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In this thesis we prove the following two basic statements in linear algebra. Let
B be an arbitrary n×m matrix where m ≥ n and suppose 0 < ε < 1 is given.

1. Spectral Sparsification. There is a nonnegative diagonal matrix Sm×m with
at most dn/ε2e nonzero entries for which (1− ε)2BBT � BSBT � (1 + ε)2BBT .
Thus the spectral behavior of BBT is captured by a weighted subset of the
columns of B, of size proportional to its rank n.

2. Restricted Invertibility. There is a diagonal Sm×m with at least k = (1− ε)2 ‖B‖
2
F

‖B‖22
nonzero entries, all equal to 1, for which BSBT has k eigenvalues greater than
ε2 ‖B‖2F

m . Thus there is a large coordinate restriction of B (i.e., a submatrix of its
columns, given by S), of size proportional to its numerical rank ‖B‖2F

‖B‖22
, which is

well-invertible. This improves a theorem of Bourgain and Tzafriri [14].

We give deterministic algorithms for constructing the promised diagonal matrices S
in time O(mn3/ε2) and O((1− ε)2mn3), respectively.

By applying (1) to the class of Laplacian matrices of graphs, we show that every
graph on n vertices can be spectrally approximated by a weighted graph with O(n)
edges, thus generalizing the concept of expanders, which are constant-degree approx-
imations of the complete graph. Our quantitative bounds are within a factor of two
of those achieved by the celebrated Ramanujan graphs. We then present a second
graph sparsification algorithm based on random sampling, which produces weaker
sparsifiers with O(n logn) edges but runs in nearly-linear time.

We also prove a refinement of (1) for the special case of B arising from John’s
decompositions of the identity, which allows us to show that every convex body is
close to one which has very few contact points with its minimum volume ellipsoid.
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Chapter 1

Introduction

Matrices are central objects in Mathematics and Computer Science. They can be used
to represent a wide variety of data, for instance: graphs, point configurations, poly-
hedra, covariances of random variables, systems of linear equations, Markov chains,
quantum states, recurrences, second order derivatives, and general linear transforma-
tions. Depending on the context, we may emphasize different features of a matrix A:
the entries (aij) themselves, the linear function x 7→ Ax, the quadratic form x 7→ xTAx,
the eigendecomposition/invariant subspaces, and so on; every square matrix comes
equipped with all of these interpretations, and each can be enlightening in its own
way.

In this thesis, we will investigate the extent to which arbitrary matrices can be
approximated by ‘sparse’ or ‘structured’ ones. We will show that for a certain large
class of matrices this is always possible in a certain useful sense. We will then use
that fact and related ones to obtain new results in:

• Graph Theory (Chapter 4). Every undirected weighted graph G on n ver-
tices can be approximated by a weighted graph H which has O(n) edges. This
generalizes the concept of expander graphs, which are constant-degree approx-
imations of the complete graph  in fact, the quantitative bounds which we
achieve are within a factor of two of those achieved by the celebrated Ramanu-
jan graphs. Besides being of inherent interest, the graph H, which we call a
sparsifier can be used to speed up computations on G. We give a polynomial
time algorithm for constructing H with O(n) edges, as well as a nearly-linear
time algorithm for constructing H with O(n logn) edges.

• Asymptotic Convex Geometry (Chapter 5). Every convex body K in Rn is close
to a body H which has at most O(n) contact points with the minimum volume
ellipsoid which contains it. This improves a result of Rudelson [38], who showed
the existence of H with O(n logn) contact points.

• Functional/Numerical Analysis (Chapter 6). Every matrix with large trace has
a coordinate subspace of size proportional to its numerical rank on which it
is well-invertible (i.e., close to an isometry). Qualitatively, this fact has been
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known for some time as the Restricted Invertibility Theorem of Bourgain and
Tzafriri [14]. Our construction is significantly simpler and supplies much sharper
quantitative bounds.

A notable feature of our proofs is that they use only elementary linear algebra and
yield deterministic polynomial time algorithms for constructing the desired objects. All
previous results in these directions were weaker and had considerably more complex
proofs which were probabilistic or nonconstructive.

All of our theorems rest on two foundational results, which we will motivate and
introduce in the next two sections. In each case, we will start by asking a basic
question about matrices, show that the spectral theorem provides a weak answer to
that question, and then present the result of this thesis as a more satisfying answer.

1.1 Spectral Sparsification
The object of study in this section is a positive semidefinite matrix A of rank n written
as a sum of outer products

A =
∑

i≤m
vivTi ,

where the number of terms m may be much more than the rank n. Here we think of
the vi as being ‘elementary’, ‘meaningful’, or ‘interesting’ directions arising from the
combinatorial, probabilistic, geometric, or other origin of the matrix. The following
examples illustrate how such a representation can provide a more natural coordinate
system for A than simply considering its entries.

Example 1.1. (Graph Laplacians). Suppose G = (V ,E,w) is an undirected weighted
graph on n vertices. Then the Laplacian of G is defined as

LG =
∑

ij∈E

wij(ei − ej)(ei − ej)T .

Thus the space of Laplacians of weighted graphs on n vertices is simply the set of
all nonnegative linear combinations of

{
(ei − ej)(ei − ej)T : i, j ∈ [n], i 6= j

}

which correspond to the possible edges between vertices.

Example 1.2. (Covariance Matrices). Suppose X ⊂ Rn is a discrete set of points
and we are interested in probability distributions p on X . Then the set of covariance
matrices

A = EpxxT =
∑

x∈X

p(x)xxT

is the convex hull of {xxT : x ∈ X}.
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More generally, such a representation as a sum of outer products can arise from
any n×m matrix B with columns bi by considering A = BBT =

∑
i≤m bibTi ; we often

do this, for instance, when computing the singular values of B.
The question we seek to answer is:

Question 1.3. When does A admit a sparse representation as a sum of outer products?
Being able to write A as the sum of a small number of outer products may be

useful in succinctly storing, computing with, and understanding the behavior of A.
One answer to this question is readily supplied by the spectral theorem.
Answer 1.4. (Sparse Representation in Eigenbasis). As A is symmetric and positive
semidefinite, all of its eigenvalues are nonnegative real numbers. Thus there are
efficiently computable nonnegative weights λ1 ≥ . . . ,≥ λn (the eigenvalues) and
vectors u1, . . . un (the eigenvectors) for which

A =
∑

i≤n
λiuiuTi ,

and we have written A compactly as a weighted sum of n outer products, which is the
minimal number.

The above representation has several unique and desirable geometric properties
 for instance, the eigenvectors are orthogonal and cleanly decouple the action of
A into separate components  which account for the immense power of the spectral
theorem. However, it has the serious drawback that the eigenvectors {uj}j≤n need not
have meaningful interpretations in terms of the elementary directions {vi}i≤m; indeed,
decomposing the action of A along eigenspaces may be quite unnatural in terms of the
vi. To see this more concretely, consider that Answer 1.4 allows us to represent the
Laplacian of any graph on n vertices as a sum of n outer products in its eigenvectors
uj ; however, the uj do not in general correspond to edges (ei − ej), and so this does
not tell us anything about, say, the graph being equivalent a sparser graph with n
edges. In essence, as soon as we start talking about ujuTj which do not come from
our set of elementary directions, we have left the space of matrices which correspond
to graphs.

To remedy the above situation, we consider a more demanding task: given a rank
n matrix A =

∑
i≤m vivTi , we seek to represent A by a shorter sum of the elementary

vivTi , ideally of length comparable to n as attained in Answer 1.4. Unfortunately it
is not always the case that there are sparse weights si ≥ 0 for which A =

∑
i sivivTi

exactly. What we show is that such weights do always exist (and can be computed
efficiently) if we are willing to settle for an approximation of A rather than an exact
representation. Let us take a moment to describe the notion of approximation that we
use.
Definition 1.5 (Matrix Approximation). The positive semidefinite cone Sn comes with
a natural partial order, given by

A � B iff A− B ∈ Sn.

3



This induces a strong notion of multiplicative approximation for such matrices: we
say that Ã is a κ-approximation for A if

A � Ã � κ · A.

The above compares favorably with more common notions of approximation that
appear in the literature, such as requiring ‖A− Ã‖ to be small in some norm; we defer
a more thorough discussion to Section 3.3.

We are now in a position to state our first main theorem.

Theorem 1.6 (Spectral Sparsification). Suppose 0 < ε < 1 and

A =
∑

i≤m
vivTi

are given, with vi ∈ Rn. Then there are nonnegative weights {si}i≤m, at most dn/ε2e
of which are nonzero, for which

(1− ε)2A � Ã =
∑

i≤m
sivivTi � (1 + ε)2A.

There is an algorithm which computes the weights si in deterministic O(n3m/ε2) time.

In short, the theorem says that if A can be written as any nonnegative linear
combination of elementary (rank one) matrices, then it can be approximated by a
sparse nonnegative linear combination of the same elementary matrices. The number
of terms dn/ε2e is only a constant factor greater than that promised by the spectral
theorem in Fact 1.4. In fact, we show in Section 3.1.3 that the sparsity/approximation
tradeoff which we achieve cannot be improved by more than a factor of 4.

We mention in passing that the above bears some syntactic resemblance to the
well-studied sparse approximation problem for vectors (see, for instance, [48]), in
which we are given a dictionary of elementary vectors {vi}i≤m ⊆ Rn and a signal
vector x ∈ Rn and we seek a sparse set of coefficients si for which x =

∑
i sivi.

We remark that the analogue of Answer 1.4 in this case would be to write x as a
sparse sum of just one vector, namely itself. However, there are important differences
between this setting and ours, such as requiring the coefficients to be nonnegative,
and we do not dwell on the comparison further in this thesis.

We prove Theorem 1.6 in Chapter 3, and we call Ã a spectral sparsifier for A.
The procedure we give for finding Ã is iterative: given A =

∑
i vivTi , it selects some

multiple of one outer product vivTi to add to Ã in each step, and sparsity is ensured
by proving that the running sum converges to a matrix with the appropriate spectral
properties in a small number of steps, linear in n. The rule for selecting a particular vi
in any step is greedy, and based on two ‘barrier’ functions which blow up if one tries
to choose a vi which affects the eigenvalues in an undesirable manner. The analysis
of why the process works is local in that we just prove that each step by itself brings
us closer to approximating A.
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At the end of Chapter 3, in Section 3.2, we observe that a simple randomized
method for spectral sparsification follows immediately from a probability inequality
of Rudelson [39] regarding sums of random rank one matrices. The approximation Ã
produced by that method has a weaker sparsity guarantee of O(n logn/ε2) terms, but
it can be computed more quickly than the stronger one promised in Theorem 1.6.

In Chapter 4 we motivate and define a spectral notion of approximation for undi-
rected weighted graphs, which corresponds exactly to restricting attention to the class
of Laplacian matrices described in Example 1.1. We observe that Theorem 1.6 imme-
diately indicates a way to deterministically construct near-optimal sparsifiers of such
graphs. Then we describe a faster algorithm based on the random sampling approach
discussed in Section 3.2, which gives sparsifiers of somewhat worse quality but runs
in nearly linear time.

In Chapter 5, we prove a refinement of Theorem 1.6 which provides additional
guarantees in the case when we are given elementary vectors vi whose mean is
zero. We apply this to prove a sparsification result for John’s decompositions of the
identity, which characterize the contact points of convex bodies with their minimum
volume ellipsoids, and use that to improve a result of Rudelson on the matter [38].

1.2 Restricted Invertibility
The results of this section are best appreciated in the slightly more general setting
where we consider an arbitrary n × m matrix B, which we view as a linear operator
from Rm to Rn. An important step towards understanding the behavior of such a B
is to determine whether/where it is invertible, i.e., where the function x 7→ Bx is
injective. It is well known that the invertibilty of B is characterized by the subspaces
rowspan(B) ⊆ Rm and colspan(B) ⊆ Rm, both of dimension rank(B), for which the
restricted map B : rowspan(B) → colspan(B) is a bijection. We summarize this
information as:
Fact 1.7. Every matrix B is invertible precisely on a linear subspace of dimension
equal to its rank, and this subspace is spanned by any maximal linearly independent
subset of its columns.

However, both rank and invertibility are fragile notions in the sense that adding
a tiny amount of noise to a degenerate matrix such as B = 11T immediately makes
it full rank and invertible everywhere. A more quantitative and robust measure of in-
vertibility is supplied by the least singular value, which is defined for any rectangular
matrix as:

σmin(B) = min
‖x‖=1

‖Bx‖ = min
x 6=0

(
xTBTBx
xTx

)1/2

=
√
λmin(BTB).

The least singular value tells us how much B can shrink a vector in the worst case.
Thus a matrix is invertible precisely when σmin(B) > 0, and well-invertible when
σmin(B) > c for some constant c� 0.
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The corresponding quantitative notion of rank turns out to be the numerical rank,
which is defined as:

nrank(B) = ‖B‖
2
F

‖B‖22
= Tr(BTB)
‖BTB‖2

.

We think of nrank as counting the number of directions in which B is large. Notice
that we always have nrank(B) ≤ rank(B), with equality when B is an orthonormal
basis. Also observe that this definition is robust against perturbations, so that in the
degenerate example mentioned earlier nrank(11T + noise) ' 1 rather than n.

We may now ask if a quantitative version of Fact 1.7 holds, namely:

Question 1.8. Given a matrix Bn×m, is there a subset of columns of size equal to the
numerical rank so that the restriction of B to these columns is well-invertible?

As in the previous section, a partial answer is provided by the spectral theorem.

Answer 1.9. (Well-Invertibility on Large Eigenspace.) Let An×n = BBT , so that the
eigenvalues λi of A are equal to the squares of the singular values, σ 2

i , of B. Recalling
that Tr(A) =

∑
i λi and that each λi ≤ ‖A‖2, we can deduce by Markov’s inequality

that A has at least
k = 1

2
Tr(A)
‖A‖2

= 1
2nrank(B)

eigenvalues λ1, . . . , λk greater than

θ = 1
2

Tr(A)
n = 1

2
‖B‖2F
n ,

which we assume for normalization is at least a constant.
Let L ⊂ Rn denote the span of the corresponding eigenvectors u1, . . . , uk , and

let D be its preimage B−1L ⊂ Rm. Then the restricted linear map B′ : D → L
has singular values σ1, . . . , σk , all greater than θ1/2, and is therefore well-invertible.
Moreover, these subspaces have dimension k , which is proportional to the numerical
rank of B.

Thus we have shown that every matrix B is well-invertible on a subspace of size
proportional to its numerical rank, and this subspace is spanned by the top eigen-
vectors of BBT . Again, the answer provided by the spectral theorem is geometrically
satisfying in certain ways  for instance, the subspace L which we restrict to is in-
variant under BBT but it fundamentally disrespects the structure of the matrix B in
others. In particular, it does not supply a restriction to columns of B as in Fact 1.7.

The truly satisfying answer to Question 1.8 would be an appropriately large subset
S ⊂ [m] of the columns of B for which the coordinate restriction

BS : RS → colspan(BS)

is well-invertible, where BS denotes the n × |S| submatrix of B with columns in
S. In 1987, Bourgain and Tzafriri [14] proved that this is true upto constant factors
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when m = n and the columns of B have unit length. Their result was used to great
effect in geometric functional analysis and convex geometry. It can be seen as a
Ramsey type theorem, in that it says that every matrix satisfying some reasonable
properties contains a large submatrix (corresponding to the coordinate subspace)
which is ‘structured’ in the sense that it is close to an isometry by virtue of not
shrinking or stretching vectors too much. It can also be viewed as an ‘average case
vs. worst case’ kind of statement, in that it says that if B is well-invertible for an
average vector (i.e., has large trace), then there is some coordinate restriction of B
which is well-invertible for every vector.

Bourgain and Tzafriri’s proof used probabilistic and functional-analytic techniques
and was nonconstructive. Moreover, the constant factors it achieved were far from
practical  in particular, the bounds were off from those in Answer 1.9 by about 10−72

 and so the theorem was not very influential in numerical analysis even though it is
qualitatively related to the Column Subset Selection problem and the Rank-Revealing
QR Factorization [47]. These constants were improved in recent works by Tropp [47]
(who also gave a randomized polynomial time algorithm), Casazza [16], and others in
certain regimes, but they remained far from optimal.

The second main theorem of this thesis is an elementary constructive proof of the
following generalization of Bourgain and Tzafriri’s theorem, with a sharp constant of
1.

Theorem 1.10 (Restricted Invertibility). Given an n×m matrix B, there exists a subset
S ⊂ [m] of linearly independent columns of size

|S| ≥ (1− ε)2‖B‖
2
F

‖B‖22
= (1− ε)2nrank(B)

for which the coordinate restriction BS has least singular value at least

σ 2
min(BS) ≥ ε2‖B‖2F

m .

Moreover, S can be found deterministically in O((1− ε)2n3m) time.

In Chapter 6, we use a variant of the barrier method of Chapter 3 (with one barrier)
to prove Theorem 1.10. Theorem 1.6 guarantees the existence of a sparse set of scalars
si ≥ 0 for which

∑
i≤m sivivTi approximates A; here, we are able to guarantee that

the scalars are are either 0 or 1, corresponding to whether or not a column is chosen
to be in S1. At a high level, this becomes possible because we are only interested
in a lower bound on the spectrum of the vectors we select (this is what is meant by
’well-invertible’), as opposed to both upper and lower bounds as in Theorem 1, and
this gives us more freedom to choose the weights si.

1This connection becomes clearer if we state Theorem 1.10 in terms of A = BBT =
∑

i≤m bibTi ,
for which it guarantees a subset S ⊂ [m] of size at least (1 − ε)2 Tr(A)

‖A‖2 satisfying
∑

i∈S bibTi �
ε2 Tr(A)

m Ispan(bi:i∈S).
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1.3 Summary
Thus, our two main results can be seen as ‘coordinate’ versions of Answers 1.4 and 1.9
 they supply comparable quantitative conclusions to those implied by the spectral
theorem, but in terms of columns / elementary vectors vi rather than eigenvectors uj .
They share the same iterative method of proof, which we will refer to as the barrier
method. Unlike previous approaches, this method immediately yields deterministic
polynomial time algorithms. Because of the pliability of the method as well as the
central place of linear algebra in mathematics, we are able to apply our results to
prove interesting theorems in diverse areas.

1.4 Bibliographic Note
Many of the results presented in this dissertation have been published or submitted
for publication. The new results in Chapter 3 are joint work with Joshua Batson
and Daniel Spielman, and appeared in [8]. The results of Chapter 4 are joint work
with Daniel Spielman and appeared in [41]. Chapter 6 is also joint work with Daniel
Spielman, and has been submitted for publication.
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Chapter 2

Preliminaries

2.1 Linear Algebra
Most of the proofs in this thesis rely only on elementary facts about symmetric ma-
trices. All of this material can be found in any textbook on linear algebra, such as
[27].

We will use uppercase letters such as A,B, X to denote matrices and lowercase
letters such as v, w, x to denote vectors. In what follows, A is an n × n matrix with
entries in R and all vectors are column vectors (matrices of dimension n× 1).

2.1.1 Basic Notions
• Entries. We will use parentheses as in A(i, j) and v(i) to denote the entries of

matrices and vectors, respectively.

• Transpose, Norm, Inner Product, and Outer Product. The transpose of an
m× n matrix X is the n×m matrix XT (i, j) = X (j, i).
If v, w ∈ Rn are vectors then the inner product is a real number given by

〈v, w〉 = vTw =
∑

i≤n
v(i)w(i).

The Euclidean norm of a vector is denoted by ‖v‖ =
√
vT v .

The outer product vwT is an n× n matrix with entries v(i)w(j).

• Spectral Theorem. If A is symmetric then there are real numbers λ1, . . . λn and
orthonormal vectors u1, . . . un ∈ Rn for which

Aui = λiui

and
A =

∑

i≤n
uiuTi .

9



These are called the eigenvalues and eigenvectors, respectively.

• Trace. The trace of a matrix is the sum of its diagonal entries; equivalently, the
sum of its eigenvalues:

Tr(A) =
∑

i≤n
A(i, i) =

∑

i≤n
λi.

• Determinant. The determinant of a matrix is given by

det(A) =
∏

i≤n
λi,

the product of the eigenvalues.

• Characteristic Polynomial. The characteristic polynomial

pA(x) = det(xI − A)

has zeros equal to the eigenvalues λ1, . . . λn.

• Image and Kernel. If A is symmetric then the subspaces im(A) = {Ax : x ∈ Rn}
and ker(A) = {x : Ax = 0} are orthogonal to each other.

• Rank. The rank of A is equal to the number of linearly independent columns of
A, the dimension of its image, and the number of nonzero eigenvalues λi.

• Matrix Product. If A has columns a1, . . . , an ∈ Rn and B has rows bT1 , . . . , bTn ∈
Rn, then

AB =
∑

i≤n
aibTi .

• Matrix Norms. The spectral norm or operator norm of a matrix is given by

‖A‖2 = sup
‖x‖=1

‖Ax‖.

When A is symmetric then ‖A‖2 = maxi λi, the largest eigenvalue.
The Frobenius norm is given by

‖A‖F =
(
∑

i,j≤n
A(i, j)2

)1/2

=
(
Tr(ATA)

)1/2 =
(
∑

i≤n
λ2
i

)1/2

.

When we omit the subscript in ‖ · ‖, we refer to the spectral norm.
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• Quadratic form and Entrywise Product. Let

A • B =
∑

i,j≤n
A(i, j) · B(i, j) = Tr(ATB)

denote the entrywise product.
The quadratic form of A is the function v 7→ vTAv from Rn → R, and can be
written as

vTAv = A • vvT .

• Courant-Fisher Theorem. The eigenvalues λ1 ≤ λ2, . . . ≤ λn of a symmetric
matrix A have the following variational characterization:

λi = max
S:dim(S)=n−i+1

min
v∈S\{0}

vTAv
vT v = min

S:dim(S)=i
max

v∈S\{0}

vTAv
vT v ,

where S ranges over subspaces of Rn.

2.1.2 The Pseudoinverse
If An×n is symmetric then we can diagonalize it and write

A =
n∑

i=1

λiuiuTi

where λ1, . . . , λk are the nonzero eigenvalues of A and u1, . . . , uk are a corresponding
set of orthonormal eigenvectors. The Moore-Penrose Pseudoinverse of A is then
defined as

A+ =
k∑

i=1

1
λi
uiuTi .

The pseudoinverse behaves as the inverse on ker(A)⊥. Notice that ker(A) = ker(A+)
and that

AA+ = A+A =
k∑

i=1

uiuTi ,

which is simply the projection onto the span of the nonzero eigenvectors of A (which
are also the eigenvectors of A+). Thus, AA+ = A+A is the identity on im(A) = ker(A)⊥.

2.1.3 Formulas for Rank-one Updates
The following well-known and easily verified identity describes the behavior of the
inverse of a matrix under rank-one updates (see [27, Section 2.1.3]). As many of our
constructions involve iteratively building a matrix by adding one outer product at a
time, we will use it frequently.
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Lemma 2.1 (Sherman-Morrison Formula). If A is a nonsingular n× n matrix and v is
a vector, then

(A+ vvT )−1 = A−1 − A−1vvTA−1

1 + vTA−1v .

There is a related formula describing the change in the determinant of a matrix
under the same update:

Lemma 2.2 (Matrix Determinant Lemma). If A is nonsingular and v is a vector, then

det(A+ vvT ) = det(A)(1 + vTA−1v).

2.1.4 Positive Semidefinite Matrices
In this thesis we will often focus on symmetric positive semidefinite matrices over R,
which have the following equivalent characterizations.

Definition 2.3. A symmetric matrix A ∈ Rn×n is positive semidefinite (PSD) if

1. There is a matrix B ∈ Rn×m for which A = BBT . Thus we can write

A =
∑

i≤m
bibTi

where bi are the columns of B.

2. A is in the conical hull of the set of rank one symmetric outer products, i.e.

A ∈ cone
(
vvT : v ∈ Rn) =

{
∑

i≤m
aivivTi : ai ≥ 0, vi ∈ Rn

}
.

3. For every vector v ∈ Rn the quadratic form vTAv is nonnegative.

4. The eigenvalues of A are nonnegative real numbers.

We will denote the cone of n × n PSD matrices by Sn. This cone comes with a
natural partial order given by

A � B iff A− B ∈ Sn.

2.2 Graphs and Laplacians
Let G = (V ,E,w) be a connected weighted undirected graph with n vertices and m
edges and edge weights we ≥ 0. If we orient the edges of G arbitrarily, we can write
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its Laplacian as L = BTWB, where Bm×n is the signed edge-vertex incidence matrix,
given by

B(e, v) =






1 if v is e’s head
−1 if v is e’s tail
0 otherwise

and Wm×m is the diagonal matrix with W (e, e) = we. To put this another way, the
row bTe of B corresponding to an edge e = (u, v) is given by

be = χu − χv

where χu is the canonical basis vector with a 1 in position u1. Thus the Laplacian
admits an expansion as a sum of outer products

L =
∑

e∈E

webebTe =
∑

uv∈E

wuv (χu − χv )(χu − χv )T .

It is immediate that L is positive semidefinite since:

xTLx = xTBTWBx = ‖W 1/2Bx‖22
=
∑

(u,v)∈E

wu,v (xu − xv )2 ≥ 0, for every x ∈ Rn.

and that G is connected if and only if ker(L) = ker(W 1/2B) = span(1).

1We are using χu to denote canonical vectors here rather than the more conventional ei, ej to avoid
confusion with edges named e.
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Chapter 3

Spectral Sparsification

In the first section we will prove our main spectral sparsification result, Theorem 1.6,
restated shortly for convenience. In the second section we will describe a weaker
version of this result, due to Rudelson [39], which is based on random sampling and
is computationally more efficient.

3.1 Strong Sparsification
Let us begin by recalling the statement of Theorem 1.6.

Theorem 3.1 (Spectral Sparsification, copy of Theorem 1.6). Suppose 0 < ε < 1 and

A =
∑

i≤m
vivTi

are given, with vi ∈ Rn. Then there are nonnegative weights {si}i≤m, at most dn/ε2e
of which are nonzero, for which

(1− ε)2A � Ã =
∑

i≤m
sivivTi � (1 + ε)2A. (3.1)

There is an algorithm which computes the weights si in deterministic O(n3m/ε2) time.

For conceptual and notational convenience, we will actually prove the following
equivalent statement, which amounts to saying that it is sufficient to consider the
case when A = I.

Theorem 3.2. Suppose d > 1 and v1, v2, . . . , vm are vectors1 in Rn with
∑

i≤m
vivTi = I

1We use boldface to denote the vectors vi in order to avoid confusion with lowercase letters u, l
which denote real numbers in the subsequent proofs.
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Then there exist scalars si ≥ 0 with |{i : si 6= 0}| ≤ dn so that

I �
∑

i≤m
sivivTi �

(
d+ 1 + 2

√
d

d+ 1− 2
√
d

)
I.

Theorem 3.1 can be deduced immediately from this.

Proof of Theorem 3.1. Assume without loss of generality that A has full rank and

A =
∑

i≤m
wiwT

i .

Setting vi = A−1/2wi, we see that

∑

i
vivTi = A−1/2

(
∑

i≤m
wiwT

i

)
A−1/2 = I,

satisfying the requirement of Theorem 3.2. We can now set d = 1/ε2 and obtain
scalars si ≥ 0, at most dn/ε2e nonzero, for which

I �
∑

i≤m
sivivTi �

(
d+ 1 + 2

√
d

d+ 1− 2
√
d

)
I =

(
1 + ε
1− ε

)2

I.

Thus if we take Ã = (1− ε)2
∑

i siwiwT
i then

I � (1− ε)−2A−1/2ÃA−1/2 �
(

1 + ε
1− ε

)2

I,

which is equivalent to the desired conclusion.

The rest of this section is devoted to proving Theorem 3.2. The proof is constructive
and yields a deterministic polynomial time algorithm for finding the scalars si.

Given vectors {vi}, our goal is to choose a small set of coefficients si so that
A =

∑
i sivivTi is well-conditioned. We will build the matrix A in steps, starting with

A = 0 and adding one outer product sivivTi at a time. Before beginning the proof, it will
be instructive to study how the eigenvalues and characteristic polynomial of a matrix
evolve upon the addition of a vector. This discussion should provide some intuition for
the structure of the proof, and demystify the origin of the ‘Twice-Ramanujan’2 number
d+1+2

√
d

d+1−2
√
d which appears in our final result.

2See Section 4.1
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3.1.1 Intuition for the Proof
It is well known that the eigenvalues of A+ vvT interlace those of A. In fact, the new
eigenvalues can be determined exactly by looking at the characteristic polynomial of
A+ vvT , which is computed using Lemma 2.2 as follows:

pA+vvT (x) = det(xI − A− vvT ) = pA(x)
(

1−
∑

j

〈v, uj〉2
x − λi

)
,

where λi are the eigenvalues of A and uj are the corresponding eigenvectors. The
polynomial pA+vvT (x) has two kinds of zeros λ:

1. Those for which pA(λ) = 0. These are equal to the eigenvalues λj of A for which
the added vector v is orthogonal to the corresponding eigenvector uj , and which
do not therefore ‘move’ upon adding vvT .

2. Those for which pA(λ) 6= 0 and

f(λ) =
(

1−
∑

j

〈v, uj〉2
λ− λj

)
= 0.

These are the eigenvalues which have moved and strictly interlace the old
eigenvalues. The above equation immediately suggests a simple physical model
which gives intuition as to where these new eigenvalues are located.

λ1

λ2

λ3

λn

λ1

λ2

λ3

λn

〈v,u2〉2 = 1/4

〈v,un〉2 = 1/4

〈v,u1〉2 = 1/2

〈v,u3〉2 = 0

Figure 3.1: Physical model of interlacing eigenvalues.

Physical Model. We interpret the eigenvalues λ as charged particles lying
on a slope. On the slope are n fixed, chargeless barriers located at the initial
eigenvalues λj , and each particle is resting against one of the barriers under
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the influence of gravity. Adding the vector vvT corresponds to placing a charge
of 〈v, uj〉2 on the barrier corresponding to λj . The charges on the barriers repel
those on the eigenvalues with a force that is proportional to the charge on the
barrier and inversely proportional to the distance from the barrier  i.e., the
force from barrier j is given by

〈v, uj〉2
λ− λj

,

a quantity which is positive for λj ‘below’ λ, which are pushing the particle
‘upward’, and negative otherwise. The eigenvalues move up the slope until they
reach an equilibrium in which the repulsive forces from the barriers cancel the
effect of gravity, which we take to be a +1 in the downward direction. Thus the
equilibrium condition corresponds exactly to having the total ‘downward pull’
f(λ) equal to zero.

With this physical model in mind, we begin to consider what happens to the
eigenvalues of A when we add a random vector from our set {vi}. The first observation
is that for any eigenvector uj (in fact for any vector at all), the expected projection of
a randomly chosen v ∈ {vi}i≤m is

Ev〈v, uj〉2 = 1
m
∑

i
〈vi, uj〉2 = 1

mu
T
j

(
∑

i
vivTi

)
uj =

‖uj‖2
m = 1

m.

Of course, this does not mean that there is any single vector vi in our set that realizes
this ‘expected behavior’ of equal projections on the eigenvectors. But if we were to
add such a vector 3 in our physical model, we would add equal charges of 1/m to
each of the barriers, and we would expect all of the eigenvalues of A to drift forward
‘steadily’. In fact, one might expect that after sufficiently many iterations of this
process, the eigenvalues would all march forward together, with no eigenvalue too
far ahead or too far behind, and we would end up in a position where λmax/λmin is
bounded.

In fact, this intuition turns out to be correct. Adding a vector with equal projections
changes the characteristic polynomial in the following manner:

pA+vavgvTavg(x) = pA(x)
(

1−
∑

j

1/m
x − λj

)
= pA(x)− (1/m)p′A(x),

3For concreteness, we remark that this ‘average’ vector would be precisely

vavg = 1√
m
∑

j
uj .
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since p′A(x) =
∑

j
∏

i6=j(x − λi). If we start with A = 0, which has characteristic
polynomial p0(x) = xn, then after k iterations of this process we obtain the polynomial

pk(x) = (I − (1/m)D)kxn

where D is the derivative with respect to x. Fortunately, iterating the operator
(I − αD) for any α > 0 generates polynomials which are members of a standard
orthogonal family – the associated Laguerre polynomials [20]. These polynomials
are very well-studied and the locations of their zeros are known; in particular, after
k = dn iterations the ratio of the largest to the smallest zero is known [20] to approach

d+ 1 + 2
√
d

d+ 1− 2
√
d

as n→∞,

which is exactly what we want.
To prove the theorem, we will show that we can choose a sequence of actual

vectors that realizes the expected behavior (i.e. the behavior of repeatedly adding
vavg), as long as we are allowed to add arbitrary fractional amounts of the vivTi via
the weights si ≥ 0. We will control the eigenvalues of our matrix by maintaining two
barriers as in the physical model, and keeping the eigenvalues between them. The
lower barrier will ‘repel’ the eigenvalues forward; the upper one will make sure they
do not go too far. The barriers will move forward at a steady pace. By maintaining
that the total ‘repulsion’ at every step of this process is bounded, we will be able
to guarantee that there is always some multiple of a vector to add that allows us to
continue the process.

3.1.2 Proof by Barrier Functions
We begin by defining two ‘barrier’ potential functions which measure the quality of
the eigenvalues of a matrix. These potential functions are inspired by the inverse law
of repulsion in the physical model discussed in the last section.

Definition 3.3. For u, l ∈ R and A a symmetric matrix with eigenvalues λ1, λ2, . . . , λn,
define:

Φu(A)
def
= Tr(uI − A)−1 =

∑

i

1
u− λi

(Upper potential).

Φl(A)
def
= Tr(A− lI)−1 =

∑

i

1
λi − l

(Lower potential).

As long as A ≺ uI and A � lI (i.e., λmax(A) < u and λmin(A) > l), these potential
functions measure how far the eigenvalues of A are from the barriers u and l. In
particular, they blow up as any eigenvalue approaches a barrier, since then uI − A
(or A − lI) approaches a singular matrix. Their strength lies in that they reflect the
locations of all the eigenvalues simultaneously: for instance, Φu(A) ≤ 1 implies that
no λi is within distance one of u, no 2 λi’s are at distance 2, no k are at distance k ,
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and so on. In terms of the physical model, the upper potential Φu(A) is equal to the
total repulsion of the eigenvalues of A from the upper barrier u, while Φl(A) is the
analogous quantity for the lower barrier.

To prove the theorem, we will build the sum
∑

i sivivTi iteratively, adding one
vector at a time. Specifically, we will construct a sequence of matrices

0 = A(0), A(1), . . . , A(Q)

along with positive constants4 u0, l0, δU , δL, εU and εL which satisfy the following con-
ditions:

(a) Initially, the barriers are at u = u0 and l = l0 and the potentials are

Φu0(A(0)) = εU and Φl0(A(0)) = εL.

(b) Each matrix is obtained by a rank-one update of the previous one  specifically
by adding a positive multiple of an outer product of some vi.

A(q+1) = A(q) + tvvT for some v ∈ {vi} and t ≥ 0.

(c) If we increment the barriers u and l by δU and δL respectively at each step,
then the upper and lower potentials do not increase. For every q = 0, 1, . . . Q,

Φu+δU (A(q+1)) ≤ Φu(A(q)) ≤ εU for u = u0 + qδU .

Φl+δL(A(q+1)) ≤ Φl(A(q)) ≤ εL for l = l0 + qδL.

(d) No eigenvalue ever jumps across a barrier. For every q = 0, 1, . . . Q,

λmax(A(q)) < u0 + qδU and λmin(A(q)) > l0 + qδL.

To complete the proof we will choose u0, l0, δU , δL, εU and εL so that after Q = dn
steps, the condition number of A(Q) is bounded by

λmax(A(Q))
λmin(A(Q)) ≤

u0 + dnδU
l0 + dnδL

= d+ 1 + 2
√
d

d+ 1− 2
√
d
.

By construction, A(Q) is a weighted sum of at most dn of the vectors, as desired.
The main technical challenge is to show that conditions (b) and (c) can be satisfied

simultaneously  i.e., that there is always a choice of vvT to add to the current matrix
which allows us to shift both barriers up by a constant without increasing either
potential. We achieve this in the following three lemmas.

4On first reading, we suggest the reader follow the proof with the assignment εU = εL = 1, u0 = n,
l0 = −n, δU = 2, δL = 1/3. This will provide the bound (6d + 1)/(d − 1), and eliminates the need to
use Claim 3.7.
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The first lemma concerns shifting the upper barrier. If we shift u forward to u+δU
without changing the matrix A, then the upper potential Φu(A) decreases since the
eigenvalues λi do not move and u moves away from them. This gives us room to
add some multiple of a vector tvvT , which will move the λi towards l and increase
the potential, counteracting the initial decrease due to shifting. The following lemma
quantifies exactly how much of a given vvT we can add without increasing the potential
beyond its original value before shifting.

Lemma 3.4 (Upper Barrier Shift). Suppose λmax(A) < u, and v is any vector. If

1
t ≥

vT ((u+ δU)I − A)−2v
Φu(A)− Φu+δU (A) + vT ((u+ δU)I − A)−1v

def
= UA(v)

then
Φu+δU (A+ tvvT ) ≤ Φu(A) and λmax(A+ tvvT ) < u+ δU .

That is, if we add t times vvT to A and shift the upper barrier by δU , then we do not
increase the upper potential.

We remark that UA(v) is linear in the outer product vvT .

Proof. Let u′ = u+ δU . By the Sherman-Morrison formula, we can write the updated
potential as:

Φu+δU (A+ tvvT ) = Tr(u′I − A− tvvT )−1

= Tr
(

(u′I − A)−1 + t(u′I − A)−1vvT (u′I − A)−1

1− tvT (u′I − A)−1v

)

= Tr(u′I − A)−1 + tTr(vT (u′I − A)−1(u′I − A)−1v)
1− tvT (u′I − A)−1v

since Tr is linear and Tr(XY ) = Tr(YX )

= Φu+δU (A) + tvT (u′I − A)−2v
1− tvT (u′I − A)−1v

= Φu(A)− (Φu(A)− Φu+δU (A)) + vT (u′I − A)−2v
1/t − vT (u′I − A)−1v

As UA(v) > vT (u′I − A)−1v, the last term is finite for 1/t ≥ UA(v). By now sub-
stituting any 1/t ≥ UA(v) we find Φu+δU (A + tvvT ) ≤ Φu(A). This also tells us that
λmax(A+tvvT ) < u+δU , as if this were not the case, then there would be some positive
t′ ≤ t for which λmax(A + t′vvT ) = u + δU . But, at such a t′, Φu+δU (A + t′vvT ) would
blow up, and we have just established that it is finite.

The second lemma is about shifting the lower barrier. Here, shifting l forward to
l+ δL while keeping A fixed has the opposite effect  it increases the lower potential
Φl(A) since the barrier l moves towards the eigenvalues λi. Adding a multiple of
a vector tvvT will move the λi forward and away from the barrier, decreasing the
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potential. Here, we quantify exactly how much of a given vvT we need to add to
compensate for the initial increase from shifting l, and return the potential to its
original value before the shift.

Lemma 3.5 (Lower Barrier Shift). Suppose λmin(A) > l, Φl(A) ≤ 1/δL, and v is any
vector. If

0 < 1
t ≤

vT (A− (l+ δL)I)−2v
Φl+δL(A)− Φl(A) − vT (A− (l+ δL)I)−1v

def
= LA(v)

then
Φl+δL(A+ tvvT ) ≤ Φl(A) and λmin(A+ tvvT ) > l+ δL.

That is, if we add t times vvT to A and shift the lower barrier by δL, then we do not
increase the lower potential.

Proof. First, observe that λmin(A) > l and Φl(A) ≤ 1/δL imply that λmin(A) > l + δL.
So, for every t > 0, λmin(A+ tvvT ) > l+ δL.

Now proceed as in the proof for the upper potential. Let l′ = l+δL. By Sherman-
Morrison, we have:

Φl+δL(A+ tvvT ) = Tr(A+ tvvT − l′I)−1

= Tr
(

(A− l′I)−1 − t(A− l′I)−1vvT (A− l′I)−1

1 + tvT (A− l′)−1v

)

= Tr(A− l′I)−1 − tTr(vT (A− l′I)−1(A− l′I)−1v)
1 + tvT (A− l′I)−1v

= Φl+δL(A)− tvT (A− l′I)−2v
1 + tvT (A− l′I)−1v

= Φl(A) + (Φl+δL(A)− Φl(A))− vT (A− l′I)−2v
1/t + vT (A− l′I)−1v

Rearranging shows that Φl+δL(A+ tvvT ) ≤ Φl(A) when 1/t ≤ LA(v).

The third lemma identifies the conditions under which we can find a single tvvT
which allows us to maintain both potentials while shifting barriers, and thereby con-
tinue the process. The proof that such a vector exists is by an averaging argument,
so this can be seen as the step in which we relate the behavior of actual vectors to
the behavior of the expected vector vavg. Notice that the use of variable weights t,
from which the eventual si arise, is crucial to this part of the proof.

Lemma 3.6 (Both Barriers). If λmax(A) < u, λmin(A) > l, Φu(A) ≤ εU , Φl(A) ≤ εL, and
εU , εL, δU and δL satisfy

0 ≤ 1
δU

+ εU ≤
1
δL
− εL (3.2)
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then there exists an i and positive t for which

LA(vi) ≥ 1/t ≥ UA(vi), λmax(A+ tvivTi ) < u+ δU ,

and λmin(A+ tvivTi ) > l+ δL.

Proof. We will show that ∑

i
LA(vi) ≥

∑

i
UA(vi),

from which the claim will follow by Lemmas 3.4 and 3.5. We begin by bounding

∑

i
UA(vi) =

∑
i vTi ((u+ δU)I − A)−2vi
Φu(A)− Φu+δU (A) +

∑

i
vTi ((u+ δU)I − A)−1vi

= ((u+ δU)I − A)−2 • (
∑

i vivTi )
Φu(A)− Φu+δU (A) + ((u+ δU)I − A)−1 •

(
∑

i
vivTi

)

= Tr((u+ δU)I − A)−2

Φu(A)− Φu+δU (A) + Tr((u+ δU)I − A)−1

since
∑

i
vivTi = I and X • I = Tr(X )

=
∑

i(u+ δU − λi)−2
∑

i(u− λi)−1 −
∑

i(u+ δU − λi)−1 + Φu+δU (A)

=
∑

i(u+ δU − λi)−2

δU
∑

i(u− λi)−1(u+ δU − λi)−1 + Φu+δU (A)

≤ 1/δU + Φu+δU (A),
as
∑

i
(u− λi)−1(u+ δU − λi)−1 ≥

∑

i
(u+ δU − λi)−2

≤ 1/δU + Φu(A) ≤ 1/δU + εU .

22



On the other hand, we have

∑

i
LA(vi) =

∑
i vTi ((A− (l+ δL))−2vi
Φl+δL(A)− Φl(A) −

∑

i
vTi (A− (l+ δL)I)−1vi

= (A− (l+ δL)I)−2 • (
∑

i vivTi )
Φl+δL(A)− Φl(A) − (A− (l+ δL)I)−1 •

(
∑

i
vivTi

)

= Tr(A− (l+ δL)I)−2

Φl+δL(A)− Φl(A) − Tr(A− (l+ δL)I)−1

since
∑

i
vivTi = I and X • I = Tr(X )

=
∑

i(λi − l− δL)−2
∑

i(λi − l− δL)−1 −
∑

i(λi − l)−1 −
∑

i
(λi − l− δL)−1.

≥ 1/δL −
∑

i
(λi − l)−1 = 1/δL − εL,

by Claim 3.7.
Putting these together, we find that

∑

i
UA(vi) ≤

1
δU

+ εU ≤
1
δL
− εL ≤

∑

i
LA(vi),

as desired.

Claim 3.7. If λi > l for all i, 0 ≤
∑

i(λi − l)−1 ≤ εL, and 1/δL − εL ≥ 0, then
∑

i(λi − l− δL)−2
∑

i(λi − l− δL)−1 −
∑

i(λi − l)−1 −
∑

i

1
λi − l− δL

≥ 1
δL
−
∑

i

1
λi − l

. (3.3)

Proof. We have
δL ≤ 1/εL ≤ λi − l,

for every i. So, the denominator of the left-most term on the left-hand side is positive,
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and the claimed inequality is equivalent to

∑

i
(λi − l− δL)−2 ≥

(
∑

i

1
λi − l− δL

−
∑

i

1
λi − l

)(
1
δL

+
∑

i

1
λi − l− δL

−
∑

i

1
λi − l

)

=
(
δL
∑

i

1
(λi − l− δL)(λi − l)

)(
1
δL

+ δL
∑

i

1
(λi − l− δL)(λi − l)

)

=
∑

i

1
(λi − l− δL)(λi − l)

+
(
δL
∑

i

1
(λi − l− δL)(λi − l)

)2

,

which, by moving the first term on the RHS to the LHS, is just

δL
∑

i

1
(λi − l− δL)2(λi − l)

≥
(
δL
∑

i

1
(λi − l− δL)(λi − l)

)2

.

By Cauchy-Schwartz,
(
δL
∑

i

1
(λi − l− δL)(λi − l)

)2

≤
(
δL
∑

i

1
λi − l

)(
δL
∑

i

1
(λi − l− δL)2(λi − l)

)

≤ (δLεL)
(
δL
∑

i

1
(λi − l− δL)2(λi − l)

)

since
∑

(λi − l)−1 ≤ εL

≤ 1
(
δL
∑

i

1
(λi − l− δL)2(λi − l)

)
,

since 1
δL
− εL ≥ 0,

and so (3.3) is established.

Proof of Theorem 3.2. All we need to do now is set εU , εL, δU , and δL in a manner that
satisfies Lemma 3.6 and gives a good bound on the condition number. Then, we can
take A(0) = 0 and construct A(q+1) from A(q) by choosing any vector vi with

LA(q)(vi) ≥ UA(q)(vi)

(such a vector is guaranteed to exist by Lemma 3.6) and setting A(q+1) = A(q) + tvivTi
for any t ≥ 0 satisfying:

LA(q)(vi) ≥
1
t ≥ UA(q)(vi).
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It is sufficient to take

δL = 1 εL = 1√
d

l0 = −n/εL

δU =
√
d+ 1√
d− 1

εU =
√
d− 1

d+
√
d

u0 = n/εU .

We can check that:

1
δU

+ εU =
√
d− 1√
d+ 1

+
√
d− 1√

d(
√
d+ 1)

= 1− 1√
d

= 1
δL
− εL

so that (3.2) is satisfied.
The initial potentials are Φ

n
εU (0) = εU and Φ n

εL
(0) = εL. After dn steps, we have

λmax(A(dn))
λmin(A(dn)) ≤

n/εU + dnδU
−n/εL + dnδL

=
d+
√
d√

d−1 + d
√
d+1√
d−1

d−
√
d

= d+ 2
√
d+ 1

d− 2
√
d+ 1

,

as desired.

The Algorithm. To turn this proof into an algorithm, one must first compute the vectors
vi, which can be done in time O

(
n2m

)
. For each iteration of the algorithm, we must

compute ((u + δU)I − A)−1, ((u + δU)I − A)−2, and the same matrices for the lower
potential function. This computation can be performed in time O

(
n3). Finally, we

can decide which vector to add in each iteration by computing UA(vi) and LA(vi) for
each vi, which can be done in time O

(
n2m

)
. As we run for dn iterations, the total

time of the algorithm is O
(
dn3m

)
.

3.1.3 Optimality
It can be shown that the approximation guarantee of Theorem 3.2 is optimal up to a
constant factor of four. As the matrices which demonstrate this are the Laplacians of
complete graphs, we present them in Section 4.1.2 along with the results on graph
sparsification.

3.2 Weak Sparsification by Random Sampling
The results of the previous section more or less settle the question of spectral spar-
sification as we have formulated it. However, the method presented is not compu-
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tationally practical for large matrices as it requires computing inverses, which is a
slow operation. In this section we briefly discuss an alternate approach which was
discovered by Rudelson and Vershynin in [40]. The approach, which is based on ran-
dom sampling and can be computationally faster and more robust, but loses a factor
of logn in sparsity.

The starting point is to recall the Chernoff bound from probability theory (see,
for instance, [34]). Suppose Y is a bounded random variable, |Y | ≤ M, and we
take q independent copies of it, Y1, . . . , Yq. Then the empirical mean µ̃ := 1

q
∑

i≤q Yi
concentrates very strongly about the mean µ := EY :

P

(∣∣∣∣∣
1
q
∑

i≤q
Yi − EY

∣∣∣∣∣ > ε
)
≤ exp

(
−qε2

4M2

)
.

Thus, if we take q = 8M2/ε2 samples, we can expect µ̃ to be within ε of µ with
probability at least 1− exp(−2). This can be interpreted as a kind of sparsification,
since µ may be a sum of many (even infinitely many) terms whereas µ̃ has only q
terms.

It was discovered by Rudelson [39] and later by Ahlswede and Winter [3] that
the same phenomenon continues to hold if Y is a random n × n matrix, but with a
(necessary) blowup of O(logn) in the number of samples q that is required to attain
concentration. Here is the slightly stronger version described in lecture notes of
Vershynin [50]; note the normalization EY = I.

Theorem 3.8. Suppose Y is a random n×n matrix satisfying EY = In and ‖Y‖2 ≤ M.
If Y1, . . . , Yq are independent samples of Y , then

P




∥∥∥∥∥

1
q
∑

i≤q
Yi − In

∥∥∥∥∥
2

> ε



 ≤ n · exp
(
−qε2

4M

)
.

Thus, taking q = 8M logn/ε2 samples of Y should suffice to obtain a good ap-
proximation to I. This suggests a strategy for sparsification which we formalize in the
following theorem, analogous to Theorem 3.2.

Theorem 3.9. Suppose v1, v2, . . . , vm are vectors in Rn with
∑

i≤m
vivTi = I

and 0 < ε < 1 is a constant. Let Y be the random rank one matrix given by

Y = n
‖vi‖22

vivTi with probability pi ∝ ‖vi‖2.
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If we take q = 8n logn/ε2 independent samples Y1, . . . , Yq then

(1− ε)I � 1
q
∑

i≤q
Yi � (1 + ε)I

with probability at least 1/2.

Proof. Note that
∑

i ‖vi‖2 = Tr(I) = n, so that pi = ‖vi‖2/n. Thus

EY =
∑

i

‖vi‖2
n

n
‖vi‖2

vivTi = I

and invoking Theorem 3.8 with M = n gives the desired conclusion.

An important feature of this sampling procedure is that it is quite robust with
regards to the sampling probabilities pi; in particular, any constant-factor approxi-
mation to the distribution pi ∝ ‖vi‖2 also works.

Corollary 3.10. Suppose
∑

i≤m vivTi = I, {pi}i≤m are given by pi ∝ ‖vi‖2, and qi are
numbers satisfying qi ≥ pi/α and

∑
i≤m qi ≤ α for some factor α ≥ 1. Then taking

q = 8α2n logn/ε2 independent samples Y1, . . . , Yq from the distribution

Y =
∑

i qi
qi

vivTi with probability qi.

yields a sparsifier in that

(1− ε)I � 1
q
∑

i≤q
Yi � (1 + ε)I

with probability at least 1/2.

Proof. Following the proof of Theorem 3.9, the norm of Y is now bounded by
∥∥∥∥

∑
i qi
qi

vivTi
∥∥∥∥ ≤

∥∥∥∥
α
∑

i pi
(pi/α) vivTi

∥∥∥∥ ≤ α
2n

so we need to take M = α2n instead of just n.

The flexibility of using approximate probabilities for sampling is important in
applications, where the exact ‖vi‖2 may be difficult to compute. This is, in fact, the
case in the application to graph sparsification which we will see at the end of the
next chapter.
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3.3 Other Notions of Matrix Approximation
There is a large body of work on sparse [6, 2] and low-rank [23, 2, 40, 21, 22] approx-
imations for general matrices. The algorithms in this literature provide guarantees of
the form ‖A− Ã‖2 ≤ ε, where A is the original matrix and Ã is obtained by entrywise
or columnwise sampling of A. This is analogous to satisfying (3.1) only for vectors x
in the span of the dominant eigenvectors of A, and corresponds to an ‘additive’ rather
than a multiplicative approximation.

The above constructions have the advantage of being simple and quickly com-
putable, but are not as useful in many contexts where much of the interesting infor-
mation lies in the smaller eigenspaces. For instance, if we were to use these sparsi-
fiers on Laplacian matrices of graphs (discussed in the next chapter), they would only
preserve the large cuts whereas our spectral sparsifiers would preserve all the cuts.
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Chapter 4

Sparsification of Graphs

In this chapter we will apply the spectral sparsification theorems of Chapter 3 to the
class of matrices corresponding to Laplacians of undirected weighted graphs; more
concretely, this is exactly the cone of matrices generated by

{
(ei − ej)(ei − ej)T : i, j ∈ [n], i 6= j

}

as discussed in Example 1.1. Let us begin by motivating the problem of graph sparsifi-
cation and examining why the spectral notion of approximation for Laplacian matrices
corresponds to a combinatorially interesting notion of approximation for graphs.

A sparsifier of a graph G = (V ,E,w) is a sparse graph H that is similar to G
in some useful way. Many notions of similarity have been considered. For example,
Chew’s [18] spanners have the property that the distance between every pair of vertices
in H is approximately the same as in G. Benczur and Karger’s [9] cut-sparsifiers have
the property that the weight of the boundary of every set of vertices is approximately
the same in G as in H. The spectral notion of similarity which we consider was first
introduced by Spielman and Teng [42, 45]: we say that H is a κ-approximation of G
if for all x ∈ RV ,

xTLGx ≤ xTLHx ≤ κ · xTLGx, (4.1)

where LG and LH are the Laplacian matrices of G and H. This matches exactly our
definition from Chapter 1 of κ-approximation for PSD matrices.

Recall from Chapter 2 that

xTLGx =
∑

(u,v)∈E

wu,v (xu − xv )2,

where wu,v is the weight of edge (u, v) in G. By considering vectors x that are the
characteristic vectors of sets, one can see that condition (4.1) is strictly1 stronger
than the cut condition of Benczur and Karger. It is worth mentioning that although

1To see strictness, take G to be a cycle on [n] and H to be a path on [n]. Then every cut in H
is within half of its weight in G, but the vector x = (1, 2, . . . , n) witnesses the fact that H is not a
spectral sparsifier for G.
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the spectral condition is stronger, it can be verified easily in polynomial time by
computing the eigenvalues of (L+

H)1/2LG(L+
H)1/2, whereas this is not clear for the cut

condition as there are exponentially many cuts.
Theoretical Motivation. Spectral graph sparsifiers preserve many interesting prop-
erties of graphs, in addition to the weights of cuts. The Courant-Fischer Theorem
tells us that

λi = max
S:dim(S)=k

min
x∈S

xTLx
xTx .

Thus, if λ1, . . . , λn are the eigenvalues of LG and λ̃1, . . . , λ̃n are the eigenvalues of LH ,
then we have

λi ≤ λ̃i ≤ κλi,
and the eigenspaces spanned by corresponding eigenvalues are related. As the eigen-
values of the normalized Laplacian are given by

λi = max
S:dim(S)=k

min
x∈S

xTD−1/2LD−1/2x
xTx ,

and are the same as the eigenvalues of the walk matrix D−1L, we obtain the same
relationship between the eigenvalues of the walk matrix of the original graph and its
sparsifier. Many properties of graphs and random walks are known to be revealed by
their spectra (see for example any text on Spectral Graph Theory [13, 19, 25]). While
the existence of sparse subgraphs which retain these properties is interesting its own
right, we also expect it to be useful in theoretical applications. We remark that the
study of sparse approximations of the complete graph, otherwise known as expanders,
has been hugely successful over the past few decades, with significant impact in such
diverse fields as robust network design, coding theory, and derandomization. We will
discuss expanders in more detail in Section 4.1.
Practical Motivation. There is also a practical reason for studying graph sparsifica-
tion: If H is close to G in some appropriate metric, then H can be used as a proxy
for G in computations without introducing too much error. At the same time, since H
has very few edges, computation with and storage of H should be cheaper. Thus a
fast algorithm for graph sparsification can be used as a preprocessing step to speed
up computations on graphs. This is an especially useful primitive to have given the
increasingly large graphs we encounter in practice, for instance from internet and
scientific data. Here are three outstanding examples of how different kinds of fast
graph sparsification have been used to speed up computations.

1. Thorup and Zwick [46] gave a fast random sampling algorithm for constructing
multiplicative spanners; specifically, on input G and k their algorithm produces
a subgraph H ⊂ G with O(n1+1/k) edges for which

distG(u, v) ≤ distH(u, v) ≤ k · distG(u, v) ∀u, v ∈ G,

where dist is the shortest path distance. They used these spanners to construct
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fast and compact oracles for pairwise distance queries between vertices in a
graph.

2. Spielman and Teng [45] gave a algorithm which on input G with m edges pro-
duces in Õ(m) time a spectral (1+ε)-approximation H with O(n logc n) edges for
some large constant c. They used these sparsifiers to construct preconditioners
for symmetric diagonally-dominant matrices, which led to the first nearly-linear
time solvers for such systems of equations.

3. Benczur and Karger gave a nearly-linear time procedure which takes a graph G
and a parameter ε > 0, and outputs a weighted subgraph H with O(n logn/ε2)
edges such that the weight of every cut in H is within a factor of (1 ± ε) of
its weight in G. This was used to turn Goldberg and Tarjan’s Õ(mn) max-flow
algorithm [26] into an Õ(n2) algorithm for approximate st-mincut, and appeared
more recently as the first step of an Õ(n3/2 + m)-time O(log2 n) approximation
algorithm for sparsest cut [32].

Two Sparsification Algorithms. The strong and weak sparsification theorems of Chap-
ter 3 yield graph sparsification algorithms with very different characteristics. Roughly
speaking, the first one is mainly of theoretical interest while the second is more likely
to be useful in practice.

• Theorem 3.1 implies that every G has, for every ε > 0, a weighted subgraph2

H with dn/ε2e edges for which

(1− ε)2LG � LH � (1 + ε)2LG.

The procedure given in the proof of that theorem shows that H can be computed
in deterministic time O(mn3/ε2), which is prohibitively slow for large graphs.
The significance of these sparsifiers lies in their small size  they have constant
average degree for any constant ε, and can thus be seen as generalizations of
expander graphs, which are constant degree approximations of the complete
graph. In Section 4.1 we dwell on this analogy, and prove that our bounds
cannot be improved by more than a factor of 4.

• Theorem 3.9 shows that every G has, for every ε > 0, a weighted subgraph H
with O(n logn/ε2) edges which is a spectral (1 + ε)-approximation. This con-
struction is randomized and involves sampling the edges of G independently
with certain appropriate probabilities pe, which turn out to be exactly the ef-
fective resistances of the edges. In Section 4.2, we show how to compute the
effective resistances in nearly linear time, leading to an algorithm which is both
fast and conceptually simple, although it is not optimal with respect to the
sparsity/approximation ratio.

2i.e., the set of edges of H is a subset of the edges of G, but the weights are different
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4.1 Twice-Ramanujan Sparsifiers
In the case where G is the complete graph, excellent spectral sparsifiers are supplied
by Ramanujan Graphs [33, 35]. These are d-regular graphs H all of whose non-
zero Laplacian eigenvalues lie between d − 2

√
d− 1 and d + 2

√
d− 1. Thus, if we

take a Ramanujan graph on n vertices and multiply the weight of every edge by
n/(d− 2

√
d− 1), we obtain a graph that κ-approximates the complete graph, for

κ = d+ 2
√
d− 1

d− 2
√
d− 1

.

In this section, we observe that Theorem 3.1 implies that every graph can be approxi-
mated at least this well3 by a graph with only twice as many edges as the Ramanujan
graph (as a d-regular graph has dn/2 edges). The following is essentially a direct
restatement of Theorem 3.1, but with the substitution d = 1/ε2 to emphasize the
average degree of the graphs produced.

Theorem 4.1. For every d > 1, every undirected weighted graph G = (V ,E,w) on
n vertices contains a weighted subgraph H = (V , F, w̃) with dd(n− 1)e edges (i.e.,
average degree at most 2d) that satisfies:

xTLGx ≤ xTLHx ≤
(
d+ 1 + 2

√
d

d+ 1− 2
√
d

)
· xTLGx ∀x ∈ RV .

We remark that while the edges of H are a subset of the edges of G, the weights
of edges in H and G will typically be different. In fact, there exist unweighted graphs
G for which every good spectral sparsifier H must contain edges of widely varying
weights [45].

The significance of Ramanujan graphs lies in their exact optimality: no d−regular
graph can exhibit sharper concentration of eigenvalues (or larger spectral gap) [36].
All known constructions of Ramanujan graphs are number-theoretic and rely on heavy
tools from algebra to prove their correctness. There have been many attempts (e.g.
[37, 12]) at elementary constructions of such graphs, but none have come within a
constant factor of the optimal dependence on d. In the remainder of this section,
we argue that Theorem 4.1 should be seen as a step towards this goal. First we
discuss why the weighted graphs produced by our construction should be considered
expanders at all. Next, we extend the Alon-Boppana bound [36] for the extremality
of Ramanujan graphs to include weighted graphs.

3Strictly speaking, our approximation constant is only better than the Ramanujan bound κ =
d+2
√
d−1

d−2
√
d−1 in the regime d ≥ 1+

√
5

2 . This includes the actual Ramanujan graphs, for which d is an
integer greater than 2.
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4.1.1 Expanders: Sparsifiers of the Complete Graph
In the case that G is a complete graph, our construction produces graphs H that are
expanders. However, these expanders are slightly unusual in that their edges have
weights, they may be irregular, and the weighted degrees of vertices can vary slightly.
This may lead one to ask whether they should really be considered expanders.

In this section, we argue that they should be, as they may easily be shown to have
the properties that define expanders. In particular, H has high edge-conductance,
random walks mix rapidly on H and converge to an almost-uniform distribution, and
H satisfies the Expander Mixing Property (see [5] or [30, Lemma 2.5]). High edge-
conductance and rapid mixing would not be so interesting if the weighted degrees
were not nearly uniform  for example, the star graph has both of these properties,
but the random walk on the star graph converges to a very non-uniform distribution,
and the star does not satisfy the Expander Mixing Property. For the convenience of
the reader, we include a proof that H has the Expander Mixing Property below.

Lemma 4.2. Let LH = (V ,E,w) be a graph that (1+ε)-approximates LG , the complete
graph on V . Then, for every pair of disjoint sets S and T ,

∣∣∣w(S, T )−
(
1 + ε

2

)
|S| |T |

∣∣∣ ≤ n(ε/2)
√
|S| |T |,

where w(S, T ) denotes the sum of the weights of edges between S and T .

Proof. We have
−ε2LG � LH −

(
1 + ε

2

)
LG �

ε
2LG,

so we can write
LH =

(
1 + ε

2

)
LG +M,

where M is a matrix of norm at most (ε/2) ‖LG‖ ≤ nε/2. Let x be the characteristic
vector of S, and let y be the characteristic vector of T . We have

−w(S, T ) = xTLHy.

As G is the complete graph and S and T are disjoint, we also know

xTLGy = − |S| |T | .

Thus,

xTLHy =
(
1 + ε

2

)
xTLGy+ xTMy

= −
(
1 + ε

2

)
|S| |T |+ xTMy.

The lemma now follows by observing that

xTMy ≤ ‖M‖ ‖x‖ ‖y‖ ≤ n(ε/2)
√
|S| |T |.
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4.1.2 A Lower Bound
As the graphs we produce are irregular and weighted, it is also not immediately clear
that we should be comparing κ with the Ramanujan bound of

d+ 2
√
d− 1

d− 2
√
d− 1

= 1 + 4√
d

+O(1/d). (4.2)

It is known4 that no d-regular graph of uniform weight can κ-approximate a complete
graph for κ asymptotically better than (4.2) [36]. While we believe that no graph of
average degree d can be a κ-approximation of a complete graph for κ asymptotically
better than (4.2), we are unable to show this at the moment and prove instead the
following weaker claim.

Proposition 4.3. Let G be the complete graph on vertex set V , and let H = (V ,E,w)
be a weighted graph with n vertices and a vertex of degree d. If H κ-approximates
G, then

κ ≥ 1 + 2√
d
−O

(√
d
n

)
.

Proof. We use a standard approach. Suppose H is a κ-approximation of the complete
graph. We will construct vectors x∗ and y∗ orthogonal to the 1 vector so that

y∗TLHy∗
x∗TLHx∗

‖x∗‖2
‖y∗‖2

is large, and this will give us a lower bound on κ.
Let v0 be the vertex of degree d, and let its neighbors be v1, . . . , vd. Suppose vi is

connected to v0 by an edge of weight wi, and the total weight of the edges between
vi and vertices other than v0, v1, . . . , vd is δi. We begin by considering vectors x and
y with

x(u) =






1 for u = v0,
1/
√
d for u = vi, i ≥ 1,

0 for u 6∈ {v0, . . . , vd}
4While lower bounds [36] on the spectral gap of d-regular graphs focus on showing that the second-

smallest eigenvalue is asymptotically at most d− 2
√
d− 1, the same proofs by test functions can be

used to show that the largest eigenvalue is at asymptotically least d+ 2
√
d− 1.
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y(u) =






1 for u = v0,
−1/
√
d for u = vi, i ≥ 1,

0 for u 6∈ {v0, . . . , vd}

These vectors are not orthogonal to 1, but we will take care of that later. It is easy
to compute the values taken by the quadratic form at x and y:

xTLHx =
d∑

i=1

wi(1− 1/
√
d)2 +

d∑

i=1

δi(1/
√
d− 0)2

=
d∑

i=1

wi +
d∑

i=1

(δi + wi)/d− 2
d∑

i=1

wi/
√
d

and

yTLHy =
d∑

i=1

wi(1 + 1/
√
d)2 +

d∑

i=1

δi(−1/
√
d− 0)2

=
d∑

i=1

wi +
d∑

i=1

(δi + wi)/d+ 2
d∑

i=1

wi/
√
d.

The ratio in question is thus

yTLHy
xTLHx

=
∑

i wi +
∑

i(δi + wi)/d+ 2
∑

i wi/
√
d

∑
i wi +

∑
i(δi + wi)/d− 2

∑
i wi/
√
d

=
1 + 1√

d
2
∑

i wi∑
i wi+

∑
i(δi+wi)/d

1− 1√
d

2
∑

i wi∑
i wi+

∑
i(δi+wi)/d

.

Since H is a κ-approximation, all weighted degrees must lie between n and nκ, which
gives

2
∑

i wi∑
i wi +

∑
i(δi + wi)/d

= 2
1 +

∑
i(δi+wi)/d∑

i wi

≥ 2
1 + κ .

Therefore,
yTLHy
xTLHx

≥
1 + 1√

d
2

1+κ

1− 1√
d

2
1+κ

. (4.3)

Let x∗ and y∗ be the projections of x and y respectively orthogonal to the 1 vector.
Then

‖x∗‖2 = ‖x‖2 − 〈x, 1/
√
n〉2 = 2− (1 +

√
d)2

n
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and
‖y∗‖2 = ‖y‖2 − 〈y, 1/

√
n〉2 = 2− (1−

√
d)2

n
so that as n→∞

‖x∗‖2
‖y∗‖2 = 1−O

(√
d
n

)
. (4.4)

Combining (4.3) and (4.4), we conclude that asymptotically:

y∗TLHy∗
x∗TLHx∗

‖x∗‖2
‖y∗‖2 ≥

1 + 1√
d

2
1+κ

1− 1√
d

2
1+κ .

(
1−O

(√
d
n

))

But by our assumption the LHS is at most κ, so we have

κ ≥
1 + 1√

d
2

1+κ

1− 1√
d

2
1+κ .

(
1−O

(√
d
n

))

which on rearranging gives

κ ≥ 1 + 2√
d
−O

(√
d
n

)

as desired.

4.2 Sparsification by Effective Resistances
In this section, we show how to construct spectral sparsifiers with O(n logn/ε2) edges
in nearly-linear time, thus improving on both [10] and [43]. Our sparsifiers are sub-
graphs of the original graph and can be computed in Õ(m) time by random sampling,
where the sampling probabilities are given by the effective resistances of the edges
in the graph.

Suppose G is a connected weighted graph with Laplacian LG =
∑

e∈E webebTe ,
where the be are incidence vectors of edges. The existence of a sparsifier H with
O(n logn/ε2) edges follows immediately by applying Theorem 3.9 to the vectors

ve = w1/2
e (L+) 1

2be

for which it is easily checked that

∑

e
vevTe = (L+) 1

2

(
∑

e
webebTe

)
(L+) 1

2 = (L+) 1
2L(L+) 1

2 = Iim(L).

In particular, Theorem 3.9 tells us to sample the vectors ve, which correspond to edges
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of G with, probabilities pe ∝ ‖ve‖2. In Section 4.2.1, we observe that these lengths
correspond to the effective resistances Re of edges in G (multiplied by their edge
weights we), establishing the following conceptually simple and satisfying description
of the sparsification algorithm.

H = ReffSparsify(G)
Let q = 8n logn/ε2 as in Theorem 3.9. Choose a random edge e of G with proba-
bility pe proportional to weRe, and add e to H with weight we/qpe. Take q samples
independently with replacement, summing weights if an edge is chosen more than
once.

To turn this into a fast algorithm, we must compute the effective resistances Re effi-
ciently. In Section 4.2.2, we show how to compute approximate effective resistances
in nearly-linear time, which is essentially optimal. The tools we use to do this are
Spielman and Teng’s nearly-linear time solver [43, 44] and the Johnson-Lindenstrauss
Lemma [31, 1]. Specifically, we prove the following theorem, in which Ruv denotes the
effective resistance between vertices u and v .
Theorem 4.4. There is an Õ(m log r/ε2) time algorithm which on input ε > 0 and
G = (V ,E,w) with r = wmax/wmin computes a (24 logn/ε2) × n matrix Z̃ such that
with probability at least 1− 1/n

(1− ε)Ruv ≤ ‖Z̃ (χu − χv )‖2 ≤ (1 + ε)Ruv

for every pair of vertices u, v ∈ V .

Since Z̃ (χu − χv ) is simply the difference of the corresponding two columns of Z̃ ,
we can query the approximate effective resistance between any pair of vertices (u, v)
in time O(logn/ε2), and for all the edges in time O(m logn/ε2). By Corollary 3.10,
this yields an Õ(m log r/ε2) time for sparsifying graphs, as advertised.

4.2.1 Electrical Flows
Let us begin by identifying G = (V ,E,w) with an electrical network on n nodes in
which each edge e corresponds to a link of conductance we (i.e., a resistor of resistance
1/we), oriented arbitrarily as as in Section 2.2. We will use the same notation as [29]
to describe electrical flows on graphs: for a vector iext(u) of currents injected at the
vertices, let i(e) be the currents induced in the edges (in the direction of orientation)
and v(u) the potentials induced at the vertices. By Kirchoff’s current law, the sum of
the currents entering a vertex is equal to the amount injected at the vertex:

BT i = iext.

By Ohm’s law, the current flow in an edge is equal to the potential difference across
its ends times its conductance:

i = WBv.
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Combining these two facts, we obtain

iext = BT (WBv) = Lv.

If iext ⊥ span(1) = ker(L)  i.e., if the total amount of current injected is equal to the
total amount extracted  then we can write

v = L+iext

by the definition of L+ in Section 2.1.2.
Recall that the effective resistance between two vertices u and v is defined as

the potential difference induced between them when a unit current is injected at one
and extracted at the other. We will derive an algebraic expression for the effective
resistance in terms of L+. To inject and extract a unit current across the endpoints
of an edge e = (u, v), we set iext = be = (χv − χu), which is clearly orthogonal to 1.
The potentials induced by iext at the vertices are given by v = L+be; to measure the
potential difference across e = (u, v), we simply multiply by be on the left:

v(v)− v(u) = (χv − χu)T v = bTe L+be.

It follows that the effective resistance across e is given by Re = bTe L+be = ‖(L+) 1
2be‖2.

Thus we conclude that

‖ve‖2 = ‖w1/2
e (L+) 1

2be‖2 = weRe,

as desired.

4.2.2 Computing Approximate Resistances Quickly
It is not clear how to compute all the effective resistances {Re} exactly and efficiently.
In this section, we show that one can compute constant factor approximations to all
the Re in time Õ(m log r). In fact, we do something stronger: we build a O(logn)× n
matrix Z̃ from which the effective resistance between any two vertices (including
vertices not connected by an edge) can be computed in O(logn) time.

Proof of Theorem 4.4. If u and v are vertices in G, then following the discussion in
the previous section, the effective resistance between u and v can be written as:

Ruv = (χu − χv )TL+(χu − χv )
= (χu − χv )TL+LL+(χu − χv )
= ((χu − χv )TL+BTW 1/2)(W 1/2BL+(χu − χv ))
= ‖W 1/2BL+(χu − χv )‖22.

Thus effective resistances are just pairwise distances between vectors in {W 1/2BL+χv}v∈V .
By the Johnson-Lindenstrauss Lemma, these distances are preserved if we project the
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vectors onto a subspace spanned by O(logn) random vectors. For concreteness, we
use the following version of the Johnson-Lindenstrauss Lemma due to Achlioptas [1].
Lemma 4.5. Given fixed vectors v1 . . . vn ∈ Rd and ε > 0, let Qk×d be a random
±1/
√
k matrix (i.e., independent Bernoulli entries) with k ≥ 24 logn/ε2. Then with

probability at least 1− 1/n

(1− ε)‖vi − vj‖22 ≤ ‖Qvi −Qvj‖22 ≤ (1 + ε)‖vi − vj‖22

for all pairs i, j ≤ n.
Our goal is now to compute the projections {QW 1/2BL+χv}. We will exploit the

linear system solver of Spielman and Teng [43, 44], which we recall satisfies:
Theorem 4.6 (Spielman-Teng). There is an algorithm x = STSolve(L, y, δ) which
takes a Laplacian matrix L, a column vector y, and an error parameter δ > 0, and
returns a column vector x satisfying

‖x − L+y‖L ≤ ε‖L+y‖L,

where ‖y‖L =
√
yTLy. The algorithm runs in expected time Õ (m log(1/δ)), where m

is the number of non-zero entries in L.
Let Z = QW 1/2BL+. We will compute an approximation Z̃ by using STSolve to

approximately compute the rows of Z . Let the column vectors zi and z̃i denote the
ith rows of Z and Z̃ , respectively (so that zi is the ith column of ZT ). Now we can
construct the matrix Z̃ in the following three steps.

1. Let Q be a random ±1/
√
k matrix of dimension k × n where k = 24 logn/ε2.

2. Compute Y = QW 1/2B. Note that this takes 2m × 24 logn/ε2 + m = Õ(m/ε2)
time since B has 2m entries and W 1/2 is diagonal.

3. Let yi, for 1 ≤ i ≤ k , denote the rows of Y , and compute z̃i = STSolve(L, yi, δ)
for each i.

We now prove that, for our purposes, it suffices to call STSolve with

δ = ε
3

√
2(1− ε)wmin
(1 + ε)n3wmax

.

Lemma 4.7. Suppose

(1− ε)Ruv ≤ ‖Z (χu − χv )‖2 ≤ (1 + ε)Ruv ,

for every pair u, v ∈ V . If for all i,

‖zi − z̃i‖L ≤ δ‖zi‖L, (4.5)
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where

δ ≤ ε
3

√
2(1− ε)wmin
(1 + ε)n3wmax

(4.6)

then
(1− ε)2Ruv ≤ ‖Z̃ (χu − χv )‖2 ≤ (1 + ε)2Ruv ,

for every uv .

Proof. Consider an arbitrary pair of vertices u, v . It suffices to show that
∣∣∣‖Z (χu − χv )‖ − ‖Z̃ (χu − χv )‖

∣∣∣ ≤
ε
3 ‖Z (χu − χv )‖ (4.7)

since this will imply
∣∣∣‖Z (χu − χv )‖2 − ‖Z̃ (χu − χv )‖2

∣∣∣

=
∣∣∣‖Z (χu − χv )‖ − ‖Z̃ (χu − χv )‖

∣∣∣ ·
∣∣∣‖Z (χu − χv )‖+ ‖Z̃ (χu − χv )‖

∣∣∣

≤ ε
3 ·
(
2 + ε

3

)
‖Z (χu − χv )‖2 .

As G is connected, there is a simple path P connecting u to v . Applying the
triangle inequality twice, we obtain

∣∣∣‖Z (χu − χv )‖ −
∥∥∥Z̃ (χu − χv )

∥∥∥
∣∣∣ ≤

∥∥∥(Z − Z̃ )(χu − χv )
∥∥∥

≤
∑

ab∈P

∥∥∥(Z − Z̃ )(χa − χb)
∥∥∥ .
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We will upper bound this later term by considering its square:
(
∑

ab∈P

∥∥∥(Z − Z̃ )(χa − χb)
∥∥∥

)2

≤ n
∑

ab∈P

∥∥∥(Z − Z̃ )(χa − χb)
∥∥∥

2
by Cauchy-Schwarz

≤ n
∑

ab∈E

∥∥∥(Z − Z̃ )(χa − χb)
∥∥∥

2

= n
∥∥∥(Z − Z̃ )BT

∥∥∥
2

F
writing this as a Frobenius norm

= n
∥∥∥B(Z − Z̃ )T

∥∥∥
2

F

≤ n
wmin

∥∥∥W 1/2B(Z − Z̃ )T
∥∥∥

2

F

since ‖W−1/2‖2 ≤ 1/
√
wmin

≤ δ2 n
wmin

∥∥W 1/2BZT
∥∥2
F

since ‖W 1/2B(zi − z̃i)‖2 ≤ δ2‖W 1/2Bzi‖2 by (4.5)

= δ2 n
wmin

∑

ab∈E

wab ‖Z (χa − χb)‖2

≤ δ2 n
wmin

∑

ab∈E

wab(1 + ε)Rab

≤ δ2n(1 + ε)
wmin

(n− 1) since
∑

ab∈E

wabRab = n− 1.

On the other hand,

‖Z (χu − χv )‖2 ≥ (1− ε)Ruv ≥
2(1− ε)
nwmax

,

by Proposition 4.8. Combining these bounds, we have
∣∣∣‖Z (χu − χv )‖ −

∥∥∥Z̃ (χu − χv )
∥∥∥
∣∣∣

‖Z (χu − χv )‖
≤ δ

(
n(1 + ε)
wmin

(n− 1)
)1/2

·
(
nwmax

2(1− ε)

)1/2

≤ ε
3 by (4.6),

as desired.

Proposition 4.8. If G = (V ,E,w) is a connected graph, then for all u, v ∈ V ,

Ruv ≥
2

nwmax
.

Proof. By Rayleigh’s monotonicity law (see [13]), each resistance Ruv in G is at least

41



the corresponding resistance R ′uv in G′ = wmax × Kn (the complete graph with all
edge weights wmax) since G′ is obtained by increasing weights (i.e., conductances) of
edges in G. But by symmetry each resistance R ′uv in G′ is exactly

∑
uv R ′uv(n

2
) = (n− 1)/wmax

n(n− 1)/2 = 2
nwmax

.

Thus Ruv ≥ 2
nwmax for all u, v ∈ V .

Thus the construction of Z̃ takes Õ(m log(1/δ)/ε2) = Õ(m log r/ε2) time. We can
then find the approximate resistance ‖Z̃ (χu − χv )‖2 ≈ Ruv for any u, v ∈ V in
O(logn/ε2) time simply by subtracting two columns of Z̃ and computing the norm
of their difference.

Using the above procedure, we can compute arbitrarily good approximations to
the effective resistances {Re} which we need for sampling in nearly-linear time. By
Corollary 3.10, any constant factor approximation yields a sparsifier, so we are done.
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Chapter 5

Application to Contact Points

In this chapter we will prove a refinement of the Spectral Sparsification Theorem
of Chapter 3 and use it to make progress on a problem in high dimensional convex
geometry. The proof will again use two ‘barrier’ potential functions to iteratively build
a sparse weighted sum of rank one outer products with desirable spectral properties.
The additional twist in this case is that we require the vectors produced to have small
mean; in Theorem 5.5, we show how to do this at some cost in both sparsity and control
on the spectrum. We view this as an important first step in extending the barrier
method to more constrained settings and exploring the scope of its applicability.

5.1 Introduction
Let K be an arbitrary convex body in Rn and let E be a minimal volume ellipsoid
containing K . Then the contact points of K are the points of intersection of E and
K . The ellipsoid E is unique and characterized by a celebrated theorem of F. John
[7], which says that if K is embedded via an affine transformation in Rn so that E is
the standard Euclidean ball Bn2 , then there are m ≤ N = n(n + 3)/2 contact points
x1, . . . , xm ∈ K ∩ Bn2 and nonnegative weights c1, . . . cm for which

∑

i
cixi = 0 (mean zero) (5.1)

∑

i
cixixTi = I (inertia matrix identity) (5.2)

Moreover, any convex body K ′ containing x1, . . . , xm must have Bn2 inside its John
ellipsoid. We refer to a system (ci, xi)i≤m which satisfies (5.1) and (5.2) as a John’s
decomposition of the identity.

The study of contact points has been fruitful in Convex Geometry, for instance in
understanding the behavior of volume ratios of symmetric and nonsymmetric convex
bodies [7] and in estimating distances between convex bodies and the cube or simplex
[38, 24]. In this chapter, we consider the number of contact points of a convex body.
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Define a distance d between two (not necessarily symmetric) convex bodies K and
H in Rn as follows1:

d(K,H) = inf
T∈GL(n),u∈Rn

{c : H + u ⊂ TK ⊂ c(H + u)}

and let K be the space of all convex bodies equipped with the topology induced by
d. Gruber [28] proved that the set of K having fewer than N = n(n + 3)/2 contact
points is of the first Baire category in K. However, Rudelson has shown that every
K is arbitrarily close to a body which has a much smaller number of contact points.

Theorem 5.1 (Rudelson [39]). Suppose K is a convex body in Rn and ε > 0. Then
there is a convex body H such that d(H,K ) ≤ 1+ε and H has at most m ≤ Cn logn/ε2

contact points, where C is a universal constant.

In this chapter, we show that the logn factor in Rudelson’s theorem is unnecessary
in many cases. For symmetric convex bodies, we obtain exactly the same distance
guarantee d(H,K ) ≤ 1 + ε but with a much smaller number m ≤ 32n/ε2 of contact
points of H. For arbitrary convex bodies, we show a somewhat weaker result that
only guarantees an H within constant distance d(H,K ) ≤ 2.24, with m ≤ Cn contact
points for some universal C . Thus Rudelson’s O(n logn) bound is still the best known
in the regime d(H,K ) < 2.24 for nonsymmetric bodies.

Our approach for constructing H is the same as Rudelson’s, and consists of two
steps:

1. Given a John’s decomposition (ci, xi)i≤m for K , extract a small subsequence of
points xi which are approximately a John’s decomposition. To be precise, choose
a set of scalars bi, at most s = O(n) of which are nonzero and a small ‘recen-
tering’ vector u for which

∑

i
bi(xi + u) = 0

∥∥∥∥∥I −
∑

i
bi(xi + u)(xi + u)T

∥∥∥∥∥ ≤ ε.

2. Map the points (bi, xi + u)i≤s in the approximate John’s decomposition to an
exact John’s decomposition (ai, ui)i≤s, and show that it characterizes the John
Ellipsoid of a body H that is close to K .

The source of our improvement is a new method for extracting the approximate decom-
position in step (1). Whereas the bi were chosen by random methods in Rudelson’s
work, we now use the deterministic procedure described in Theorem 3.1, restated here
for convenience:

1When K and H are symmetric then we can take u = 0 and d becomes the usual Banach-Mazur
distance.
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Theorem 5.2 (Spectral Sparsification of the Identity, copy of Theorem 3.2). Suppose
d > 1 and v1, v2, . . . , vm are vectors in Rn with

∑

i≤m
vivTi = I.

Then there exist scalars si ≥ 0 with |{i : si 6= 0}| ≤ dn so that

I �
∑

i≤m
sivivTi �

(√
d+ 1√
d− 1

)2

I.

A sharp result regarding the contact points of symmetric convex bodies can be
derived as an immediate corollary of Theorem 5.2 and Rudelson’s proof of Theorem
1.1 [38].

Corollary 5.3. If K is a symmetric convex body in Rn and ε > 0, then there exists a
body H such that H ⊂ K ⊂ (1 + ε)H and H has at most m ≤ 32n/ε2 contact points
with its John Ellipsoid.

Proof. Suppose K is a symmetric convex body whose John ellipsoid is Bn2 , and let
X = {x1, . . . xm} be contact points satisfying (5.1,5.2) with weights c1, . . . cm. Since K
is symmetric we can assume that xi ∈ X ⇐⇒ −xi ∈ X , and that the corresponding
weights ci are equal.

We will extract an approximate John’s decomposition from X . Apply Theorem 5.2
to the vectors vi = √cixi with parameter d = 16/ε2 to obtain scalars si, and let Y ⊂ X
be the set of xi with nonzero si. We are now guaranteed that

I �
∑

xi∈Y

sicixixTi �
(

4/ε + 1
4/ε − 1

)2

I

with |Y | ≤ 16n/ε2. Notice that by an easy calculation
(

4/ε + 1
4/ε − 1

)2

≤ 1 + ε

for sufficiently small epsilon.
In order to obtain a John’s decomposition from these vectors, we need to ensure

the mean zero condition (5.1). This is achieved easily by taking a negative copy of
each vector in Y and halving the scalars si, since

∑

xi∈Y

(si/2)cixi + (si/2)ci(−xi) = 0

and ∑

xi∈Y

(si/2)cixixTi + (si/2)ci(−xi)(−xi)T =
∑

xi∈Y

sicixixTi
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which we know is a good approximation to the identity. Thus the vectors in Y ∪
−Y with weights bi = sici/2 on xi and −xi constitute a (1 + ε)-approximate John’s
decomposition with only 32n/ε2 points. Substituting this fact in place of Lemma 3.1
[38] in the proof of Theorem 1.1 [38] gives the promised result.

When the body K is not symmetric, there is no immediate way to guarantee the
mean zero condition. If we simply recenter the vectors produced by Theorem 5.2 to
have mean zero by adding u = −

∑
i bixi∑
i bi

to each xi, then the corresponding inertia
matrix is

∑

i
bi(xi + u)(xi + u)T =

∑

i
bixixTi −

(
∑

i
bi

)
uuT (5.3)

which no longer approximates the identity (indeed, it can have negative eigenvalues)
if ‖
(∑

i bi
)
uuT‖ is large. This is the issue that we address here. In Section 5.2, we

prove a variant of Theorem 5.2 which allows us to obtain very good control on the
mean u at the cost of having a worse (at best, factor 4) approximation of the inertia
matrix to the identity. In Section 5.3, we show that this is still sufficient to carry out
Rudelson’s construction of the approximating body H. The end result is the following
theorem.

Theorem 5.4. For every ε > 0 the following is true for n sufficiently large. If K is a
convex body in Rn, then there is a convex body H such that

H ⊂ K ⊂ (
√

5 + ε)H

has at most Oε(n) contact points with its John Ellipsoid.

5.2 Approximate John’s Decompositions
In this section we will prove the following theorem.

Theorem 5.5. Suppose we are given a John’s decomposition of the identity, i.e., unit
vectors x1, . . . , xm ∈ Rn with nonnegative scalars ci such that

∑

i
cixi = 0 (5.4)

∑

i
cixixTi = I. (5.5)

Then for every ε > 0 there are scalars bi, at most Oε(n) nonzero, and a vector u such
that

I �
∑

i
bi(xi + u)(xi + u)T � (4 + ε)I

∑

i
bi(xi + u) = 0
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(
∑

i
bi

)
‖u‖2 ≤ ε.

We remark that the requirement (5.4) is necessary to allow a useful bound on u,
since otherwise we can take xi = ei with ci = 1 for the canonical basis vectors {ei}i≤n
and it is easily seen that

(
∑

i
bi

)
‖u‖2 ≥ minbi = λmin

(
∑

i
bixixTi

)

for every choice of scalars bi, which is worthless considering (5.3).

5.2.1 An Outline of The Proof
As in the proof of Theorem 5.2, we will build the approximate John’s decomposition
(bi, xi + u) by an iterative process which adds one vector at a time. At any step of
the process, let

A =
∑

j
bjxjxTj

denote the inertia matrix of the vectors that have already been added (i.e., the bi’s
that have been set to some nonzero value), and let

z =
∑

j
bjxj

denote their weighted sum. Initially both A = 0 and z = 0.
Barrier Functions. As in the proof of Theorem 3.1, The choice of vector to add in each
step will be guided by two ‘barrier’ potential functions which we will use to maintain
control on the eigenvalues of A. For real numbers u, l ∈ R, which we will call the
upper and lower barrier respectively, define:

Φu(A)
def
= Tr(uI − A)−1 =

∑

i

1
u− λi

(Upper potential).

Φl(A)
def
= Tr(A− lI)−1 =

∑

i

1
λi − l

(Lower potential),

where λ1, . . . , λn are the eigenvalues of A.
As long as A ≺ uI and A � lI (i.e., λmax(A) < u and λmin(A) > l), these potential

functions measure how far the eigenvalues of A are from the barriers u and l. In
particular, they blow up as any eigenvalue approaches a barrier, since then uI − A
(or A − lI) approaches a singular matrix. Thus if Φl(A) and Φu(A) are appropriately
bounded, then we can conclude that the eigenvalues of A are ‘well-behaved’. For a
more thorough discussion of where these barrier functions come from and why they
work, we refer the reader to Section 3.1.1.
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Invariants. We will maintain three invariants throughout the process. Note that u, l, A
and z vary from step to step, while PU , PL, and ε remain fixed.

• The eigenvalues of A lie strictly between l and u:

lI ≺ A ≺ uI. (5.6)

• Both the upper and lower potentials are bounded by some fixed values PL and
PU :

Φl(A) ≤ PL Φu(A) ≤ PU . (5.7)

• The running sum z is appropriately small:

‖z‖2 ≤ ε · Tr(A) (5.8)

Initialization. At the beginning of the process we have A = 0 and z = 0, and the
barriers at initial values

l = l0 = −1 and u = u0 = 1. (5.9)

It is easy to see that (5.6), (5.7), and (5.8) all hold with PU = PL = n at this point.
Maintenance. The process will evolve in steps. Each step will consist of adding two
vectors, tv and rw, where t, r ≥ 0 and v, w ∈ {xi}i≤m. We will call these the primary
vector and the fix vector, respectively.

The primary vector will allow us to move the upper and lower barriers forward by
fixed amounts δl > 0 and δu > 0 while maintaining the invariants (5.6) and (5.7); in
particular, we will choose it to satisfy:

Φl+δl(A+tvvT ) ≤ Φl(A) Φu+δu(A+tvvT ) ≤ Φu(A) (l+δl)I ≺ A+tvvT ≺ (u+δu)I.
(5.10)

The fix will correct any undesirable impact that the primary has on the sum;
specifically, we will choose rw in a way that guarantees

〈z, tv + rw〉 ≤ 0 (5.11)

where z is the sum at the end of the previous step. Thus the net increase in the
length of the sum in any step is given by

‖z + (tv + rw)‖2 = ‖z‖2 + 2〈z, tv + rw〉+ ‖tv + rw‖2 ≤ ‖z‖2 + (t + r)2, (5.12)

since v and w are unit vectors. The corresponding increase in the trace is simply
t + r, and so if we guarantee in addition that the steps are sufficiently small:

t + r ≤ ε (5.13)
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then the invariant (5.8) can be maintained by induction as follows:

‖z + (tv + rw)‖2
Tr(A+ tvvT + rwwT ) ≤

‖z‖2 + (t + r)2
Tr(A) + (t + r) by (5.12)

≤ max
{
‖z‖2
Tr(A) ,

(t + r)2
t + r

}

≤ ε by (5.13).

However, we need to make sure that adding the fix vector does not cause us
to violate (5.6) or (5.7). To do this, the addition of rw will be accompanied by an
appropriately large shift of δfu > 0 in the upper barrier. In particular, we will make
sure that on top of satisfying (5.11), rw also satisfies

Φu+δu+δfu(A+tvvT+rwwT ) ≤ Φu+δu(A+tvvT ) and A+tvvT+rwwT ≺ (u+δu+δfu)I.
(5.14)

Since A+ tvvT + rwwT � A+ tvvT , there is no need to shift the lower barrier, and
the analogous bound for the lower potential is immediate:

Φl+δl+0(A+ tvvT + rwwT ) ≤ Φl+δl(A+ tvvT ) with A+ tvvT + rwwT � (l+ δl)I.

Together with (5.10), these inequalities guarantee that

Φl+δl(A+ tvvT + rwwT ) ≤ Φl(A) ≤ PL

and
Φu+δu+δfu(A+ tvvT + rwwT ) ≤ Φu(A) ≤ PU ,

thus maintaining both (5.6) and (5.7), as desired.
To summarize what has occurred during the step: we have added two vectors tv

and rw and shifted l and u forward by δl and δl + δfu, respectively, in a manner
that our three invariants continue to hold. To show that such a step can actually be
taken, we need to prove that as long as the invariants are maintained there must exist
scalars t, r ≥ 0 and vectors v, w ∈ {xi}i≤m which satisfy all of the conditions (5.10),
(5.11), (5.13), and (5.14). We will do this in Lemma 5.6.
Termination. After s steps of the process, we have

(−1 + sδl)I ≺ A ≺ (1 + s(δu + δfu))I by (5.6).

If we take s sufficiently large, then we can make the ratio λmax(A)/λmin(A) arbitrarily
close to δu+δfu

δl . In the actual proof, which we will present shortly, we will show that
the process can be realized with parameters δl, δu, δfu for which this ratio can be made
arbitrarily close to 4 in s = O(n) steps.
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As for the mean, we will set u = −
∑

j bjxj∑
j bj

= − z
Tr(A) , so that immediately

(
∑

j
bj

)
‖u‖2 = ‖z‖

2

Tr(A) ≤ ε (5.15)

as promised.

5.2.2 Realizing the Proof
To complete the proof, we will identify a range of parameters δl, δu, δfu for which the
above process can actually be sustained.

Lemma 5.6 (One Step). Suppose (ci, xi)i≤m is a John’s decomposition and z is any
vector. Let A be a matrix satisfying the invariants (5.6) and (5.7). If

1
δu

+ 1
δfu

+ 2PU + PL + 4n
ε ≤

1
δl

(5.16)

Then there are scalars t, r ≥ 0 and vectors v, w ∈ {xi} which satisfy (5.10), (5.11),
(5.13), and (5.14).

To this end, we recall the following lemmas from Chapter 3, which characterize
how much of a vector one can add to a matrix without increasing the upper and lower
potentials.

Lemma 5.7 (Upper Barrier Shift, copy of Lemma 3.4). Suppose A ≺ uI and δu > 0.
Then there is a positive definite matrix U = U(A, u, δu) so that if v is any vector which
satisfies

vTUv ≥ 1
t

then
Φu+δU (A+ tvvT ) ≤ Φu(A) and λmax(A+ tvvT ) < u+ δU .

That is, if we add t times vvT to A and shift the upper barrier by δU , then we do not
increase the upper potential.

Lemma 5.8 (Lower Barrier Shift, copy of Lemma 3.5). Suppose A � lI, δl > 0, and
Φl(A) < 1/δl. Then there is a matrix L = L(A, l, δl) so that if v is any vector which
satisfies

vTLv ≤ 1
t

then
Φl+δL(A+ tvvT ) ≤ Φl(A) and λmin(A+ tvvT ) > l+ δL.

That is, if we add t times vvT to A and shift the lower barrier by δL, then we do not
increase the lower potential.
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We will prove that desirable vectors exist by taking averages of the quantities
vTUv and vTLv over our contact points {xi} with weights {ci}. Since

∑

i
cixTi Uxi = U •

(
∑

i
cixixTi

)

= U • I by (5.2)
= Tr(U)

(and similarly for L), it will be useful to recall bounds on Tr(U) and Tr(L) from Chapter
3. Remarkably, these bounds do not depend on the matrix A or on u, l at all, but only
on the shifts δu and δl and on the potentials.

Lemma 5.9 (Traces of L and U). If lI ≺ A ≺ uL with Φl(A) < PL and Φu(A) < PU then

Tr(U) ≤ 1
δu

+ PU

and
Tr(L) ≥ 1

δl
− PL.

We are now in a position to prove Lemma 5.6.

Proof of Lemma 5.6. Let L = L(A, l, δl),U = U(A, u, δu),Uf = U(A, u+ δu, δfu) be the
matrices produced by lemmas 5.7 and 5.8.

Let us focus on the primary vector first. By Lemmas 5.7 and 5.8, we can add tv
without increasing potentials if

vTUv ≤ 1/t ≤ vTLv.

In fact, we will insist on v for which

vTUv + 2/ε ≤ 1/t ≤ vTLv

as this will ensure that we can take t ≤ ε/2.
Let D(v) = vTLv − vTUv − 2/ε and call F = {xi : D(xi) ≥ 0} the set of feasible

vectors. Let P = {xi : 〈xi, z〉 > 0} be the set of vectors with positive inner product
with z, and let N = {xi : 〈xi, z〉 ≤ 0} be the vectors in the complementary halfspace.

We will always add as little of a primary vector can, so we can assume that we
take 1/t = vTLv whenever v ∈ F . Here is the rule for choosing which v to add:
choose the feasible v for which t〈v, z〉 is minimized. If this quantity is negative then
there is no need for a fix vector, and taking w = 0 we are done. Otherwise we know
that F ⊂ P and

〈v, z〉
α ≥ 1

t = vTLv ∀v ∈ F . (5.17)

where α = min{t〈v, z〉 : v ∈ F}. Taking a sum, we notice that
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∑

P

ci
〈xi, z〉
α ≥

∑

F

ci
〈xi, z〉
α since F ⊂ P

≥
∑

F

cixTi Lxi by (5.17)

≥
∑

F

ciD(xi) since U � 0 implies that D(xi) ≤ xTi Lxi

≥
∑

i
ciD(xi) since D < 0 outside F

However, since
∑

i cixi = 0 this implies that

∑

N

ci
〈xi,−z〉
α =

∑

P

ci
〈xi, z〉
α ≥

∑

i
ciD(xi). (5.18)

We will use (5.18) to show that a suitable fix vector w exists. We are interested
in finding a w ∈ {xi} and r ≥ 0 for which

r〈w,−z〉 ≥ α (sufficient to reverse α = t〈v, z〉)for (5.11)
wTUfw + 2/ε ≤ 1/r (upper barrier feasible with shift δfu and r ≤ ε/2)for (5.13,5.14)

Thus it suffices to find a w for which

wTUfw + 2/ε ≤ 〈w,−z〉α ,

and then we can squeeze 1/r in between. Taking a weighted sum over all vectors of
interest, it will be sufficient to show that

∑

N

cixTi Ufxi + 2ci/ε ≤
∑

N

ci
〈xi,−z〉
α .

For the left hand side we use the crude estimate
∑

N

cixTi Ufxi + 2ci/ε ≤
∑

N∪P

cixTi Ufxi + 2ci/ε = Tr(Uf ) + 2n/ε
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and for the right hand side we consider that

∑

N

ci
〈xi,−z〉
α ≥

∑

i
ciD(xi) by (5.18)

=
∑

i
cixTi Lxi − cixTi Uxi − 2ci/ε

= Tr(L)− Tr(U)− 2n/ε since
∑

i
cixixTi = I

Thus it will be enough to have

Tr(Uf ) + 2n/ε ≤ Tr(L)− Tr(U)− 2n/ε

which follows from our hypothesis (5.16) and Lemma 5.9.

Proof of Theorem 5.5. If we start with l0 = −1 and u0 = 1 then we can take PL =
PU = n. If we set δu = δfu = (2 + ε)δl, then (5.16) reduces to

2
(2 + ε)δl

+ 3n+ 4n
ε ≤

1
δl
,

which it is easy to check is satisfied whenever

δl ≤
ε2

10n.

At the end of s steps we have

κ(A) = λmax(A)
λmin(A) ≤

1 + s · 2(2 + ε)δl
−1 + sδl

which can be made arbitrarily at most 4 + 3ε by taking s ≥ 100n/ε3 steps. By (5.3)
and (5.15), the term Tr(A)uuT only affects this by at most ε.

5.3 Construction of the Approximating Body
The contents of this section are very similar to Rudelson [38] Section 4, but the
calculations are a bit more subtle because we only have a 4−approximate John’s
decomposition as opposed to a (1 + ε)-approximate one.

The main result is a generic procedure for turning approximate John’s decomposi-
tions into approximating bodies:

Lemma 5.10. Suppose K has contact points (ci, xi)i≤m and (bi, yi = xi + u)i≤s are the
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vectors produced by Theorem 5.5, with

A =
∑

i
biyiyTi .

Then for ε > 0 and n sufficiently large, there is a body H with at most s contact
points and

d(H,K ) ≤ (1 + ε)
(
κ(A)

(
1 +

(
√
κ(A)− 1)2

4

))1/2

. (5.19)

This immediately yields a proof of Theorem 5.4:

Proof of Theorem 5.4. Since the condition number κ(A) guaranteed by Theorem 5.5
can be made arbitrarily close to 4, the number in (5.19) can be made arbitrarily close
to (

4
(

1 + 1
4

))1/2

=
√

5

as desired.

Let (bi, yi = xi + u)i≤s be the approximate John’s decomposition guaranteed by
Theorem 5.5, with ∑

i
biyi = 0

and ∑

i
biyiyTi = A.

There are two problems with this: the yi are not unit vectors, and their moment
ellipsoid E = A1/2Bn2 is not the sphere. We will adjust the vectors in a manner that
fixes both these problems, to obtain an exact John’s decomposition (âi, ûi)i≤s.

Add a small vector v , to be determined later, to each yi to obtain vectors

ŷi = yi + v

with inertia matrix

Av =
∑

i
biŷiŷTi =

∑

i
biyiyTi +

∑

i
bivvT = A+ Tr(A)vvT . (5.20)

(we will use ·̂ to denote vectors that depend on v .) Let Rv = A1/2
v and let Ev = RvBn2

be the corresponding moment ellipsoid. If we rescale each ŷi to lie on Ev :

ẑi = ŷi
‖ŷi‖E v

where ‖ŷi‖E v = ‖R−1
v ŷi‖. (5.21)

and then apply the inverse transformation R−1
v which maps Ev to Bn2 , then we obtain
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unit vectors
ûi = R−1

v ẑi.
Moreover, if these are given weights

âi = bi‖ŷi‖2E v

then we have an exact decomposition of the identity since

∑

i
âiûiûTi = R−1

v

(
∑

i
bi‖ŷi‖E 2v

ŷiŷTi
‖ŷi‖2E v

)
R−1
v = R−1

v AvR−1
v = I.

In the following lemma, we show that there must exist a small v for which the weighted
sum

∑

i
âiûi =

∑

i
bi‖ŷi‖2E vR−1

v
ŷi
‖ŷi‖E v

= R−1
v

(
∑

i
bi‖ŷi‖E v ŷi

)

is equal to zero. This will complete the construction of (âi, ûi)i≤s.

Lemma 5.11. Let bi, yi, A, etc. be as above and let ε > 0, and let n be sufficiently
large. Then there is a vector v with

‖v‖ ≤ νA
def
= 1 + ε

2

(√
κ(A)− 1

)
√
‖A‖
Tr(A) (5.22)

for which ∑

i
bi‖ŷi‖E v ŷi = 0.

Proof. We need to find a v for which
∑

i
bi
√

(yi + v)TA−1
v (yi + v)(yi + v) = 0.

As in [38], we will do this using the Brouwer fixed point theorem. In particular it will
suffice to show that the function

F (v) = −
∑

i biβ
(v)
i yi∑

i biβ
(v)
i

where β(v)
i =

√
(yi + v)T (A+ vvT )−1(yi + v)

= −
∑

i bi(β
(v)
i − µ)yi∑

i biβ
(v)
i

for any µ ∈ R since
∑

i
biyi = 0
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maps νABn2 to itself. This can be demonstrated as follows:

‖F (v)‖ = max
‖w‖=1

∑
i bi(β

(v)
i − µ)〈yi, w〉∑
i biβ

(v)
i

≤ (
∑

i bi(β
(v)
i − µ)2)1/2∑
i biβ

(v)
i

· max
‖w‖=1

(
∑

i
bi〈yi, w〉2

)1/2

by Cauchy-Schwarz

= (
∑

i bi(β
(v)
i − µ)2)1/2∑
i biβ

(v)
i

· ‖A‖1/2

≤ 1
1−O(Tr(A)−1/2)

(
∑

i bi(β
(v)
i − µ)2)1/2∑
i biβ

(0)
i

· ‖A‖1/2

by Lemma 5.12 and β(v)
i = Ω(1)

≤ 1
1−O(Tr(A)−1/2)

(
∑

i bi(β
(v)
i − µ)2)1/2∑
i bi

· ‖A‖1/2 · ‖A‖1/2

since min
i
β(0)
i ≥ ‖A‖−1

≤ 1
1−O(Tr(A)−1/2)

(
∑

i bi(β
(0)
i − µ)2)1/2 +O(Tr(A)1/4)

Tr(A) · ‖A‖

by Lemma 5.13 and
√
a+ b ≤

√
a+
√
b

≤ (1 + ε)(
∑

i bi(β
(0)
i − µ)2)1/2

Tr(A) · ‖A‖

for any ε > 0 and large n, since Tr(A) = Ω(n)

≤ (1 + ε)(
∑

i bi)1/2 maxi |β(0)
i − µ|

Tr(A) · ‖A‖

= (1 + ε) |maxi β(0)
i − mini β(0)

i |
2

‖A‖
Tr(A)1/2

setting µ = (max
i
β(0)
i − min

i
β(0)
i )/2

≤ 1 + ε
2

(
‖A−1‖1/2 − 1

‖A‖1/2

)
‖A‖

Tr(A)1/2

= 1 + ε
2

(
‖A−1‖1/2‖A‖1/2 − 1

) ‖A‖1/2
Tr(A)1/2 ,

as desired.

Lemma 5.12. If ‖v‖ = O(Tr(A)−1/2) then
∑

i
biβ(v)

i ≥
∑

i
biβ(0)

i −O(Tr(A)1/2).
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Proof. We can lowerbound the individual terms as

β(v)
i = ‖R−1

v (yi + v)‖
≥ ‖R−1

v yi‖ − ‖R−1
v v‖

=
(
yTi (A+ vvT )−1yi

)1/2 − ‖R−1
v v‖

=
(
yTi
(
A−1 − A−1vvTA−1

1 + vTA−1v

)
yi
)1/2

− ‖R−1
v v‖

by Sherman-Morrison

≥
√
yTi A−1yi −

(
yTi
(
A−1vvTA−1

1 + vTA−1v

)
yi
)1/2

− ‖R−1
v v‖

since
√
a− b ≥

√
a−
√
b.

Taking a sum, we observe the difference of interest is bounded by

∑

i
biβ(0)

i −
∑

i
biβ(v)

i ≤
∑

i
bi
(
yTi
(
A−1vvTA−1

1 + vTA−1v

)
yi
)1/2

+
∑

i
bi‖R−1

v v‖.

The first sum is handled by Cauchy Schwarz:

∑

i
bi
(
yTi
(
A−1vvTA−1

1 + vTA−1v

)
yi
)1/2

≤
(
∑

i
bi

)1/2(∑

i
biyTi

(
A−1vvTA−1

1 + vTA−1v

)
yi

)1/2

= Tr(A)1/2
(

Tr(AA−1vvTA−1)
1 + vTA−1v

)1/2

since
∑

i
biyiyTi = A

< Tr(A)1/2.

For the second, we observe crudely that
∑

i
bi‖R−1

v v‖ ≤ Tr(A)‖R−1
v ‖‖v‖ = O(Tr(A)1/2)

since ‖R−1
v ‖ = O(1).

Lemma 5.13. If ‖v‖ = O(Tr(A)−1/2) then
∑

i
bi(β(v)

i − µ)2 ≤
∑

i
bi(β(0)

i − µ)2 +O(Tr(A)−1/2).

Proof. Write ∑

i
bi(β(v)

i − µ)2 =
∑

i
biβ(v)

i
2 − 2biβ(v)

i + biµ2.
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Then β(v)
i

2 ≤ β(0)
i

2 by A+ vvT � A, and

−2
∑

i
biβ(v)

i ≤ −2
∑

i
biβ(0)

i +O(2Tr(A)1/2) by Lemma 5.12,

as desired.

Proof of Lemma 5.10. We are now in a position to construct the body H promised
in Theorem 5.4. Let K be a convex body with Bn2 as its John ellipsoid and contact
points (ci, xi)i≤m. Use Theorem 5.5 to obtain a subsequence (bi, yi)i≤s with only O(n)
points Let v, Av , {ẑi}i≤s, and (âi, ûi)i≤s be as above. Let θmax = maxi ‖ẑi‖2 and θmin =
mini ‖ẑi‖2 and let ε > 0, and consider the body

L = conv
(
θmin
1 + εK, ẑ1, . . . , ẑs

)
. (5.23)

We will show that
θmin
1 + εK ⊂ L ⊂ (1 + ε)θmaxK.

The first containment is obvious; for the second, observe that each ẑi ∈ (1 + ε)θmaxK
for sufficiently large n since

‖ẑi‖K = ‖ŷi‖K‖ŷi‖E v
= ‖xi + u+ v‖K

‖ŷi‖E v

≤ (1 + ε)‖xi + u+ v‖2
‖ŷi‖E v

since ‖xi‖2 = ‖xi‖K and ‖u‖, ‖v‖ ≤ O(n−1/2)

= (1 + ε)‖ẑi‖2
≤ (1 + ε)θmax.

It is also clear that ẑi are the only contact points of L with Ev since all ẑi /∈ θmin
1+εB

n
2 .

It remains to show that Ev is the John Ellipsoid of L. Applying R−1
v , we see that R−1

v L
has contact points ûi = R−1

v ẑi with Bn2 , and we have already shown that these satisfy
the conditions of John’s theorem with weights âi.

The distance between L and K is now at most

(1 + ε)2θmaxθmin
≤ (1 + ε)2 maxi ‖ŷi‖E v

mini ‖ŷi‖E v
≤ (1 + ε)3

√
κ(Av )

since ‖ŷi‖E v ≤ (1 + ε)‖xi‖E v for large n.
Combining (5.20) and (5.22) gives the required bound (5.19).
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Chapter 6

Restricted Invertibility

6.1 Introduction
In this chapter we study the following well-known theorem of Bourgain and Tzafriri.

Theorem 6.1 (Restricted Invertibility [14]). There are universal constants c, d > 0,
such that whenever B is an n × n matrix with unit length columns, one can find a
subset S ⊂ [n] of cardinality

|S| ≥ cn/‖B‖22
for which

σmin(BS) ≥ d, (6.1)

where BS is the submatrix of B with columns in S.

This theorem has had significant applications in the local theory of Banach spaces
and in the study of convex bodies in high dimensions. It is also considered a step
towards the resolution of the famous Kadison-Singer conjecture, which asks if there
exists a partition of [n] into a constant number of subsets S1, . . . , Sk for which (6.1)
holds. Recently, the theorem has attracted attention in numerical analysis due to
its connection with the column subset selection problem, which seeks to select a
‘representative’ subset of columns from a given matrix. In particular, Tropp [47] has
developed a randomized polynomial time algorithm which finds the subset S effi-
ciently.

Bourgain and Tzafriri’s proof of Theorem 6.1 uses probabilistic and functional
analytic techniques and is non-constructive. In the original paper the theorem was
shown to hold for c = d ∼ 1

1072 . Later on [15], the same authors proved it for c = c(ε) =
c′ε2 and d = (1 + ε)−1 for every 0 < ε < 1, where c′ is a universal (tiny) constant.
They were interested in the case when ε is small; the quadratic dependence of c(ε)
on ε was shown to be necessary in [11]. In another regime, modern methods can be
used to obtain the constants c = 1/128 and d = 1/8

√
2π [16, 47].

Here we present a short proof that uses only basic linear algebra, achieves much
better constants, and contains a deterministic algorithm for finding S. Our method of
proof involves building the set S iteratively using a ‘barrier’ potential function, similar
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to that in the proof of Theorem 3.1 in Chapter 3. The main conceptual differences
between this proof and the earlier one are:

1. Here we use only one barrier instead of two, since we seek only a lower bound
on the eigenvalues of vectors in S, the set that we construct.

2. The additional freedom arising from having only one barrier allows us to guar-
antee that the weights si are either 0 or 1 (i.e., a vector is either inside S or
not) and that no vector is chosen twice.

Specifically, we prove the following generalization of Theorem 6.11

Theorem 6.2. Suppose v1, . . . vm ∈ Rn,
∑

i vivTi = I, and 0 < ε < 1. Let L : `n2 → `n2
be a linear operator. Then there is a subset S ⊂ [m] of size |S| ≥ ε2 ‖L‖2F

‖L‖22
for which

{Lvi}i is linearly independent and

λmin

(
∑

i∈S

Lvi(Lvi)T
)
> (1− ε)2‖L‖2F

m ,

where λmin is computed on span{Lvi}i∈S .

This form of generalization was introduced by Vershynin [49] in his application to
the study of contact points of convex bodies via John’s decompositions of the identity.
It says that given any such decomposition and any L : `n2 → `n2 , there is a part of the
decomposition on which L is well-invertible whose size is proportional to the stable
rank ‖L‖

2
F

‖L‖22
.

The original form of Bourgain and Tzafriri’s theorem follows quickly from Theorem
6.2 with constants

c(ε) = ε2 and d(ε) = (1− ε)2

by taking {vi} from the standard basis {ei}i≤n and assuming ‖Lei‖ = 1. This domi-
nates previous bounds in all regimes, for ε small and large.

6.2 Proof of the Theorem
We will build the matrix A =

∑
i∈S(Lvi)(Lvi)T by an iterative process that adds one

vector to S in each step. The process will be guided by the potential function

Φb(A) =
∑

i
(Lvi)T (A− bI)−1(Lvi)

= Tr
[
LT (A− bI)−1L

]
since

∑

i
vivTi = I,

1This statement is identical to Chapter 1 Theorem 1.10 if we take B to be the n × m matrix with
columns Lvi. We write it differently here in order to maintain consistency with the presentation in the
literature [49, 14].
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where the barrier b is a real number that varies from step to step.
Initially A = 0, the barrier is at b = b0 > 0, and the potential is

Φb0(0) = Tr
[
LT (0− b0I)−1L

]
= −Tr

[
LTL
]
/b0 = −‖L‖

2
F

b0
.

Each step of the process involves adding some rank-one matrix wwT to A where
w ∈ {Lvi}i≤m (if w = Lvj then this corresponds to adding j to S) and shifting the
barrier towards zero by some fixed amount δ > 0, without increasing the potential.
Specifically, we want

Φb−δ(A+ wwT ) ≤ Φb(A).
We will maintain the invariant that after k vectors have been added, A has exactly
k nonzero eigenvalues, all greater than b. Keeping the potential small (in fact,
sufficiently negative) will ensure that there is a suitable vector to add at each step.

In any step of the process, we are only interested in vectors w which add a new
nonzero eigenvalue that is greater than b′ = b − δ. These are identified in the
following lemma, where the notation A � B means that A−B is positive semidefinite.

Lemma 6.3. Suppose A � 0 has k nonzero eigenvalues, all greater than b′ > 0. If
w 6= 0 and

wT (A− b′I)−1w < −1 (6.2)

then A+ wwT has k + 1 nonzero eigenvalues greater than b′.

Proof. Let λ1 ≥ · · · ≥ λk be the nonzero eigenvalues of A, and let λ′1 ≥ · · · ≥ λ′k+1 be
the k + 1 largest eigenvalues of A+wwT . As the latter matrix is obtained from A by
the addition of a rank one positive semi-definite matrix, their eigenvalues interlace:

λ′1 ≥ λ1 ≥ λ′2 ≥ · · · ≥ λk ≥ λ′k+1.

Consider the quantity

Tr
[
(A− b′I)−1] =

∑

i≤k

1
λi − b′

+
∑

i>k

1
0− b′ ,

where we have written the positive and negative terms in the sum separately. By the
Sherman-Morisson formula,

Tr
[
(A+ wwT − b′I)−1]− Tr

[
(A− b′I)−1] = − wT (A− b′I)−2w

1 + wT (A− b′I)−1w . (6.3)

Since wT (A − b′I)−1w < −1, the denominator in the right-hand term is negative.
The numerator is positive since A− b′I is non-singular and (A− b′I)−2 � 0. So, the
right-hand side of (6.3) is positive.
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On the other hand, a direct evaluation of this difference yields

0 < Tr
[
(A+ wwT − b′I)−1]− Tr

[
(A− b′I)−1]

= 1
λ′k+1 − b′

− 1
0− b′ +

k∑

i=1

1
λ′i − b′

−
k∑

i=1

1
λi − b′

= 1
λ′k+1 − b′

+ 1
b.

As λ′k+1 ≥ 0, this is only possible if λ′k+1 > b′, as desired.

The updated potential after one step, as the barrier moves from b to b′ = b − δ,
can be calculated using the Sherman-Morisson formula:

Φb′(A+ wwT ) = Tr
[
LT (A− b′I + wwT )−1L

]

= Tr
[
LT (A− b′I)−1L

]
−

Tr
[
LT (A− b′I)−1wwT (A− b′I)−1L

]

1 + wT (A− b′I)−1w

= Tr
[
LT (A− b′I)−1L

]
− wT (A− b′I)−1LLT (A− b′I)−1w

1 + wT (A− b′I)−1w

= Φb′(A)− wT (A− b′I)−1LLT (A− b′I)−1w
1 + wT (A− b′I)−1w .

To prevent an increase in potential, we want choose a w such that

Φb′(A)− wT (A− b′I)−1LLT (A− b′I)−1w
1 + wT (A− b′I)−1w ≤ Φb(A). (6.4)

We can now determine how small we need the potential to be in order to guarantee
that a suitable w, which will allow us to keep on going, always exists.

Lemma 6.4. Suppose An×n has k nonzero eigenvalues, all of which are greater than
b, and let Z be the orthogonal projection onto the kernel of A. If

Φb(A) ≤ −m− ‖L‖
2
2

δ (6.5)

and
0 < δ < b ≤ δ ‖LZ‖

2
F

‖L‖22
(6.6)

then there exists a vector w ∈ {Lvi}i≤m for which A + wwT has k + 1 nonzero
eigenvalues greater than b′ = b− δ and Φb′(A+ wwT ) ≤ Φb(A).

Proof. 2 The vectors satisfying both of the inequalities (6.2) and (6.4) are precisely
2We would like to thank Pete Casazza for pointing out an important mistake in an earlier version

of this proof.
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those w for which

wT (A− b′I)−1LLT (A− b′I)−1w
≤ (Φb(A)− Φb′(A)) · (−1− wT (A− b′I)−1w).

We can show that such a w exists by taking the sum over all w ∈ {Lvi}i≤m and
ensuring that the inequality holds in the sum, i.e., that

Tr
[
LT (A− b′I)−1LLT (A− b′I)−1L

]

≤ (Φb(A)− Φb′(A)) · (−m− Tr
[
LT (A− b′I)−1L)

]
). (6.7)

Let ∆b := Φb(A) − Φb′(A). From the assumption Φb(A) ≤ −m − ‖L‖22
δ we immediately

have
Tr
[
LT (A− b′I)−1L

]
= Φb(A)− ∆b ≤ −m−

‖L‖22
δ − ∆b

and so (6.7) will follow from

Tr
[
LT (A− b′I)−1LLT (A− b′I)−1L

]
≤ ∆b ·

(
‖L‖22
δ + ∆b

)
. (6.8)

Noting that LLT � ‖L‖22I, we can bound the left hand side as

Tr
[
LT (A− b′I)−1LLT (A− b′I)−1L

]
≤ ‖L‖22Tr

[
LT (A− b′I)−2L

]
. (6.9)

Let P be the projection onto the image of A and let Z be the projection onto its
kernel, so that P + Z = I. Let ΦP

b′(A) = Tr
[
LTP(A− b′I)−1PL

]
and ΦZ

b′(A) =
Tr
[
LTZ (A− b′I)−1ZL

]
be the potentials computed on these subspaces. Since P, Z ,

A, (A− b′I)−1, and (A− b′I)−2 are mutually diagonalizable, we can write

Φb′(A) = ΦP
b′(A) + ΦZ

b′(A), ∆b = ∆P
b + ∆Z

b , and

Tr
[
LT (A− b′I)−2L

]
= Tr

[
LTP(A− b′I)−2PL

]
+ Tr

[
LTZ (A− b′I)−2ZL

]
.

As P(A− b′I)−1P � 0 and P(A− bI)−1P � 0, it is easy to check that

(b− b′)P(A− b′I)−2P � P(A− bI)−1P − P(A− b′I)−1P

which immediately gives

‖L‖22Tr
[
LTP(A− b′I)−2PL

]
≤ ∆P

b
‖L‖22
δ . (6.10)

Thus, by (6.8), (6.9), and (6.10), we are done if we can show that

‖L‖22Tr
[
LTZ (A− b′I)−2ZL

]
≤ (∆P

b + ∆Z
b ) ·
(
‖L‖22
δ + ∆b

)
− ∆P

b
‖L‖22
δ .
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Taking into account that ∆P
b ,∆Z

b ≥ 0, this is implied by the statement

‖L‖22Tr
[
LTZ (A− b′I)−2ZL

]
≤ ∆Z

b ·
(
‖L‖22
δ + ∆Z

b

)
. (6.11)

We now compute Tr
[
LTZ (A− b′I)−2ZL

]
= ‖LZ‖2F

b′2 and

∆Z
b = Tr

[
LTZ ((A− bI)−1 − (A− b′I)−1))ZL

]
= δ ‖LZ‖

2
F

bb′

which upon substituting and rearranging reduces (6.11) to

‖L‖22 ≤
δ‖LZ‖2F

b

which we have assumed in (6.6).

Proof of Theorem 6.2. The requirements (6.5) and (6.6) of Lemma 6.4 are satisfied at
the beginning of the process if we start with b = b0 and δ satisfying

Φb0(0) = −‖L‖
2
F

b0
≤ −m− ‖L‖

2
2

δ

and
b0 ≤ δ

‖L‖2F
‖L‖22

since initially A = 0 and Z = Projker(A) = I.

Both of these conditions are met if we take 0 < ε < 1 and

b0 = (1− ε)‖L‖2F
m and δ = (1− ε)‖L‖22

εm .

They are maintained at every step of the process by Lemma 6.4 and the fact that the
Frobenius norm ‖LZ‖2F decreases by at most ‖L‖22 in one step. Taking ε2 ‖L‖2F

‖L‖22
steps

leaves the barrier at
(1− ε)‖L‖2F

m − ε2(1− ε)‖L‖
2
F

εm
which is the desired bound.
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Chapter 7

The Kadison-Singer Conjecture

We conclude by drawing a connection between the main results of this thesis and an
outstanding open problem in mathematics, the Kadison-Singer conjecture. This con-
jecture, which dates back to 1959, is equivalent to the well-known Paving Conjecture
[4, 17] as well as to a stronger form of the restricted invertibility theorem in Chapter
6. The following formulation is due to Nik Weaver [51].

Conjecture 7.1. There are universal constants ε > 0, δ > 0, and r ∈ N for which the
following statement holds. If v1, . . . , vm ∈ Rn satisfy ‖vi‖ ≤ δ for all i and

∑

i≤m
vivTi = I,

then there is a partition X1, . . . Xr of {1, . . . , m} for which
∥∥∥∥∥∥

∑

i∈Xj

vivTi

∥∥∥∥∥∥
≤ 1− ε

for every j = 1, . . . , r.

Suppose we had an ‘unweighted’ version of Theorem 3.2 which, assuming ‖vi‖ ≤ δ,
guaranteed that the scalars si were all either 0 or some constant β > 0, and gave a
constant approximation factor κ < β. Then we would have

I � β
∑

i∈S

vivTi � κ · I,

for S = {i : si 6= 0}, yielding a proof of Conjecture 7.1 with r = 2 and ε = min{1 −
κ
β ,

1
β} since ∥∥∥∥∥

∑

i∈S

vivTi

∥∥∥∥∥ ≤
κ
β ≤ 1− ε and
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∥∥∥∥∥∥

∑

i∈S

vivTi

∥∥∥∥∥∥
= 1− λmin

(
∑

i∈S

vivTi

)
≤ 1− 1

β ≤ 1− ε.

Similarly, a strengthening of Theorem 6.2 which partitions [m] into a constant
number of sets σi also implies an affirmative resolution to the conjecture. Thus,
Kadison-Singer is the common conjectured strengthening of the two main results of
this thesis, and indeed they can be viewed as steps towards its resolution.

As a special case, a proof of the conjecture would also imply the existence of
unweighted sparsifiers for the complete graph and other (sufficiently dense) edge-
transitive graphs. It is also worth noting that the ‖vi‖ ≤ δ condition when applied to
vectors arising from a graph simply means that the effective resistances of all edges
are bounded; thus, we would be able to conclude that any graph with sufficiently
small resistances can be split into two graphs that approximate it spectrally.
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