Math 54 Fall 2016 Practice Midterm 1

Nikhil Srivastava
50 minutes, closed book, closed notes

1. (20 points) True or False (no need for justification):
(a) If the reduced row echelon form of the augmented matrix of a linear system has a column containing only zeros, then it must be consistent.
(b) If the columns of A are linearly independent, then $A x=b$ is consistent for every b.
(c) If A has linearly dependent columns, then $A x=0$ is has infinitely many solutions.
(d) If A is an $m \times n$ matrix and $b \in \mathbb{R}^{m}$, then the set of solutions to $A x=b$ is a linear subspace of \mathbb{R}^{n}.
(e) If a linear subspace of \mathbb{R}^{n} contains more than one vector, then it must contain infinitely many vectors.
(f) If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is a linear transformation then T cannot be both $1-1$ and onto.
(g) If A is an $m \times n$ matrix and B is an $n \times p$ matrix whose first column contains only zeros, then the first column of $A B$ also contains only zeros.
(h) If A, B, C are invertible then the product $A B C$ must also be invertible.
(i) If A is a square matrix such that $A^{2}=0$ then $A=0$.
(j) If A and B are square matrices of rank 2 then the product $A B$ has rank at most 2.
2. (8 points) Let $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 0\end{array}\right]$. Find a 3×2 matrix B such that $A B=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
3. (11 points) Consider the vectors

$$
v_{1}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right], v_{2}=\left[\begin{array}{c}
1 \\
-1 \\
0 \\
1
\end{array}\right], v_{3}=\left[\begin{array}{l}
3 \\
0 \\
3 \\
6
\end{array}\right], v_{4}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right], v_{5}=\left[\begin{array}{l}
2 \\
2 \\
3 \\
6
\end{array}\right] .
$$

(a) Let $H=\operatorname{span}\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$. Find a subset of the given vectors which forms a basis for H.
(b) What is the dimension of H ?
(c) Determine whether the vector

$$
w=\left[\begin{array}{l}
2 \\
0 \\
3 \\
4
\end{array}\right]
$$

lies in H.
4. (12 points) Let $T_{1}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the linear transformation defined by

$$
T_{1}\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1} \\
x_{2}+x_{3}
\end{array}\right]
$$

and let $T_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation which rotates a vector about the origin by $\pi / 4$ radians counterclockwise.
(a) Determine the standard matrix of the composition $T_{2} \circ T_{1}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by applying T_{1} and then T_{2}.
(b) Determine whether $T_{2} \circ T_{1}$ is onto.
(c) Determine whether $T_{2} \circ T_{1}$ is one to one.

5. (9 points)

(a) Give an example of a 3×3 matrix whose null space has dimension 1 .
(b) Give an example of a 3×3 matrix whose column space has dimension 1 .
(c) Is there a 3×3 matrix whose null space and column space both have dimension 1 ?

