

Name and section:

1. Let $f$ be a function. Define carefully: $\lim _{x \rightarrow \infty} f(x)=\infty$ if and only if...

Solution: ...for all $N>0$ there exists $M>0$ such that if $x>M$ then $f(x)>N$.
2. Let $f(x)=\arctan (\ln x)$.
(a) Explain why $f$ is one-to-one.
(b) What is the domain of $f$ ? What is the domain of $f^{-1}$ ?
(c) Find a formula for $f^{-1}$.

## Solution:

(a) $f$ is one-to-one if and only if $f(x)=f(y)$ implies $x=y$. If $\arctan (\ln x)=\arctan (\ln y)$, then by taking the tangent of both sides we get $\ln x=\ln y$, and by taking the exponential of both sides we get $x=y$.
Alternatively, arctan is an increasing function and so is $\ln x$, so their composition is increasing too, and increasing functions are always one-to-one.
(b) Since arctan has domain all of $\mathbb{R}$, $\arctan \ln x$ is undefined if and only if $\ln x$ is undefined. So the domain of $f$ is the same as the domain of $\ln x$, or the positive reals $(0, \infty)$.
The domain of $f^{-1}$ is the same as the range of $f$. Since $\ln x$ takes on all real values, $\arctan \ln x$ takes on all the values that $\arctan x$ does. So the range of $f$ is the same as the range of $\arctan x$, or the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
(c) We can do this by writing $x=\arctan \ln y$ and solving for $y$. This gives $\tan x=\ln y$ and hence

$$
\begin{equation*}
y=f^{-1}(x)=e^{\tan x} \tag{1}
\end{equation*}
$$

(But note that we have to restrict the domain of this function to $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ for it to really be the inverse. The function $e^{\tan x}$ has a larger domain than $f^{-1}$ does.)
3. Compute the following limits (be specific about infinite limits).
(a) $\lim _{x \rightarrow 0} \frac{\tan 2 x}{x}$
(b) $\lim _{x \rightarrow-\infty} \frac{x^{3}+1}{\sqrt{x^{6}+6 x}}$
(c) $\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}+x}-x}$

## Solution:

(a) We can write $\tan 2 x=\frac{\sin 2 x}{\cos 2 x}$, so that the limit is

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{\sin 2 x}{x \cos 2 x} \tag{2}
\end{equation*}
$$

Next, recalling that $\lim _{x \rightarrow 0} \frac{\sin x}{x}$, we can rewrite this limit as

$$
\begin{equation*}
\lim _{x \rightarrow 0} 2 \frac{\sin 2 x}{2 x} \frac{1}{\cos 2 x} \tag{3}
\end{equation*}
$$

Using the fact that the product of limits is the limit of the products, the fact that cos is continuous, and the fact that taking $x \rightarrow 0$ is the same as taking $2 x \rightarrow 0$, we conclude that the limit is

$$
\begin{equation*}
2\left(\lim _{x \rightarrow 0} \frac{\sin 2 x}{2 x}\right)\left(\lim _{x \rightarrow 0} \frac{1}{\cos 2 x}\right)=2(1)(1)=2 . \tag{4}
\end{equation*}
$$

(b) Dividing the numerator and denominator by $x^{3}$ gives

$$
\begin{equation*}
\lim _{x \rightarrow-\infty} \frac{1+\frac{1}{x^{3}}}{\frac{\sqrt{x^{6}+6 x}}{x^{3}}} \tag{5}
\end{equation*}
$$

We would like to absorb $x^{3}$ into the square root, but since $x \rightarrow-\infty, x^{3}$ will eventually be negative, so we need to introduce a negative sign to do this. The limit becomes

$$
\begin{equation*}
\lim _{x \rightarrow-\infty} \frac{1+\frac{1}{x^{3}}}{-\frac{\sqrt{x^{6}+6 x}}{\sqrt{x^{6}}}}=\lim _{x \rightarrow-\infty} \frac{1+\frac{1}{x^{3}}}{-\sqrt{1+\frac{6}{x^{5}}}} \tag{6}
\end{equation*}
$$

But now the numerator has limit 1 and the denominator has limit -1 , so using the fact that the quotient of limits is the limit of the quotients (if the denominator has a nonzero limit) we conclude that the original limit is -1 .
(c) Multiplying the numerator and denominator by the conjugate gives

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{x\left(\sqrt{x^{2}+x}+x\right)}{\left(x^{2}+x\right)-x^{2}}=\lim _{x \rightarrow \infty} \frac{x\left(\sqrt{x^{2}+x}+x\right)}{x}=\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+x}+x\right) \tag{7}
\end{equation*}
$$

This is a sum of two terms going to $+\infty$, so goes to $+\infty$.
4. Let $f(x), g(x)$ be two functions such that $g(1)=2, f(1)=3, g^{\prime}(1)=4, f^{\prime}(1)=5$. Compute the derivatives of the following functions at 1 .
(a) $f(x)+g(x)$
(b) $f(x) g(x)$
(c) $\frac{f(x)}{g(x)}$

## Solution:

(a) By the sum rule the derivative is $f^{\prime}(1)+g^{\prime}(1)=4+5=9$.
(b) By the product rule the derivative is $f^{\prime}(1) g(1)+f(1) g^{\prime}(1)=5 \cdot 2+3 \cdot 4=22$.
(c) By the quotient rule the derivative is $\frac{f^{\prime}(1) g(1)-f(1) g^{\prime}(1)}{g(1)^{2}}=\frac{5 \cdot 2-3 \cdot 4}{2^{2}}=-\frac{1}{2}$.

