A Matrix Expander Chernoff Bound

Ankit Garg, Yin Tat Lee, Zhao Song, Nikhil Srivastava

UC Berkeley

Vanilla Chernoff Bound

Thm [Hoeffding, Chernoff]. If X_{1}, \ldots, X_{k} are independent mean zero random variables with $\left|X_{i}\right| \leq 1$ then

$$
\mathbb{P}\left[\left|\frac{1}{k} \sum_{i} X_{i}\right| \geq \epsilon\right] \leq 2 \exp \left(-k \epsilon^{2} / 4\right)
$$

Vanilla Chernoff Bound

Thm [Hoeffding, Chernoff]. If X_{1}, \ldots, X_{k} are independent mean zero random variables with $\left|X_{i}\right| \leq 1$ then

$$
\mathbb{P}\left[\left|\frac{1}{k} \sum_{i} X_{i}\right| \geq \epsilon\right] \leq 2 \exp \left(-k \epsilon^{2} / 4\right)
$$

Two Extensions:

1. Dependent Random Variables
2. Sums of random matrices

Expander Chernoff Bound [AKS'87, G'94]

Thm[Gillman'94]: Suppose $G=(V, E)$ is a regular graph with transition matrix P which has second eigenvalue λ. Let $f: V \rightarrow \mathbb{R}$ be a function with $|f(v)| \leq 1$ and $\sum_{v} f(v)=0$.

Expander Chernaff Bound [AKS'87, G'S4]

Thm[Gillman'94]: Suppose $G=(V, E)$ is a regular graph with transition matrix P which has second eigenvalue λ. Let $f: V \rightarrow \mathbb{R}$ be a function with $|f(v)| \leq 1$ and $\sum_{v} f(v)=0$. Then, if v_{1}, \ldots, v_{k} is a stationary random walk:

$$
\mathbb{P}\left[\left|\frac{1}{k} \sum_{i} f\left(v_{i}\right)\right| \geq \epsilon\right] \leq 2 \exp \left(-c(1-\lambda) k \epsilon^{2}\right)
$$

Implies walk of length $k \approx(1-\lambda)^{-1}$ concentrates around mean.

Intuition for Dependence on Spectral Gap

Intuition for Dependence on Spectral Gap

Typical random walk takes $\Omega\left(n^{2}\right)$ steps to see both ± 1.

Derandomization Motivation

Thm[Gillman'94]: Suppose $G=(V, E)$ is a regular graph with transition matrix P which has second eigenvalue λ. Let $f: V \rightarrow \mathbb{R}$ be a function with $|f(v)| \leq 1$ and $\sum_{v} f(v)=0$. Then, if v_{1}, \ldots, v_{k} is a stationary random walk:

$$
\mathbb{P}\left[\left|\frac{1}{k} \sum_{i} f\left(v_{i}\right)\right| \geq \epsilon\right] \leq 2 \exp \left(-c(1-\lambda) k \epsilon^{2}\right)
$$

To generate k indep samples from [n] need $k \log n$ bits. If G is 3 -regular with constant λ, walk needs: $\log n+k \log (3)$ bits.

Derandamization Motivation

Thm[Gillman'94]: Suppose $G=(V, E)$ is a regular graph with transition matrix P which has second eigenvalue λ. Let $f: V \rightarrow \mathbb{R}$ be a function with $|f(v)| \leq 1$ and $\sum_{v} f(v)=0$. Then, if v_{1}, \ldots, v_{k} is a stationary random walk:

$$
\mathbb{P}\left[\left|\frac{1}{k} \sum_{i} f\left(v_{i}\right)\right| \geq \epsilon\right] \leq 2 \exp \left(-c(1-\lambda) k \epsilon^{2}\right)
$$

To generate k indep samples from [n] need $k \log n$ bits. If G is 3 -regular with constant λ, walk needs: $\log n+k \log (3)$ bits.

When $k=O(\log n)$ reduces randomness quadratically.
Can completely derandomize in polynomial time.

Matrix Chernoff Bound

Thm [Rudelson'97, Ahlswede-Winter'02, Oliveira'08, Tropp'11...]. If X_{1}, \ldots, X_{k} are independent mean zero random $d \times d$ Hermitian matrices with $\left\|X_{i}\right\| \leq 1$ then

$$
\mathbb{P}\left[\left\|\frac{1}{k} \sum_{i} X_{i}\right\| \geq \epsilon\right] \leq 2 \operatorname{dexp}\left(-k \epsilon^{2} / 4\right)
$$

Matrix Chernoff Bound

Thm [Rudelson'97, Ahlswede-Winter'02, Oliveira'08, Tropp'11...]. If X_{1}, \ldots, X_{k} are independent mean zero random $d \times d$ Hermitian matrices with $\left\|X_{i}\right\| \leq 1$ then

$$
\mathbb{P}\left[\left\|\frac{1}{k} \sum_{i} X_{i}\right\| \geq \epsilon\right] \leq 2 \operatorname{dexp}\left(-k \epsilon^{2} / 4\right)
$$

Factor d is tight because of the diagonal case.

Very generic bound (no independence assumptions on the entries). Many applications + martingale extensions (see Tropp).

Matrix Expander Chernoff Bound?

Conj[Wigderson-Xiao'05]: Suppose $G=(V, E)$ is a regular graph with transition matrix P which has second eigenvalue λ. Let $f: V \rightarrow \mathbb{C}^{d \times d}$ be a function with $\|f(v)\| \leq 1$ and $\sum_{v} f(v)=0$. Then, if v_{1}, \ldots, v_{k} is a stationary random walk:

$$
\mathbb{P}\left[\left\|\frac{1}{k} \sum_{i} f\left(v_{i}\right)\right\| \geq \epsilon\right] \leq 2 d \exp \left(-c(1-\lambda) k \epsilon^{2}\right)
$$

Motivated by derandomized Alon-Roichman theorem.

Main Theorem

Thm. Suppose $G=(V, E)$ is a regular graph with transition matrix P which has second eigenvalue λ. Let $f: V \rightarrow \mathbb{C}^{d \times d}$ be a function with $\|f(v)\| \leq 1$ and $\sum_{v} f(v)=0$.
Then, if v_{1}, \ldots, v_{k} is a stationary random walk:

$$
\mathbb{P}\left[\left\|\frac{1}{k} \sum_{i} f\left(v_{i}\right)\right\| \geq \epsilon\right] \leq 2 d \exp \left(-c(1-\lambda) k \epsilon^{2}\right)
$$

Gives black-box derandomization of any application of matrix Chernoff

1. Proaf of Chernoff: reduction to mgf

Thm [Hoeffding, Chernoff]. If X_{1}, \ldots, X_{k} are independent mean zero random variables with $\left|X_{i}\right| \leq 1$ then

$$
\mathbb{P}\left[\left|\frac{1}{k} \sum_{i} X_{i}\right| \geq \epsilon\right] \leq 2 \exp \left(-k \epsilon^{2} / 4\right)
$$

I. Proof of Chernaff: reduction to mgf

Thm [Hoeffding, Chernoff]. If X_{1}, \ldots, X_{k} are independent mean zero random variables with $\left|X_{i}\right| \leq 1$ then

$$
\mathbb{P}\left[\left|\frac{1}{k} \sum_{i} X_{i}\right| \geq \epsilon\right] \leq 2 \exp \left(-k \epsilon^{2} / 4\right)
$$

$\mathbb{P}\left[\sum_{i} X_{i} \geq k \epsilon\right] \leq e^{-t k \epsilon} \mathbb{E} \exp \left(t \sum_{i} X_{i}\right)$

Markov

I. Proof of Chernaff: reduction to mgf

Thm [Hoeffding, Chernoff]. If X_{1}, \ldots, X_{k} are independent mean zero random variables with $\left|X_{i}\right| \leq 1$ then

$$
\mathbb{P}\left[\left|\frac{1}{k} \sum_{i} X_{i}\right| \geq \epsilon\right] \leq 2 \exp \left(-k \epsilon^{2} / 4\right)
$$

$\mathbb{P}\left[\sum_{i} X_{i} \geq k \epsilon\right] \leq e^{-t k \epsilon} \mathbb{E} \exp \left(t \sum_{i} X_{i}\right)=e^{-t k \epsilon} \prod_{i} \mathbb{E} e^{t X_{i}}$

I. Proof of Chernaff: reduction to mgf

Thm [Hoeffding, Chernoff]. If X_{1}, \ldots, X_{k} are independent mean zero random variables with $\left|X_{i}\right| \leq 1$ then

$$
\mathbb{P}\left[\left|\frac{1}{k} \sum_{i} X_{i}\right| \geq \epsilon\right] \leq 2 \exp \left(-k \epsilon^{2} / 4\right)
$$

$\mathbb{P}\left[\sum_{i} X_{i} \geq k \epsilon\right] \leq e^{-t k \epsilon} \mathbb{E} \exp \left(t \sum_{i} X_{i}\right)=e^{-t k \epsilon} \prod_{i} \mathbb{E} e^{t X_{i}}$

$$
\leq e^{-t k \epsilon}\left(1+t \mathbb{E} X_{i}+t^{2}\right)^{k}
$$

I. Proof of Chernaff: reduction to mgf

Thm [Hoeffding, Chernoff]. If X_{1}, \ldots, X_{k} are independent mean zero random variables with $\left|X_{i}\right| \leq 1$ then

$$
\mathbb{P}\left[\left|\frac{1}{k} \sum_{i} X_{i}\right| \geq \epsilon\right] \leq 2 \exp \left(-k \epsilon^{2} / 4\right)
$$

$\mathbb{P}\left[\sum_{i} X_{i} \geq k \epsilon\right] \leq e^{-t k \epsilon} \mathbb{E} \exp \left(t \sum_{i} X_{i}\right)=e^{-t k \epsilon} \prod_{i} \mathbb{E} e^{t X_{i}}$

$$
\leq e^{-t k \epsilon}\left(1+\Lambda \quad+t^{2}\right)^{k}
$$

Mean zero

I. Proaf of Chernaff: reduction to mgf

Thm [Hoeffding, Chernoff]. If X_{1}, \ldots, X_{k} are independent mean zero random variables with $\left|X_{i}\right| \leq 1$ then

$$
\mathbb{P}\left[\left|\frac{1}{k} \sum_{i} X_{i}\right| \geq \epsilon\right] \leq 2 \exp \left(-k \epsilon^{2} / 4\right)
$$

$$
\begin{aligned}
\mathbb{P}\left[\sum_{i} X_{i} \geq k \epsilon\right] & \leq e^{-t k \epsilon} \mathbb{E} \exp \left(t \sum_{i} X_{i}\right)=e^{-t k \epsilon} \prod_{i} \mathbb{E} e^{t X_{i}} \\
& \leq e^{-t k \epsilon}\left(1+\quad+t^{2}\right)^{k} \leq e^{-t k \epsilon+k t^{2}}
\end{aligned}
$$

I. Proof of Chernaff: reduction to mgf

Thm [Hoeffding, Chernoff]. If X_{1}, \ldots, X_{k} are independent mean zero random variables with $\left|X_{i}\right| \leq 1$ then

$$
\mathbb{P}\left[\left|\frac{1}{k} \sum_{i} X_{i}\right| \geq \epsilon\right] \leq 2 \exp \left(-k \epsilon^{2} / 4\right)
$$

$\mathbb{P}\left[\sum_{i} X_{i} \geq k \epsilon\right] \leq e^{-t k \epsilon} \mathbb{E} \exp \left(t \sum_{i} X_{i}\right)=e^{-t k \epsilon} \prod_{i} \mathbb{E} e^{t X_{i}}$

$$
\leq e^{-t k \epsilon}\left(1+\quad+t^{2}\right)^{k} \leq e^{-t k \epsilon+k t^{2}} \leq \mathrm{e}^{-\frac{k \epsilon^{2}}{4}}
$$

2. Prouf of Expander Chernoff

Goal: Show $\mathbb{E} \exp \left(t \sum_{i} f\left(v_{i}\right)\right) \leq \exp \left(c_{\lambda} k t^{2}\right)$

2. Proof of Expander Chernoff

Goal: Show $\mathbb{E} \exp \left(t \sum_{i} f\left(v_{i}\right)\right) \leq \exp \left(c_{\lambda} k t^{2}\right)$

Issue: $\mathbb{E} \exp \left(\sum_{i} f\left(v_{i}\right)\right) \neq \prod_{i} \operatorname{Eexp}\left(t f\left(v_{i}\right)\right)$

How to control the mgf without independence?

Step I: Write mgf as quadratic form

$\mathbb{E} e^{t \sum_{i \leq k} f\left(v_{i}\right)}$
$=\sum_{i_{0}, \ldots, i_{k} \in V} \mathbb{P}\left(v_{0}=i_{0}\right) P\left(i_{0}, i_{1}\right) \ldots P\left(i_{k-1}, i_{k}\right) \exp \left(t \sum_{1 \leq j \leq k} f\left(i_{j}\right)\right)$

Step I: Write mg as quadratic form

$\mathbb{E} e^{t \sum_{i \leq k} f\left(v_{i}\right)}$
$=\sum_{i_{0}, \ldots, i_{k} \in V} \mathbb{P}\left(v_{0}=i_{0}\right) P\left(i_{0}, i_{1}\right) \ldots P\left(i_{k-1}, i_{k}\right) \exp \left(t \sum_{1 \leq j \leq k} f\left(i_{j}\right)\right)$
$=\frac{1}{n} \sum_{i_{0}, \ldots, i_{k} \in V} P\left(i_{0}, i_{1}\right) e^{t f\left(i_{1}\right)} \ldots P\left(i_{k-1}, i_{k}\right) e^{t f\left(i_{k}\right)}$

Step I: Write mf as quadratic form

$\mathbb{E} e^{t \sum_{i \leq k} f\left(v_{i}\right)}$
$=\sum_{i_{0}, \ldots, i_{k} \in V} \mathbb{P}\left(v_{0}=i_{0}\right) P\left(i_{0}, i_{1}\right) \ldots P\left(i_{k-1}, i_{k}\right) \exp \left(t \sum_{1 \leq j \leq k} f\left(i_{j}\right)\right)$
$=\frac{1}{n} \sum_{i_{0}, \ldots, i_{k} \in V} P\left(i_{0}, i_{1}\right) e^{t f\left(i_{1}\right)} \ldots P\left(i_{k-1}, i_{k}\right) e^{t f\left(i_{k}\right)}$
$=\left\langle u,(E P)^{k} u\right\rangle$ where $u=\left(\frac{1}{\sqrt{n}}, \ldots, \frac{1}{\sqrt{n}}\right)$.

$$
E=\left[\begin{array}{lll}
e^{t f(1)} & & \\
& \cdots & \\
& & e^{t f(n)}
\end{array}\right]
$$

Step Z: Bound quadratic form

Goal: Show $\left\langle u,(E P)^{k} u\right\rangle \leq \exp \left(c_{\lambda} k t^{2}\right)$
Observe: $\|P-J\| \leq \lambda$ where $J=$ complete graph with self loops So for small λ, should have $\left\langle u,(E P)^{k} u\right\rangle \approx\left\langle u,(E J)^{k} u\right\rangle$

Step Z: Bound quadratic form

Goal: Show $\left\langle u,(E P)^{k} u\right\rangle \leq \exp \left(c_{\lambda} k t^{2}\right)$
Observe: $\|P-J\| \leq \lambda$ where $J=$ complete graph with self loops So for small λ, should have $\left\langle u,(E P)^{k} u\right\rangle \approx\left\langle u,(E J)^{k} u\right\rangle$

Approach 1. Use perturbation theory to show $\|E P\| \leq \exp \left(c_{\lambda} t^{2}\right)$

Step Z: Bound quadratic form

Goal: Show $\left\langle u,(E P)^{k} u\right\rangle \leq \exp \left(c_{\lambda} k t^{2}\right)$

Observe: $\|P-J\| \leq \lambda$ where $J=$ complete graph with self loops So for small λ, should have $\left\langle u,(E P)^{k} u\right\rangle \approx\left\langle u,(E J)^{k} u\right\rangle$

Approach 1. Use perturbation theory to show $\|E P\| \leq \exp \left(c_{\lambda} t^{2}\right)$

Approach 2. (Healy’08) track projection of iterates along u.

Simplest case: $\lambda=0$

u

Simplest case: $\lambda=0$

$P u$

Simplest case: $\lambda=0$

EPu

Simplest case: $\lambda=0$

PEPu

Simplest case: $\lambda=0$

ЕРЕРи

Observations

ЕРЕРи

Observe: P shrinks every vector orthogonal to u by λ.

$$
\langle u, E u\rangle=\frac{1}{\mathrm{n}} \sum_{v \in \mathrm{~V}} e^{t f(v)}=1+t^{2} \text { by mean zero }
$$

condition.

A small dynamical system

$$
m_{\perp}=\left\|Q_{\perp} v\right\| \quad m_{\|}=\langle v, u\rangle
$$

A small dynamical system

A small dynamical system

A small dynamical system

$$
m_{\perp}=\left\|Q_{\perp} v\right\| \quad m_{\|}=\langle v, u\rangle
$$

A small dynamical system

Any mass that leaves gets shrunk by λ

Analyzing dynamical system gives

Thm[Gillman'94]: Suppose $G=(V, E)$ is a regular graph with transition matrix P which has second eigenvalue λ. Let $f: V \rightarrow \mathbb{R}$ be a function with $|f(v)| \leq 1$ and $\sum_{v} f(v)=0$.
Then, if v_{1}, \ldots, v_{k} is a stationary random walk:

$$
\mathbb{P}\left[\left|\frac{1}{k} \sum_{i} f\left(v_{i}\right)\right| \geq \epsilon\right] \leq 2 \exp \left(-c(1-\lambda) k \epsilon^{2}\right)
$$

Generalization to Matrices?

Setup: $f: V \rightarrow \mathbb{C}^{d \times d}$, random walk v_{1}, \ldots, v_{k}. Goal:

$$
\mathbb{E} \operatorname{Tr}\left[\exp \left(t \sum_{i} f\left(v_{i}\right)\right)\right] \leq d \cdot \exp \left(c k t^{2}\right)
$$

where e^{A} is defined as a power series.

Generalization to Matrices?

Setup: $f: V \rightarrow \mathbb{C}^{d \times d}$, random walk v_{1}, \ldots, v_{k}. Goal:

$$
\mathbb{E} \operatorname{Tr}\left[\exp \left(t \sum_{i} f\left(v_{i}\right)\right)\right] \leq d \cdot \exp \left(c k t^{2}\right)
$$

where e^{A} is defined as a power series.

Main Issue: $\exp (A+B) \neq \exp (A) \exp (B)$ unless $[A, B]=0$
can't express exp(sum) as iterated product.

The Golden-Thompson Inequality

Partial Workaround [Golden-Thompson'65]:

$$
\operatorname{Tr}(\exp (A+B)) \leq \operatorname{Tr}(\exp (A) \exp (B))
$$

Sufficient for independent case by induction.

The Golden-Thompson Inequality

Partial Workaround [Golden-Thompson'65]:

$$
\operatorname{Tr}(\exp (A+B)) \leq \operatorname{Tr}(\exp (A) \exp (B))
$$

Sufficient for independent case by induction. For expander case, need this for k matrices.

The Golden-Thompson Inequality

Partial Workaround [Golden-Thompson'65]:

$$
\operatorname{Tr}(\exp (A+B)) \leq \operatorname{Tr}(\exp (A) \exp (B))
$$

Sufficient for independent case by induction. For expander case, need this for k matrices. False!

Key Ingredient

[Sutter-Berta-Tomamichel'16] If A_{1}, \ldots, A_{k} are Hermitian, then
$\log \operatorname{Tr}\left(e^{A_{1}+\ldots+A_{k}}\right)$
$\leq \int d \beta(b) \log \operatorname{Tr}\left[\left(e^{\frac{A_{1}(1+i b)}{2}} \ldots e^{\frac{A_{k}(1+i b)}{2}}\right)\left(e^{\frac{A_{1}(1+i b)}{2}} \ldots e^{\frac{A_{k}(1+i b)}{2}}\right)^{*}\right]$
where $\beta(b)$ is an explicit probability density on \mathbb{R}.

Key Ingredient

[Sutter-Berta-Tomamichel'16] If A_{1}, \ldots, A_{k} are Hermitian, then
$\log \operatorname{Tr}\left(e^{A_{1}+\ldots+A_{k}}\right)$
$\leq \int d \beta(b) \log \operatorname{Tr}\left[\left(e^{\frac{A_{1}(1+i b)}{2}} \ldots e^{\frac{A_{k}(1+i b)}{2}}\right)\left(e^{\frac{A_{1}(1+i b)}{2}} \ldots e^{\frac{A_{k}(1+i b)}{2}}\right)^{*}\right]$
where $\beta(b)$ is an explicit probability density on \mathbb{R}.

1. Matrix on RHS is always PSD.
2. Average-case inequality: $e^{A_{i} / 2}$ are conjugated by unitaries.
3. Implies Lieb's concavity, triple-matrix, ALT, and more.

Proof of SBT: Lie-Trotter Formula

$$
e^{A+B+C}=\lim _{\theta \rightarrow 0^{+}}\left(e^{\theta A} e^{\theta B} e^{\theta C}\right)^{1 / \theta}
$$

Proof of SBT: Lie-Trotter Formula

$$
e^{A+B+C}=\lim _{\theta \rightarrow 0^{+}}\left(e^{\theta A} e^{\theta B} e^{\theta C}\right)^{1 / \theta}
$$

$\log \operatorname{Tr} e^{A+B+C}=\lim _{\theta \rightarrow 0^{+}} 2 \log \|G(\theta)\|_{2 / \theta} / \theta$
For $G(z):=e^{\frac{z A}{2}} e^{\frac{z B}{2}} e^{\frac{z C}{2}}$

Complex Interpolation (Stein-Hirschman)

Complex Interpolation (Stein-Hirschman)

For each θ, find analytic $F(z)$ st:

$$
||F(i t)|=1
$$

$$
|F(1+i t)| \leq\|G(1+i t)\|_{2}
$$

$$
|F(\theta)|=\|G(\theta)\|_{2 / \theta}
$$

Complex Interpolation (Stein-Hirschman)

For each θ, find analytic $F(z)$ st:

Complex Interpolation (Stein-Hirschman)

For each θ, find analytic $F(z)$ st:

Key Ingredient

[Sutter-Berta-Tomamichel'16] If A_{1}, \ldots, A_{k} are Hermitian, then
$\log \operatorname{Tr}\left(e^{A_{1}+\ldots+A_{k}}\right)$
$\leq \int d \beta(b) \log \operatorname{Tr}\left[\left(e^{\frac{A_{1}(1+i b)}{2}} \ldots e^{\frac{A_{k}(1+i b)}{2}}\right)\left(e^{\frac{A_{1}(1+i b)}{2}} \ldots e^{\frac{A_{k}(1+i b)}{2}}\right)^{*}\right]$
where $\beta(b)$ is an explicit probability density on \mathbb{R}.

Key Ingredient

[Sutter-Berta-Tomamichel'16] If A_{1}, \ldots, A_{k} are Hermitian, then
$\log \operatorname{Tr}\left(e^{A_{1}+\ldots+A_{k}}\right)$
$\leq \int d \beta(b) \log \operatorname{Tr}\left[\left(e^{\frac{A_{1}(1+i b)}{2}} \ldots e^{\frac{A_{k}(1+i b)}{2}}\right)\left(e^{\frac{A_{1}(1+i b)}{2}} \ldots e^{\frac{A_{k}(1+i b)}{2}}\right)^{*}\right]$
where $\beta(b)$ is an explicit probability density on \mathbb{R}.

Issue. SBT involves integration over unbounded region, bad for Taylor expansion.

Bounded Modification of SBT

Solution. Prove bounded version of SBT by replacing strip with half-disk.
[Thm] If A_{1}, \ldots, A_{k} are Hermitian, then
$\log \operatorname{Tr}\left(e^{A_{1}+\ldots+A_{k}}\right)$
$\leq \int d \beta(b) \log \operatorname{Tr}\left[\left(e^{\frac{A_{1} e^{i b}}{2}} \ldots e^{\frac{A_{k} e^{i b}}{2}}\right)\left(e^{\frac{A_{1} e^{i b}}{2}} \ldots e^{\frac{A_{k} e^{i b}}{2}}\right)^{*}\right]$
where $\beta(b)$ is an explicit probability density on
$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Proof. Analytic $F(z)+$ Poisson Kernel + Riemann map.

Handling Two-sided Praducts

Issue. Two-sided rather than one-sided products:

$$
\operatorname{Tr}\left[\left(e^{\frac{t f\left(v_{1}\right) e^{i b}}{2}} \ldots e^{\frac{t f\left(v_{k}\right) e^{i b}}{2}}\left(e^{\frac{t f\left(v_{1}\right) e^{i b}}{2}} \ldots e^{\frac{t f\left(v_{k}\right) e^{i b}}{2}}\right)^{*}\right)\right]
$$

Handling Two-sided Praducts

Issue. Two-sided rather than one-sided products:

$$
\operatorname{Tr}\left[\left(e^{\frac{t f\left(v_{1}\right) e^{i b}}{2}} \ldots e^{\frac{t f\left(v_{k}\right) e^{i b}}{2}}\left(e^{\frac{t f\left(v_{1}\right) e^{i b}}{2}} \ldots e^{\frac{t f\left(v_{k}\right) e^{i b}}{2}}\right)^{*}\right)\right]
$$

Solution.

Encode as one-sided product by using $\operatorname{Tr}(A X B)=\left(A \otimes B^{T}\right) \operatorname{vec}(X)$:
$\left\langle e^{\frac{t f\left(v_{1}\right) e^{i b}}{2}} \otimes e^{\frac{t f\left(v_{1}\right)^{* T} e^{i b}}{2}} \ldots e^{\frac{t f\left(v_{k}\right)^{* T} e^{-i b}}{2}} \otimes e^{\frac{t f\left(v_{k}\right)^{* T} e^{-i b}}{2}} \operatorname{vec}\left(\mathrm{I}_{\mathrm{d}}\right), \operatorname{vec}\left(\mathrm{I}_{\mathrm{d}}\right)\right.$

Finishing the Prouf

Carry out a version of Healy's argument with $P \otimes I_{d^{2}}$ and:
$E=\left[\begin{array}{llll}e^{\frac{t f(1) e^{i b}}{2}} \otimes e^{\frac{t f(1)^{* T} e^{i b}}{2}} & & \\ & \cdots & \\ & & e^{\frac{t f(n) e^{i b}}{2}} \otimes e^{\frac{t f(n)^{* T} e^{-i b}}{2}}\end{array}\right]$

And $v e c\left(I_{d}\right) \otimes u$ instead of u.

This leads to the additional d factor.

Main Theorem

Thm. Suppose $G=(V, E)$ is a regular graph with transition matrix P which has second eigenvalue λ. Let $f: V \rightarrow \mathbb{C}^{d \times d}$ be a function with $\|f(v)\| \leq 1$ and $\sum_{v} f(v)=0$.
Then, if v_{1}, \ldots, v_{k} is a stationary random walk:

$$
\mathbb{P}\left[\left\|\frac{1}{k} \sum_{i} f\left(v_{i}\right)\right\| \geq \epsilon\right] \leq 2 d \exp \left(-c(1-\lambda) k \epsilon^{2}\right)
$$

Open Questions

Other matrix concentration inequalities (multiplicative, low-rank, moments)
Other Banach spaces
(Schatten norms)
More applications of complex interpolation

