Math 54 Fall 2016 Practice Midterm 2 Solutions

Nikhil Srivastava
50 minutes, closed book, closed notes

1. True or False (no need for justification):
(a) If V is a vector space with a finite basis then V is isomorphic to \mathbb{R}^{n} for some n. True. If $\mathcal{B}=\left\{b_{1}, \ldots, b_{n}\right\}$ is a basis then the coordinate mapping $x \mapsto[x]_{\mathcal{B}}$ is an isomorphism from V to \mathbb{R}^{n}.
(b) The system $A^{T} A x=A^{T} b$ is consistent for all A and b.

True. This is because the least squares solution to $A x=b$ (i.e., the x minimizing $\|A x-b\|)$ always satisfies the normal equations.
(c) If A and B are similar and A is diagonalizable then B must be diagonalizable.

True. If A is diagonalizable then $A=P D P^{-1}$ for some diagonal P. Since A and B are similar, we have $B=Q A Q^{-1}$ for some Q. Combining these, we get $B=Q P D P^{-1} Q^{-1}=(Q P) D(Q P)^{-1}$, so B is diagonalizable as well.
(d) The rank of a square matrix is equal to the number of nonzero eigenvalues (counted with multiplicity).
False. Consider the matrix $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$, which has only zero eigenvalues, but rank 1. This was one of the the hardest questions on the exam, because it is almost true. In particular, if A is $n \times n$ and diagonalizable, then the dimension of the nullspace of A is equal to the multiplicity m of zero as an eigenvalue (since the dimension of E_{0} is equal to this multiplicity). Thus, the number of nonzero eigenvalues of A is $n-m$, which is also equal to the rank since $m+\operatorname{rank}(A)=n$.
(e) If x and y are arbitrary nonzero vectors in \mathbb{R}^{n} then there is a basis B of \mathbb{R}^{n} such that $[x]_{B}=y$.
True. This was the hardest one. The question is asking whether there is an invertible matrix P_{B} such that $P_{B} y=x$ (the columns of such a matrix would then form the basis B). To find such a matrix, first choose any basis C whose first vector is x, namely $c_{1}=x, c_{2}, c_{3}, \ldots, c_{n}$, and let P_{C} be the matrix whose columns are c_{1}, \ldots, c_{n}. Similarly, let D be a basis whose first vector is $d_{1}=y, d_{2}, \ldots, d_{n}$. (Note that for any vector, there is a basis containing that vector). We now have $[x]_{C}=P_{C}^{-1} x=e_{1}$ and $[y]_{D}=P_{D}^{-1} y=e_{1}$, so

$$
P_{D}^{-1} y=P_{C}^{-1} x
$$

Multiplying by P_{D} gives $y=P_{D} P_{C}^{-1} x$, so the desired P_{B} is just $P_{D} P_{C}^{-1}$.
(f) Every eigenvalue of a square matrix A is a pivot of A in the reduced row echelon form of A.

False. The RREF of every invertible matrix is the identity, but not every invertible matrix has all eigenvalues equal to one.
(g) If A is a square matrix then A and A^{T} have the same eigenvalues.

True. This is because $\operatorname{det}(A-t I)=\operatorname{det}\left((A-t I)^{T}\right)=\operatorname{det}\left(A^{T}-t I\right)$, which may be seen by using the cofactor expansion of the determinant. So A and A^{T} have the same characteristic polynomial, which means they have the same eigenvalues.
(h) An upper triangular matrix is always diagonalizable.

False. Consider $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$.
(i) An set of orthogonal vectors is always linearly independent.

False. An orthogonal set can contain a zero vector, which would make it automatically linearly dependent.
I did not intend to ask such a trick question, I missed the word 'nonzero', which is a typo. I really should have asked: is a set of nonzero orthogonal vectors linearly independent? In this case the answer is yes.
(j) If $v_{1}, \ldots, v_{k} \in \mathbb{R}^{n}$ are linearly independent and W is a subspace of \mathbb{R}^{n} then $\operatorname{Proj}_{W}\left(v_{1}\right), \ldots, \operatorname{Proj}_{W}\left(v_{k}\right)$ must also be linearly independent.
False. Consider the subspace $W=\operatorname{span}\left\{e_{1}\right\}$ of \mathbb{R}^{2}. Then $\left\{e_{1}, e_{2}\right\}$ is linearly independent, but $\operatorname{Proj}_{W}\left(e_{2}\right)=0$, so the set of projections is not.
2. Let $V=\mathbb{R}^{3 \times 3}$ denote the vector space of real 3×3 matrices with addition and scalar multiplication defined entrywise. Let

$$
M=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

and consider the subset

$$
W=\{X \in V: X M=M X\}
$$

of matrices in V which commute with M. Is W a subspace of V ? If so, prove it. If not, explain why.

Solution: This question just involves knowing how to check whether a given set is a subspace. Recall that this requires satisfying three properties: (a) The zero matrix $0 \in W$, since $0 M=0=M 0$. (b) Assume $X, Y \in W$, which means that $X M=M X$ and $Y M=M Y$. Adding these equations, we find that

$$
X M+Y M=M X+M Y
$$

By the distributive property from matrix algebra, this is equivalent to

$$
(X+Y) M=M(X+Y)
$$

which implies that $X+Y \in W$. (c) Assume $X \in W$ and $c \in \mathbb{R}$. We know $X M=$ $M X$. Multiplying by C gives $c X M=c M X$. Again by matrix algebra, this is just $(c X) M=M(c X)$, so $c X \in W$.
Since W is a subset of V, contains zero, and is closed under addition and scalar multiplication, W is a subspace of V.

Note that the actual details of the matrix M did not matter in this case.
3. Let $\mathbb{P}_{2}=\left\{a_{0}+a_{1} t+a_{2} t^{2}\right\}$ be the vector space of polynomials of degree at most 2 with coefficient-wise operations, and consider the linear transformation $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}$ defined by

$$
T(q)=\frac{d^{2}}{d t^{2}} q+t \cdot \frac{d}{d t} q+3 q .
$$

Is there a basis \mathcal{B} of \mathbb{P}_{2} such that the matrix of T with respect to \mathcal{B} is diagonal? If so, find such a basis as well as the corresponding matrix. If not, explain why.
Solution. This question is asking whether T is diagonalizable, To figure this out, we first find the matrix of T with respect to any basis; let's use the standard basis $E=\left\{1, t, t^{2}\right\}$ of \mathbb{P}_{2}. Computing

$$
\begin{gathered}
{[T(1)]_{E}=[0+0+3]_{E}=\left[\begin{array}{l}
3 \\
0 \\
0
\end{array}\right],} \\
{[T(t)]_{E}=[0+t+3 t]_{E}=\left[\begin{array}{l}
0 \\
4 \\
0
\end{array}\right],} \\
{\left[T\left(t^{2}\right)\right]_{E}=\left[2+2 t^{2}+3 t^{2}\right]_{E}=\left[\begin{array}{l}
2 \\
0 \\
5
\end{array}\right],}
\end{gathered}
$$

we find that the matrix is given by

$$
A=[T]_{E}=\left[\begin{array}{lll}
3 & 0 & 2 \\
0 & 4 & 0 \\
0 & 0 & 5
\end{array}\right]
$$

Since this matrix is upper triangular, its eigenvalues are just the diagonal entries, which are $3,4,5$. Since these are distinct, we know that the matrix must be diagonalizable. To find the basis, we find the corresponding eigenvectors:

$$
E_{3}=\operatorname{Null}(A-3 I)=\operatorname{span}\left\{e_{1}\right\}
$$

$$
\begin{gathered}
E_{4}=\operatorname{Null}(A-4 I)=\operatorname{span}\left\{e_{2}\right\} \\
E_{5}=\operatorname{Null}(A-5 I)=\operatorname{Null}\left[\begin{array}{ccc}
-2 & 0 & 2 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right\} .
\end{gathered}
$$

Thus, $A e_{1}=3 e_{1}, A e_{2}=4 e_{2}$, and $A\left(e_{1}+e_{3}\right)=5\left(e_{1}+e_{3}\right)$. Applying the correspondence principle, we find that, $T(1)=3, T(t)=4 t, T\left(1+t^{2}\right)=5\left(1+t^{2}\right)$. Thus the matrix of T with respect to the basis $B=\left\{1, t, 1+t^{2}\right\}$ is diagonal, and equal to

$$
[T]_{B}=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 5
\end{array}\right] .
$$

Alternatively, we may diagonalize $[T]_{E}=A=P D P^{-1}=P_{B} D P_{B}^{-1}$ for D as above and P_{B} containing $e_{1}, e_{2},\left(e_{1}+e_{3}\right)$ as columns. Multiplying on the left by P_{B}^{-1} and on the right by P_{B} we have $P_{B}^{-1}[T]_{E} P_{B}=D$. Recalling that $P_{B}^{-1}=P_{B \leftarrow E}$ and $P_{B}=P_{E \leftarrow B}$, we have

$$
D=P_{B \leftarrow E}[T]_{E} P_{E \leftarrow B}=[T]_{B},
$$

as desired.
4. Let $A=\left[\begin{array}{cc}1 & 1 \\ -2 & 4\end{array}\right]$. Find the eigenvalues of A. Compute A^{11}.

Solution: We begin by computing the characteristic polynomial:

$$
\chi_{A}(t)=\operatorname{det}\left[\begin{array}{cc}
1-t & 1 \\
-2 & 4-t
\end{array}\right]=(1-t)(4-t)+2=t^{2}-5 t+6=(t-2)(t-3),
$$

so the eigenvalues are 2,3 . The corresponding eigenspaces are

$$
\begin{aligned}
& E_{2}=\text { Null }\left[\begin{array}{ll}
-1 & 1 \\
-2 & 2
\end{array}\right]=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\} \\
& E_{3}=\text { Null }\left[\begin{array}{ll}
-2 & 1 \\
-2 & 1
\end{array}\right]=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right\}
\end{aligned}
$$

so we may diagonalize A as $A=P D P^{-1}$ with $D=\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$ and $P=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]$.
We now have

$$
A^{11}=P D^{11} P^{-1}=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{cc}
2^{11} & 0 \\
0 & 3^{11}
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right] .
$$

I could simplify this, but I won't. I'll give you easier numbers on the exam if such a question arises, and in any case, it will be fine to leave expressions such as $2 \cdot 2^{11}-3^{11}$ unsimplified.
5. Consider the vectors

$$
x_{1}=\left[\begin{array}{c}
2 \\
0 \\
-1 \\
-3
\end{array}\right] \quad x_{2}=\left[\begin{array}{c}
12 \\
-4 \\
7 \\
1
\end{array}\right] \quad y=\left[\begin{array}{c}
2 \\
4 \\
0 \\
-1
\end{array}\right]
$$

and let $W=\operatorname{Span}\left\{x_{1}, x_{2}\right\}$. Find vectors w and z such that $w \in W, z \in W^{\perp}$, and $y=w+z$. What is the distance between y and the closest point in W to y ?
Solution: We first check whether the given vectors are orthogonal: $x_{1} \cdot x_{2}=24+0-$ $7-3=14 \neq 0$, so they aren't. So we use Gram-Schmidt to find an orthogonal basis for W :

$$
\begin{gathered}
u_{1}=x_{1} \\
u_{2}=x_{2}-\frac{x_{2} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}=\left[\begin{array}{c}
12 \\
-4 \\
7 \\
1
\end{array}\right]-\frac{14}{14}\left[\begin{array}{c}
2 \\
0 \\
-1 \\
-3
\end{array}\right]=\left[\begin{array}{c}
10 \\
-4 \\
8 \\
4
\end{array}\right]
\end{gathered}
$$

We now use the decomposition theorem to find the desired vectors:

$$
\begin{gathered}
w=\operatorname{Proj}_{W}(y)=\frac{y \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{y \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}=\frac{4+0+0+3}{14} u_{1}+\frac{20-16+0-4}{100+16+64+16} u_{2}=\left[\begin{array}{c}
1 \\
0 \\
-1 / 2 \\
-3 / 2
\end{array}\right] \\
z=y-w=\left[\begin{array}{c}
1 \\
4 \\
1 / 2 \\
1 / 2
\end{array}\right] .
\end{gathered}
$$

Since w is the closest point in W to y, the distance is given by

$$
\|z\|=\sqrt{1+16+1 / 4+1 / 4}=\sqrt{35 / 2}
$$

6. Let W be a subspace of \mathbb{R}^{n} and let P be the standard matrix of the projection onto W, i.e., $P=\left[\operatorname{Proj}_{W}\right]$ where $\operatorname{Proj}_{W}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is the linear transformation which projects onto W. (a) Show that $P^{2}=P$. (b) Use this to show that the eigenvalues of P are all either 0 or 1 . (c) What is the eigenspace corresponding to the eigenvalue 1 of P ?
Solution: (a) There are several ways to show this:
Conceptual Way: Observe that for every vector $w \in W$, we have $w=w+0$ where $w \in W$ and $0 \in W^{\perp}$. Since the decomposition theorem says this is unique, this implies that $\operatorname{Proj}_{W}(w)=w$ for every $w \in W$. Thus, for every vector $x \in \mathbb{R}^{n}$ we have $\operatorname{Proj}_{W}\left(\operatorname{Proj}_{W}(x)\right)=\operatorname{Proj}_{W}(x)$ since $\operatorname{Proj}_{W}(x) \in W$. Thus, the linear transformations
$\operatorname{Proj}_{W}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $\operatorname{Proj}_{W} \circ \operatorname{Proj}_{W}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ are the same, which means that their standard matrices must be the same. But since $\left[\operatorname{Proj}_{W}\right]=P$ and composition corresponds to matrix multiplication, this means that $P^{2}=P$.
Algebraic way: Let u_{1}, \ldots, u_{k} be an orthonormal basis for W (by Gram-Schmidt such a basis exists) and let U be the $n \times k$ matrix with u_{1}, \ldots, u_{k} as columns. Recall from lecture that $P=U U^{T}$ and $U^{T} U=I_{k}$. Thus we have $P^{2}=\left(U U^{T}\right)\left(U U^{T}\right)=$ $U\left(U^{T} U\right) U^{T}=U(I) U^{T}=U U^{T}=P$.
(b) Assume λ is an eigenvalue of P. Then $P x=\lambda x$ for some nonzero vector x. Since $P^{2}=P$ we also have

$$
P x=P^{2} x=P(P x)=P(\lambda x)=\lambda P x=\lambda^{2} x .
$$

Thus we must have $\lambda^{2} x=\lambda x$, which since $x \neq 0$ means $\lambda^{2}=\lambda$. Thus we must have $\lambda=0$ or 1 .
(c) The eigenspace corresponding to $\lambda=1$ is the set of vectors x such that $P x=x$, which means $\operatorname{Proj}_{W}(x)=x$, which happens if and only if $x \in W$. Thus the eigenspace is simply equal to W.

