Inner products on \mathbb{R}^{n}, and more

Peyam Ryan Tabrizian

Friday, April 12th, 2013

1 Introduction

You might be wondering: Are there inner products on \mathbb{R}^{n} that are not the usual dot product $x \cdot y=x_{1} y_{1}+\cdots+x_{n} y_{n}$?

The answer is 'yes' and 'no'.
For example, the following are inner products on \mathbb{R}^{2} :

$$
\begin{gathered}
<x, y>=2 x_{1} y_{1}+3 x_{2} y_{2} \\
<x, y>=x_{1} y_{1}+2 x_{1} y_{2}+2 x_{2} y_{1}+3 x_{2} y_{2}
\end{gathered}
$$

But the answer is: There are no 'fancier' examples!
In fact, this result is even true for finite-dimensional vector spaces over \mathbb{F} !
Note: In the following, we will denote vectors in \mathbb{R}^{n} and \mathbb{C}^{n} by column vectors, not row-vectors ${ }^{1}$. For example, instead of writing $x=(1,2)^{2}$, we will write $x=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.

2 Inner products on \mathbb{R}^{n}

In this section, we will prove the following result:
Prop: $<x, y>$ is an inner product on \mathbb{R}^{n} if and only if $<x, y>=x^{T} A y$, where A is a symmetric matrix whose eigenvalues are strictly positive ${ }^{3}$

[^0]Example 1: For example, if $n=2$, and $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]$, we get:

$$
<x, y>=x_{1} y_{1}+2 x_{1} y_{2}+2 x_{2} y_{1}+3 x_{2} y_{2}
$$

Example 2: If $A=I$, then $\langle x, y\rangle$ just becomes the usual dot product!
The point is that those are the fanciest examples we can get!

Note: From now on, let us denote by $\left(e_{1}, \cdots, e_{n}\right)$ the standard basis of \mathbb{R}^{n}.

Proof:

(\Rightarrow) Suppose $<,>$ is an inner product of \mathbb{R}^{n}, and let $x, y \in \mathbb{R}^{n}$.
Then since $\left(e_{1}, \cdots, e_{n}\right)$ is a basis for \mathbb{R}^{n}, there are scalars x_{1}, \cdots, x_{n} and y_{1}, \cdots, y_{n} such that:

$$
x=x_{1} e_{1}+\cdots+x_{n} e_{n} \quad y=y_{1} e_{1}+\cdots+y_{n} e_{n}
$$

But then:

$$
\begin{aligned}
<x, y> & =<x_{1} e_{1}+\cdots+x_{n} e_{n}, y_{1} e_{1}+\cdots+y_{n} e_{n}> \\
& =\sum_{i, j=1}^{n} x_{i} y_{j}<e_{i}, e_{j}> \\
& =\sum_{i, j=1}^{n} x_{i} a_{i j} y_{j}
\end{aligned}
$$

Where we define $a_{i j}=<e_{i}, e_{j}>$. Also, in the second line we used a distributive property similar to $(a+b)(c+d)=a c+a d+b c+c d$ (but for n terms)

Now if you let A to be the matrix whose (i, j)-th entry is $a_{i j}$, then the above becomes:

$$
<x, y>=x^{T} A y
$$

Moreover, $a_{i j}=<e_{i}, e_{j}>=<e_{j}, e_{i}>=a_{j i}$, so A is symmetric.
And since A is symmetric, by a theorem in chapter 7 , we know that A has n (possibly repeated) eigenvalues $\lambda_{1}, \cdots, \lambda_{n}$. Let v_{1}, \cdots, v_{n} be the corresponding eigenvectors, which are all nonzero.

But then:

$$
<v_{i}, v_{i}>=v_{i}^{T} A v_{i}=v_{i}^{T} \lambda_{i} v_{i}=\lambda_{i} v_{i}^{T} v_{i}
$$

However, $<v_{i}, v_{i}>$, hence $\lambda_{i} v_{i}^{T} v_{i}>0$, but since $v_{i}^{T} v_{i}>0$ (since $v_{i}^{T} v_{i}$ is the usual dot product between v_{i} and v_{i}), this implies $\lambda_{i}>0$, so all the eigenvalues of A are positive

$$
(\Leftarrow) \text { Suppose }<x, y>=x^{T} A y
$$

Then you can check that $<,>$ is linear in each variable.

Moreover:

$$
<y, x>=y^{T} A x=\left(x^{T} A^{T} y\right)^{T}=\left(x^{T} A y\right)^{T}=x^{T} A y=\quad<x, y>
$$

Where the third equality follows from $A^{T}=A$ and the last equality follows because $x^{T} A y$ is just a scalar.

Finally:

$$
<x, x>=x^{T} A x
$$

Now since A is symmetric, A is normal (you will see that later), and hence there exists an invertible matrix P with $P^{-1}=P^{T}$, such that $A=P D P^{T}$ (you will learn that later too, i.e. A is orthogonally diagonalizable), where D is the diagonal matrix of eigenvalues λ_{i} of A, and by assumption $\lambda_{i}>0$ for all i.

But then:

$$
<x, x>=x^{T} A x=x^{T} P D P^{T} x=\left(P^{T} x\right)^{T} D P^{T} x=y D y^{T}
$$

Where $y=P^{T} x$.
But then if $y=a_{1} y_{1}+\cdots+a_{n} y_{n}$ and you calculate this out, you should get:

$$
<x, x>=y D y^{T}=\lambda_{1} a_{1}^{2}+\cdots+\lambda_{n} a_{n}^{2} \geq 0
$$

(since $\lambda_{i}>0$), So $<x, x>\geq 0$.
Moreover, if $<x, x>=0$, then $\lambda_{1} a_{1}^{2}+\cdots+\lambda_{n} a_{n}^{2}=0$, but then $a_{1}=\cdots=$ $a_{n}=0$ (since $\lambda_{i}>0$), but then $y=0$, and so $x=\left(P^{T}\right)^{-1} y=\left(P^{T}\right)^{T} y=P y=$ $P 0=0$.

Hence $<,>$ satisfies all the requirements for an inner product, hence (,) is an inner product!

3 Inner products on \mathbb{C}^{n}

In fact, a similar proof works for \mathbb{C}^{n}, except that you have to replace all the transposes by adjoints! (i.e. replace all the T with $*$). Hence, we get the following result:

Prop: $<x, y>$ is an inner product on \mathbb{C}^{n} if and only if $<x, y>=x^{*} A y$, where A is a self-adjoint matrix whose eigenvalues are strictly positive ${ }^{4}$

4 Inner products on finite-dimensional vector spaces

In fact, if V is a finite-dimensional vector space over \mathbb{F}, then a version of the above result still holds, using the following trick:

Let $n=\operatorname{dim}(V)$ and $\left(v_{1}, \cdots, v_{n}\right)$ be a basis for V.
Here, we will prove the following result gives an explicit description of all inner products on V :

Theorem: $\langle x, y\rangle$ is an inner product on V if and only if:

$$
<x, y>=(\mathcal{M} x)^{*} A \mathcal{M}(y)
$$

where A is a self-adjoint matrix with positive eigenvalues ${ }^{5}$, where $\mathcal{M}: V \longrightarrow$ \mathbb{F}^{n} is the usual coordinate map given by:

$$
\mathcal{M}(v)=\mathcal{M}\left(a_{1} v_{1}+\cdots+a_{n} v_{n}\right)=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]
$$

Example: If $V=P_{2}(\mathbb{R})$, then the following is an inner product on V :

$$
\begin{aligned}
& <a_{0}+a_{1} x+a_{2} x^{2}, b_{0}+b_{1} x+b_{2} x^{2}>=a_{0} b_{0}+2 a_{0} b_{1}+3 a_{0} b_{2}+2 a_{1} b_{0}+2 a_{1} b_{1}+4 a_{1} b_{2}+3 a_{2} b_{0}+4 a_{2} b_{1}+8 a_{2} b_{2} \\
& \quad \text { Here } A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 2 & 4 \\
3 & 4 & 3
\end{array}\right]
\end{aligned}
$$

[^1]
Proof:

(\Leftarrow) : Check that $\langle x, y>$ is an inner product on V (this is similar to the proof in section 2)

$$
(\Rightarrow):
$$

First of all, note from chapter 3 that \mathcal{M} is invertible, with inverse:

$$
\mathcal{M}^{-1}\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right]=a_{1} v_{1}+\cdots+a_{n} v_{n}
$$

Now let $<,>$ be an inner product on V.
Lemma: Then $\left(x^{\prime}, y^{\prime}\right):=<\mathcal{M}^{-1}\left(x^{\prime}\right), \mathcal{M}^{-1}\left(y^{\prime}\right)>$ is an inner product on \mathbb{F}^{n}
Proof: The only tricky thing to prove is that $\left(x^{\prime}, x^{\prime}\right)=0$ implies $x^{\prime}=0$. However:

$$
\left(x^{\prime}, x^{\prime}\right)=0 \Rightarrow<\mathcal{M}^{-1}\left(x^{\prime}\right), \mathcal{M}^{-1}\left(x^{\prime}\right)>=0 \Rightarrow \mathcal{M}^{-1}\left(x^{\prime}\right)=0 \Rightarrow x^{\prime}=0
$$

Where in the second implication, we used that $<,>$ is an inner product on V, and in the third implication, we used that \mathcal{M}^{-1} is injective.

But since $\left(x^{\prime}, y^{\prime}\right)$ is an inner product on \mathbb{F}^{n}, by sections 2 and 3 , we get that:

$$
\left(x^{\prime}, y^{\prime}\right)=\left(x^{\prime}\right)^{*} A y^{\prime}
$$

For some self-adjoint (or symmetric) matrix A with only positive eigenvalues.
But then it follows that

$$
<\mathcal{M}^{-1}\left(x^{\prime}\right), \mathcal{M}^{-1}\left(y^{\prime}\right)>=\left(x^{\prime}\right)^{*} A y^{\prime}
$$

Now let x, y be arbitrary vectors in V. Then we can write $x=\mathcal{M}^{-1} \mathcal{M}(x)$ and $y=\mathcal{M}^{-1} \mathcal{M}(y)$

$$
<x, y>=<\mathcal{M}^{-1} \mathcal{M}(x), \mathcal{M}^{-1} \mathcal{M}(y)>=\mathcal{M}(x)^{*} A \mathcal{M}(y)
$$

Where in the second equality, we used the above result with $x^{\prime}=\mathcal{M}(x)$ and $y^{\prime}=\mathcal{M}(y)$.

[^0]: ${ }^{1}$ This will simplify matters later on
 ${ }^{2}$ Here we mean the point, not the dot product
 ${ }^{3}$ Such a matrix is called symmetric and positive-definite

[^1]: ${ }^{4}$ Note that A self-adjoint implies that A has only real eigenvalues
 ${ }^{5}$ If V is a vector space over \mathbb{R}, then replace self-adjoint with symmetric and $*$ with T

