture on Metropolis-Hastings and Gibbs sampling not given)

3 Significance

How do you tell if a genome feature is significant?

A k-mer is a sequence of k base pairs. We want to compute probabilities like the

probabilities of seeing copies of some k-mer in a row given that we are looking at a

random genome in such a way that preserves k-mer frequencies. This is important

because k-mer frequencies are not uniform in real genomes.

(In a plot where x describes a given k-mer frequency and y describes how many

k-mers appear at a given frequency, we expect something like a normal distribution

and don’t see that; instead the distribution for 11-mers in the human genome has two

peaks to the left of the naive mean and has heavy tails.)

One way to model the genome is using Markov chains. Let Σ be a finite alphabet

(here it will just be {0, 1}). Let θ be a set of parameters (here θ00, θ01, θ10, θ11)

between 0 and 1; these describe transition probabilities. Let ` be a length (here 4).

Our Markov model will be

pijkl =
θijθjkθkl

z
(1)

where

z =
∑
i,j,k.l

θijθjkθkl. (2)

The distributions we get in this way satisfy various relations. For example, p0010 =

p0100 = p1001. Less obviously, we have quadratic relations like p20011 = p0001p0111, and

nine additional relations like p0111p1010 = p0101p1110 which turn out to generate the

3

ideal of all polynomial relations and which describe all probability distributions we

get in this way. This is a special case of the Hammersley-Clifford theorem.

The above is an example of a log-linear model. In general a log-linear model takes

the form

(θ1, ...θd) 7→
(θa1 , ...θam)∑

θaj
(3)

where

θaj =
d∏
i=1

θ
aij
i (4)

and aij is an arbitrary matrix. Markov models are log-linear, and log-linear models

have the property that maximum likelihood estimation is easy, which is nice. (This

is made precise by Birch’s theorem, which will be on the homework.)

Here is an algorithm for generating random sequences from a given sequence in a

way that preserves 2-mer counts. The idea will be to randomly swap subwords in a

way that preserves 2-mers. If s is a sequence and k a constant, then we denote by

Xk(s) the set of sequences of the same length as s with the same k-mer frequencies

as s, and the goal is to sample from Xk(s) more or less uniformly.

We will do this by choosing four locations a < b < c < d in the sequence and

testing whether it is possible to swap the substring between a and b with the substring

between c and d without altering k-mer counts.

We also denote by Yk(s) the subset of Xk(s) with the same first k − 1-mer. We

see that

Xk(s) =
⋃
s′

Yk(s
′) (5)

where s′ runs over all cyclic permutations of s. We will sample from Yk(s) for

simplicity. Define a graph Gk(s) whose vertices are the elements of Yk(s) and whose

edges are given by shuffles (if the shuffle is invalid, the edge is a loop). The first

question is whether this graph is connected. The second question is what the mixing

time of a random walk is on this graph.

Exercise 3.1. Gk(s) is connected. Its diameter is at most length(s)− 2k + 2.

4

Hint: let j(u, v) be the first position from the left where the sequences u and v

disagree and let ρ(u, v) = n− k + 2− j(u, v). Then ρ(u, v) = 0 if u = v.

Gk(s) is regular of degree
(
n−k+1

4

)
. We want to perform a random walk on this

graph and determine the mixing time. If T is the corresponding transition matrix,

the answer depends on the second largest eigenvalue of T .

Conjecturally, for fixed k and alphabet size, there is a polynomial p(n) such that

such that for any sequence s of length n and any m, if we perform mp(n) steps, then

the final distribution is less than 2−m from uniform in total variation distance.

An alternative approach is the following. Let Dk(s) be the graph whose vertices

are the k−1-mers in s and whose edges are of the form si...si+k−2 → si+1...si+k−1. This

is a de Brujin graph. It has the advantage over Gk(s) that its size is not exponential

in n.

1. A walk on this graph from s1...sk−1 to sn−k+2...sn is called an Eulerian trail.

2. Any such walk selects a sequence from Yk(s).

3. If f1, ...fm are the frequencies of the various k-mers in s, then a given sequence

in Yk(s) corresponds to
∏
fi! Eulerian trails.

4. Given an Eulerian trail E, for any vertex γ 6= β, let e(γ) be the last edge exited

from γ in E. The collection of such edges T (E) is acyclic (a forest).

5. Every tree (forest?) rooted at β corresponds to d+(β)
∏

γ 6=β(d+(γ)−1)! Eulerian

trails (where d+ denotes the outdegree).

6. There is a nice algorithm for picking random trees rooted at β.

4 Genome alignments

There is a genome browser available at genome.ucsc.edu. Among other things, it

produces alignments (aligns corresponding sections of different genomes). There are

occasionally errors; one place to start looking for them is places where a number of

nucleotides is missing that doesn’t make up a collection of codons.

Darwin wrote down a tree whose leaves were extant species and whose root is their

common ancestor, with intermediate vertices corresponding to intermediate common

ancestors. This leads to the notion of a hierarchy or a laminar family. For a set X,

5

a hierarchy on X is a collection H of subsets of X such that for every e1, e2 ∈ H, the

intersection e1 ∩ e2 is either empty, e1, or e2.

Example {{A}, {B}, {C}, {D}, {B,C,D}, {A,B,C,D}} is a hierarchy on {A,B,C,D}.

We can visualize such a thing using a rooted X-forest, which is a rooted forest (a

disjoint union of rooted trees) some of whose vertices are labeled by the elements of

X (say ϕ : X → V is the labeling function) and such that all unlabeled vertices have

outdegree at least 2.

Exercise 4.1. There is a natural bijection between hierarchies on X and rooted X-

forests.

(It may be necessary to require that every element of X appears in an element of

the hierarchy.)

Let σ1, ...σk be a collection of genomes, with σij the jth nucleotide of the genome

σi. From such a genome we want to construct a homology forest describing which

nucleotides share a common ancestor.

Define a partial global alignment as follows. Given a homology forest on the

nucleotides in the σi, there is an equivalence relation with m equivalence classes

c1, ...cm where two nucleotides are in the same component if they are in the same tree.

The ci are also equipped with a partial order where cr < cs if (i, j1) ∈ cr, (i, j2) ∈ cs
and j1 < j2 (here (i, j) is the nucleotide σij). A simple example is the null alignment,

where nothing is related to anything else.

Recall that a linear extension or topological order on a partial order is a refinement

to a total order. A global alignment is a linear extension of the partial order in a partial

global alignment.

Exercise 4.2. The number of partial global alignments of two sequences of length

n,m is
(
n+m
n

)
.

Exercise 4.3. The number of global alignments for two sequences of length n,m is

∑(
m

i

)(
n

i

)
2i. (6)

In the special case n = m these are the central Delannoy numbers.

6

For example, one possible global alignment between the sequences GATTACA

and CACACA is

G A T T A C A - -

- - C - A C A C A

which has 9 components, the columns, in the given order.

Restrict to the case of two sequences. There is a criterion to decide whether a

given global alignment is good. There are three important things:

1. matches, which are (i1, j1) ∼ (i2, j2) such that σi1j1 = σi2j2

2. mismatches, which are as above but not equal

3. spaces (sometimes called gaps), which are (i, j) that aren’t equivalent to any-

thing.

Note that if the sequences have length n,m, then twice the number of (mismatches

plus matches) plus the number of spaces is n+m.

To determine a score for a given global alignment we should choose a weight (say

−1) describing mismatches and a weight (say −2) describing spaces, then choose an

alignment with the highest score. Any such scoring procedure gives an element on

the boundary of the convex hull of the space of global alignments (plotted according

to their mismatches and spaces).

4.1 Probability distributions on global alignments

We will describe a Markov chain model for two-sequence global alignments. There

are states called start, S, end, 1, 2, H (for homology), with a transition from start to

S of probability 1, a transition from S to end of probability τ , transitions from S to

1, 2, H of probabilities 1−τ
3

, and transitions from 1, 2, H to S of probability 1.

In state 1, we print A,C,G, T on top and a dash on the bottom, each with

probability 1
4
. In state 2, we print a dash on the top and A,C,G, T on bottom, eahc

with probability 1
4
. And in state H, we print either a matching A,C,G, T on both

the top and bottom, each with probability µ
4
, or we print a mismatch, each with

probability 1−µ
12

. The log likelihood of a given alignment is

log τ +mM + xX + sS (7)

7

where M = log
(
1−τ
3

µ
4

)
, X = log

(
1−τ
3

1−µ
12

)
, and S = log

(
1−τ
3

1
4

)
. To find a likely

alignment we therefore want to maximize this sum.

Here are some questions we can now ask given two sequences σ1, σ2

1. What’s the probability that two entries σ1
i and σ2

j match?

2. What’s the most likely alignment for fixed θ = (µ, τ)?

3. What’s the most likely alignment over all θ?

Recall that a subset of Rn is convex if any line drawn between two points in the

set lies in the set. On the collection of convex polytopes there are two operations, ⊕
(convex hull of the union) and � (Minkowski sum, the collection of pointwise sums).

This is the polytope algebra. When n = 1 it is closely related to the tropical semiring

(R,max,+).

Consider the following algorithm (Needleman-Wunsch) for finding the most likely

alignment. Construct a table whose rows are labeled by a space and then the entries

of σ1 and whose columns are labeled by a space and then entries of σ2. The entries

of the table are recursively determined by the initial conditions

M(i, 0) = iS,M(0, j) = jS,M(0, 0) = 1� (8)

and the recurrence relation

M(i, j) = [M(i− 1, j)� S]⊕ [M(i, j − 1)� S]⊕ [M(i− 1, j − 1)� (X or M)] (9)

where the last entry is X if σ1
i 6= σ2

j and M if σ1
i = σ2

j (and where ⊕ = max,� =

+). Tracing back from the last entry to the corresponding maximal entries constructs

the most likely alignment.

To find the optimal alignment over all values of the parameters θ, we will run the

above algorithm but with the polytope semiring instead of the tropical semiring. We

initialize M(i, 0) to be the point (i, 0), M(0, j) to be the point (0, j), M(0, 0) to be

the empty polygon, and we take M = (0, 0), X = (1, 0), S = (0, 1). The result of this

algorithm will be the convex hull of the space of alignments.

The complexity of this algorithm is as follows. ⊕,� are both linear in the number

of lattice points involved, so the question is to bound this.

8

Theorem 4.4. (Andrews) In d dimensions, there exists a constant Cd such that the

number of vertices in the convex hull of a lattice polytope P is at most

Cd (Vol(P))
d−1
d+1 . (10)

If n,m are the lengths of our two sequences, then furthermore we have Vol(P) ≤
(n+m)d, so when d = 2 the complexity is O

(
nm(n+m)2/3

)
.

4.2 Evolutionary models

We want to think about how ancestral nucleotides give rise to extant nucleotides.

Over time, some number of copying events will occur. Copying will be modeled by a

4 × 4 stochastic matrix, the copying matrix, describing how likely a nucleotide is to

be incorrectly copied as another nucleotide. The distribution of the copying events

themselves will be given by a Poisson process, so that

P(Xt = k) =
e−λt(λt)k

k!
(11)

where λ is a fixed parameter. We will also have substitution matrices θ(t) where

θ(0) = I and

θ(t) =
∞∑
k=0

CkP(Xt = k) = exp (λt(C − I)) . (12)

Let Q = C − I be the rate matrix. Q has the following properties:

1. qij ≥ 0 if i 6= j,

2. qii < 0,

3.
∑

j qij = 0 (all row sums are zero).

Theorem 4.5. The following hold:

1. θ(s+ t) = θ(s)θ(t) (Chapman-Kolmogorov)

2. θ(t) is the unique solution to the differential equation θ′(t) = λQθ(t) (or θ′(t) =

λθ(t)Q) with initial condition θ(0) = I.

9

3. θ(k)(0) = λkQk.

4. A matrix Q is a rate matrix iff θ(t) is stochastic for every t ≥ 0.

Exercise 4.6. Check the above and also check that θ(t) = I + λQt+O(|t|2).

Example (Jukes-Cantor, 1969) Let C have all entries 1
4
. Then θ(t) has diagonal

entries 1+3e−λt

4
and off-diagonal entries 1−e−λt

4
.

Exercise 4.7. If A = UDU−1 (where D is diagonal) then eA = UeDU−1; moreover,

(eD)ii = eDii. Use this to show how to compute θ(t) if there exists a matrix Π such

that ΠQ is symmetric.

Example (Hasegawa, 1985) Take

C =


1− πGα− πY β πCβ πAα πTβ

πAβ 1− πGα− πRβ πGβ πTα

πAα πCβ 1− πAα− πY β πTβ

πAβ πCα πGβ 1− πCα− πRβ

 (13)

where

1. α, β ≥ 0

2. 0 ≤ α + 2β < 1,

3. πA + πC + πG + πT = 1,

4. πY = πC + πT ,

5. πR = πA + πG.

Here C, T are the pyrimidines (Y) and A,G are the purines (R). The matrix

above is supposed to model the existence of two different kinds of mutations, namely

transition mutations (within purines / pyrimidines) and transversion mutations (from

purine to pyrimidine or vice versa).

10

Example (GTR/Rev) (Felsenstein hierarchy) Take Q = ΠS where

Π =


πA 0 0 0

0 πC 0 0

0 0 πG 0

0 0 0 πT

 (14)

and

S =


πCα−πGβ−πT γ

−πA
α β γ

α πAα−πGδ−πT ε
−πC

δ ε

β δ πAβ−πCδ−πT ε
−πG

ξ

δ ε ξ πAδ−πCε−πGξ
−πT

 . (15)

Let T+
n be the set of transition matrices (stochastic matrices with non-negative

entries and positive determinant) under multiplication.

Theorem 4.8. (Tuffley) Let ψ : T+
n → R be a continuous homomorphism. Then ψ

is a scalar multiple of log det.

With θ(t) = eλtQ we have

log det θ(t) = λt tr(Q). (16)

Such functions ψ are relevant to determining branch lengths in phylogenetic trees,

which describe how many mutations on average occurred. In the case of Jukes-Cantor,

the logarithm of the determinant is −3λt but the actual branch length is 3
4
λt.

Suppose that an ancestor gives rise to two descendants. For one of the descendants,

there is a probability µ1 that a nucleotide stays the same and a probability τ1 that

it becomes a given different nucleotide (so µ1 + 3τ1 = 1) and similarly for the other.

Then the probability that the two descendants share a given nucleotide is

µ1µ2 + 3τ1τ2 (17)

and the probability that the two descendants do not share a given nucleotide is

3µ1τ2 + 3µ2τ1 + 6τ1τ2. (18)

11

We can obtain data about descendants: suppose we observe n nucleotides and

that k of them are different. To fit the parameters to the observation we therefore

want

(1− 3τ1)(1− 3τ2) + 3τ1τ2 =
n− k
n

(19)

which gives

(1− 4τ1) (1− 4τ2) = 1− 4

3

k

n
. (20)

The Jukes-Cantor model gives τi = 1−e−λiti
4

, from which it follows that

3

4
(λ1t1 + λ2t2) = −3

4
log

(
1− 4

3

k

n

)
. (21)

Hence from data we can estimate the sum of the branch lengths. (The RHS here

is the Jukes-Cantor correction to the naive estimate of k
n

itself, which it reduces to as

k becomes small relative to n.)

For a fixed phylogenetic tree with more than two leaves, we generally can’t esti-

mate the branch lengths in closed form. We also need to do or approximate max-

imum likelihood estimates to determine the tree topology. In fact, this problem is

NP-complete.

Here is a basic question: are humans closer to dogs or are they closer to rats?

Phylogenetic analysis using a wide variety of models suggests that humans are closer

to dogs. However, other kinds of evidence suggest that humans are closer to rats,

e.g. fossil evidence and DNA evidence coming from insertions and deletions, as well

as evidence coming from transposable elements. This suggests that the models used

in phylogenetic analysis are flawed.

A dissimilarity map on a set X is a function δ : X ×X → R satisfying δ(x, y) =

δ(y, x) and δ(x, x) = 0. (We also write δ(x, y) = δxy.) We can represent such a thing

as an |X| × |X| symmetric matrix with zeroes along the diagonal. We can construct

dissimilarity maps on X from weighted trees T some of whose vertices are labeled by

the elements of X by taking δ(x, y) to be the weighted distance from x to y.

From the underlying tree of a weighted tree, we can construct an edge-incidence

matrix ST such that (ST)ij,e is equal to 1 if the edge e is on the path from i to j and

equal to 0 otherwise. If ` is the vector of weights, it follows that

12

δ = ST · `. (22)

In this case δ is said to be T -additive. If in addition ` has only positive entries,

then δ is a tree metric.

For any i, j, k, ` ∈ X, consider the three quantities

δij + δk`, δik + δj`, δi` + δjk. (23)

The weak four-point condition is that at least two of the above are equal. The

four-point condition is that at least two of the above are equal and greater than (or

equal to?) the third. T -additive implies the weak four-point condition and tree metric

implies the four-point condition.

Exercise 4.9. (Theorem 1) δ is T -additive iff it satisfies the weak four-point condi-

tion.

Exercise 4.10. (Theorem 2) δ is a tree metric iff it satisfies the four-point condition.

An interesting question for biology is the following: given δ, find a tree metric δT

that minimizes ∑
ij

(δij − δTij)2 (24)

(over all T). This is hard. However, if we relax δT to be T -additive instead of a

tree metric, this becomes least-squares for a fixed tree, and moreover the least-squares

answer is very clean. (We sometimes instead minimize a weighted sum of squares.)

Some hints for the above exercises. An ultrametric is a dissimilarity map satisfying

the strong triangle inequality

δij ≤ max(δik, δkj). (25)

This implies that two of the lengths must be equal and greater than (or equal to?)

the third. There is an operation, the Gromov transform, given by

δr(x, y) =
1

2
(δ(x, y)− δ(x, r)− δ(y, r)) (26)

for some r ∈ X.

13

Exercise 4.11. If δ satisfies the four-point condition, then δr is an ultrametric for

any r.

If δ satisfies the four-point condition, we can choose a leaf r and get an ultrametric

δr on X−{r}. This lets us build a rooted weighted tree giving rise to the ultrametric

by induction. We can then attempt to invert the Gromov transform.

An example δ satisfying the four-point condition is
0 3 5 5 5

3 0 6 6 6

5 6 0 6 6

5 6 6 0 2

5 6 6 2 0

 . (27)

Consider a collection of cities. Let δij be the distance between city i and city j.

The traveling salesman problem asks for a way to tour all of the cities such that the

total distance traveled is minimized. It is NP-complete. A simple greedy algorithm

for solving it is the following; we first join the two closest cities, then the next two

closest cities, and so forth. This is actually a very bad algorithm. In some cases it

can give the worst tour.

Neighbor joining is a slightly different algorithm. Starting from a particular

method of joining the cities, we produce a triangulation, and then from this tri-

angulation we produce a phylogenetic tree linking the cities.

Theorem 4.12. If δ is a Kalmanson metric, then neighbor joining produces an op-

timal tour.

Let T be a tree and denote by TT the space of weighted trees (not necessarily with

positive weights) of combinatorial type T . The weighted least squares tree metric for

a dissimilarity map d is

argmind∗∈TT

n∑
i,j=1

1

vij
(dij − d∗ij)2. (28)

Theorem 4.13. (Desper and Gascuel, Mihaescu and Pachter) For any trivalent tree

T , if vij is proportional to (1 + A(pij − 1))2pij , then

`(d∗) =
∑
e∈E

`e(d
∗) =

n∑
i,j=1

21−pijdij. (29)

14

This is the balanced minimum evolution length. Here pij is the number of edges

between i and j.

There are other combinatorial formulas for lengths of least squares trees, e.g.

Rzhetsky and Desper and Gascuel. Some of these are IIP, which means that the

formula for the length of an edge only depend on distances using that edge. This

turns out to be true if and only if the vij are semi-multiplicative with respect to T .

Theorem 4.14. (Gauss-Markov) Suppose that a dissimilarity map is given by d =

St` + ε where ε is a vector of random variables with expectation 0 and variance vij.

Then the estimator

`e(d
∗) = (0, ...1, ...0) · (S†tV −1St)−1S

†
tV
−1D (30)

has minimum variance among the linear unbiased estimators of (0, ...1, ...0) · `
(where the 1 is in the eth position).

Finding the minimum length tree for vij = 2pij is equivalent to minimizing the

linear function
∑

21−pijdij over the balanced minimum evolution polytope (the convex

hull of the vectors of the form 21−pTij ove rall trivalent trees T). This is NP-hard.

The neighbor-joining algorithm is a greedy algorithm for doing this. It proceeds by

minimizing

Qij = dij −
1

n− 2

(∑
k

dik +
∑
`

dj`

)
. (31)

Theorem 4.15. If d∗ is a tree metric for T and

‖d∗ − d‖∞ ≤
emin

2
(32)

then the tree with minimal BME length for d is T .

Theorem 4.16. (Kleinman) BME is the only minimum evolution method that is

consistent and has radius 1
2

in the sense that the above holds.

5 Sequencing

Recall that DNA is transcripted into RNA, which is translated into protein, which

then does stuff. Suppose we would like to determine the RNA content of a sample.

15

One way to do this is RNA-Seq: roughly speaking, we cut them up into sscDNA

fragments, which then become dscDNA fragments, which are then selected for their

size.

If we want to compute gene abundances, we can use fragments per kilobase per

million mapped. This lets us compare across genes and also across experiments.

There are issues which we will attempt to fix using an expectation-maximization

algorithm. This algorithm has two steps, an E-step and an M-step.

1. Call the set of transcripts T , |T | = n.

2. Transcripts have lengths l1, ..., ln

3. and abundances ρ1,, ρn with 0 ≤ ρi ≤ 1,
∑

i ρi = 1.

4. Reads are always unique to the transcripts. Mt := # of reads sampled from t ∈
T .

We have a likelihood

L(ρ1, ..., ρn) =
∏
t∈T

∏
f∈t

(
ρtlt

(
∑

r ρrlr)lt
) =

∏
t

(
ρtlt

(
∑

r ρrlr)lt
)ui

where f ∈ T are the fragments in segment t. αt = ρtlt∑
r ρrlr

- can rewrite L in terms

of α. To find parameters, compute

max
α1+...+αn=1

L(α)

This is equivalent to
∏

t(αt/lt)
ut and we can take a log, and use lagrange multipliers.

∂ logL(α)

∂αi
=
∑
t

ut log(αt) + λ(α1 + ...+ αn − 1) =
ui
αi

+ λ = 0

Thus α̂i = µi∑
j µj

as one might expect. ρ̂t = µt
nlt

(1∑
r
ur
Nlr

).

In our model, reads map contiguously. Suppose S ⊆ T and we have observations

µS. We want to maximize our likelihood again, but over S

L(α1, ..., αn) =
∏
S

(
∑
t∈S

αt
lt

)µs

16

This is a harder optimization problem. Idea: there is ‘hidden data” Ct. If we have

Ct (counts) ∏
t

(αt/lt)
Ct

to yield α̂t = Ct∑
r Cr

, somehow by analogy to the other case. Odd!

Way to formulate this idea: V : ZT → R, V (S) =
∑

s′∈S µ(s′). φi(v) := expected

number of counts for transcript i. The constraints are

1.
∑

i φi(v) = V (T)

2. v(S ∪ {i} = V (S) for all S. φi(V) = 0

3. φi(V +W) = φi(V) + φi(W), φi(aV) = aφi(V)

4. If v(S ∪ {i}) = v(S ∪ {j}) then φi(V) = φj(V) for all S not containing i, j

These conditions imply a unique solution (HW).

φi(V) =
∑

S⊆T−{i}

|S|!(n− |S| − 1)!

n!
[v(S ∪ {i})− v(S)]

Comment: this is essentially a result of game theory about some sort of “fair distri-

bution” of value.

The EM algorithm: fij(θ), θ are the parameters. fi(θ) =
∑M

j=1 fij(θ). Now

Lf (θ) = f1(θ)
µ1 ...fM(θ)µN

and

µij =
µifij(θ)∑M
i=1 fij(θ)

Then the steps are

1. Compute µij.

2. Compute θ∗.

3. Iterate

There is an associated theorem.

17

Theorem 5.1. Lf (θ∗) ≥ Lf (θ) and Lf (θ∗) = Lf (θ) when θ is a critical point.

Proof. Difference =

N∑
i=1

[log fi(θ
∗)− log fi(θ)] =

N∑
i=1

M∑
j=1

µij(log fij(θ
∗)− log fij(θ)) +

N∑
i=1

µi(log
fi(θ

∗)

fi(θ)
−

M∑
j=1

µij
µi

log
fij(θ

∗)

fij(θ∗)

Interpret something as a KL divergence to finish the proof.

6 Datasets

Here is a list of useful datasets for projects.

1. http://genome.ucsc.edu/ENCODE/ has a lot of data that can be analyzed for

various projects.

2. http://sra.dnanexus.com/ has a lot of data as well.

3. http://megasun.bch.umontreal.ca/ogmp/projects/other/mt list.html has mito-

chondrial DNA (it would be interesting to build a tree from this).

4. http://www.smgf.org/mtdna/database stats.jspx also has mitochondrial DNA.

5. http://www.1000genomes.org/ has human genomes.

6. https://genome10k.soe.ucsc.edu/ has non-human genomes.

7. http://hgdownload.soe.ucsc.edu/downloads.html has non-human genomes.

7 Hypothesis testing

Consider Simpson’s paradox (more properly the Yule-Simpson paradox). When we

divide up the number of Democrats vs. Republicans voting for the Civil Rights Act

by north vs. south and by House vs. Senate, we find that more Democrats voted

for the act than Republicans in each category. However, overall we find that more

Republicans voted for the act than Democrats.

This is a serious statistical issue. For example, it may appear that a drug is more

effective than the absence of the drug when a population is divided into men and

18

women, but less effective overall. To the extent that this is a paradox, it is because

we are failing to distinguish correlation from causation.

Exercise 7.1. See if you can find Simpson’s paradox in Mendel’s paper.

8 Hierarchical organization of RNA

RNA has primary structure (nucleotides), secondary structure (list of base pairs), and

tertiary structure (interaction of secondary structures). More formally, we will iden-

tify secondary structures with noncrossing partitions (with blocks of size 2). Given a

sequence s1, ...sn of nucleotides, we can write down a pairing matrix pij whose entries

are equal to 1 if i can pair with j and 0 otherwise. Let N i
`,n denote the number of

such structures on s`, ...sn with i pairings. This satisfies the recurrence

N i+1
`,n+1 = N i+1

`,n +
n−m∑
k=`

i∑
j=0

N j
k,n+1N

i−j
`,k . (33)

RNA secondary structure looks like a curled-up line and may have bulges, internal

loops, or hairpins. (Tertiary structure includes, for example, pseudoknots, kissing

hairpins, and hairpin-bulges.)

To predict secondary structure, we can use covariation analysis (conserved pat-

terns of basepairs during evolution) or the minimum free-energy method (structures

that are energetically stable).

Assume (Tinoco-Uhlenbeck) that the free energy of each base pair is independent

of all the other pairs and loop structures. Then the total free energy is the sum of the

energies of each base pair. This gives a dynamic programming approach to computing

free energies which has reasonable complexity (N3).

How do we obtain structural information about RNA? One option is SHAPE

(selective 2’-hydroxyl acylation analyzed by primer extension). Another is DMS-seq.

9 Networks

There are many kinds of networks (regulatory, mtetabolic, signaling, protein inter-

action, functional) in biology. These are often abstracted into graphs. Metabolic

19

networks are related to chemical reaction networks, which are mathematically well-

developed. In regulatory networks there is a lot of data. In signaling networks things

are complicated. In protein interaction networks there is a lot of graph theory. Func-

tional networks have been inaccessible until very recently.

20

