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1 Introduction

You might be wondering: Are there inner products on Rn that are not the usual
dot product x · y = x1y1 + · · ·+ xnyn?

The answer is ’yes’ and ’no’.

For example, the following are inner products on R2:

< x, y >= 2x1y1 + 3x2y2

< x, y >= x1y1 + 2x1y2 + 2x2y1 + 3x2y2

But the answer is: There are no ’fancier’ examples!

In fact, this result is even true for finite-dimensional vector spaces over F !

Note: In the following, we will denote vectors in Rn and Cn by column
vectors, not row-vectors1. For example, instead of writing x = (1, 2)2, we will

write x =

[
1
2

]
.

2 Inner products on Rn

In this section, we will prove the following result:

Prop: < x, y > is an inner product on Rn if and only if < x, y >= xTAy,
where A is a symmetric matrix whose eigenvalues are strictly positive 3

1This will simplify matters later on
2Here we mean the point, not the dot product
3Such a matrix is called symmetric and positive-definite
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Example 1: For example, if n = 2, and A =

[
1 2
2 3

]
, we get:

< x, y >= x1y1 + 2x1y2 + 2x2y1 + 3x2y2

Example 2: If A = I, then < x, y > just becomes the usual dot product!

The point is that those are the fanciest examples we can get!

Note: From now on, let us denote by (e1, · · · , en) the standard basis of Rn.

Proof:

(⇒) Suppose <,> is an inner product of Rn, and let x, y ∈ Rn.

Then since (e1, · · · , en) is a basis for Rn, there are scalars x1, · · · , xn and
y1, · · · , yn such that:

x = x1e1 + · · ·+ xnen y = y1e1 + · · ·+ ynen

But then:

< x, y >= < x1e1 + · · ·+ xnen, y1e1 + · · ·+ ynen >

=

n∑
i,j=1

xiyj < ei, ej >

=

n∑
i,j=1

xiaijyj

Where we define aij = < ei, ej >. Also, in the second line we used a
distributive property similar to (a + b)(c + d) = ac + ad + bc + cd (but for n
terms)

Now if you let A to be the matrix whose (i, j)-th entry is aij , then the above
becomes:

< x, y >= xTAy

Moreover, aij =< ei, ej >=< ej , ei >= aji, so A is symmetric.

And since A is symmetric, by a theorem in chapter 7, we know that A has n
(possibly repeated) eigenvalues λ1, · · · , λn. Let v1, · · · , vn be the corresponding
eigenvectors, which are all nonzero.

But then:

< vi, vi >= vTi Avi = vTi λivi = λiv
T
i vi
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However, < vi, vi >, hence λiv
T
i vi > 0, but since vTi vi > 0 (since vTi vi is the

usual dot product between vi and vi), this implies λi > 0, so all the eigenvalues
of A are positive

(⇐) Suppose < x, y >= xTAy.

Then you can check that <,> is linear in each variable.

Moreover:

< y, x >= yTAx = (xTAT y)T = (xTAy)T = xTAy = < x, y >

Where the third equality follows from AT = A and the last equality follows
because xTAy is just a scalar.

Finally:

< x, x >= xTAx

Now since A is symmetric, A is normal (you will see that later), and hence
there exists an invertible matrix P with P−1 = PT , such that A = PDPT (you
will learn that later too, i.e. A is orthogonally diagonalizable), where D is the
diagonal matrix of eigenvalues λi of A, and by assumption λi > 0 for all i.

But then:

< x, x >= xTAx = xTPDPTx = (PTx)TDPTx = yDyT

Where y = PTx.

But then if y = a1y1 + · · ·+anyn and you calculate this out, you should get:

< x, x >= yDyT = λ1a
2
1 + · · ·+ λna

2
n ≥ 0

(since λi > 0), So < x, x >≥ 0.

Moreover, if < x, x >= 0, then λ1a
2
1 + · · ·+ λna

2
n = 0, but then a1 = · · · =

an = 0 (since λi > 0), but then y = 0, and so x = (PT )−1y = (PT )T y = Py =
P0 = 0.

Hence <,> satisfies all the requirements for an inner product, hence (, ) is
an inner product!
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3 Inner products on Cn

In fact, a similar proof works for Cn, except that you have to replace all the
transposes by adjoints! (i.e. replace all the T with ∗). Hence, we get the fol-
lowing result:

Prop: < x, y > is an inner product on Cn if and only if < x, y >= x∗Ay,
where A is a self-adjoint matrix whose eigenvalues are strictly positive 4

4 Inner products on finite-dimensional vector
spaces

In fact, if V is a finite-dimensional vector space over F, then a version of the
above result still holds, using the following trick:

Let n = dim(V ) and (v1, · · · , vn) be a basis for V .

Here, we will prove the following result gives an explicit description of all
inner products on V :

Theorem: < x, y > is an inner product on V if and only if:

< x, y >= (Mx)
∗
AM(y)

where A is a self-adjoint matrix with positive eigenvalues 5, whereM : V −→
Fn is the usual coordinate map given by:

M(v) =M(a1v1 + · · ·+ anvn) =


a1
a2
...
an



Example: If V = P2(R), then the following is an inner product on V :

< a0+a1x+a2x
2, b0+b1x+b2x

2 >= a0b0+2a0b1+3a0b2+2a1b0+2a1b1+4a1b2+3a2b0+4a2b1+8a2b2

Here A =

1 2 3
2 2 4
3 4 3



4Note that A self-adjoint implies that A has only real eigenvalues
5If V is a vector space over R, then replace self-adjoint with symmetric and ∗ with T
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Proof:
(⇐): Check that < x, y > is an inner product on V (this is similar to the

proof in section 2)

(⇒):
First of all, note from chapter 3 that M is invertible, with inverse:

M−1

a1...
an

 = a1v1 + · · ·+ anvn

Now let <,> be an inner product on V .

Lemma: Then (x′, y′) :=<M−1(x′),M−1(y′) > is an inner product on Fn

Proof: The only tricky thing to prove is that (x′, x′) = 0 implies x′ = 0.
However:

(x′, x′) = 0⇒<M−1(x′),M−1(x′) >= 0⇒M−1(x′) = 0⇒ x′ = 0

Where in the second implication, we used that <,> is an inner product on
V , and in the third implication, we used that M−1 is injective.

But since (x′, y′) is an inner product on Fn, by sections 2 and 3, we get that:

(x′, y′) = (x′)
∗
Ay′

For some self-adjoint (or symmetric) matrix A with only positive eigenvalues.

But then it follows that

<M−1(x′),M−1(y′) >= (x′)
∗
Ay′

Now let x, y be arbitrary vectors in V . Then we can write x = M−1M(x)
and y =M−1M(y)

< x, y >=<M−1M(x),M−1M(y) >=M(x)∗AM(y)

Where in the second equality, we used the above result with x′ =M(x) and
y′ =M(y).

5


