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1 Introduction

You might be wondering: Are there inner products on R™ that are not the usual
dot product -y =x1y1 + -+ - + TnYn?

The answer is 'yes’ and 'no’.
For example, the following are inner products on RZ:

<,y >=2x1y1 + 3x2y2

<@,y >= T1y1 + 221Y2 + 222Y1 + 3T2Y2
But the answer is: There are no 'fancier’ examples!
In fact, this result is even true for finite-dimensional vector spaces over F !

Note: In the following, we will denote vectors in R™ and C" by column
vectors, not row-vectorst. For example, instead of writing z = (1,2)2, we will

write x = B] .

2 Inner products on R”

In this section, we will prove the following result:

Prop: < z,y > is an inner product on R” if and only if < z,y >= 27 Ay,
where A is a symmetric matrix whose eigenvalues are strictly positive 3

1This will simplify matters later on
2Here we mean the point, not the dot product
3Such a matrix is called symmetric and positive-definite



Example 1: For example, if n =2, and A = B :ﬂ , we get:

<@,y >=T1Y1 + 2x1Y2 + 222Y1 + 3T2Y2
Example 2: If A =1, then < x,y > just becomes the usual dot product!

The point is that those are the fanciest examples we can get!

Note: From now on, let us denote by (ey, - ,e,) the standard basis of R™.

Proof:

(=) Suppose <, > is an inner product of R", and let x,y € R™.

Then since (e, - ,e,) is a basis for R", there are scalars x1,--- ,z, and
Y1, ,Yn such that:

.T:.’IZ‘1€1—|—-..—|—J;n€n y:ylel+"'+yn€n
But then:
<z,y>=<zie1+ -+ Tpep,Y1€1+ -+ Ynep >
n
= Z T;Y; < €i,€e5 >
1,7=1
n
= Z Titijlyj
ij=1
Where we define a;; = < e;,e; >. Also, in the second line we used a

distributive property similar to (a + b)(c + d) = ac + ad + be + cd (but for n
terms)

Now if you let A to be the matrix whose (4, j)-th entry is a;;, then the above
becomes:

<zy>=al Ay
Moreover, a;; =< e;,e; >=< ej,€; >= a;j;, 50 A is symmetric.
And since A is symmetric, by a theorem in chapter 7, we know that A has n
(possibly repeated) eigenvalues Ay, -+, A,. Let vq,- -, v, be the corresponding

eigenvectors, which are all nonzero.
But then:

< v, v >= ’UiTA’Ui = viT)\wi = )\iviTvi



However, < v;,v; >, hence )\iv;fui > 0, but since UiT’UZ' > 0 (since v;fvi is the
usual dot product between v; and v;), this implies A; > 0, so all the eigenvalues
of A are positive O

(<) Suppose < z,y >= 2T Ay.
Then you can check that <, > is linear in each variable.

Moreover:

<y >=ylAx = (T ATY)T = T AY)T =2TAy= <,y >

Where the third equality follows from A7 = A and the last equality follows
because xT Ay is just a scalar.

Finally:

<zx>=zT Ax

Now since A is symmetric, A is normal (you will see that later), and hence
there exists an invertible matrix P with P~* = PT, such that A = PDPT (you
will learn that later too, i.e. A is orthogonally diagonalizable), where D is the
diagonal matrix of eigenvalues A; of A, and by assumption \; > 0 for all i.

But then:

<z, x>= 2T Az = 2" PDPTz = (PTx)TDPTx = yDyT
Where y = PTx.

But then if y = a1y1 + - - - + a»yn and you calculate this out, you should get:

<a,x>=yDy" =Na?+- +\a2 >0
(since A; > 0), So < z,z >> 0.
Moreover, if < x,2 >= 0, then A\ja? + --- + \,a2 = 0, but then a; = --- =

a, = 0 (since \; > 0), but then y = 0, and so z = (PT)"ly = (PT)Ty = Py =
PO =0.

Hence <, > satisfies all the requirements for an inner product, hence (,) is
an inner product! O



3 Inner products on C"

In fact, a similar proof works for C™, except that you have to replace all the
transposes by adjoints! (i.e. replace all the T' with *). Hence, we get the fol-
lowing result:

Prop: < x,y > is an inner product on C™ if and only if < z,y >= z* Ay,
where A is a self-adjoint matrix whose eigenvalues are strictly positive *

4 Inner products on finite-dimensional vector
spaces

In fact, if V is a finite-dimensional vector space over F, then a version of the
above result still holds, using the following trick:

Let n = dim (V') and (vy,- -+ ,v,) be a basis for V.

Here, we will prove the following result gives an explicit description of all
inner products on V:

Theorem: < x,y > is an inner product on V if and only if:

<x,y >= (Mz)" AM(y)

where A is a self-adjoint matrix with positive eigenvalues °, where M : V —
F™ is the usual coordinate map given by:

ai
az

M(v) = M(ajvy + -+ + apvp) =
an
Example: If V = P»(R), then the following is an inner product on V:

< a0—|—a1x+a2x2, b0+b1$+b2$2 >= agby+2a9b1+3agba+2a1bg+2a1b1+4a1ba+3asbg+4asb; +8asby

1 2 3
Here A= |2 2 4
3 4 3

4Note that A self-adjoint implies that A has only real eigenvalues
5If V is a vector space over R, then replace self-adjoint with symmetric and * with T'



Proof:

(«<): Check that < x,y > is an inner product on V (this is similar to the
proof in section 2)

(=):
First of all, note from chapter 3 that M is invertible, with inverse:

ay
-1 .
M | = awwr -t aguy

an
Now let <, > be an inner product on V.
Lemma: Then (z/,y) ;=< M~(2'), M~ (y’) > is an inner product on F"

Proof: The only tricky thing to prove is that (z’,z') = 0 implies 2’ = 0.
However:

(', 2)=0=2< M @) M (2)>=0= M (2)=0=2"=0

Where in the second implication, we used that <,> is an inner product on
V, and in the third implication, we used that M~ is injective.
But since (2/,y’) is an inner product on F™, by sections 2 and 3, we get that:

(@', y) = (a')" Ay
For some self-adjoint (or symmetric) matrix A with only positive eigenvalues.

But then it follows that

<M Y2 MUY >= (a)" Ay
Now let z,y be arbitrary vectors in V. Then we can write x = M~ M(x)
and y = M~ M(y)
<z, y >=< M M(z), M M(y) >= M(z)* AM(y)

Where in the second equality, we used the above result with 2’ = M(z) and
y' = M(y). 0



