Inner products on \mathbb{R}^n , and more

Peyam Ryan Tabrizian Friday, April 12th, 2013

1 Introduction

You might be wondering: Are there inner products on \mathbb{R}^n that are not the usual dot product $x \cdot y = x_1 y_1 + \cdots + x_n y_n$?

The answer is 'yes' and 'no'.

For example, the following are inner products on \mathbb{R}^2 :

$$\langle x, y \rangle = 2x_1y_1 + 3x_2y_2$$

$$\langle x, y \rangle = x_1y_1 + 2x_1y_2 + 2x_2y_1 + 3x_2y_2$$

But the answer is: There are no 'fancier' examples!

In fact, this result is even true for finite-dimensional vector spaces over \mathbb{F} !

Note: In the following, we will denote vectors in \mathbb{R}^n and \mathbb{C}^n by column vectors, not row-vectors¹. For example, instead of writing $x = (1,2)^2$, we will write $x = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

2 Inner products on \mathbb{R}^n

In this section, we will prove the following result:

Prop: $\langle x, y \rangle$ is an inner product on \mathbb{R}^n if and only if $\langle x, y \rangle = x^T A y$, where A is a symmetric matrix whose eigenvalues are strictly positive ³

¹This will simplify matters later on

²Here we mean the point, not the dot product

 $^{^3 \}mathrm{Such}$ a matrix is called symmetric and $\mathbf{positive\text{-}definite}$

Example 1: For example, if n = 2, and $A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$, we get:

$$\langle x, y \rangle = x_1y_1 + 2x_1y_2 + 2x_2y_1 + 3x_2y_2$$

Example 2: If A = I, then $\langle x, y \rangle$ just becomes the usual dot product!

The point is that those are the fanciest examples we can get!

Note: From now on, let us denote by (e_1, \dots, e_n) the standard basis of \mathbb{R}^n .

Proof:

 (\Rightarrow) Suppose <,> is an inner product of \mathbb{R}^n , and let $x,y\in\mathbb{R}^n$.

Then since (e_1, \dots, e_n) is a basis for \mathbb{R}^n , there are scalars x_1, \dots, x_n and y_1, \dots, y_n such that:

$$x = x_1 e_1 + \dots + x_n e_n \qquad y = y_1 e_1 + \dots + y_n e_n$$

But then:

$$< x, y > = < x_1 e_1 + \dots + x_n e_n, y_1 e_1 + \dots + y_n e_n >$$

$$= \sum_{i,j=1}^{n} x_i y_j < e_i, e_j >$$

$$= \sum_{i,j=1}^{n} x_i a_{ij} y_j$$

Where we define $a_{ij} = \langle e_i, e_j \rangle$. Also, in the second line we used a distributive property similar to (a+b)(c+d) = ac+ad+bc+cd (but for n terms)

Now if you let A to be the matrix whose (i, j)-th entry is a_{ij} , then the above becomes:

$$\langle x, y \rangle = x^T A y$$

Moreover, $a_{ij} = \langle e_i, e_j \rangle = \langle e_j, e_i \rangle = a_{ji}$, so A is symmetric.

And since A is symmetric, by a theorem in chapter 7, we know that A has n (possibly repeated) eigenvalues $\lambda_1, \dots, \lambda_n$. Let v_1, \dots, v_n be the corresponding eigenvectors, which are all nonzero.

But then:

$$\langle v_i, v_i \rangle = v_i^T A v_i = v_i^T \lambda_i v_i = \lambda_i v_i^T v_i$$

However, $\langle v_i, v_i \rangle$, hence $\lambda_i v_i^T v_i > 0$, but since $v_i^T v_i > 0$ (since $v_i^T v_i$ is the usual dot product between v_i and v_i), this implies $\lambda_i > 0$, so all the eigenvalues of A are positive

$$(\Leftarrow)$$
 Suppose $\langle x, y \rangle = x^T A y$.

Then you can check that <,> is linear in each variable.

Moreover:

$$< y, x > = y^{T} A x = (x^{T} A^{T} y)^{T} = (x^{T} A y)^{T} = x^{T} A y =$$
 $< x, y >$

Where the third equality follows from $A^T = A$ and the last equality follows because $x^T A y$ is just a scalar.

Finally:

$$\langle x, x \rangle = x^T A x$$

Now since A is symmetric, A is normal (you will see that later), and hence there exists an invertible matrix P with $P^{-1} = P^T$, such that $A = PDP^T$ (you will learn that later too, i.e. A is orthogonally diagonalizable), where D is the diagonal matrix of eigenvalues λ_i of A, and by assumption $\lambda_i > 0$ for all i.

But then:

$$< x, x > = x^{T} A x = x^{T} P D P^{T} x = (P^{T} x)^{T} D P^{T} x = y D y^{T}$$

Where $y = P^T x$.

But then if $y = a_1y_1 + \cdots + a_ny_n$ and you calculate this out, you should get:

$$\langle x, x \rangle = yDy^T = \lambda_1 a_1^2 + \dots + \lambda_n a_n^2 \ge 0$$

(since $\lambda_i > 0$), So $\langle x, x \rangle \geq 0$.

Moreover, if $\langle x, x \rangle = 0$, then $\lambda_1 a_1^2 + \dots + \lambda_n a_n^2 = 0$, but then $a_1 = \dots = a_n = 0$ (since $\lambda_i > 0$), but then y = 0, and so $x = (P^T)^{-1}y = (P^T)^Ty = Py = P0 = 0$.

Hence <,> satisfies all the requirements for an inner product, hence (,) is an inner product!

3 Inner products on \mathbb{C}^n

In fact, a similar proof works for \mathbb{C}^n , except that you have to replace all the transposes by adjoints! (i.e. replace all the T with *). Hence, we get the following result:

Prop: $\langle x, y \rangle$ is an inner product on \mathbb{C}^n if and only if $\langle x, y \rangle = x^*Ay$, where A is a self-adjoint matrix whose eigenvalues are strictly positive ⁴

4 Inner products on finite-dimensional vector spaces

In fact, if V is a finite-dimensional vector space over \mathbb{F} , then a version of the above result still holds, using the following trick:

Let n = dim(V) and (v_1, \dots, v_n) be a basis for V.

Here, we will prove the following result gives an explicit description of all inner products on V:

Theorem: $\langle x, y \rangle$ is an inner product on V if and only if:

$$\langle x, y \rangle = (\mathcal{M}x)^* A \mathcal{M}(y)$$

where A is a self-adjoint matrix with positive eigenvalues ⁵, where $\mathcal{M}:V\longrightarrow\mathbb{F}^n$ is the usual coordinate map given by:

$$\mathcal{M}(v) = \mathcal{M}(a_1v_1 + \dots + a_nv_n) = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$

Example: If $V = P_2(\mathbb{R})$, then the following is an inner product on V:

 $< a_0 + a_1x + a_2x^2, b_0 + b_1x + b_2x^2 > = a_0b_0 + 2a_0b_1 + 3a_0b_2 + 2a_1b_0 + 2a_1b_1 + 4a_1b_2 + 3a_2b_0 + 4a_2b_1 + 8a_2b_2$

Here
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 2 & 4 \\ 3 & 4 & 3 \end{bmatrix}$$

⁴Note that A self-adjoint implies that A has only real eigenvalues

 $^{{}^5}$ If V is a vector space over $\mathbb R$, then replace self-adjoint with symmetric and * with T

Proof:

 (\Leftarrow) : Check that < x, y > is an inner product on V (this is similar to the proof in section 2)

 (\Rightarrow) :

First of all, note from chapter 3 that \mathcal{M} is invertible, with inverse:

$$\mathcal{M}^{-1} \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} = a_1 v_1 + \dots + a_n v_n$$

Now let <,> be an inner product on V.

Lemma: Then $(x', y') := \langle \mathcal{M}^{-1}(x'), \mathcal{M}^{-1}(y') \rangle$ is an inner product on \mathbb{F}^n

Proof: The only tricky thing to prove is that (x', x') = 0 implies x' = 0. However:

$$(x', x') = 0 \Rightarrow < \mathcal{M}^{-1}(x'), \mathcal{M}^{-1}(x') > = 0 \Rightarrow \mathcal{M}^{-1}(x') = 0 \Rightarrow x' = 0$$

Where in the second implication, we used that <,> is an inner product on V, and in the third implication, we used that \mathcal{M}^{-1} is injective.

But since (x', y') is an inner product on \mathbb{F}^n , by sections 2 and 3, we get that:

$$(x', y') = (x')^* A y'$$

For some self-adjoint (or symmetric) matrix A with only positive eigenvalues.

But then it follows that

$$<\mathcal{M}^{-1}(x'), \mathcal{M}^{-1}(y')> = (x')^* Ay'$$

Now let x, y be arbitrary vectors in V. Then we can write $x = \mathcal{M}^{-1}\mathcal{M}(x)$ and $y = \mathcal{M}^{-1}\mathcal{M}(y)$

$$<\boldsymbol{x},\boldsymbol{y}> = <\mathcal{M}^{-1}\mathcal{M}(\boldsymbol{x}), \mathcal{M}^{-1}\mathcal{M}(\boldsymbol{y})> = \mathcal{M}(\boldsymbol{x})^*A\mathcal{M}(\boldsymbol{y})$$

Where in the second equality, we used the above result with $x' = \mathcal{M}(x)$ and $y' = \mathcal{M}(y)$.