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Vanilla Chernoff Bound

Thm [Hoeffding, Chernoff]. If 𝑋1, … , 𝑋𝑘 are independent mean zero
random variables with 𝑋𝑖 ≤ 1 then
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Two Extensions:
1.Dependent Random Variables
2.Sums of random matrices



Expander Chernoff Bound [AKS’87, G’94]

Thm[Gillman’94]: Suppose 𝐺 = (𝑉, 𝐸) is a regular graph with 
transition matrix 𝑃 which has second eigenvalue 𝜆. Let 𝑓: 𝑉 → ℝ
be a function with 𝑓 𝑣 ≤ 1 and σ𝑣 𝑓 𝑣 = 0.
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be a function with 𝑓 𝑣 ≤ 1 and σ𝑣 𝑓 𝑣 = 0.
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Implies walk of length 𝑘 ≈ 1 − 𝜆 −1 concentrates around mean.
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Typical random walk takes Ω 𝑛2 steps to see both ±1.



Derandomization Motivation

Thm[Gillman’94]: Suppose 𝐺 = (𝑉, 𝐸) is a regular graph with 
transition matrix 𝑃 which has second eigenvalue 𝜆. Let 𝑓: 𝑉 → ℝ
be a function with 𝑓 𝑣 ≤ 1 and σ𝑣 𝑓 𝑣 = 0.
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To generate 𝑘 indep samples from [𝑛] need     𝑘 log 𝑛 bits.
If 𝐺 is 3 −regular with constant 𝜆, walk needs: log 𝑛 + 𝑘 log(3) bits.
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To generate 𝑘 indep samples from [𝑛] need     𝑘 log 𝑛 bits.
If 𝐺 is 3 −regular with constant 𝜆, walk needs: log 𝑛 + 𝑘 log(3) bits.

When 𝑘 = 𝑂(log 𝑛) reduces randomness quadratically. 
Can completely derandomize in polynomial time.



Matrix Chernoff Bound

Thm [Rudelson’97, Ahlswede-Winter’02, Oliveira’08, Tropp’11…]. 
If 𝑋1, … , 𝑋𝑘 are independent mean zero random 𝑑 × 𝑑 Hermitian
matrices with | 𝑋𝑖 | ≤ 1 then
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Very generic bound (no independence assumptions on the entries).
Many applications + martingale extensions (see Tropp).

Factor 𝑑 is tight because of the diagonal case.



Matrix Expander Chernoff Bound?

Conj[Wigderson-Xiao’05]: Suppose 𝐺 = (𝑉, 𝐸) is a regular graph 
with transition matrix 𝑃 which has second eigenvalue 𝜆. Let 
𝑓: 𝑉 → ℂ𝑑×𝑑 be a function with | 𝑓 𝑣 | ≤ 1 and σ𝑣 𝑓 𝑣 = 0.
Then, if 𝑣1, … , 𝑣𝑘 is a stationary random walk:
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Motivated by derandomized Alon-Roichman theorem.



Main Theorem

Thm. Suppose 𝐺 = (𝑉, 𝐸) is a regular graph with transition matrix 
𝑃 which has second eigenvalue 𝜆. Let 𝑓: 𝑉 → ℂ𝑑×𝑑 be a function 
with | 𝑓 𝑣 | ≤ 1 and σ𝑣 𝑓 𝑣 = 0.
Then, if 𝑣1, … , 𝑣𝑘 is a stationary random walk:
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𝑓(𝑣𝑖) ≥ 𝜖 ≤ 2𝑑exp(−𝑐(1 − 𝜆)𝑘𝜖2)

Gives black-box derandomization of any application of matrix Chernoff
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2



2. Proof of Expander Chernoff

Goal: Show 𝔼exp 𝑡 σ𝑖 𝑓 𝑣𝑖 ≤ exp 𝑐𝜆𝑘𝑡
2

Issue: 𝔼exp σ𝑖 𝑓 𝑣𝑖 ≠ ς𝑖 𝔼exp(𝑡𝑓(𝑣𝑖))

How to control the mgf without 
independence?



Step 1: Write mgf as quadratic form
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𝑒𝑡𝑓(𝑖2)

𝑒𝑡𝑓(𝑖3)

𝐸 =
𝑒𝑡𝑓(1)
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Step 2: Bound quadratic form

Observe: ||𝑃 − 𝐽|| ≤ 𝜆 where 𝐽 = complete graph with self loops

So for small 𝜆, should have 𝑢, 𝐸𝑃 𝑘𝑢 ≈ ⟨𝑢, (𝐸𝐽)𝑘𝑢⟩

Goal: Show ⟨𝑢, 𝐸𝑃 𝑘𝑢⟩ ≤ exp 𝑐𝜆𝑘𝑡
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Step 2: Bound quadratic form

Observe: ||𝑃 − 𝐽|| ≤ 𝜆 where 𝐽 = complete graph with self loops

So for small 𝜆, should have 𝑢, 𝐸𝑃 𝑘𝑢 ≈ ⟨𝑢, (𝐸𝐽)𝑘𝑢⟩

Approach 1. Use perturbation theory to show ||𝐸𝑃|| ≤ exp 𝑐𝜆𝑡
2

Approach 2. (Healy’08) track projection of iterates along 𝑢.

Goal: Show ⟨𝑢, 𝐸𝑃 𝑘𝑢⟩ ≤ exp 𝑐𝜆𝑘𝑡
2
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Simplest case: 𝜆 = 0
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Observations

𝐸𝑃𝐸𝑃𝐸𝑃𝐸𝑃𝑢

Observe:  𝑃 shrinks every vector orthogonal to 𝑢 by 𝜆.

𝑢, 𝐸𝑢 =
1

n
σ𝑣∈V 𝑒

𝑡𝑓(𝑣) = 1 + 𝑡2 by mean zero 

condition.



A small dynamical system
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𝑚|| 𝑚⊥
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0

0

𝑒𝑡
2

𝑡

𝑣 ↷ 𝐸𝑃𝑣𝜆 = 0



A small dynamical system

𝑣 = 𝐸𝑃 𝑗𝑢

𝑚|| = ⟨𝑣, 𝑢⟩

𝑚⊥ = ||𝑄⊥𝑣||

𝑚|| 𝑚⊥

𝑒𝑡𝜆

𝜆𝑡

𝑒𝑡
2

𝑡

𝑣 ↷ 𝐸𝑃𝑣any 𝜆



A small dynamical system

𝑣 = 𝐸𝑃 𝑗𝑢

𝑚|| = ⟨𝑣, 𝑢⟩

𝑚⊥ = ||𝑄⊥𝑣||

𝑚|| 𝑚⊥

≤ 1

𝜆𝑡

𝑒𝑡
2

𝑡

𝑣 ↷ 𝐸𝑃𝑣𝑡 ≤ log 1/𝜆



A small dynamical system

𝑣 = 𝐸𝑃 𝑗𝑢

𝑚|| = ⟨𝑣, 𝑢⟩

𝑚⊥ = ||𝑄⊥𝑣||

𝑚|| 𝑚⊥

≤ 1

𝜆𝑡

𝑒𝑡
2

𝑡

Any mass that leaves gets shrunk by 𝜆



Analyzing dynamical system gives

Thm[Gillman’94]: Suppose 𝐺 = (𝑉, 𝐸) is a regular graph with 
transition matrix 𝑃 which has second eigenvalue 𝜆. Let 𝑓: 𝑉 → ℝ
be a function with 𝑓 𝑣 ≤ 1 and σ𝑣 𝑓 𝑣 = 0.
Then, if 𝑣1, … , 𝑣𝑘 is a stationary random walk:

ℙ
1

𝑘


𝑖

𝑓(𝑣𝑖) ≥ 𝜖 ≤ 2exp(−𝑐(1 − 𝜆)𝑘𝜖2)



Main Issue: exp 𝐴 + 𝐵 ≠ exp 𝐴 exp(𝐵) unless 𝐴, 𝐵 = 0

Generalization to Matrices?

Setup: 𝑓: 𝑉 → ℂ𝑑×𝑑 , random walk 𝑣1, … , 𝑣𝑘.
Goal:

𝔼𝑇𝑟 exp 𝑡

𝑖

𝑓 𝑣𝑖 ≤ 𝑑 ⋅ exp 𝑐𝑘𝑡2

where 𝑒𝐴 is defined as a power series.

can’t express exp(sum) as iterated product.
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The Golden-Thompson Inequality
Partial Workaround [Golden-Thompson’65]:

𝑇𝑟 exp 𝐴 + 𝐵 ≤ 𝑇𝑟 exp 𝐴 exp 𝐵

Sufficient for independent case by induction.
For expander case, need this for 𝑘 matrices. False!

𝑇𝑟 𝑒𝐴+𝐵+𝐶 > 0 > 𝑇𝑟(eAeBeC)

≈ 𝑒𝐴

≈ 𝑒𝐵 ≈ 𝑒𝐶
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The Golden-Thompson Inequality
Partial Workaround [Golden-Thompson’65]:

𝑇𝑟 exp 𝐴 + 𝐵 ≤ 𝑇𝑟 exp 𝐴 exp 𝐵

Sufficient for independent case by induction.
For expander case, need this for 𝑘 matrices. False!

𝑇𝑟 𝑒𝐴+𝐵+𝐶 > 0 > 𝑇𝑟(eAeBeC)

≈ 𝑒𝐴

≈ 𝑒𝐵 ≈ 𝑒𝐶



Key Ingredient

[Sutter-Berta-Tomamichel’16] If 𝐴1, … , 𝐴𝑘 are Hermitian, then

log 𝑇𝑟 𝑒𝐴1+ …+𝐴𝑘

≤ ∫ 𝑑𝛽(𝑏) log 𝑇𝑟 𝑒
𝐴1(1+𝑖𝑏)

2 …𝑒
𝐴𝑘(1+𝑖𝑏)

2 𝑒
𝐴1(1+𝑖𝑏)

2 …𝑒
𝐴𝑘(1+𝑖𝑏)

2

∗

where 𝛽(𝑏) is an explicit probability density on ℝ.

1. Matrix on RHS is always PSD.

2. Average-case inequality: 𝑒𝐴𝑖/2 are conjugated by unitaries.
3. Implies Lieb’s concavity, triple-matrix, ALT, and more.
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Proof of SBT: Lie-Trotter Formula

𝑒𝐴+𝐵+𝐶 = lim
𝜃→0+

𝑒𝜃𝐴𝑒𝜃𝐵𝑒𝜃𝐶
1/𝜃

log 𝑇𝑟 𝑒𝐴+𝐵+𝐶 = lim
𝜃→0+

log ||𝐺 𝜃 ||2/𝜃

For 𝐺 𝑧 ≔ 𝑒
𝑧𝐴

2 𝑒
𝑧𝐵

2 𝑒
𝑧𝐶

2
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𝑒𝐴+𝐵+𝐶 = lim
𝜃→0+

𝑒𝜃𝐴𝑒𝜃𝐵𝑒𝜃𝐶
1/𝜃

log 𝑇𝑟 𝑒𝐴+𝐵+𝐶 = lim
𝜃→0+

2log ||𝐺 𝜃 ||2/𝜃/𝜃

For 𝐺 𝑧 ≔ 𝑒
𝑧𝐴
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Complex Interpolation (Stein-Hirschman)

log 𝐺 𝜃 2/𝜃

𝜃



Complex Interpolation (Stein-Hirschman)

|𝐹 𝜃 | = 𝐺 𝜃 2/𝜃

For each 𝜃, find analytic 𝐹(𝑧) st:

|𝐹 1 + 𝑖𝑡 | ≤ 𝐺 1 + 𝑖𝑡 2

|𝐹 𝑖𝑡 | = 1
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Complex Interpolation (Stein-Hirschman)

|𝐹 𝜃 | = 𝐺 𝜃 2/𝜃

For each 𝜃, find analytic 𝐹(𝑧) st:

|𝐹 1 + 𝑖𝑡 | ≤ 𝐺 1 + 𝑖𝑡 2

|𝐹 𝑖𝑡 | = 1

log 𝐹 𝜃 ≤ නlog |𝐹 𝑖𝑡 | + නlog |𝐹 1 + 𝑖𝑡 |

lim 𝜃 → 0



Key Ingredient

[Sutter-Berta-Tomamichel’16] If 𝐴1, … , 𝐴𝑘 are Hermitian, then

log 𝑇𝑟 𝑒𝐴1+ …+𝐴𝑘

≤ ∫ 𝑑𝛽(𝑏) log 𝑇𝑟 𝑒
𝐴1(1+𝑖𝑏)

2 …𝑒
𝐴𝑘(1+𝑖𝑏)

2 𝑒
𝐴1(1+𝑖𝑏)

2 …𝑒
𝐴𝑘(1+𝑖𝑏)

2

∗

where 𝛽(𝑏) is an explicit probability density on ℝ.
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2 …𝑒
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𝐴1(1+𝑖𝑏)

2 …𝑒
𝐴𝑘(1+𝑖𝑏)

2

∗

where 𝛽(𝑏) is an explicit probability density on ℝ.

Issue. SBT involves integration over unbounded region, 
bad for Taylor expansion.



Bounded Modification of SBT

Solution. Prove bounded version of SBT by replacing strip
with half-disk.

[Thm] If 𝐴1, … , 𝐴𝑘 are Hermitian, then

log 𝑇𝑟 𝑒𝐴1+…+𝐴𝑘

≤ ∫ 𝑑𝛽(𝑏) log 𝑇𝑟 𝑒
𝐴1𝑒

𝑖𝑏

2 …𝑒
𝐴𝑘𝑒

𝑖𝑏

2 𝑒
𝐴1𝑒

𝑖𝑏

2 …𝑒
𝐴𝑘𝑒

𝑖𝑏

2

∗

where 𝛽(𝑏) is an explicit probability density on 

−
𝜋

2
,
𝜋

2
.

𝜃

Proof. Analytic 𝐹(𝑧) + Poisson Kernel + Riemann map.



Handling Two-sided Products

Issue. Two-sided rather than one-sided products:

𝑇𝑟 𝑒
𝑡𝑓 𝑣1 𝑒𝑖𝑏

2 …𝑒
𝑡𝑓 𝑣𝑘 𝑒𝑖𝑏

2 𝑒
𝑡𝑓 𝑣1 𝑒𝑖𝑏

2 …𝑒
𝑡𝑓 𝑣𝑘 𝑒𝑖𝑏

2

∗

Solution.
Encode as one-sided product by using 𝑇𝑟 𝐴𝑋𝐵 = 𝐴⊗𝐵𝑇 𝑣𝑒𝑐 𝑋 :

⟨𝑒
𝑡𝑓 𝑣1 𝑒𝑖𝑏

2 ⊗ 𝑒
𝑡𝑓 𝑣1

∗𝑒𝑖𝑏

2 …𝑒
𝑡𝑓 𝑣𝑘

∗𝑇𝑒−𝑖𝑏

2 ⊗𝑒
𝑡𝑓 𝑣𝑘

∗𝑇𝑒−𝑖𝑏

2 vec Id , vec Id ⟩



Handling Two-sided Products

Issue. Two-sided rather than one-sided products:

𝑇𝑟 𝑒
𝑡𝑓 𝑣1 𝑒𝑖𝑏

2 …𝑒
𝑡𝑓 𝑣𝑘 𝑒𝑖𝑏

2 𝑒
𝑡𝑓 𝑣1 𝑒𝑖𝑏

2 …𝑒
𝑡𝑓 𝑣𝑘 𝑒𝑖𝑏

2

∗

Solution.
Encode as one-sided product by using 𝑇𝑟 𝐴𝑋𝐵 = 𝐴⊗𝐵𝑇 𝑣𝑒𝑐 𝑋 :

⟨𝑒
𝑡𝑓 𝑣1 𝑒𝑖𝑏

2 ⊗𝑒
𝑡𝑓 𝑣1

∗𝑇𝑒𝑖𝑏

2 …𝑒
𝑡𝑓 𝑣𝑘

∗𝑇𝑒−𝑖𝑏

2 ⊗𝑒
𝑡𝑓 𝑣𝑘

∗𝑇𝑒−𝑖𝑏

2 vec Id , vec Id ⟩



Finishing the Proof

Carry out a version of Healy’s argument with 𝑃 ⊗ 𝐼𝑑2 and:

And  𝑣𝑒𝑐(𝐼𝑑) ⊗ 𝑢 instead of 𝑢.

This leads to the additional 𝑑 factor.

𝒊𝟎

𝒊𝟏

𝒊𝟐

𝒊𝟑

𝑃 𝑖0, 𝑖1

𝑃 𝑖1, 𝑖2

𝑃 𝑖2, 𝑖3

𝐸 =
𝑒
𝑡𝑓 1 𝑒𝑖𝑏

2 ⊗𝑒
𝑡𝑓 1 ∗𝑇𝑒𝑖𝑏

2

…

𝑒
𝑡𝑓(𝑛)𝑒𝑖𝑏

2 ⊗𝑒
𝑡𝑓 𝑛 ∗𝑇𝑒−𝑖𝑏

2



Main Theorem

Thm. Suppose 𝐺 = (𝑉, 𝐸) is a regular graph with transition matrix 
𝑃 which has second eigenvalue 𝜆. Let 𝑓: 𝑉 → ℂ𝑑×𝑑 be a function 
with | 𝑓 𝑣 | ≤ 1 and σ𝑣 𝑓 𝑣 = 0.
Then, if 𝑣1, … , 𝑣𝑘 is a stationary random walk:

ℙ
1

𝑘


𝑖

𝑓(𝑣𝑖) ≥ 𝜖 ≤ 2𝑑exp(−𝑐(1 − 𝜆)𝑘𝜖2)



Open Questions

Other matrix concentration inequalities 
(multiplicative, low-rank, moments)

Other Banach spaces
(Schatten norms)

More applications of complex interpolation


