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1 Introduction

The seeds of this subject go back to von Neumann, Heisenberg, and Schrodinger in the

1920s; observables in quantum mechanics should correspond to self-adjoint operators

on Hilbert spaces, and the abstract context for understanding self-adjoint operators

is C*-algebras. In the 1930s, von Neumann wrote about what are now called von

Neumann algebras, namely subalgebras of the algebra of operators on a Hilbert space

closed under adjoints and in the strong operator topology. This subject is sometimes

called noncommutative measure theory because a commutative von Neumann algebra

is isomorphic to L∞(X) for some measure space X.

In 1943, Gelfand and Naimark introduced the notion of a C*-algebra, namely

a Banach algebra with an involution ∗ satisfying ‖a∗‖ = ‖a‖ and ‖a∗a‖ = ‖a‖2.

They showed that if such an algebra A is commutative, then it is isomorphic to the

C*-algebra C(X) of continuous complex-valued functions on a compact Hausdorff

space X. This space X is obtained as the Gelfand spectrum of unital C*-algebra

homomorphisms A→ C.

Noncommutative examples include the algebra B(H) of bounded operators on a

Hilbert space. Gelfand and Naimark also showed that any C*-algebra is *-isomorphic

to a *-algebra of operators on a Hilbert space. This subject is sometimes called

noncommutative topology (as C*-algebras behave like the algebra of functions on a

compact Hausdorff space).

From the 1960s to the 1980s, a new emphasis in the subject was on noncommuta-

tive algebraic topology (e.g. K-theory and K-homology). From the 1980s on, Connes

advanced a program of noncommutative differential geometry (cyclic homology as an

analogue of de Rham cohomology), in particular with noncommutative analogues of

Riemannian metrics (Dirac operators). In 1994 Connes wrote a book (Noncommuta-

tive Geometry) which is out of print but available online.

If G is a locally compact (Hausdorff) topological group, then we can construct

several important C*-algebras such as C∗(G) from it related to the representation

theory of G. If A is a C*-algebra and G a locally compact group acting on A, then we

can define a crossed product C*-algebra A o G. There is an analogous construction
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for foliated manifolds. Another quite different example is the CAR-algebra.

2 Basics

We will be using quantum tori as examples throughout the course. These are in some

sense the simplest nontrivial example of noncommutative differentiable manifolds.

2.1 Spectra

Let A be a unital C*-algebra.

Definition The spectrum σ(a) of an element a ∈ A is the set of all λ ∈ C such that

a − λ is not invertible. The spectral radius ν(a) is the supremum of the absolute

values of the elements of σ(a).

If A is commutative, then A ∼= C(X) for some compact Hausdorff space X, the

spectrum is the range, and the spectral radius is the supremum norm. Furthermore,

if a ∈ A is self-adjoint, then ‖a‖ = ν(a) by spectral permanence (below). This

implies that ‖a‖2 = ‖a∗a‖ = ν(a∗a), hence the norm on a C*-algebra is completely

determined by its *-algebra structure.

Lemma 2.1. Let A be a unital C*-algebra and B a unital C*-subalgebra of A. Let

b ∈ B. If b is invertible in A, then it is invertible in B.

Proof. First assume b is self-adjoint. Let D be the C*-subalebra generated by b, 1.

Then D ∼= C(X) for some X. If b is not invertible in B, then there exists x ∈ X such

that b(x) = 0 (where b is regarded as a function on X). It follows that for all ε > 0

we can find h ∈ B such that ‖h‖ = 1 and ‖bh‖ < ε.

If a is an inverse to b in A, let ε = 1
2‖a‖ . Then

1 = ‖h‖ = ‖hba‖ ≤ ‖hb‖‖a‖ < 1

2
(1)

which is a contradiction. For general b, we know that b∗b is self-adjoint. Hence if

b is invertible in A, the above argument applies to b∗b, from which we conclude that

b is invertible in B.

Corollary 2.2. (Spectral permanence) With hypotheses as above, σB(b) = σA(b).
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2.2 Positivity

Definition Let A be a C*-algebra. An element a ∈ A is positive if a = a∗ and

σ(a) ⊂ R≥0.

Theorem 2.3. The following are equivalent:

1. a is positive.

2. a = b2 for some self-adjoint b ∈ A.

3. a = c∗c for some c ∈ A.

The positive elements of A form a cone A+; that is, if a, b are positive, then a+ b

is positive and ra is positive for all r ∈ R≥0. Furthermore, for any self-adjoint a ∈ A,

we can write a = a+− a− where a+, a− ∈ A+ and a+a− = 0, and A+ ∩ (−A+) = {0}.

Proof. 1 ⇔ 2: if a is positive, then the C*-subalgebra generated by a has the form

C(X) for some X. Then a is represented by a non-negative function which therefore

has a square root. The converse is similar.

2⇒ 3: easy.

3⇒ 2: tricky, will do later. The last claim is straightforward, and the second-to-

last claim will be left as an exercise.

Exercise 2.4. Verify that if a ∈ A+ then ra ∈ A+ for r ∈ R≥0 (easy) and that if a, b

are positive then a+ b is positive (not easy).

The solution to the hard exercise is as follows. The first proof was due to Fukumiya

in 1952 and next in 1953 to John Kelley and Robert Vaught. The idea is that in C(X)

the relation ≥ (where we write a ≥ 0 to mean that a is positive and we write a ≥ b

to mean that a− b ≥ 0) can be expressed in terms of the norm.

Lemma 2.5. For self-adjoint f ∈ C(X), the following are equivalent:

1. f ≥ 0.

2. For all t ≥ ‖f‖, we have ‖f − t‖ ≤ t.

3. For at least one t ≥ ‖f‖, we have ‖f − t‖ ≤ t.
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Proof. 1 ⇒ 2: for any x ∈ X and for any t ≥ ‖f‖ we have 0 ≥ f(x) − t ≥ −t, so

‖f − t‖ ≤ t.

2⇒ 3: obvious.

3 ⇒ 1: if t ≥ ‖f‖ and ‖f − t‖ ≤ t, then for any x ∈ X we have |f(x) − t| ≤
‖f − t‖ ≤ t, hence f(x) ≥ 0.

Let a, b be two positive elements. Let s = ‖a‖, so ‖a − s‖ ≤ s. Let t = ‖b‖, so

‖b− t‖ ≤ t. Then

‖a+ b‖ ≤ ‖a‖+ ‖b‖ = s+ t (2)

and

‖(a+ b)− (s+ t)‖ ≤ ‖a− s‖+ ‖b− t‖ ≤ s+ t. (3)

Proposition 2.6. A+ is closed.

Proof. Suppose aλ is a net converging to a. Then in particular ‖aλ‖ converges to ‖a‖.
Choose t such that t ≥ ‖aλ‖ for all λ. Then

‖aλ − t‖let (4)

hence

‖a− t‖ = lim ‖aλ − t‖ ≤ t (5)

and the conclusion follows.

We now want to show that for any c ∈ A we have c∗c ≥ 0. Suppose otherwise.

We know that the C*-subalgebra generated by c∗c has the form C(X) for some X.

Choose b ≥ 0 in this subalgebra such that c∗cb 6= 0 and −c∗cb2 ≥ 0, which is possible

because c∗c attains a negative value. Then

bc∗cb = (cb)∗(cb). (6)

Let d = cb. Then d ∈ A is nonzero and satisfies −d∗d ∈ A+. Let d = h+ ik where

h, k are self-adjoint. Then we compute that

d∗d+ dd∗ = 2h2 + 2k2 ∈ A+ (7)
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from which it follows that

dd∗ = 2(h2 + k2)− d∗d ≥ 0. (8)

Hence σA(dd∗) ⊂ R≥0 while σA(d∗d) ⊂ R≤0.

This will lead to a contradiction as follows.

Proposition 2.7. If a, b ∈ A, then σ(ab) \ {0} = σ(ba) \ {0}.

Proof. It suffices to show that 1 − ab is invertible if and only if 1 − ba is invertible.

This follows formally from the identity

(1− ab)−1 = 1 + a(1− ba)−1b (9)

which one can guess by writing down a geometric series formally describing each

side.

Proposition 2.8. Let A be a (unital) C*-algebra and a, b ∈ A such that 0 ≤ a ≤ b.

Then ‖a‖ ≤ ‖b‖.

Proof. Observe that ‖b‖− b ≥ 0. We also know that b− a ≥ 0, from which it follows

that ‖b‖ − a ≥ 0 since the sum of two positive elements is positive, so ‖b‖ ≥ a ≥ 0.

But ‖b‖ and a commute, so the conclusion follows.

Proposition 2.9. If 0 ≤ a ≤ b and if c ∈ A, then 0 ≤ c∗ac ≤ c∗bc.

Proof. a ≤ b means b− a ≥ 0, so b− a = d∗d. Thus c∗(b− a)c = (dc)∗(dc) ≥ 0.

2.3 Constructions

If I is a closed 2-sided ideal of a C*-algebra A, then the quotient A/I is also a

C*-algebra.

The forgetful functor from unital Banach algebras to non-unital Banach algebras

has a left adjoint which is obtained by adjoining an identity. The unitalization con-

struction A 7→ Ã is given by pairs (α, a) where α ∈ C and a ∈ A which add in the

obvious way and multiply so that (1, 0) is the identity. The obvious norm here is

‖(α, a)‖ = ‖α‖ + ‖a‖, and this gives a Banach algebra. However, if we start with a

non-unital C*-algebra, we do not necessarily get a unital C*-algebra.
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To fix this, let A be a C*-algebra. Consider An regarded as a right A-module.

Define an A-valued inner product by

〈(ak), (bk)〉A =
∑
k

a∗kbk. (10)

The motivating example is that A = C(X), where the inner product behaves like

a metric on the trivial bundle X ×Cn. From such an A-valued inner product we can

induce a norm given by |〈v, v〉A|1/2.

Now suppose A is non-unital and regard A as a right A-module. Given (α, a) ∈ Ã
(the unitalization), we can define a module endomorphism given by T(α,a) : b 7→ αb+ab

and define

‖(α, a)‖ = ‖T(α,a)‖ (11)

where the second is the operator norm. This is a C*-norm on Ã, which can be

proven using basic properties of the A-valued inner product.

In some situations we might not want to adjoin an identity. We can sometimes

avoid this using approximate identities.

Definition Let A be a normed non-unital algebra and {eλ} a net of elements of A.

Such a net is a left approximate identity if lim eλa = a for all a ∈ A. An approximate

identity is bounded if ‖eλ‖ ≤ k for all λ, and is of norm 1 if ‖eλ‖ ≤ 1.

Similarly we have right and two-sided approximate identities.

Proposition 2.10. Let A be a unital C*algebra and let L be a left ideal in A, not

necessarily closed. Then L has a right approximate identity of norm 1 consisting of

elements of A+. If A is separable, then we can arrange for the approximate identity

to be a sequence.

Proof. Let S be a dense subset of L (countable if A is separable). Let Λ be the

collection of all finite subsets of S ordered by inclusion. Given λ ∈ Λ, let

bλ =
∑
a∈λ

a∗a. (12)

Since L is a left ideal, bλ ∈ L and is positive. Let
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eλ =

(
1

|λ|
+ bλ

)−1

bλ. (13)

Again we have eλ ∈ L, and again eλ is positive. The claim is that eλ is a right

approximate identity for L.

To see this, let a ∈ S. Consider ‖a− aeλ‖. If a ∈ λ, then

‖a− aeλ‖2 = ‖a(1− eλ)‖2 = ‖(1− eλ)a∗a(1− eλ)‖ (14)

but since a ∈ λ we know that a∗a ≤ bλ, so we conclude by two previous inequalities

that

‖(1− eλ)a∗a(1− eλ)‖ ≤ ‖(1− eλ)bλ(1− eλ)‖ = ‖(1− eλ)2bλ‖. (15)

We now compute that

(1− eλ)2bλ =
1

n

bλ
1
n

+ bλ
(16)

whose norm tends to 0 as desired (where n = |λ|). This establishes that eλ is a

right approximate identity for elements in S, and the general conclusion follows by

boundedness and density.

Proposition 2.11. Let I be a closed 2-sided ideal of a unital C*-algebra A. Then I

is closed under taking adjoints, so is a (non-unital) C*-algebra.

Proof. Let eλ be a right approximate identity for I satisfying the conditions above.

Let a ∈ I. Then

‖a∗ − eλa∗‖ = ‖a− aeλ‖ → 0. (17)

Since I is a two-sided ideal, eλa
∗ ∈ I, hence a∗ ∈ I by closure.

Proposition 2.12. Any C*-algebra A, not necessarily unital, contains a two-sided

approximate identity of norm 1 consisting of elements of A+.

Proof. Since A is a closed left ideal, it has a right approximate identity eλ. Since A

is closed under taking adjoints, the right approximate identity is a two-sided approx-

imate identity.
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Let I and J be two-sided closed ideals. Then I ∩ J ⊇ IJ (the closure of the span

of products of elements of I and elements of J). Now take an approximate identity

eλ in I. Then if a ∈ I ∩ J we have ‖a− aeλ‖ → 0 where aeλ ∈ IJ , hence a ∈ IJ , so

I ∩ J = IJ .

Also, if I is a two-sided closed ideal of A and J is a two-sided closed ideal of I,

then in fact J is an ideal of A.

Let A be a non-unital Banach algebra and I a (proper) closed 2-sided ideal of it.

Then A/I is a Banach space (since I is closed) and a Banach algebra (since I is a

2-sided ideal).

Theorem 2.13. (Segal) If A is a C*-algebra, so is A/I.

We will adjoin a unit as necessary. The key fact is that if {eλ} is a positive norm-1

identity for I, then ‖1− eλ‖ ≤ 1, and is in fact equal to 1.

Proof. We will need the following lemma.

Lemma 2.14. For all a ∈ A we have ‖a‖A/I = lim ‖a− ae|lambda‖.

Proof. Fix ε > 0. Choose d ∈ I such that ‖a− d‖ ≤ ‖a‖A/I + ε. Then

‖a−aeλ‖ = ‖a(1− eλ)‖ ≤ ‖(a−d)(1− eλ)‖+‖d(1− eλ)‖ ≤ ‖a−d|+‖d−deλ‖ (18)

which is less than or equal to ‖a‖A/I + 2ε for λ suitably far into the net. We used

the key fact above.

Now we want to show that the norm on A/I satisfies the C*-identity. We have

‖a‖2
A/I = lim ‖a(1−eλ)‖2 = lim ‖(1−eλ)a∗a(1−eλ)‖ ≤ lim sup ‖a∗a(1−eλ)‖ ≤ ‖‖a∗a‖

(19)

by the key lemma as desired.

2.4 Representations

Definition For a *-algebra A, a *-representation of A on a vector space H with

pre-inner product is a map π : A→ (B(H)) such that 〈π(a)v, w〉 = 〈v, π(a∗)w〉. The

representation is nondegenerate if the span {π(a)v : a ∈ A, v ∈ H} is dense in H.
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How do we represent C*-algebras on Hilbert spaces? For those of the form C(X)

we can choose a nice positive measure on X and look at the multiplication action

on L2(X). Radon would be nice (these are positive linear functionals on C(X) by

Riesz-Markov). Such a measure gives us a pre-inner product

〈f, g〉 =

∫
f̄ g dµ = µ(f̄ g) (20)

which we can get a Hilbert space out of. So in general it seems like a good idea

to find nice linear functionals.

Let A be a unital *-algebra. A linear functional µ on A is positive if µ(a∗a) ≥ 0

for all a ∈ A. It is a state if it is positive and µ(1) = 1 (these should be thought of

as noncommutative probability measures).

Example Let A be a *-algebra of operators on a Hilbert space H. Then if ψ ∈ H,

the linear functional

a 7→ 〈aψ, ψ〉 (21)

is a state iff ψ is a unit vector in H. This is a pure state in quantum mechanics.

If A, µ are as above, 〈a, b〉 = µ(a∗b) defines a pre-inner product on A. The vectors

of length 0 form a subspace N by the Cauchy-Schwarz inequality. A/N therefore

inherits an inner product which we can complete to obtain a Hilbert space L2(A, µ).

This is the Gelfand-Naimark-Segal construction.

A has a left regular representation πa(b) = ab on itself which descends to A/N

because N is a left ideal. Moreover, this action is compatible with adjoints. However,

πa is not necessarily bounded in general, so this action does not necessarily extend to

the completion in general.

We need to check that 〈a, b〉 is actually a pre-inner product. In particular, we

need to check that

〈b, a〉 = 〈a, b〉. (22)

To see this, note that

0 ≤ 〈a+ b, a+ b〉 = 〈a, a〉+ 〈a, b〉+ 〈b, a〉+ 〈b, b〉 (23)
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from which it follows that the imaginary part of 〈a, b〉+〈b, a〉 is zero. Substituting

ib for b we also conclude that the imaginary part of 〈a, ib〉 + 〈ib, a〉 is zero, and this

gives the result.

The above is equivalent to the claim that µ is ∗-linear if A has an identity but not

in general. As a counterexample, let A be the algebra of polynomials vanishing at 0

and let µ(p) = ip′(0). Then 〈p, q〉 = 0 identically but µ is not ∗-linear.

Now let N be the subspace of vectors of norm zero. By Cauchy-Schwarz, N is

also {a : 〈a, b〉 = 0∀b ∈ A} and hence is a subspace. Furthermore, if b ∈ N, a ∈ A,

then

〈ab, ab〉 = 〈b, a∗ab〉 = 0 (24)

hence ab ∈ N and N is a left ideal. It follows that A/N is a left A-module, and

the pre-inner product descends to an inner product on A/N which we can complete.

We would like to extend the action of A to an action on the completion, but we do not

have boundedness in general. For example, if A is the space of polynomial functions

on R and

µ(p) =

∫ ∞
−∞

p(t)e−t
2

dt (25)

then we can check that the action of A is not bounded with respect to the corre-

sponding inner product. So we need more hypotheses.

Theorem 2.15. Let A be a *-Banach algebra with identity and let µ be a positive

linear functional on A. Then µ is continuous and ‖µ‖ = µ(1).

Corollary 2.16. Let A be a *-normed algebra with identity and let µ be a continuous

positive linear functional on A. Then ‖µ‖ = µ(1).

Proof. We will need the following lemma.

Lemma 2.17. Let a ∈ A be self-adjoint with norm strictly less than 1. Then there

exists a self-adjoint element b such that 1− a = b2.

To show this we can write
√

1− a as a convergent power series.

It follows that µ(1− a) ≥ 0, hence that µ(1) ≥ µ(a) for a self-adjoint with norm

strictly less than 1. Similarly, µ(1 + a) ≥ 0, hence µ(1) ≥ −µ(a), so µ(1) ≥ |µ(a)|.
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It follows by a limiting argument that for any self-adjoint a ∈ A we have µ(1)‖a‖ ≥
|µ(a)|. For arbitrary a,

|µ(a)|2 = |〈1, a〉|2 ≤ 〈1, 1〉〈a, a〉 = µ(1)µ(a∗a) ≤ µ(1)2‖a∗a‖ ≤ µ(1)2‖a‖2 (26)

and the conclusion follows.

Proposition 2.18. Let A be a *-normed algebra with identity and let µ be a continu-

ous positive linear functional. Then the left regular representation of A on A/N with

inner product 〈·, ·〉 is by bounded operators and extends to the completion; moreover,

‖πa‖ ≤ ‖a‖.

Proof. Let a, b ∈ A. Define µb(c) = µ(b∗cb). Then µb is also a continuous positive

linear functional. Now:

〈πa(b), πa(b)〉 = 〈ab, ab〉 = µ(b∗a∗ab) = µb(a
∗a) (27)

which is less than or equal to

‖µb‖‖a∗a‖ = µb(1)‖a∗a‖ = µ(b∗b)‖a∗a‖ ≤ ‖a‖2〈b, b〉 (28)

and the conclusion follows.

So let A be a *-normed algebra with identity and µ be a continuous positive linear

functional on A. Then L2(A, µ) is a nondegenerate *-representation of A

Corollary 2.19. For every continuous positive linear functional µ on a *-normed

algebra A, there is a *-representation of A and a vector v ∈ H such that µ(a) =

〈π(a)v, v〉.

Let (π,H) be a *-representation of A on a Hilbert space H and let v be a vector

in H. Let

Kv = {π(a)v : a ∈ A}. (29)

ThenKv is invariant under the action of A; in fact it is the minimal closed subspace

invariant under A containing v. We call Kv the cyclic subspace generated by v. The

representations L2(A, µ) is cyclic with cyclic vector the image of the identity.
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Proposition 2.20. Let (π1, H1, v1) and (π2, H2, v2) be cyclic *-representations of A

with cyclic vectors v1, v2. Let µ1, µ2 be the corresponding states. If µ1 = µ2 then the

representations are unitarily equivalent.

Proof. We want to take U(π1(a)v1) = π2(a)v2. The problem is that this may not be

well-defined. But we can compute that

〈U(π1(a)v1), U(π1(b), v1)〉 = µ2(b∗a) = µ1(b∗a) = 〈π1(a)v1, π2(b)v1〉 (30)

hence U is well-defined and unitary. The same argument works in the other

direction.

Hence there is a bijective correspondence between continuous positive linear func-

tionals on A and unitary equivalence classes of (pointed) cyclic *-representations of

A.

Let Hλ be a family of Hilbert spaces. We can form their Hilbert space direct sum⊕
λ∈ΛHλ, which is the subspace of the ordinary product where the inner product

〈v, w〉 =
∑
λ∈Λ

〈vλ, wλ〉 (31)

converges (equivalently the completion of the ordinary direct sum).

If for each λ we have a representation πλ of A on Hλ, we can try to define a

representation on the direct sum. This is possible if and only if ‖πλ(a)‖ is uniformly

bounded in λ. In practice we will have ‖πλ(a)‖ ≤ ‖a‖, in which case the same will

be true of the direct sum.

Proposition 2.21. If K ⊂ H is an invariant subspace of a *-representation, then so

is its orthogonal complement K⊥.

Proof. If w ∈ K⊥, then

〈π(a)v, w〉 = 0 ∀v ∈ K, a ∈ A⇔ (32)

〈v, π(a)∗w〉 = 0 ∀v ∈ K, a ∈ A⇔ (33)

〈v, π(a∗)w〉 = 0 ∀v ∈ K, a ∈ A⇔ (34)

π(a∗)w ∈ K⊥ ∀a ∈ A (35)
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as desired.

Corollary 2.22. Finite-dimensional *-representations are completely reducible (semisim-

ple).

Proposition 2.23. Every *-representation on a Hilbert space H is a Hilbert space

direct sum of cyclic representations.

Proof. Imitate the proof that a Hilbert space has an orthonormal basis.

(We don’t get a decomposition into irreducible representations in general. We

may need to use direct integrals instead of direct sums, and then direct integral

decompositions need not be unique.)

Definition The universal *-representation of A is the Hilbert space direct sum of all

L2(A, µ) as µ runs over all positive linear functionals of norm 1 (states).

The universal *-representation contains every cyclic representation. It follows that

every *-representation is a direct summand of some sum of copies of the universal

*-representation.

A need not have any *-representations or states. For example, let A = C×C with

the sup norm and (α, β)∗ = (β̄, ᾱ).

Lemma 2.24. Let A be a C*-algebra and µ a continuous linear functional such that

‖µ‖ = µ(1). Then µ is positive.

Proof. We want to show that µ(a∗a) ≥ 0. Equivalently, we want to show that if

a ∈ A+ then µ(a) ≥ 0. Suppose otherwise. Let B = C(X) be the *-algebra generated

by a and restrict µ to B.

First, we want to show that if f = f̄ (in C(X)) then µ(f) ∈ R. Suppose µ(f) =

r + is. Then for t ∈ R we have

|µ(f + it)|2 ≤ ‖f + it‖2 = ‖f‖2 + t2 (36)

but the LHS is equal to

|r + i(s+ t)|2 = r2 + s2 + 2st+ t2 (37)

and subtracting t2 from both sides gives a contradiction unless s = 0.
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Now, if f ≥ 0 we have ‖f − ‖f‖‖ ≤ ‖f‖, hence

|µ(f)− ‖f‖| = |µ(f − ‖f‖)| ≤ ‖f‖ (38)

which gives µ(f) ≥ 0 as desired.

Theorem 2.25. Let A be a unital C*-algebra and B a C*-algebra of A. Let µ be a

positive linear functional on B. Then µ extends to a positive linear functional on A.

Proof. Apply the Hahn-Banach theorem together with the lemma above.

Theorem 2.26. Let A be a unital C*-algebra and a ∈ A self-adjoint. For any

λ ∈ σ(a), there is a cyclic nondegenerate *-representation (π,H, v) with ‖v‖ = 1 such

that 〈π(a)v, v〉 = λ.

Proof. Let B be the C*-subalgebra generated by a, which is C(σ(a)). Let µ0 be the

functional defined on B given by the Dirac measure at λ. Then µ0 is a state on B. Let

µ̃0 be an extension of µ0 to a state on A, and let (π,H, v) be the GNS representation

associated to µ̃0.

Corollary 2.27. (Gelfand-Naimark) The universal representation of A is isometric

(norm-preserving).

Proof. Let a ∈ A. Then ‖π(a)‖2 = ‖π(a∗a)‖. Let λ = ‖a∗a‖. The corresponding

representation πλ satisfies ‖πλ(a∗a)‖ = λ = ‖a∗a‖, and the conclusion follows.

Corollary 2.28. All of the above continues to hold if A is a non-unital C*-algebra.

Let A be a *-normed algebra with a norm-1 approximate identity.

Lemma 2.29. Let µ be a continuous positive linear functional on A. Then

1. µ(a∗) = µ(a).

2. |µ(a)|2 ≤ ‖µ‖µ(a∗a).

Proof. Write

µ(a∗) = limµ(a∗eλ) = lim〈a, eλ〉µ (39)

and since we know we have an inner product, this is equal to
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lim 〈eλ, a〉 = limµ(e∗λa) = µ(a) (40)

as desired. Next, write

|µ(a)|2 = lim |µ(eλa)|2 = lim |〈e∗λ, a〉µ|2 (41)

which by Cauchy-Schwarz is bounded by

lim〈a, a〉µ〈e∗λ, e∗λ〉 ≤ µ(a∗a)‖µ‖ (42)

as desired.

Proposition 2.30. Let A be a *-normed algebra and let µ be a continuous positive

linear functional on A. If µ satisfies the properties above and if µ extends to the

unitization Ã of A so that µ̃(1) = ‖µ‖, then µ̃ is a positive linear functional.

Proof. The nontrivial thing to prove is positivity. We compute that

µ̃((a+ λ1)∗(a+ λ1)) = µ(a∗a) + λ̄µ(a) + λµ(a) + |λ|2‖µ‖ (43)

which is greater than or equal to

µ(a∗a)−2|λ||µ(a)|+|λ|2‖µ‖ ≥ µ(a∗a)−2|λ|‖µ‖1/2µ(a∗a)1/2+|λ|2‖µ‖ =
(
µ(a∗a)1/2 − |λ|‖µ‖1/2

)2 ≥ 0

(44)

and the conclusion follows.

Corollary 2.31. Let A be a *-normed algebra with a norm-1 approximate identity.

Let µ be a continuous positive linear functional on A. Extend it to Ã by µ̃(1) = ‖µ‖.
Then µ̃ is a positive linear functional on Ã.

With the above hypotheses, we can apply the GNS construction to obtain a cyclic

representation (π,H, v) of Ã.

Proposition 2.32. If we restrict π to A, then v remains a cyclic vector for π|A.

Proof. Choose a self-adjoint sequence an with ‖an‖ ≤ 1 so that µ(an) ↑ ‖µ‖. Then

‖π(an)v − v‖2 = µ(a∗nan)− µ(an)− µ(a∗n) + ‖µ‖ ≤ ‖µ‖ − µ(an)→ 0 (45)

as desired.
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If A is a non-unital *-normed algebra, (π,H) a nondegenerate *-representation,

and eλ is an approximate identity of norm 1, then

π(eλ)π(a)v = π(eλa)v → π(a)v (46)

hence in particular π(eλ)v → v for all v in a dense subspace of H. Since eλ has

norm 1, it follows that π(eλ)v → v for all v ∈ H. We conclude the following:

Proposition 2.33. (π,H) is nondegenerate if and only if π(eλ)v → v for all v ∈ H.

Corollary 2.34. Let A be a *-normed algebra with approximate identity eλ. Let µ be

apositive linear functional and (π,H, v) the corresponding GNS representation. Then

µ(eλ)→ 〈π(eλ)v, v〉 → 〈v, v〉 = ‖µ‖.

Let A be a unital *-normed algebra and S(A) the space of positive linear func-

tionals of norm 1 on A (states). S(A) is a closed subset of the unit ball of the dual

A∗ in the weak-* topology, hence compact by Banach-Alaoglu. S(A) is also convex,

which suggests that it would be interesting to examine its extreme points.

The above fails if A is not unital. For example, if A = C0(R) is the space of

real-valued functions on R vanishing at infinity, the Dirac deltas δ(n) have limit 0 as

n→∞, so the space of states on A is not closed.

Schur’s lemma in this context is the following.

Lemma 2.35. (Schur) (π,H) is irreducible iff EndA(H) ∼= C.

Note that EndA(H) is a C*-subalgebra of B(H) closed in the strong operator

topology (a von Neumann algebra).

Proof. If H is not irreducible, it has a proper invariant subspace K with invariant or-

thogonal complement K⊥. It follows that the projection onto K belongs to EndA(H),

which therefore cannot be isomorphic to C.

If EndA(H) is not isomorphic to C, then it is a C*-algebra containing an element

T which is not a scalar multiple of the identity. The C*-subalgebra generated by

T contains a zero divisor whose kernel is an invariant subspace of H, so H is not

irreducible.
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2.5 States

Definition Let µ, ν be positive linear functionals. Then µ ≥ ν if µ− ν ≥ 0; we say

that ν is subordinate to µ.

Given µ, let (π,H, v) be the corresponding GNS representation. Consider EndA(H).

Let T ∈ EndA(H) be a positive operator smaller than the identity and set

ν(a) = νT (a) = 〈π(a)Tv, v〉. (47)

(Then T is the Radon-Nikodym derivative of ν with respect to µ.) We compute

that

ν(a∗a) = 〈π(a∗a)Tv, v〉 = 〈T 1/2π(a)v, T 1/2π(a)v〉 ≥ 0 (48)

so ν is positive. Similarly, µ− ν is positive. Moreover, if νT = νS then T = S (by

nondegeneracy).

Conversely, suppose ν is a positive linear functional with µ ≥ ν ≥ 0, we want to

show that ν = νT for some T ∈ EndA(H). For a, b ∈ A we have

|ν(b∗a)| ≤ ν(a∗a)1/2ν(b∗b)1/2 ≤ µ(a∗a)1/2µ(b∗b)1/2 = ‖π(a)v‖‖π(b)v‖. (49)

In particular, if the RHS is zero, so is the LHS. For fixed b, we can attempt to

write down a map

π(a)v 7→ ν(b∗a) (50)

which is well-defined by the above inequality. This is a linear functional of norm

less than or equal to ‖π(b)v‖, so by the Riesz representation theorem there exists

T ∈ End(H) such that

ν(b∗a) = 〈π(a)v, T ∗π(b)v〉. (51)

Since ν ≥ 0 we have T ≥ 0. Since ν ≤ µ, we have T ≤ I. To show that
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T ∈ EndA(H), write

〈π(c)Tπ(a)v, π(b)v〉 = 〈Tπ(a)v, π(c∗b)v〉 (52)

= ν((c∗b)∗a) (53)

= ν(b∗ca) (54)

= 〈π(c)π(a)v, T ∗π(b)v〉 (55)

which gives π(c)T = Tπ(c) by density. We can encapsulate our work above in the

following.

Proposition 2.36. The map T 7→ νT is a bijection between {T ∈ EndA(H) : 0 ≤
T ≤ I} and {ν : µ ≥ ν ≥ 0}.

Definition A positive linear functional is pure if whenever µ ≥ ν ≥ 0 then ν = rµ

for some r ∈ [0, 1].

Theorem 2.37. Let µ be a positive linear functional. Then µ is pure iff the associated

GNS representation (π,H, v) is irreducible.

Proof. If µ is not pure, there is µ ≥ ν ≥ 0 such that ν is not a multiple of µ. Then

there exists T ∈ EndA(H) not a scalar multiple of the identity, so by Schur’s lemma,

H is not irreducible.

Conversely, if H has a proper invariant subspace, let P ∈ EndA(H) be the corre-

sponding projection. Then νP is not a multiple of µ.

Proposition 2.38. (Recall that the space of states S(A) is convex.) Let µ ∈ S(A).

Then µ is pure if and only if µ is an extreme point of S(A).

Proof. If µ is not extreme, µ = tµ1 + (1 − t)µ2 where µi ∈ S(A), t ∈ (0, 1), and

µ1 6= µ 6= µ2. Then µ ≥ tµ1, so µ is not pure.

Conversely, suppose µ is not pure, so there is µ > ν > 0 with ν not a scalar multiple

of µ. Then µ = (µ− ν) + ν which is a convex linear combination of states (once the

terms have been normalized) using the fact that ‖µ− ν‖ = lim(µ− ν)(eλ).

Extreme points of S(A) are pure states. If A is unital, then S(A) is weak-*

compact, so by the Krein-Milman theorem has many extreme points. A sketch of

Krein-Milman is as follows.
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Definition Let K be a convex subset of a vector space. A face of K s a subset F

such that if v ∈ F and v = tv1 + (1 − t)v2 with 0 < t < 1 and v1, v2 ∈ K, then

v1, v2 ∈ F .

A face of a face is a face.

Let V be a locally convex topological vector space. If K is a convex compact

subset of V and if ϕ ∈ V ∗ takes its maximum on K at some point v0, then {v ∈
K : ϕ(v) = ϕ(v0)} is a closed face of K. By Hahn-Banach together with a Zorn’s

lemma argument we can find descending chains of closed faces which necessarily end

at extreme points.

Let (πa, Ha) be the direct sum of the GNS representations associated to all of the

extreme points of S(A).

Theorem 2.39. For any a ∈ A we have ‖πa(a)‖ = ‖πU(a)‖ = ‖a‖ (where πU is the

universal representation).

Proof. Let a ∈ A be self-adjoint. Then there exists ρ ∈ S(A) with |ρ(a)| = ‖a‖.
Let Se(A) be the set of extreme (pure) states of A. Suppose that there exists c such

that |µ(a)| ≤ c < ‖a‖ for all µ ∈ Se(A). This inequality is preserved by convex

combinations, so this inequality holds for any µ in the closure of the convex hull of

Se(A), which by Krein-Milman is all of S(A); contradiction. Hence there is a sequence

µn ∈ Se(A) such that |µn(a)| ↑ ‖a‖.

As a corollary, Gelfand and Raikov showed that locally compact groups have many

irreducible unitary representations.

Let A be a non-unital C*-algebra. We can define a quasi-state space Q(A) to

be the space of all positive linear functionals with ‖µ‖ ≤ 1. This is also a compact

convex subset of A∗ in the weak-* topology and its extreme points are the extreme

states Se(A) together with 0.

2.6 Compact operators

Let H be a Hilbert space and let Bf (H) be the set of finite rank operators in B(H).

This is a two-sided ideal in B(H). If I is any proper 2-sided ideal, then Bf (H) ⊆ I.

We define the compact operators B0(H) to be the closure of Bf (H). Then Bf (H) is

the minimal dense ideal in B0(H). (The chain of inclusions Bf (H) ⊂ B0(H) ⊂ B(H)

is analogous to the chain of inclusions Cc(S) ⊂ C0(S) ⊂ `∞(S) where S is a set.)
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The identity operator is not compact, so B0(H) is a natural example of a non-

unital C*-algebra. B0(H) is topologically simple in the sense that it has no proper

2-sided closed ideals. Its representation on H is irreducible. Moreover, every irre-

ducible representation of B0(H) is unitarily equivalent to H, and every nondegenerate

representation is a direct sum of copies of H.

Recall that two rings R, S are Morita equivalent if their categories of left modules

are equivalent. R and Mn(R) are known to be Morita equivalent. In some C*-

algebraic sense, B0(H) is Morita equivalent to C.

Theorem 2.40. (Morita) Let F : R-Mod → S-Mod be an equivalence of categories.

Then F is naturally isomorphic to tensoring by RXS for some bimodule X.

We return now to B0(H). For v, w ∈ H define 〈v, w〉0 ∈ B0(H) by 〈v, w〉u =

v〈w, u〉. This is a rank- 1 operator. If T ∈ B(H) then T 〈v, w〉0 = 〈Tv, w〉0, hence

〈v, Tw〉0 = 〈v, w〉0T ∗.

Theorem 2.41. Every non-degenerate representation of B0(H) is unitarily equivalent

to a direct sum of copies of H.

Proof. Let (π, V ) be such a representation. For T ∈ B0(H), v ∈ V write π(T )v as Tv.

Pick any h ∈ H, ‖h‖ = 1 so that 〈h, h〉0 is the projection onto h. Then 〈h, h〉0 acts as a

nonzero projection on V (because B0(H) is topologically simple). Let v ∈ V, ‖v‖ = 1

be such that 〈h, h〉0v = v. Define

Q : H 3 w 7→ 〈w, h〉0v ∈ V. (56)

A tedious computation shows that Q is an isometry and another computation

shows that Q is a module homomorphism. The rest follows by Zorn’s lemma.

Corollary 2.42. Every pure state of B0(H) is of the form µv(T ) = 〈Tv, v〉 for some

v ∈ H, ‖v‖ = 1.

Hence there is a bijection between the space of pure states on B0(H) and the

projective space P(H). If P is a rank one operator, then we can also write µP (T ) =

tr(TP ). We can identify the space of states S(B0(H)) with the set of positive trace

class operators of trace less than or equal to 1 (density operators) (sometimes called

mixed states).
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Theorem 2.43. (Burnside) Let A be a C*-subalgebra of B0(H) and assume that the

standard representation of A on H is irreducible. Then A = B0(H).

Proof. Let T ∈ A be nonzero and positive. By the spectral theorem, σ(T ) is a

countable set with 0 as its only possible accumulation point, and for any r > 0 the

intersection σ(T ) ∩ [r,∞) is finite (or otherwise we could find a subspace on which

T acts invertibly, which contradicts that T is approximable by finite-rank operators).

The C*-subalgebra generated by T is isomorphic to C(σ(T )). The indicator function

of any positive eigenvalue is approximable by polynomials in T , from which it follows

that A contains nonzero projections. These projections necessarily have finite rank.

Let P be a projection in A of minimal rank. Then for any self-adjoint S ∈ A we

have PSP ∈ A. PSP acts on the range of P and has spectral projections of rank at

most that of P . By minimality, PSP must be a scalar multiple α(S)P of P .

Suppose that v, w are orthogonal vectors in the range of P . Then for any S ∈ A
we have

〈Sv, w〉 = 〈SPv, Pw〉 = 〈PSPv, w〉 = α(S)〈v, w〉 = 0. (57)

Since any nonzero vector is cyclic, it follows that w = 0. Hence P is a rank 1

projection, so P = 〈v, v〉0. Now for any S ∈ A we have SP ∈ A where SP = 〈Sv, v〉0.

Since A is norm-closed, 〈v, v〉0 ∈ A for all v ∈ H, so all rank-1 operators are in A,

and the conclusion follows.

Let A be a *-normed algebra and I be a 2-sided ideal in A with a bounded 2-sided

approximate identity eλ.

Proposition 2.44. Let (π,H) be an irreducible representation of A. Then either

π(I) = 0 or π|I is irreducible.

Proof. Suppose π(I) 6= 0. Then π(I)H is an A-invariant subspace, hence is all of H,

so the representation of I is nondegenerate.

Suppose K is a nontrivial I-invariant subspace. Then for a ∈ A, i ∈ I, v ∈ K we

have

π(a)π(i)v = π(ai)v ∈ K (58)

and
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π(a)v = limπ(a)π(eλ)v = limπ(aeλ)v ∈ K (59)

from which it follows that K is A-invariant.

Proposition 2.45. Let (π,H), (ρ,K) be irreducible representations of A with π(I) 6=
0. Suppose that π|I , ρ|I are unitarily equivalent. Then π, ρ are unitarily equivalent.

Proof. Let U : H → K be a unitary equivalence. Then for any a ∈ A, i ∈ I, v ∈ H,

U(π(a)π(i)v) = U(π(ai)v) = ρ(ai)Uv = ρ(a)ρ(i)Uv = ρ(a)Uπ(i)v (60)

and taking i = eλ and taking limits, the conclusion follows.

Proposition 2.46. Let (π,H) be a nondegenerate representation of I. Then π has

a unique extension π̃ to a representation of A on H.

Proof. Suppose π̃ is such an extension. Then π̃(a)π(i)v = π(ai)v, and vectors of the

form π(i)v are dense, so π̃ is unique. To show existence, we want to define π̃ using

π̃(a)(π(i)v) = π(ai)v (61)

and we want to show that this is well-defined. Hence we want to show that if∑
π(ij)vj = 0 then

∑
π(aij)vj = 0. Now∑

π(aij)vj = lim
∑

π(aeλij)vj = limπ(aeλ)
∑

π(ij)vj (62)

and the conclusion follows modulo some technical details.

Theorem 2.47. Let (π,H) be an irreducible representation of a C*-algebra A. If

π(A) ∩ B0(H) is nonzero, then B0(H) ⊆ π(A). In this case, if I = ker(π), then any

two irreducible representations of A with kernel I are unitarily equivalent.

Proof. Let J = π−1(B0(H)). Then J is a closed 2-sided ideal of A contained in I.

Now, π(J) is a closed *-subalgebra of B0(H). Since J is an ideal, π|J is irreducible,

so by a previous result, π(J) = B0(H).

Now if (π,H) and (ρ,K) are two irreducible representations with kernel I, then

π|J and ρ|J give irreducible representations of J , hence J/I ∼= B0(H). So π|J and

ρ|J are unitarily equivalent by a previous result, from which it follows that π, ρ are

unitarily equivalent by a previous result.

22



Definition Let A be a C*-algebra. A is CCR (Kaplansky) or liminal (Dixmier)

if in every irreducible representation (π,H) we have π(A) = B0(H). A is GCR

(Kaplansky) or post-liminal (Dixmier) if π(A) ⊇ B0(H) for all π. Otherwise, A is

NGR (Kaplansky) or anti-liminal (Dixmier).

Definition Let A be a C*-algebra. A primitive ideal is the kernel of an irreducible

representation of A.

For a commutative C*-algebra, these are precisely the maximal ideals. If Â is the

space of primitive ideals and A is GCR, then there is a bijection between the space

of unitary equivalence classes of irreducible representations and Â.

Theorem 2.48. Let (π,H) be an irreducible representation of a C*-algebra A and

let I = ker(π). If π(A) ∩ B0(H) = {0}, then there are an uncountable number of

equivalence classes of irreducible representations of A with kernel I. Furthermore,

the set of all such representations is unclassifiable in a suitable sense.

Suppose A is a unital, infinite-dimensional C*-algebra that is simple (has no proper

2-sided ideals). Then A is NGR and Â = {{0}}. In this situation it is hopeless to

classify irreducible representations.

If G is a locally compact group, then one can construct various C*-algebras from

it. If G is a connected Lie group that is

1. semisimple (e.g. SLn(R),O(p, q)), then the corresponding C*-algebras are CCR

(Harish-Chandra).

2. nilpotent, then the corresponding C*-algebras are CCR (Dixmier).

3. solvable, then some are GCR and some are NGR.

For an NGR example, consider the semidirect product C2 oR with R acting by

αt(z, w) = (e2πitz, e2πiθtw) (63)

for fixed θ. If θ is irrational, then the orbits of this action are not closed.

If G is discrete, then C∗(G) is GCR.

Naimark conjectured that if A is a C*-algebra with only one irreducible repre-

sentation, then A ∼= B0(H). This is true if A is separable. In the inseparable case,
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the answer is independent of ZF; the diamond principle can be used to construct a

counterexample.

Given an ideal I, define hull(I) = {J ∈ Â : J ⊇ I}, and givne a set S ⊆ Â, define

ker(S) =
⋂
{J ∈ S}.

Proposition 2.49. (Spectral synthesis) For any ideal I, we have I = ker(hull(I)).

Proof. Consider B = A/I, a C*-algebra. It has enough irreducible representations

so that their direct sum is faithful. Each of these irreducible representations is an

irreducible representation of A, and the intersection of their kernels, which are all

primitive, is I.

Definition For any ring R, not necessarily commutative, a prime ideal is a proper

ideal P such that if J1, J2 are ideals with J1J2 ⊆ P , then either J1 ⊆ P or J2 ⊆ P .

Proposition 2.50. Let A be a C*-algebra. Then any primitive ideal is prime.

Proof. Let I be a primitive ideal. Then there is an irreducible representation (π,H)

with kernel I. Let J1, J2 be ideals such that J1J2 ⊆ I. Since I is closed, we can

assume that J1, J2 are closed. If J1 ⊆ I we’re done, so suppose otherwise. Then π|J1
is irreducible and nondegenerate, so H = π(J1)H. Then π(J2)H = π(J2)π(J1)H =

π(J1J2)H = 0, from which it follows that J2 ⊆ I.

Is every closed prime ieal of a C*-algebra primitive? This is true in the separable

case. In 2001 a non-separable counterexample was constructed.

Let R be a ring and Spec R its set of prime ideals. For any ideal I in R set

hull(I) = {J ∈ Spec R : I ⊆ J} and for any S ⊆ Prime(R) set ker(S) =
⋂
{J ∈ S}.

The hull-kernel or Jacobson topology on Spec R is defined using the closure operator

S̄ = hull(ker(S)). When R is commutative this reproduces the Zariski topology.

LetA be a C∗ algebra, and Â its primitive ideal space with the hull-kernel topology.

It is a T0 topology, equivalently if I, J ∈ Â and if {I} = {J} then I = J , as I ⊆ J

and J ⊆ I. Can show that Â is locally compact, i.e. for each point of Â there is a

compact neighborhood of the point. If A is separable then Baire category theorems

work for Â.
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3 Generators and relations

Given a set S whose elements are viewed as generators, for each a ∈ S we want

another symbol a∗. Consider the free algebra F (S) over C for the generators S

and S∗ (multiplication is concatenation, with cancellation). Its elements are all

the non-commutative polynomials in the a’s and a∗’s. Define a ∗ on the free al-

gebra in the evident way. Relations are n.c. polynomials in the a’s and a∗’s. Let

R be a set of relations, let I(S,R) = the 2-sided ∗-ideal of F (S) generated by R.

Set A(S,R) = F (S)/I(S,R): is a ∗-algebra. We can look at ∗-representations

of A(S,R) into B(H), H Hilbert. For a ∈ A(S,R) set ||a||C∗ = sup{||π(a)|| :

π is a representation of A(S,R)}. Can be +∞ - if it does then C∗ algebra does not

exist. Eg S = {x}, R = ∅. We may have to mod out by things with norm zero, i.e.

things in the kernel of every representation. Then we complete.

Themes:

1. Relations must force || · || <∞. Suffices to show ||a||C∗ <∞ for each a ∈ S.

2. Are there many reps (relations like x∗x = 0 make the only rep trivial)

3. There may be a natural representations of A(S,R). Is the operator norm for it

= || · ||C∗

Example S = {u, 1}, uu∗ = 1 = u∗u, 1u = u = u1, 1∗ = 1.

Under any ∗-representation, the image of u is a unitary operator. This is C(T ). u

corresponds to the function f(z) = z on the circle.

Example S = {s, 1}, s∗s = 1, 1s = s1 = s.

This gives l2(N). s seems to be a unilateral shift.

Example Let G be a group. Set S = G,R = { all relations for G, and x∗ =

x−1 for all x ∈ G}.

We always have the trivial representation and the left regular representation λ : l2(G).

(λxξ)(y) = ξ(x−1y) for ξ ∈ l2(G). A(G,R) = {
∑

finite f(x)x, f ∈ Cc(G)}. Let

||f ||r = ||λ∑
f(x)x
||. Is it true that ||f ||r = ||f ||C∗? No. True exactly ifG is “amenable.”
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Example Abelian groups, solvable groups, nilpotent groups, finite groups are amenable.

SLn(Z) is not amenable.

G (discrete) group. f ∈ Cc(G) are functions of finite support. Given (π,H) a

unitary representation of G, set (πfξ) =
∑

x∈G f(x)πxξ, ξ ∈ H.

||πfξ|| ≤
∑
|f(x)|||πxξ|| = ||f ||1||ξ||

(used unitary to conclude ||πxξ|| = ||ξ||.) So

||πf || ≤ ||f ||1.

Extend def to l1(G), πfξ to f ∈ l1(G). Given f, g ∈ Cc(G),

πf (πgξ) =
∑
x

f(x)πx(
∑
g

g(y)πyξ)

=
∑
x

f(x)(
∑

g(y)πxyξ)

=
∑
y

(
∑
x

f(x)g(x−1y))πyξ

So define

(f ∗ g)(y) =
∑
x

f(x)g(x−1y).

We have

||f ∗ g||1 ≤ ||f ||1||g||1

and

πfπg = πf∗g

. We want our representation to be a ∗ representation

(πf )
∗ =

∑
f(x)π∗x =

∑
f(x−1)πx.

So define f ∗(x) = f(x−1). Then (πf )
∗ = πf∗ . G ⊂ l1(G) via x 7→ δx and we have

πδx = πx.

Proposition 3.1. There is a bijection between the unitary reps of G and the non-

degenerate ∗-representations of l1(G) as defined above.
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Proof. We’ve done one direction. Given (π,H) a non-degenerate ∗-representation of

l1(G), set πx = πδx .

For f ∈ l1(G), set

||f ||C∗ = sup{||πf || : (π,H) a unitary rep of G}

We have ||f ||C∗ ≤ ||f ||1. Question do we always have a unitary rep of G? There is

a trivial one which isn’t much help. Always have “left-regular” representation of G.

(l2(G), λ), (λxξ)(y) = ξ(x−1y). For f ∈ l1(G), λf (δe) = f ∈ l2(G). Thus if λf = 0

then f = 0, so λ is faithful. So can define

||f ||C∗r = ||λf || ≤ ||f ||C∗ .

Theorem 3.2. ||f ||C∗r = ||f ||C∗ for all f ∈ l1(G) off G is amenable.

Definition For any set X, a positive linear functional on l∞(X) is called a mean.

For G discrete, say that G is amenable if there is a mean on µ ∈ l∞(G), ||µ|| = 1 that

is invariant under left translation.

All commutative groups are amenable. Prove that Z is amenable. SLn(Z) is not

amenable for n ≥ 2. Free group on n-letters is not amenable.

4 Tensor products

Let A and B be unital C∗ algebras. Consider A⊗ B. Generators A ∪ B. Relations:

all relations in A,B ab = ba for all a ∈ A, b ∈ B. 1A = 1B. ab denotes a ⊗ b.

(a⊗ b)∗ = a∗ ⊗ b∗. A ↪→ A⊗B via a 7→ a1B.

For any ∗-rep (π,H) of A⊗B, ||π(a⊗ 1B)|| ≤ ||a||, ||π(1A⊗ b)|| ≤ ||b||. ||a⊗ b|| ≤
||a||||b|| “ cross-nom ”.

Is this just the zero algebra? Let (π,H) be a ∗-rep of A, ρ,K a ∗-rep of B. Form

(π ⊗ ρ on H ⊗K). For H ⊗K as a vector space.

< ξ ⊗ η, ξ′ ⊗ η′ >:=< ξ, ξ′ >H< η, η′ >K
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and extend by linearity. Then complete to get a Hilbert space. Given S ∈ B(H),

set (S ⊗ IK)(ξ ⊗ η) := Sξ ⊗ η. ||S ⊗ IK || = ||S||. For T ∈ B(K), set S ⊗ T =

(S ⊗ IK)(IH ⊗ T ), then ||S ⊗ T || = ||S||||T ||.
Let A,B be unital C*-algebras. If (π,H) and (ρ,K) are representations of A and

B, then we can define a tensor product A⊗ B of *-algebras which naturally acts on

the Hilbert space tensor product H ⊗K by

(π ⊗ ρ)(a⊗ b) = π(a)⊗ ρ(b) (64)

and then extending by linearity. On the algebraic tensor product A ⊗ B we can

define a norm

‖t‖ = sup{‖(π ⊗ ρ)(t)‖ : (H, π) a rep of A, (ρ,K) a rep of B}. (65)

and if t =
∑
aj ⊗ bj then this is at most

∑
‖aj‖‖bj‖. Completing A ⊗ B with

respect to this norm gives a C*-algebra. We will denote this by A ⊗min B (it turns

out to be the minimal norm that can be placed on the tensor product). The maximal

norm, which gives an algebra A⊗max B, has norm

‖t‖ = sup{‖(π ⊗ ρ)(t)‖ : π, ρ reps on H, π(a)ρ(b) = π(b)ρ(a)}. (66)

An example where the two differ is as follows. Let G be a discrete group, let

H = `2(G), and consider the left regular representation λ and the right regular

representation ρ of C∗r (G). If σ = λ⊗ ρ, then ‖σ(t)‖ is strictly bigger than ‖t‖min in

general (Takesaki showed that this was true for G = F2). We also know that C∗r (F2)

and C∗r (F2)⊗min C
∗
r (F2) are simple. On the other hand, C∗(F2)⊗ C∗(F2) contains a

copy of B0(`2(F2)).

Definition A C*-algebra A is nuclear if, for all C*-algebras B, we have A⊗min B =

A⊗max B.

Example All GCR algebras are nuclear. Any filtered colimit of nuclear algebras is

nuclear.

Theorem 4.1. Let G be a discrete group. C∗r (G) is nuclear iff G is amenable (iff

C∗r (G) = C∗(G)).

This is false if we do not assume that G is discrete.
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Theorem 4.2. 0 → I → A → A/I → 0 is a short exact sequence (where I is a

two-sided ideal), then for any B, the tensor product

0→ I ⊗max B → A⊗max B → (A/I)⊗max B → 0 (67)

is also a short exact sequence.

(This fails for the minimal tensor product.) If this holds for the minimal tensor

product for fixed B and all A, I then we say that B is exact. (Hence nuclear implies

exact.)

We can also form free products A ∗B.

5 Group actions

Let G be a discrete group. Suppose we are given an action α : G→ Aut(A) where A is

a C*-algebra. We may think of this as a generalized dynamical system; in the special

case that A = C0(X) we take actions α : G → Homeo(X). In the noncommutative

case, we call such things C*-dynamical systems.

A covariant representation of a C*-dynamical system (A,G, α) is a triple (H, π, U)

where π is a representation of A on H and U is a unitary representation of G such

that

π(αx(a)) = Uxπ(a)U−1
x . (68)

There is a universal C*-algebra here whose representations correspond to covariant

representations of a given C*-dynamical system. If f ∈ Cc(G,A) is a function on G

with finite support and values in A and (H, π, U) is a covariant representation, we

define

σfv =
∑

π(f(x))Uxv (69)

where v ∈ H. This gives

σfσgv =
∑
x

π(f(x))Ux
∑

π(g(y))Uyv =
∑
x,y

π(f(x))π(αx(g(y))Uxyv. (70)

We can reindex this sum, which allows us to define a product on Cc(G,A) by
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(f ∗ g)(y) =
∑
x

f(x)αx(g(x−1(y))). (71)

Note that if the action is trivial then this is just ordinary convolution. We define

a norm ‖f‖1 =
∑

x ‖f(x)‖; with respect to this norm, ‖f ∗ g‖1 ≤ ‖f‖1‖g‖1.

Alternately, we can think about the *-algebra freely generated by A and the ele-

ments of G subject to the relations x∗ = x−1 and αx(a) = xax−1. The corresponding

universal C*-algebra is denoted C∗(A,G) or A oα G and is called the covariance

C*-algebra or crossed product for the C*-dynamical system.

Are there any nontrivial covariance representations? Let (ρ,H0) be a represen-

tation of A and let H = `2(G) ⊗ H0 (equivalently, square-integrable functions on G

with values in H0). Let (Uxv)(y) = v(x−1y) where v ∈ `2(G,H0) and let

(π(a)v)(x) = ρ(α−1
x (a))v(x). (72)

We can verify that this is a covariant representation. If ρ is a faithful representa-

tion of A, then H is a faithful representation of Cc(G,A). So let

‖f‖C∗r = sup{‖π(f)‖} (73)

where π varies over all representations constructed above. We say that α is

amenable if C∗r (A,G, α) = C∗(A,G, α). If G is amenable, then α is amenable, but

not conversely.

If H is a subgroup of G and we are given a covariant representation of (A,H, α|H),

then by replacing `2(G) with the action of G on `2(G/H), we can obtain a covariant

representation of (A,G, α) called the induced representation.

If A has an identity, then given a nondegenerate representation of C∗(A,G, α),

we can restrict it to A and G to get a covariant representation of (A,G, α). If A has

no identity, we pass to the multiplier algebra of C∗(A,G, α). In both cases, we get a

natural bijection.

If G is a topological group, we want to consider unitary representations of G which

are strongly continuous (continuous in the strong operator topology), e.g. for every

v ∈ H the function x 7→ Uxv is continuous. Continuity is too strong a condition; for

example, the regular representation of R on L2(R) fails to be norm-continuous. We

also require strong continuity for actions of G on C*-algebras and strong continuity

for covariant representations of a C*-dynamical system.

30



The theory is nicest when G is locally compact (Hausdorff). Such groups have a

(left) Haar measure (nonzero positive Radon measure (positive linear functional on

Cc(G)) which is invariant under left translation), so one can talk about the corre-

sponding Lp spaces. Taking inverses gives us a right Haar measure which is invariant

under right translation; they need not be the same in general (e.g. for the ax + b

group). The Radon-Nikodym derivative is a continuous homomorphism ∆ : G→ R>0,

the modular function, such that∫
G

f(x−1) dx =

∫
G

f(x)∆(x) dx. (74)

In particular, if G is compact, ∆ = 1 identically (G is unimodular) and the left and

right Haar measures agree. Semisimple and nilpotent Lie groups are also unimodular,

but some solvable groups are not. Discrete groups and commutative groups are also

unimodular.

The action of G on Lp(G) is strongly continuous for finite p. To see this, the

action of G on Cc(G) is strongly continuous, and this is dense in Lp(G) for finite p.

We can define convolution on L1(G) by

(f ∗ g)(x) =

∫
f(y)g(y−1x) dy (75)

and this gives a Banach algebra.

If (H,U) is a strongly continuous unitary representation of G, we can define

Ufv =

∫
f(x)Uxv dx (76)

where f ∈ L1(G), and this gives a non-degenerate *-representation of L1(G).

If (A,G, α) is a C*-dynamical system and f, g ∈ Cc(G,A) we can again define

(f ∗ g)(x) =

∫
f(y)αy(g(y−1x)) dy (77)

and again if (H, π, U) is a covariant representation we can define

σfv =

∫
π(f(x))Uxv dx (78)

which gives a continuous action of Cc(G,A) on H. The details are the same as in

the discrete case except that
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(Uf )
∗ =

(∫
f(x)Ux dx

)∗
(79)

=

∫
f̄(x)U∗x dx (80)

=

∫
f̄(x)Ux−1 dx (81)

=

∫
f̄(x−1)Ux∆(x−1) dx (82)

so we need to define

f ∗(x) = ∆(x−1)f(x−1). (83)

For f ∈ Cc(G,A) define as before

‖f‖C∗ = sup{‖σf‖} (84)

where σf comes from a covariant representation of (A,G, α). Completing with

respect to this norm gives a C*-algebra C∗(A,G, α), often written Aoα G as before.

We can also restrict our attention to representations induced from representations of

A and then we get the reduced algebra C∗r (A,G, α). If α is trivial, then C∗(A,G, α) =

A⊗max C
∗(G) and C∗r (A,G, α) = A⊗min C

∗
r (G).

Given a representation of L1(A,G, α), do we get a covariant representation of

(A,G, α)? For G discrete and A unital we consider the inclusions

G 3 g 7→ δg ∈ `1(A,G, α) (85)

and

A 3 a 7→ δ1(a) ∈ `1(A,G, α) (86)

and this gives the correspondence. In general, let eλ be a 2-sided approximate

identity of norm 1 in A and let fµ be an approximate δ-function for L1(G) in Cc(G).

Set

gδ,µ(x) = fµ(x)eλ ∈ Cc(G,A). (87)
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Check that δx ∗ f = λxf and f ◦ δx = fρx (need to put ∆ in here somewhere).

There is an inclusion

L1(A,G, α)→ L1(Ã, G, α)⊕ `1(Ã, Gd, α) (88)

where Ã is the unitalization and Gd is G with the discrete topology. Any nonde-

generate representation of the LHS extends to a nondegenerate representation of the

RHS on the same Hilbert space, which gives the following.

Theorem 5.1. There is a bijection between the nondegenerate representations of

L1(A,G, α) (and also C∗(A,G, α)) and the covariant representations of (H, π, U) of

(A,G, α) given by forming the integrated form.

Let G be a group acting on C*-algebras A and B. We want to consider equivariant

*-homomorphisms Φ : A → B. Given such a map, we can define Φ̂ : L1(A,G, α) →
L1(B,G, β) by

(Φ̂(f))(x) = Φ(f(x)) (89)

for f ∈ L1(A,G, α), x ∈ G. Then Φ̂ is a *-homomorphism.

Note that L1(A,G, α) embds into C∗(A,G, α). Given a nondegenerate represen-

tation of C∗(B,G, β), we get a representation of L1(A,G, α) by pulling back, but it

is not necessarily nondegenerate.

Let (A,G, α) be a C*-dynamical system and J a 2-sided closed ideal. If J is

α-invariant, then (J,G, α) and (A/J,G, α) are C*-dynamical systems.

Theorem 5.2. The sequence

0→ J oα G
i∗−→ Aoα G

p∗−→ A/J oα G→ 0 (90)

is exact.

Proof. p∗ being a surjection is clear. The composition of the maps being zero is clear.

To show injectivity of i∗, let σ be a faithful nondegenerate representation of J oα G

and let (H, π, U) be the corresponding covariant representation.

Lemma 5.3. If σ is the integrated form of π, then σ is nondegenerate iff π is non-

degenerate.
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Proof. Let N = {v ∈ H : π(b)v = 0∀b ∈ V }. Then N is U -invariant, so σ(J)v = 0 for

v ∈ N . Then π extends to a representation π̃ of A on H with π̃(a)(π(d)v) = π(ad)v,

and (H, π̃, U) is a covariant representation of (A,G, α). Let σ̃ be the integrated form

of (H, π̃, U). Then we claim that σ̃ ◦ i∗ = σ where σ is faithful.

It follows that i∗ is injective.

To show exactness, view JoαG as contained in AoαG. We know that p∗(JoαG) =

0, so ker(p∗) ⊆ J oα G, and we want equality.

Let σ be a faithful representation of AoαG/JoαG. View σ as a representation of

AoαG with kernel JoαG. Let (H, π, U) be the corresponding covariant representation

for σ (of (A,G, α)). For any d ∈ J and any h ∈ Cc(G,C), let J(x) = h(x)d ∈ J oαG.

Then

0 = σJv =

∫
π(J(x))Uxv dx =

∫
π(d)h(x)Uxv dx = π(d)Uhv (91)

for all h, hence π(d) = 0, hence π(J) = 0. View π as a representation of A/J ,

call it π̂. Then (H, π̂, U) is a covariant representation of (A/J,G, α). Let σ̂ be its

integrated form, a representation of A/JoαG. We claim without proof that σ̂p∗ = σ,

thus ker(p∗) ⊆ J oα G.

5.1 Transformation groups

Now let A be commutative, so A ∼= C0(M). Then G acts continuously on M (a

transformation group). In this case Aoα G is called a transformation group algebra.

Theorem 5.4. Let σ be an irreducible representation of C0(M) oα G. Let (H, π, U)

be the corresponding covariant representation. Let

J = ker(π) = {F ∈ C0(M) : F (m) = 0∀m ∈ ZJ ⊂M} (92)

where ZJ = hull(J) = {m ∈M : f(m) = 0∀f ∈ J} (which is α-invariant). Let M

be second-countable. Then ZJ is the closure of the orbit of some point of M .

Proof. Fix v ∈ H with ‖v‖ = 1. Define a finite Radon measure µ on M by

µ(f) = 〈π(f)v, v〉 (93)

34



for f ∈ A. We have µ(f) = 0 for f ∈ J , so the support of µ is contained in ZJ .

Let B be a countable basis for the topology of M and let Bn be an enumeration of

the elements of B. For n ∈ N, let

On = αG(Bn) =
⋃
x∈G

αx(Bn) (94)

which is α-invariant and open. Let Jn = C0(On) ⊆ C0(M). If Bn ∩ ZJ 6= ∅,
then On ∩ ZJ 6= ∅, so Jn 6⊆ J , whence π(Jn) 6= {0}. Now π(Jn)H is invariant under

Ux, x ∈ G and π(a), a ∈ A, so it is invariant under the integrated form of (H, π, U).

Since H is irreducible, it must be zero or H. Hence it is H if Bn ∩ZJ 6= ∅, i.e. if π|Jn
is nondegenerate.

Let S ⊆ N be the set of n ∈ N such that Bn ∩ ZJ 6= ∅. Given n ∈ S, take an

approximate identity eλ for Jn, whence

lim
λ
µ(eλ) = lim

λ
〈eλv, v〉 = 1 (95)

so µ(On) = 1. Thus µ(
⋂
On) = 1, since µ is a probability measure and S is

countable. Hence Z = ZJ ∩
⋂
On 6= ∅.

We claim that if m ∈ Z then the orbit of m is dense in ZJ . To see this, let

m0 ∈ ZJ and let U be an open neighborhood of m0. Then m0 ∈ Bn ⊆ U for some

n ∈ S. Since m ∈ On = αG(Bn), there exists x ∈ G such that αx(m) ∈ Bn ⊆ U .

Hence ZJ is the closure of the orbit of m for any m ∈ Z.

Example Let G = Z,M = T = R/Z. Let θ ∈ R\Q and let α be the homeomorphism

of T given by translation by θ. Then the orbit of any point of T is a countable dense

subset of T. We may define

Aθ = C(T) oα Z (96)

(an irrational rotation C*-algebra), which is an example of a noncommutative

torus. Aθ is generated by U and V such that

V U = e2πiθUV (97)

(where V = e2πit generates C(T)). Now C(T) acts on Cb(Z). This action, and

translation by Z, gives an irreducible representation of Aθ.

We can also stick in cocycles to get other irreducible representations.
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Let G be a locally compact group, A = C0(G) and α be the action of G on A by

left translation. We can form the C*-algebra C∗(G,C0(G), α) = C0(G) oα G.

Theorem 5.5. C0(G) oα G is naturally isomorphic to B0(L2(G)).

Proof. C0(G) oα G has a natural covariant representation (π, U) on L2(G) (which

we might call the Schrodinger map). Let σ be its integrated form, defined on

Cc(G,C0(G)) ⊇ Cc(G×G) by

(σF (ξ))(x) = (

∫
F (y)Uyξ)(x) =

∫
F (y, x)ξ(y−1x) dy. (98)

Let f, g ∈ Cc(G) ⊂ L2(G) and ξ ∈ Cc(G). Let 〈f, g〉0 be the rank one operator

given by

〈f, g〉0ξ = f〈g, ξ〉L2(G). (99)

Define

〈f, g〉E(y, x) = f(x)ḡ(y−1x)∆(y−1x) ∈ Cc(G×G) (100)

so that σ〈f,g〉E = 〈f, g〉0. Let E be the linear span of the functions 〈f, g〉E for

f, g ∈ Cc(G). Then E is stable under pointwise product and complex conjugation,

and moreover it separates the points of G×G. Hence E is dense in Cc(G×G) in the

colimit topology, so E is dense in L1(G,C0(G)) and so in C0(G) oα G.

If f1, ...fn ∈ Cc(G) are orthonormal, then the 〈fj, fk〉E span a copy of Mn(C)

(hence a C*-algebra with a unique C*-norm) inside C0(G) oα G. Hence on this span

the norm for C0(G) oα G agrees with the norm on B(L2(G)) via σ. Hence σ is

isometric on E. Hence σ is isometric on C0(G) oα G and maps into B0(L2(G)), and

we saw that it’s onto.

More generally, we can consider C0(G/H) oα G, which turns out to be Morita

equivalent to C∗(H).

Since the reduced cross product is a quotient of the cross product C0(G) oα G,

which is B0(L2(G)), and since B0(L2(G)) has no proper quotients, we conclude that

α is amenable.

Given groups Q,N and α : Q → Aut(N) an action, we can form the semidirect

product G = N oα Q, which is N ×Q with the multiplication given by
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(n, x)(m, y) = (nαx(m), xy). (101)

We can do this for topological groups as well. These groups fit together in a split

exact sequence

0→ N → G→ Q→ 0. (102)

Let N,Q be locally compact. If (H,U) is a strongly continuous unitary represen-

tation of G, then it restricts to unitary representations U |N , U |Q of N and Q with

a covariance relationship. U |N has an integrated form σN giving a representation of

C∗(N) on H. For any x ∈ Q, αx is an automorphism of N , so this gives an automor-

phism of L1(N). Furthermore, via α, Q acts on the set of unitary representations of

N , so acts via a group of automorphisms of C∗(N). This action is strongly continuous,

so we can form the crossed product

C∗(N) oα Q. (103)

We find that (H, σN , U |Q) is a covariant representation of (C∗(N), Q, α), hence

gives a representation of the crossed product. The converse also holds.

Proposition 5.6. There is a natural isomorphism C∗(N oα Q) ∼= C∗(N) oα Q.

If N is commutative, then C∗(N) is commutative, so C∗(N) ∼= C0(N̂) where N̂

is the Pontrjagin dual group of all continuous homomorphisms N → T. Then Q acts

on N̂ , and

C∗(N oα Q) ∼= C0(N̂) oα Q. (104)

Wigner in 1936 was the first to explore these issues. Consider R4 equipped with

the bilinear form

B(v, w) = v0w0 − v1w1 − v2w2 − v3w3. (105)

The Lorentz group L is the group of linear transformations on R4 preserving B.

Let α be its action on R4. The Poincaré group is the semidirect product P = R4oαL,

and we want to consider its (physically interesting) unitary representations. Since

R̂4 ∼= R4, we are looking at C0(R4) oα L, and we need irreducible representations of

L.
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For v ∈ R̂4 6= 0, consider the stabilizer Pv. The orbit of v looks like P/Pv, so we

want irreducible representations of C0(P/Pv)oαL. These representations correspond

to representations of the little group Lv. For massive particles, Lv = SU(2).

Given any group G and subgroup H we know that C0(G/H)oαG ∼= C∗(H). Let’s

be explicit about this. Given a representation (H, U) of H, we get a representation

of C0(G/H) oα G by constructing the induced representation

K = {ξ : G→ H : ξ(xs) = Us(ξ(x))} (106)

where s ∈ H, x ∈ G. Note that x 7→ ‖ξ(x)‖2 is H-invariant so can be identified

with a function on G/H; we require that this function is integrable.

6 Quantum mechanics

To model a quantum-mechanical system, observables are modeled by self-adjoint op-

erators on a Hilbert space. For a given observable, the collection of possible numbers

obtained by observation should be the spectrum of the operator. States are modeled

by expected values. Pure states are modeled by rank-1 projections.

If P is a rank-1 projection and T is a self-adjoint operator, then the expected

value when we observe the state P for the observable T is

tr(T ∗P ) = tr(TP ) = 〈Tv, v〉 (107)

(where P = vv∗, ‖v‖ = 1).

Mixed states are modeled by positive operators B of trace 1, and the corresponding

expected value is tr(TB).

Heisenberg showed that if Q is the position operator in a certain direction for a

particle and P its momentum, then

[P,Q] = −i~ (108)

where ~ is Planck’s constant. This implies that the Hilbert space must be infinite-

dimensional, since if P,Q are finite-rank operators then tr([P,Q]) = 0.

For n particles we need 3N such pairs of operators Pi, Qi where i ∈ {1, ...3n} for

each space direction.
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Weyl set Us = eisRe(P ), which gives a 1-parameter strongly continuous family of

unitary operators. Similarly, let Vt = eitRe(Q). What happens to the Heisenberg

commutation relation? Heuristically, let

f(s) = UsQU
∗
s = eisPQe−isP . (109)

Then

f ′(s) = ieisP (PQ−QP )e−isP = ~. (110)

Since f(0) = Q, we have f(s) = Q+ s~. Then

UsVtU
∗
s = eit(UsQU

∗
s ) = eis~tVt (111)

and we get the Weyl commutation relations

UsVt = eihstVtUs. (112)

In general, let G be a locally compact (Hausdorff) abelian group. A representation

of the Heisenberg commutation relations is a triple (H,U, V ) such that U is a (strongly

continuous) unitary representation of G on H, V is a unitary representation of Ĝ on

H, and

UsVt = 〈s, t〉VtUs. (113)

For example, we can take H = L2(G) with Us translation by s and Vt pointwise

multiplication by s 7→ 〈s, t〉.
V has an integrated form as a representation of L1(Ĝ), hence of C∗(Ĝ) ∼= C0(G)

(by Pontrjagin duality). Let ϕ ∈ L1(Ĝ) and f = ϕ̂, so that

π(f) =

∫
ϕ(t)Vt dt. (114)

Then

Uxπ(f)U−1
x =

∫
ϕ(t)UxVtU

−1
x dt = π(αx(f)) (115)

(where αx is the action by translation). It follows that (H, π, U) is a covariant

representation of (C0(G), G, ]alpha), and hence gives a representation of C0(G)oαG ∼=
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B0(L2(G)).

Theorem 6.1. Suppose that G is a locally compact (Hausdorff) abelian group. Then

up to unitary equivalence there is only one irreducible representation of the Weyl form

of the canonical commutation relations, namely the Schrödinger representation, and

every representation is a direct sum of copies of this.

For the ordinary Heisenberg commutation relations we have the same story.

6.1 Projective representations

Let G be a locally compact group and let H = G× Ĝ. Let W(x,t) = UxVt. Then

W(x,s)W(y,t) = 〈y, s〉W(x,s)+(y,t). (116)

In terms of quantum mechanics, pure states can be identified with the projective

space of the underlying Hilbert space, so symmetries sould be governed by automor-

phisms of this projective space. Wigner showed that every automorphism of projective

Hilbert space is given by either a unitary operator or an anti-unitary operator.

This motivates the following definition. We say that ω : G→ U(H) is a projective

representation of G if there exists c : G×G→ T such that

ωxωy = c(x, y)ωxy (117)

for x, y ∈ G. Associativity implies that

c(xy, z)c(x, y) = c(x, yz)c(y, z) (118)

hence that c is a 2-cocycle with values in T. We can normalize c so that c(e, x) =

c(x, e) = 1.

Given h : G → T, define (δh)(x, y) = h(xy)h(x−1)h(y−1). We say that two cocy-

cles c, c′ are cohomologous if c = (δh)c′. Projective representations of G associated

to c, c′ can then be canonically identified.

Projective representations of G associated to a fixed cocycle c correspond to rep-

resentations of L1(G, c) (which is invariant under replacing c wiht a cohomologous

cocycle c′), which is L1(G) with a twisted convolution

(f ∗c g)(x) =

∫
f(y)g(y−1x)c(y, y−1x) dy. (119)
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This also works on L2(G), so we have twosted C*-algebras C∗(G, c) and C∗r (G, c).

Continuing from above for H = G× Ĝ, we have C∗(H, c) ∼= B0(L2(G)).

Given a Hilbert space H, the automorphism group Aut(B0(H)) consists of con-

jugation by a unitary or antiunitary operator. So actions on B0(H) are projective

representations.

Given G and c, we can construct an extension group Ec fitting into a short exact

sequence

0→ T→ Ec → G→ 0 (120)

such that the projective c-representations of G correspond to the ordinary repre-

sentations of Ec which restrict to the trivial representation on T.

Let G = Zd. Choose a d× d real matrix θ and define a bicharacter

cθ(m,n) = e2πim·θn (121)

where · denotes the dot product and m,n ∈ G. Every 2-cocycle with values in T
is cohomologous to some cθ.

Form `1(G, cθ). The delta functions δn, n ∈ G satisfy

δm ∗ δn = cθ(m,n)δm+n (122)

so in particular δm ∗ δ−m = cθ(m,−m)δ0, hence

(δm)−1 = cθ(m,m)δ−m. (123)

We want to put a *-structure on this algebra such that each δn is unitary, so define

(δm)∗ = cθ(m,m)δ−m. Then

δn ∗ δm = cθ(n,m)δm+n = cθ(m,n)cθ(n,m)δm ∗ δn (124)

where the coefficient on the RHS simplifies to e2πin·(θ−θt)m.

If θ = 0, then C∗(G, cθ) = C∗(G) = C(Td). Hence we will think of the C*-algebras

Aθ = C∗(Zd, cθ) as noncommutative tori.

If G = Zd, then Ĝ = Td acts as a group of automorphisms of Aθ as follows: given

t ∈ Td,
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αt(δm) = 〈m, t〉δm. (125)

This action is strongly continuous. The Aθ form the simplest interesting examples

of noncommutative differentiable manifolds.

7 Strongly continuous group actions

Let U be a Banach space and α a strongly continuous action of Td on U . For any

u ∈ U, n ∈ Zd, the Fourier coefficient of u for n is

un =

∫
G

〈t, n〉αt(u) dt ∈ U. (126)

We have αs(un) = 〈s, n〉un. The set Un of uns for a fixed n is a closed subspace of

U called the n-isotypic component of U for α.

Let G be a compact abelian group, e.g. T d. Let Ĝ denote its Pontrjagin dual,

e.g. Zd. We will denote the pairing between the two groups by 〈t,m〉. Let A be a

C*-algebra and α an action of G on A which is strongly continuous. For a ∈ A, let

an =

∫
G

〈t, n〉αt(a) dt (127)

where
∫
G

is normalized Haar measure. Let en(t) = 〈t, n〉 ∈ L1(G). Then

(em ∗ en)(t) = 〈t, n〉
∫
G

〈s,m− n〉 ds. (128)

This is equal to zero whenever m− n 6= 0, and is equal to en if m = n. That is,

em ∗ en = δmnen. (129)

So en is a self-adjoint projection in L1(G).

Let An = {a : αt(a) = 〈t, n〉a} = αen(a). Then for m 6= n we have An∩Am = {0}.

Proposition 7.1. The algebraic direct sum
⊕

n∈ĜAn is dense in A.

Proof. The linear span of the en is a *-subalgebra of C(G) with e0 = 1. It separates

points, so is dense in C(G). Hence we can find an approximate identity iλ in this

dense span.
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One way of stating this result is that A is graded over Ĝ (it is a Fell bundle).

Note that A0 is a C*-subalgebra of A and there is a map E(a) = αe0(a) =∫
G
αt(a) dt that projects onto it. E is a conditional expectation of A onto A0:

1. E : A→ A0, and if a ∈ A0 then E(a) = a, so E is a projection.

2. If a ≥ 0, then E(a) ≥ 0.

3. If a ∈ A, b ∈ A0, then E(ba) = bE(a), E(ab) = E(a)b (so E is an (A0, A0)-

bimodule homomorphism).

4. ‖E(a)‖ ≤ ‖a‖.

Cnsider `1(Zd) together with the cocycle

cθ(m,n) = e2πim·θn (130)

where θ ∈ Md(R). This induces a twisted convolution and twisted *-structure.

Let Aθ be the corresponding universal C*-algebra. For every n ∈ Zd we have a

corresponding indicator function which we will denote by Un which satisfies

UmUn = cθ(m,n)Um+n. (131)

There is a dual action

αt(Un) = 〈t, n〉Un (132)

where t ∈ T d. Then there is a conditional expectation E : Aθ → CidAθ satisfying

E(UmUn) =

0 if m 6= −n
cθ(m,n)U0 otherwise

. (133)

Letting E(a) = τ(a)idAθ , we have that τ is a faithful α-invariant trace. In fact it

is the unique such trace.

Proof. If τ0 is any other such trace, then

τ0(a)idAθ =

∫
αt(τ0(a)) dt = τ0

(∫
αt(a)

)
= τ0 (τ(a)idAθ) = τ(a) (134)
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and the conclusion follows.

Proposition 7.2. Aθ has no proper 2-sided α-invariant ideals.

Proof. Let J be such an ideal. Then there exists d ∈ J with d ≥ 0 and d 6= 0.

Furthermore, αt(d) ∈ J for all t, hence E(d) =
∫
αt(d) dt ∈ J , so idAθ ∈ J and J is

not proper.

Theorem 7.3. The representation π of Aθ on `2(Zd) is faithful, so C∗r (Zd, cθ) =

C∗(Zd, cθ).

Proof. It suffices to show that the kernel of π is α-invariant.

Let J be a 2-sided ideal in Aθ. Then for each n ∈ Zd we have Un(J)U∗n = J . Now

UnUmU
∗
n = cθ−θt(n,m)Um; we define

ρθ(n,m) = cθ−θt(n,m). (135)

The maps ρθ(n,−) can be identified with a subgroup of T d. Let Hθ be the closure

of this group. By the strong continuity of α we have αt(J) = J for all t ∈ Hθ.

Theorem 7.4. If Hθ = T d, then Aθ is simple.

In the case d = 2 consider U, V satisfying

V U = e2πirUV (136)

where r is real. This corresponds to C∗(Z2, cθ) where θ =

[
0 r

0 0

]
. If r is

irrational then this algebra is simple.

What can we say about the center of Aθ? We have

UnUmU
−1
n = αρθ(n,m)Um (137)

hence Um ∈ Z(Aθ) if αt(Um) = Um for all t ∈ Hθ. In general a lies in the center

iff UmaU
−1
m = a for all m, hence iff αt(a) = a for all t ∈ Hθ.

Let Dθ = {m ∈ Zd : Um ∈ Z(Aθ)}, which is just {m ∈ Zd : 〈m, t〉 = 1∀t ∈ Hθ},
which we may also write as H⊥θ . Let Cθ be the closed subalgebra of Aθ generated by

the Um,m ∈ Dθ.
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Theorem 7.5. Cθ = Z(Aθ).

Proof. Hθ is a compact group, so we can equip it with normalized Haar measure.

Define

Q : Aθ 3 a 7→
∫
Hθ

αt(a) dt ∈ Aθ. (138)

Then Q is a conditional expectation onto the center, and Q(Um) = Um for all

m ∈ Dθ. For m 6∈ Dθ, there exists t0 ∈ Hθ such that 〈m, t0〉 6= 1, so

Q(Um) =

∫
Hθ

αt(Um) dt =

∫
Hθ

〈m, t〉Um dt = 0. (139)

For any f ∈ Cc(Zd) we therefore have Q(f) ⊆ Cθ, hence Q(Aθ) ⊆ Cθ.

We have Cθ ∼= C∗(Dθ) ∼= C(D̂θ) ∼= C(Td/Hθ), which is fairly explicit.

Let b be a Banach space and let α be a strongly continuous action of R on B.

Given b ∈ B we can ask whether the limit

lim
t→0

αt(b)− b
t

(140)

exists; if it does, we’ll call it D(b). More generally we can replace R with a finite-

dimensional real vector space V . For v ∈ V we can consider the action αtv of R and

ask whether the directional derivative

lim
t→0

αtv(b)− b
t

(141)

exists; if so, we’ll call it Dv(b).

Fact from Lie theory: every closed connected subgroup of GLn(R) is a Lie group.

These are the linear Lie groups. Every Lie group is locally isomorphic to a linear Lie

group. In fact, for any Lie group G, either there is a discrete central subgroup C such

that G/C is linear or there is a linear Lie group G̃ and a discrete central subgroup C

of G̃ such that G̃/C ∼= G.

Example SL2(R) is linear but not simply connected. Its universal cover ˜SL2(R) is

not linear.

Example The Heisenberg group
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
 1 x y

0 1 z

0 0 1

 : x, y, z ∈ R

 (142)

is linear, but its quotient by the discrete subgroup
 1 0 n

0 1 0

0 0 1

 : n ∈ Z

 (143)

is not.

There is an exponential map

Mn(R) ∼= gln(R) 3 X 7→ exp(X) ∈ GLn(R) (144)

and for any closed connected subgroup G of GLn(R) we can set g to be the

collection of all X ∈ gln(R) such that exp(tX) ∈ G for all t ∈ R. This is a Lie

subalgebra. The exponential map g → G is a diffeomorphism in a neighborhood of

0. The subgroups of G that are locally isomorphic to R are exactly the subgroups

t 7→ exp(tX) for X ∈ g.

Now let G be a connected Lie group and let α be a strongly continuous action of

G on B. For each X ∈ g we can ask whether the limit

lim
t→0

αexp(tX)(b)− b
t

(145)

exists, and if so we can denote it by DX(b). The collection of all b such that all

iterated derivatives always exist is a linear subspace B∞ of B, and on this subspace

we have

(DXDY −DYDX)(b) = D[X,Y ](b) (146)

hence we have a representation of g.

Theorem 7.6. (Gärding) For any f ∈ C∞c (G) and any b ∈ B, we have αf (b) = B∞.

As a corollary, B∞ is dense in B.

Proof. We have
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DX(αf (b)) = lim
t→0

αexp(tX)(αf (b))− αf (b)
t

(147)

= lim
t→0

αexp(tX)

∫
G
f(x)αx(b) dx−

∫
G
f(x)αx(b) dx

t
(148)

= lim
t→0

1

t

(∫
f(x)αexp(tX)x(b)−

∫
f(x)αx(b) dx

)
(149)

= lim
t→0

∫
(αexp(tX)f)(x)− f(x)

t
αx(b) dx (150)

=

∫
(DXf)(x)αx(b) dx (151)

where we use the fact that (αyf)(x) = f(y−1x).

Is it true that every b ∈ B∞ has the form αf (c) for some f ∈ C∞c (G) and c ∈ B?

Dixmier-Malliavin showed that the answer is no, but that b is always a finite sum of

terms of this form (so B∞ is the Gärding domain).

The construction b 7→ αf (b) is often called smoothing or mollifying.

Example Let G = Td, g = Rd. The exponential map here is the quotient map

Rd → Rd/Zd. Let α be an action of Td on B. Then we have isotypic components Bn,

where bn ∈ Bn if

αv(bn) = e2πi〈n,v〉bn. (152)

For bn ∈ Bn we have Dv(bn) = 2πi〈n, v〉bn. From here it follows that Bn ⊆ B∞.

If b ∈ B∞ then

(DX(b))n = DX(bn) (153)

where bn is the nth isotypic component. Let e1, ...ed be a basis of Rd. Then

(D2p
e1
D2p
e2
...D2p

ed
)(bn) = (2πi)2pd〈n, e1〉2p〉...〈n, ed〉2pbn (154)

from which it follows that

‖bn‖ ≤
1

1 + (〈n, e1〉...〈n, ed〉)p
‖(D2p

e1
...D2p

ed
)(b)‖. (155)
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Hence if b ∈ B∞ then ‖bn‖ lies in the Schwartz space on Zd.

Proposition 7.7. The converse holds. That is, if bn is a function on Zd with bn ∈ Bn

such that ‖bn‖ lies in the Schwartz space, then b =
∑
bn ∈ B∞.

Proof. Given X ∈ Rd regarded as the Lie algebra of Td we have

DX(b) = lim
r→0

αrX(b)− b
r

(156)

= lim
r→0

∑
n

αrX(bn)− bn
r

(157)

= lim
r→0

∑
n

e2πir〈n,X〉 − 1

r
bn (158)

= lim
r→0

∑
n

2πi〈n,X〉bn (159)

as expected (where everything converges appropriately because ‖bn‖ decays rapidly).

8 Strict deformation quantizations

Let A be a C*-algebra and α an action of G = Td on A. Then for X ∈ g the derivative

DX is a derivation, so DX(ab) = DX(a)b+ aDX(b). If θ is a skew-symmetric matrix,

we can define a Poisson bracket

{a, b} =
∑

θjkDXj(a)DXk(b) (160)

on A. Let (H, π, U) be a covariant representation of (A,Td, α) with π faithful.

We have decompositions into isotypic components A =
⊕

An and H =
⊕

Hn with

Hm, Hn orthogonal for distinct m,n and

Utπ(am)vn = 〈t,m〉am〈t, n〉vn. (161)

Hence π(am)vn ∈ Hm+n.

Let θ ∈Md(R) and cθ the corresponding cocycle. Define

πθ(am)vn = cθ(m,n)π(am)vn (162)
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and, given v with isotypic components vn, define

πθ(am)v =
∑

πθ(am)vn. (163)

Then ‖πθ(am)‖ ≤ ‖am‖. For a ∈ A∞, set πθ(a) =
∑
πθ(am). We have

πθ(am)πθ(bn) = πθ(c(m,n)ambn). (164)

For a, b ∈ A∞, define

a ∗θ b =
∑
m,n

cθ(m,n)ambn. (165)

Furthermore, define

a∗θ =
∑

a∗ncθ(n, n). (166)

If θ is skew-adjoint then cθ(n, n) = 1, so the above reduces to the usual *-structure,

and we can always pass to an equivalent θ with this property.

Let Aθ be the norm closure in B(H) of {πθ(a) : a ∈ A∞}. Then Td also acts on

Aθ and (Aθ)
∞ = A∞. The Aθ form a continuous field of C*-algebras over Md(R) with

A0 = A. For fixed θ we can think of A~θ, ~ ∈ R as a deformation quantization of A0.

In the semiclassical limit ~→ 0 we have

‖a ∗~ b− ab‖~ → 0 (167)

as ~ → 0. Moreover, a trace of the noncommutativity of the A~θ remains in a

Poisson bracket on A0 satisfying∥∥∥∥a ∗~ b− b ∗~ a~
− i{a, b}

∥∥∥∥
~
→ 0 (168)

as ~→ 0.

We can do the same given an action of Rd on a C*-algebra A. For Rd acting by

translation on Rd, the corresponding algebra Aθ is the Moyal quantization.

It is interesting to ask about when the Aθ are Morita equivalent. When d = 2 we

have that if θ′ = aθ+b
cθ+d

where ax+b
cx+d

∈ SL2(Z), then Aθ, Aθ′ are Morita equivalent. In

higher dimensions, we can also have different smooth structures.

Given (A,Td, α) as above, letting Ωk denote alternating linear k-forms on g with
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values in A∞, we can define Ω =
⊕

Ωk. This is equipped with a differential d : Ωk →
Ωk+1 and it is graded, but not graded-commutative.

Td ⊂ SO(n+ 1) acts on Sn, and we can use this action to get a quantized version

of Sn. Now, Td will not act on the quantized version, but a quantized version of the

group does.

8.1 K-theory

Definition A vector bundle over a topological space X is a space E and a surjection

π : E → X such that each fiber π−1(x) has the structure of a finite-dimensional real

vector space and such that each point x ∈ X has a neighborhood U 3 x such that

π−1(U) ∼= U × Rd (in a way that respects both the projection maps and the linear

structure).

We would like to convert this definition into algebraic language to see what a

vector bundle over a noncommutative space should look like. Given a vector bundle

E, let Γ(E) be the space of (continuous) sections of the projection map π. This is a

C(X)-module.

Assume X is compact. Choose an open cover Ui such that E is trivial over each

Ui. By compactness it has a finite subcover. On each trivialization take the standard

inner product. Let ϕj be a partition of unity subordinate to the cover. For each j set

〈v, w〉j(x) = ϕj(x)〈v(x), w(x)〉 (169)

where v, w ∈ Γ(E), then set

〈v, w〉(x) =
∑
j

〈v, w〉j(x). (170)

This inner product has the following properties:

1. 〈v, w〉∗ = 〈w, v〉

2. 〈v, hw〉 = 〈v, w〉h

3. 〈v, v〉 = 0⇒ v = 0.

Using the inner product we can define rank-1 operators (roughly speaking) 〈v, w〉0u =

u〈w, v〉A.
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For each x ∈ X we can choose in each π−1(x) an orthonormal basis e1, ...ed, and

we can find h1
x, ...h

k
x ∈ Γ(E) such that hkx(x) = ek, hence

∑
〈hkx, hkx〉0(x) = idπ−1(x).

So there is a neighborhood Ux of x such that
∑
〈hkx, hkx〉0(y) ≥ 1

2
idπ−1(y) by continuity

for y ∈ Ux. By compactness, the Ux have a finite subcover Ux1 , ...Ux` . Then

S =
∑
k,`

〈hkx` , h
k
x`
〉0 ≥

1

2
id. (171)

Generally, let A be a *-subalgebra of a C*-algebra. Let M be a right A-module

with an A-valued inner product 〈−,−〉A. Then a set hi of elements of M such that∑
〈hi, hi〉0 = id (172)

is called a standard module frame.

Theorem 8.1. Let A be a *-subalgebra of a C*-algebra, M a right A-module with

an A-valued inner product and standard module frame hi. Then M is a projective

A-module and M is self-dual with respect to the inner product.

Corollary 8.2. (Swan) Γ(E) is a projective C(X)-module.

Proof. Define Φ : M → An by

(Φ(v))j = 〈hj, v〉A. (173)

Φ is an injective A-module homomorphism. Define P ∈Mn(A) by Pjk = 〈hj, hk〉A,

so that

(P 2)ij =
∑
k

〈hi, hk〉A〈hk, hj〉A = 〈hi,
∑

hk〈hk, hj〉A〉 = 〈hi, hj〉 = Pij (174)

and P ∗ = P , so P is a self-adjoint idempotent. Its range is the range of Φ, which

is isomorphic to M . Hence M is projective.

Suppose F ∈ HomA(M,AA). Then for v ∈M ,

v =
∑

hj〈hj, v〉A (175)

and
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F (v) =
∑

F (hj)〈hj, v〉A =
∑
〈hjF (hj)

∗, v〉A. (176)

so F is the inner product with
∑
hjF (hj)

∗ as desired.

Exercise 8.3. Let C(T ) denote 1-periodic functions on R. Consider the modules

M±
n = {f : R→ R : f(t+ n) = ±f(t)}. (177)

Show that these are projective modules. Which of them are free?

Let P : X → Mn(R) be continuous where P (x) is always a projection, and set

the fiber at x ∈ X to be the range of P (x). Then this defines a vector bundle.

More generally, for any unital ring R, all finitely-generated projective R-modules are

direct summands of free modules, so can be obtained as the image of projections

in Mn(R). If V,W are f.g. projective, so is V ⊕ W . This gives an addition on

the isomorphism classes of f.g. projective modules. The resulting semigroup is not

necessarily cancellative.

Example Let X = S2 and consider real vector bundles. Let V be the tangent

bundle and N the normal bundle. Then V ⊕ N ∼= R3 ∼= R2 ⊕ N (since N is trivial)

but V 6∼= R2.

To force cancellation, we take the Grothendieck group. For a ring R this group is

denoted K0(R). We can think of K0(R) as a set of equivalence classes of projections

in matrix rings over R. This is a functor.

Let R be a k-algebra, k a field, and ϕ : R → R/I a surjective homomorphism of

k-algebras with kernel I. Then the short exact sequence I → R → R/I gives rise to

an exact sequence

K0(I)→ K0(R)→ K0(R/I) (178)

where K0(I) is defined as follows: adjoin a unit to get a ring Ĩ, which has some

K-theory K0(Ĩ). There is a map K0(Ĩ)→ K0(k) ∼= Z, and we define K0(I) to be its

kernel. The above extends to an exact sequence

K1(R/I)→ K0(I)→ K0(R)→ K0(R/I) (179)
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where K1(R) is defined as follows: given R, consider the filtered colimit GL∞(R)

of the groups GLn(R), and abelianize it. This is also a functor. If R is a unital Banach

algebra, then we instead quotient by the connected component of the identity.

We defined K0 and an algebraic and topological version of K1. There is also an

algebraic K2, and Quillen defined Kn for all n satisfying Ktop
n (A) ∼= Ktop

n−1(SA) where

SA is the suspension C0((0, 1), A). Bott periodicity states that over C, Kn has period

2, and over R, it has period 8.

Let Aθ be the rotation algebra C(T) oα Z, so that

(αn(f))(x) = f(x− nθ) (180)

where f ∈ C(T), n ∈ Z, x ∈ T. For awhile it was an open question whether there

were projections in such an algebra. It turns out that they exist if 0 < θ < 1.

Let θ ∈ R+ and let Ξ = Cc(R). Let C(T) act by pointwise multiplication and let

δi act by

(δnξ)(t) = ξ(t− nθ). (181)

What is the commutant of this action? It includes multiplication by the functions

on R of period θ as well as translation by the integers. This in fact generates an

algebra isomorphic to A1/θ, and the two are Morita equivalent.

Let δ0 ∈ Z denote the identity. Let Mf = fδ0 and let U = M1δ1. We’ll look for

projections of the form

P = MhU
−1 +Mf +MgU. (182)

Taking the adjoint gives

P ∗ = Mα(h̄)U +Mf̄ +Mα−1(ḡ)U
−1 (183)

so f is real-valued and g = α(h̄). Squaring gives gα(g) = 0 and g = fg + gα(f),

hence g(1− f − α(f)) = 0, and

f = f 2 + hα−1(g) = gα(h) = f 2 + α−1(gḡ) + gḡ ≥ 0. (184)

If θ < 1, choose ε > 0 such that θ > ε < 1. Then we can take f which vanishes

outside of [0, θ + ε] and which is equal to 1 on [ε, θ], and we can take g =
√
f − f 2.

53



Aθ has a canonical tracial state which is the one invariant under the action of

the Pontrjagin dual: it sends F (t, n) to
∫
T
F (t, 0) dt. If τ denotes this state, we have

τ(P ) =
∫
T
f dt = θ.

We can compute that K0(Aθ) = Z2.

Given a C*-algebra A with identity and a trace τ on A, we get a trace on Mn⊗A
such that τ(UPU−1) = τ(P ) if U is unitary. If t 7→ Pt is a continuous path of

projections, then τ(Pt) induces a map K0(A)→ R.

Let Ξ(n, q) denote functions f : R2 → C such that f(s + 1, t) = f(s, t) and

f(s, t+ n) = e2πisqf(s, t). These are all projective modules over C(T2).

Cancellation holds for projective modules over Aθ but not in general.
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