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Setup

Undirected d + 1-regular graph G on n vertices.
Adjacency matrix A has eigenvalues 1
,\0
/
\/
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Q. What is the combinatorial meaning of the interior eigenvectors?



A Warmup

Observation. If Av = Av and v is supported on k vertices, then

girth(4) < 4log, (k)
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A Warmup

Observation. If Av = Av and v is supported on k vertices, then

girth(4) < 4log,(k)

o

girth(G) < 4log, (k) “ k > d9/4



Localization and Delocalization

Defn. A unit vector v is (€, k) —delocalized if for all subsets S c [n]:

llusl|5 = €= |S| >k

Otherwise it is (¢, k)-localized, i.e., ||vg||5 = € for some |S| < k.
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Localization and Delocalization

Defn. A unit vector v is (€, k) —delocalized if for all subsets S c [n]:
lusllz = € = |S| > k

Otherwise it is (¢, k)-localized, i.e., ||vg||5 = € for some |S| < k.

e.g. k —sparse means (1, k) —localized

(e, 1) —delocalized implies ||v||% < €
I|v]|% < 1/n implies (€, en)-delocalized for all €.

Showed: If A has girth g then every eigvec is (d9/4, 1)-delocalized
Q. What about € < 17



[Brooks-Lindenstrauss’09]

Thm. Suppose G is d + 1-regular with girth g and Av = Av.

1. If 1 € (=2Vd,2Vd) thenvis (€, Ezdcezg)-delocalized for e € (0,1).
2. If1 ¢ (=2Vd —6,2vd — &) then ||[v]|% < d~%6(9),



[Brooks-Lindenstrauss’09]

Thm. Suppose G is d + 1-regular with girth g and Av = Av.

1. If 1 € (=2Vd,2Vd) thenvis (€, Ezdcezg)-delocalized for e € (0,1).
2. If1 ¢ (=2Vd —6,2vd — &) then ||[v]|% < d~%6(9),

When g = Q(log, n), (1) implies (€, eznﬂ(ez))-deloc and
[v]|% < (loggn)~Y/3

whereas (2) implies ||v||5 < n~°.
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Questions

Q1. How does localization depend on the eigenvalue A?
Q2. How does localization depend on the mass €?

(in [BL'06], exponent of € depends on A € (—2vd, 24/d) and
Diophantine properties of 1)



Questions

Q1. How does localization depend on the eigenvalue A?
Q2. How does localization depend on the mass €?

(in [BL'06], exponent of € depends on A € (—2vd, 24/d) and
Diophantine properties of 1)

Q3. How do high girth graphs compare to random regular graphs?

log®(n) )
n

(cf. [BHY’16] shows bulk eigenvectors have ||v||3%, <



Theorem A [Ganguly-S'18]

Thm. Suppose G is d + 1-regular with girth g and Av = Av.

€9

then v is (€, EdT_B)—delocaIized for e € (0,1).
Improved constant and exponent of € compared to [BL'06] part (1).

Implies I|v]1% < (loggzn)~ 2.

Contrapositive: (k, €)-localized implies g < 4log(§)/e + 0(1).

Proof is a technical improvement of [BL'06] (approx. theory +
nonbacktracking walks)



Theorem B [Alon-Ganguly-S'19]

Fix d prime. There is an infinite sequence of d + 1-regular graphs G,,
on m vertices such that:

1. girth(G,,) = (%) log (m)

2. There is an eigenvector A,,,v = Av which is (k, €) —localized for

k = 0(d*€9th(em)y  ve € (0,1]

Implies exponent of € in Theorem A cannot be improved.
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Proof of Theorem B (simplified)
Step 1. Finite d + 1-ary tree of depth ¢ 1l
with n leaves.
’y/ %€
Fact: has many (e, d€%)-localized eigenvectors.

equal to zero on the leaves. % A~/ 7;>\ .




Proof of Theorem B

Step 2. Two d + 1-ary trees of depth ¥,
with to maximize
girth [Erdos-Sachs] or [McKay]

Yields girth > Q(¥) = Q(log n)

Eigenvector equation is satisfied by
Reflecting 1 on the paired tree.
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Step 3. Let H be a d + 1-regular
Ramanujan [LPS,Margulis] graph
with n of degree d
at mutual distance Q(log, n)
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Proof of Theorem B

Step 3. Let H be a d + 1-regular
Ramanujan [LPS,Margulis] graph
with n of degree d
at mutual distance Q(log, n)

|dentify leaves from step 2
with defects.
Retains girth Q(log, n).

Set eigenvector to zero on H.
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Fix d prime. There is an infinite sequence of d + 1-regular graphs G,,
on m vertices such that:

. 1
1, girth(G,,) = (5) log (m)
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Theorem B [Alon-Ganguly-S'19]

Fix d = 3 prime. There is an infinite sequence of d + 1-regular graphs
(4, on m vertices such that:
. 1
%glrth(Gm) > (5) log (m)
‘A There is an eigenvector A,,v = Av which is (k, €) —localized for

k = 0(d*€9th(em)y  ve € (0,1]

34 (A4,)] < 2.12+/d £ér all nontrivial adjacency eigenvalues.
/The numberofsuch A for each G,,, is Q(log,;(m)).

The set of 1 attained by the above sequence is dense in (—2vd, 2v/d).




Spectral Gap

Observation: If any eigenvector of ¢
is equal to zero on the interface then

viA.v = viArv + v Apv
< 2Vd||vr||* + 2Vd]||vy||* + o(1)




Spectral Gap

Observation: If any eigenvector of ¢
is equal to zero on the interface then

viA.v = viArv + v Apv
< 2Vd||vr||* + 2Vd||vy||* + 0(1)

Key Lemma: Any putative non-Ramanujan
eigenvector of G must have at most 5%
of its mass on the interface.

(high girth + [Kahale’95] argument)
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Theorem B [Alon-Ganguly-S'19]

Fix d prime. There is an infinite sequence of d + 1-regular graphs G,,
on m vertices such that:

1, girth(G,,) = G) log (m)

‘A There is an eigenvector A,,v = Av which is (k, €) —localized for
e
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/The number of such A for each G,,, is Q(log,;(m)).

The set of 1 attained by the above sequence is dense in (—2vd, 2v/d).



The Quantum Ergodicity Angle

[Shnirelman’74] If the geodesic flow on a compact manifold is ergodic,
then there is a dense subsequence of Laplacian eigenfunctions which is
equidistributed (a strong notion of delocalization).




The Quantum Ergodicity Angle

[Shnirelman’74] If the geodesic flow on a compact manifold is ergodic,
then there is a dense subsequence of Laplacian eigenfunctions which is
equidistributed (a strong notion of delocalization).

QUE Conjecture [Rudnick-Sarnak]:If the manifold is negatively curved,
this is true for all eigenfunctions. Special case proved by Lindenstrauss.

[Smilansky’07] Study graphs as a simplified model for manifolds.



Quantum Ergodicity on Graphs

[Anantharaman-Le Masson’13] If ¢ = (V, E) is a bounded degree
regular high girth expander with unit eigenvectorszvl, ..., U, then:

max | vFCOf(0) - ) fG0| =om)

l xXeV X

In fact, they proved this for eigenvectors in any 1/ log(n) interval.



Quantum Ergodicity on Graphs

[Anantharaman-Le Masson’13] If ¢ = (V, E) is a bounded degree
regular high girth expander with unit eigenvectorszvl, ..., U, then:

max | vFCOf(0) - ) fG0| =om)

l xXeV

In fact, they proved this for eigenvectors in any 1/ log(n) interval.

Strongest version of QUE: this is true for every eigenvector.

Theorem B disproves this strongest version.



Questions

e Actual Ramanujan graphs in Theorem B?

Could Ramanujan + High Girth -> Strong delocalization?
* Minimal assumptions for Quantum Ergodicity on Graphs?

Construct graphs with many localized A in a small interval?
* More surgery on graphs preserving spectrum [Alon’20], [Paredes’20]
e Use interior eigenvectors to study girth, expansion?

[cf. Naor’12 for Abelian Cayley Graphs]



