> "Forget perfect on the first try. In the face of frustration, your best tool is a few deep breaths, and remembering that you can do anything once you've practiced two hundred times."

Name and section: \qquad

1. Consider the solid obtained by rotating the region R bounded by $y=x^{3}, y=0, x=1$ about $x=2$.
(a) Sketch the region R and the solid.

Solution: You're on your own! Check with a graphing calculator.
(b) Compute the volume of the solid using washers.

Solution: To use washers we'll have to slice R horizontally, so the slices are indexed by y. The inner radius of the washer at y is always 1 and the outer radius is $2-\sqrt[3]{y}$, so we get

$$
\begin{align*}
V & =\int_{0}^{1} \pi\left((2-\sqrt[3]{[y]})^{2}-1^{2}\right) d y \tag{1}\\
& =\pi \int_{0}^{1}\left(y^{2 / 3}-2 y^{1 / 3}+3\right) d y \tag{2}\\
& =\left.\pi\left(\frac{3}{5} y^{5 / 3}-4 \frac{3}{4} y^{4 / 3}+3 y\right)\right|_{0} ^{1} \tag{3}\\
& =\pi\left(\frac{3}{5}-3+3\right) \tag{4}\\
& =\frac{3 \pi}{5} \tag{5}
\end{align*}
$$

(c) Compute the volume of the solid using shells.

Solution: To use shells we'll have to slice R vertically, so the slices are indexed by x. The radius of the shell at x is always $2-x$ and the height is x^{3}, so we get

$$
\begin{align*}
V & =\int_{0}^{1} 2 \pi(2-x) x^{3} d x \tag{6}\\
& =2 \pi \int_{0}^{1}\left(2 x^{3}-x^{4}\right) d x \tag{7}\\
& =\left.2 \pi\left(\frac{x^{4}}{2}-\frac{x^{5}}{5}\right)\right|_{0} ^{1} \tag{8}\\
& =2 \pi\left(\frac{1}{2}-\frac{1}{5}\right) \tag{9}\\
& =\frac{3 \pi}{5} \tag{10}
\end{align*}
$$

2. Consider the function $f(x)=x^{3}-x$.
(a) Find the intervals of increase and decrease of f.

Solution: $f^{\prime}(x)=3 x^{2}-1$, so the critical points are $x= \pm \frac{1}{\sqrt{3}}$. The derivative is positive (so f is increasing) when $x>\frac{1}{\sqrt{3}}$ or $x<-\frac{1}{\sqrt{3}}$ and negative (so f is decreasing) when $-\frac{1}{\sqrt{3}}<x<\frac{1}{\sqrt{3}}$.
(b) Find the local maxima and minima of f.

Solution: From the above calculations, it follows by the first derivative test that $x=\frac{1}{\sqrt{3}}$ is a local minimum and $x=-\frac{1}{\sqrt{3}}$ is a local maximum.
(c) Find the intervals of concavity and the inflection points.

Solution: $f^{\prime \prime}(x)=6 x$, so the only inflection point is $x=0$. The second derivative is positive (so f is concave up) when $x>0$ and negative (so f is concave down) when $x<0$.
(d) Sketch a graph of f.

Solution: Graphing calculator!
3. A ladder 10 ft long rests against a vertical wall. If the bottom of the ladder slides away from the wall at a rate of $1 \mathrm{ft} / \mathrm{s}$, how fast is the top of the ladder sliding down the wall when the bottom of the ladder is 6 ft from the wall?

Solution: The ladder, together with the wall and the floor, forms the hypotenuse of a right triangle. Let $x(t), y(t), z(t)$ denote the lengths of the sides of this triangle at a time t (with x the side parallel to the x-axis, y the side parallel to the y-axis, and z the hypotenuse / ladder). By the Pythagorean theorem, we know that

$$
\begin{equation*}
x^{2}+y^{2}=z^{2} \tag{11}
\end{equation*}
$$

Differentiating (since this is a related rates problem!) we get

$$
\begin{equation*}
2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=2 z \frac{d z}{d t} \tag{12}
\end{equation*}
$$

Now we use the information given in the problem. First, we're given that $z=10$, and in particular z is constant, so $\frac{d z}{d t}=0$. Second, we're given that $\frac{d x}{d t}=1$ all the time. Finally, at a particular time t_{0} we're told that $x\left(t_{0}\right)=6$ and asked to find $\left.\frac{d y}{d t}\right|_{t=t_{0}}$. Altogether, this gives

$$
\begin{gather*}
6^{2}+y\left(t_{0}\right)^{2}=10^{2} \tag{13}\\
2 \cdot 6 \cdot 1+\left.2 y\left(t_{0}\right) \frac{d y}{d t}\right|_{t=t_{0}}=0 . \tag{14}
\end{gather*}
$$

Hence $y\left(t_{0}\right)=8$ and

$$
\begin{equation*}
\left.\frac{d y}{d t}\right|_{t=t_{0}}=-\frac{2 \cdot 6}{2 \cdot 8}=-\frac{3}{4} \tag{15}
\end{equation*}
$$

4. (a) State the precise definition of the derivative $f^{\prime}(a)$.

Solution: $f^{\prime}(a)$ is the value of the limit

$$
\begin{equation*}
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \tag{16}
\end{equation*}
$$

or equivalently it is the value of the limit

$$
\begin{equation*}
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \tag{17}
\end{equation*}
$$

The two limits are related by the substitution $x=a+h$.
(b) Directly from the definition of a derivative, show that if $f(x)=x^{2}$ then $f^{\prime}(2)=4$.

Solution: We will show more generally that $f^{\prime}(a)=2 a$. To see this using the first definition, use difference of squares:

$$
\begin{align*}
f^{\prime}(a) & =\lim _{x \rightarrow a} \frac{x^{2}-a^{2}}{x-a} \tag{18}\\
& =\lim _{x \rightarrow a} \frac{(x-a)(x+a)}{x-a} \tag{19}\\
& =\lim _{x \rightarrow a}(x+a) \tag{20}\\
& =2 a . \tag{21}
\end{align*}
$$

To see this using the second definition, just expand and cancel as appropriate:

$$
\begin{align*}
f^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{(a+h)^{2}-a^{2}}{h} \tag{22}\\
& =\lim _{h \rightarrow 0} \frac{a^{2}+2 a h+h^{2}-a^{2}}{h} \tag{23}\\
& =\lim _{h \rightarrow 0} \frac{2 a h+h^{2}}{h} \tag{24}\\
& =\lim _{h \rightarrow 0}(2 a+h) \tag{25}\\
& =2 a . \tag{26}
\end{align*}
$$

