Math 54 Fall 2016 Practice Midterm 2

Nikhil Srivastava
50 minutes, closed book, closed notes

1. True or False (no need for justification):
(a) If V is a vector space with a finite basis then V is isomorphic to \mathbb{R}^{n} for some n.
(b) The system $A^{T} A x=A^{T} b$ is consistent for all A and b.
(c) If A and B are similar and A is diagonalizable then B must be diagonalizable.
(d) The rank of a square matrix is equal to the number of nonzero eigenvalues (counted with multiplicity).
(e) If x and y are arbitrary nonzero vectors in \mathbb{R}^{n} then there is a basis B of \mathbb{R}^{n} such that $[x]_{B}=y$.
(f) Every eigenvalue of a square matrix A is a pivot of A in the reduced row echelon form of A.
(g) If A is a square matrix then A and A^{T} have the same eigenvalues.
(h) An upper triangular matrix is always diagonalizable.
(i) An set of orthogonal vectors is always linearly independent.
(j) If $v_{1}, \ldots, v_{k} \in \mathbb{R}^{n}$ are linearly independent and W is a subspace of \mathbb{R}^{n} then $\operatorname{Proj}_{W}\left(v_{1}\right), \ldots, \operatorname{Proj}_{W}\left(v_{k}\right)$ must also be linearly independent.
2. Let $V=\mathbb{R}^{3 \times 3}$ denote the vector space of real 3×3 matrices with addition and scalar multiplication defined entrywise. Let

$$
M=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

and consider the subset

$$
W=\{X \in V: X M=M X\}
$$

of matrices in V which commute with M. Is W a subspace of V ? If so, prove it. If not, explain why.
3. Let $\mathbb{P}_{2}=\left\{a_{0}+a_{1} t+a_{2} t^{2}\right\}$ be the vector space of polynomials of degree at most 2 with coefficient-wise operations, and consider the linear transformation $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}$ defined by

$$
T(q)=\frac{d^{2}}{d t^{2}} q+t \cdot \frac{d}{d t} q+3 q
$$

Is there a basis \mathcal{B} of \mathbb{P}_{2} such that the matrix of T with respect to \mathcal{B} is diagonal? If so, find such a basis as well as the corresponding matrix. If not, explain why.
4. Let $A=\left[\begin{array}{cc}1 & 1 \\ -2 & 4\end{array}\right]$. Find the eigenvalues of A. Compute A^{11}.
5. Consider the vectors

$$
x_{1}=\left[\begin{array}{c}
2 \\
0 \\
-1 \\
-3
\end{array}\right] \quad x_{2}=\left[\begin{array}{c}
12 \\
-4 \\
7 \\
1
\end{array}\right] \quad y=\left[\begin{array}{c}
2 \\
4 \\
0 \\
-1
\end{array}\right]
$$

and let $W=\operatorname{Span}\left\{x_{1}, x_{2}\right\}$. Find vectors w and z such that $w \in W, z \in W^{\perp}$, and $y=w+z$. What is the distance between y and the closest point in W to y ?
6. Let W be a subspace of \mathbb{R}^{n} and let P be the standard matrix of the projection onto W, i.e., $P=\left[\operatorname{Proj}_{W}\right]$ where $\operatorname{Proj}_{W}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is the linear transformation which projects onto W. (a) Show that $P^{2}=P$. (b) Use this to show that the eigenvalues of P are all either 0 or 1 . (c) What is the eigenspace corresponding to the eigenvalue 1 of P ?

