Name: \qquad

SID: \qquad

Instructions: Write all answers in the provided space. This exam includes two pages of scratch paper, which must be submitted but will not be graded. Do not under any circumstances unstaple the exam. Write your name and SID on every page. Show your work - numerical answers without justification will be considered suspicious.

Calculators, phones, cheat sheets, textbooks, and your own scratch paper are not allowed.

UC Berkeley Honor Code: As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others.

Sign here:

Question	Points
1	20
2	20
3	10
4	6
5	12
6	10
7	22
Total:	100

Do not turn over this page until your instructor tells you to do so.

Name and SID:

1. (20 points) Circle always true (\mathbf{T}) or sometimes false (\mathbf{F}) for each of the following. There is no need to provide an explanation. Two points each.
(a) If two vectors v_{1} and v_{2} are linearly dependent then there is a scalar c such that $v_{1}=c v_{2}$.

T F
(b) The transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{l}
x_{1}+1 \\
x_{2}+2
\end{array}\right]
$$

is linear.
T F
(c) If the vectors $v_{1}, v_{2}, v_{3} \in \mathbb{R}^{4}$ are linearly independent and the linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{5}$ is one to one, then $T\left(v_{1}\right), T\left(v_{2}\right), T\left(v_{3}\right)$ must also be linearly independent.

$$
\mathbf{T} \quad \mathbf{F}
$$

(d) If the vectors $v_{1}, v_{2}, v_{3} \in \mathbb{R}^{4}$ are linearly independent and the linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ is onto, then $T\left(v_{1}\right), T\left(v_{2}\right), T\left(v_{3}\right)$ must also be linearly independent.
(e) If $\operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}=\mathbb{R}^{n}$ and the linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto, then $\operatorname{span}\left\{T\left(v_{1}\right), \ldots, T\left(v_{k}\right)\right\}=\mathbb{R}^{m}$.
(f) If the linear systems $A x=b_{1}$ and $A x=b_{2}$ are consistent then the system $A x=$ $b_{1}+2 b_{2}$ must be consistent.

$$
\mathbf{T} \quad \mathbf{F}
$$

(g) If the reduced row echelon forms of two $n \times n$ matrices A and B are equal to the identity, then the RREF of the matrix $A B$ is also equal to the identity.

T \mathbf{F}
(h) If A and B have the property that $\operatorname{Col}(B) \subseteq \operatorname{Nul}(A)$ then $A B=0$.

T \mathbf{F}
(i) Any two linearly independent vectors in \mathbb{R}^{2} form a basis of \mathbb{R}^{2}.
(j) If $\mathcal{B}=\left\{b_{1}, \ldots, b_{k}\right\}$ is a basis of a subspace $H \subseteq \mathbb{R}^{m}$ then for every $v \in H$ the coordinate vector $[v]_{\mathcal{B}}$ is an element of \mathbb{R}^{k}.

T F

Name and SID:
2. Give an example of each of the following, explaining why it has the required property, or explain why no such example exists.
(a) (4 points) A linear system with 3 equations in 2 variables which is consistent.
(b) (4 points) A linear system with 2 equations in 3 variables which is not consistent.
(c) (4 points) A linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ which is both one to one and onto.

Name and SID:
[Scratch Paper 1]

Name and SID:
(d) (4 points) A 2×3 matrix A and a 3×2 matrix B such that $A B$ is invertible.
(e) (4 points) A 2×3 matrix A and a 3×2 matrix B such that $B A$ is invertible.

Name and SID:
3. (10 points) For which values of $s \in \mathbb{R}$ are the following vectors linearly independent?

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
3
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
-5 \\
7 \\
8
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}
1 \\
1 \\
s
\end{array}\right]
$$

4. (6 points) State precisely the definition of an onto transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

Name and SID:
5. (12 points) Consider the vectors:

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
2 \\
0
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
-1
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}
2 \\
1 \\
3 \\
0
\end{array}\right], \mathbf{v}_{4}=\left[\begin{array}{c}
0 \\
3 \\
1 \\
-2
\end{array}\right]
$$

Find the first vector in this set which is in the span of the other ones, and express it as a linear combination of them. Explain your reasoning.

Name and SID:
6. (10 points) Suppose $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is a linear transformation such that

$$
\begin{aligned}
& T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
5 \\
4
\end{array}\right] \\
& T\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
8 \\
0
\end{array}\right] .
\end{aligned}
$$

Find the value of $T\left(\left[\begin{array}{c}-1 \\ 2\end{array}\right]\right)$.

Name and SID:
7. Let $T_{1}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the linear transformation given by:

$$
T_{1}\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{l}
x_{1}-x_{2} \\
x_{2}-x_{3}
\end{array}\right]
$$

and let $T_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the geometric linear transformation which reflects a point $x \in \mathbb{R}^{2}$ across the line $x_{1}=x_{2}$.
(a) (6 points) Show that T_{2} is invertible and find its inverse transformation $T_{2}^{-1}: \mathbb{R}^{2} \rightarrow$ \mathbb{R}^{2}.
(b) (6 points) Find the standard matrix of the composition $T=T_{2}^{-1} \circ T_{1}$. Call this matrix A.

Name and SID:
(c) (4 points) Find a basis for $\operatorname{Col}(A)$.
(d) (4 points) Find a basis for $\operatorname{Nul}(A)$.
(e) (2 points) Is T one to one? Explain in terms of your previous answers.

