MATH 54 FINAL EXAM, PROF. SRIVASTAVA DECEMBER 15, 2016, 8:10AM-11:00AM, 155 DWINELLE HALL.

Name:

SID: _____

INSTRUCTIONS: Write all answers in the provided space. This exam includes two pages of scratch paper, which must be submitted but will not be graded. Do not unstaple the exam. Write your name and SID on every page. Show your work — numerical answers without justification will be considered suspicious and will not be given full credit. Calculators, phones, cheat sheets, textbooks, and your own scratch paper are not allowed. If you are seen writing after time is up, you will lose 20 points.

UC BERKELEY HONOR CODE: As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others.

Sign here: _____

Question	Points
1	20
2	15
3	6
4	12
5	8
6	11
7	11
8	6
9	7
Total:	96

Do not turn over this page until your instructor tells you to do so.

- 1. (20 points) Circle always true (\mathbf{T}) or sometimes false (\mathbf{F}) for each of the following. There is no need to provide an explanation. Two points each.
 - (a) Every system of 3 linear equations in 4 variables has a solution. $\mathbf{T} = \mathbf{F}$

Solution: False. Not every 3×4 matrix has a pivot in every row, so not every system is consistent.

(b) If A is a square matrix and R is the reduced row echelon form of A then A and R must have the same eigenvalues. **T F**

Solution: False. For instance, the reduced row echelon form of every invertible matrix is the identity, but not all invertible matrices have eigenvalues equal to 1. More conceptually, row ops do not preserve eigenvalues.

(c) Suppose A and B are 10×10 matrices and v_1, \ldots, v_{10} is a basis of \mathbb{R}^{10} such that $Av_i = Bv_i$ for all $i = 1, \ldots, 10$. Then it must be the case that A = B. **T F**

Solution: True. Every $x \in \mathbb{R}^{10}$ can be written as a linear combination of v_1, \ldots, v_{10} , so we have for this linear combination:

$$Ax = A(c_1v_1 + \dots + c_{10}v_{10}) = c_1Av_1 + \dots + c_{10}Av_{10} = c_1Bv_1 + \dots = Bx.$$

Thus Ax = Bx for every x, so A and B must be the same. Another way to see this concretely is to take $x = e_1, \ldots, e_{10}$, which shows that A and B have the same columns.

(d) Suppose A and B are 10×10 matrices and v_1, \ldots, v_{10} is a basis of \mathbb{R}^{10} such that each v_i is an eigenvector of **both** A and B for $i = 1, \ldots, 10$. Then it must be the case that AB = BA. **T F**

Solution: True. Let P be a matrix containing the v_i as columns. Since both A and B have a basis of eigenvectors, they must be diagonalizable and we can write $A = PDP^{-1}$ and $B = PCP^{-1}$ for some diagonal matrices D and C. But now

$$AB = PDP^{-1}PCP^{-1} = PDCP^{-1} = PCDP^{-1} = PCP^{-1}PDP^{-1} = BA,$$

since DC = CD.

(e) If A and B are similar matrices then rank(A) = rank(B).

T F

Solution: True. Conceptual proof: Observe that A is the standard matrix of the linear transformation T(x) = Ax and $B = PAP^{-1}$ is the matrix of T with

respect to the basis contained in the columns of P^{-1} . By the correspondence principle, the dimension of the Image of T is equal to the dimension of the column spaces of A and B. Thus, these dimensions must be equal, so rank(A) =rank(B).

Algebraic Proof: Since $B = PAP^{-1}$ we have BP = PA after multiplying on the right by P. Since multiplication by an invertible matrix does not change the rank of a matrix, we have rank $(B) = \operatorname{rank}(BP)$ and rank $(PA) = \operatorname{rank}(A)$. Thus, rank $(A) = \operatorname{rank}(B)$.

(f) Suppose A is an $n \times n$ matrix and $B = \begin{bmatrix} A & A \end{bmatrix}$ is the $2n \times n$ matrix containing two copies of A side by side. Then $\operatorname{rank}(B) = 2\operatorname{rank}(A)$. **T F**

Solution: False. Since the columns of *B* are contained in the span of the columns of *A*, we have rank(B) = rank(A).

(g) If A is a real symmetric matrix then A is similar to a real diagonal matrix. $\mathbf{T} = \mathbf{F}$

Solution: True. By the spectral theorem, A is diagonalizable with real eigenvalues, so $A = PDP^{-1}$ for a real matrix D.

(h) If $v, w \in V$ are vectors in an inner product space with ||v|| = ||w|| = 1 and $||v - w|| = \sqrt{2}$, then v and w must be orthogonal. **T F**

Solution: True. We have

$$2 = \|v - w\|^2 = \|v\|^2 + \|w\|^2 + 2\langle v, w \rangle = 2 + 2\langle v, w \rangle,$$

so it must be the case that $\langle v, w \rangle = 0$.

(i) If A is an invertible $n \times n$ matrix and v and w are orthogonal vectors in \mathbb{R}^n , then Av and Aw must also be orthogonal.

TF

- **Solution:** False. For example, $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ is invertible and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ are orthogonal, but this is not preserved under multiplication by A.
- (j) The sum of any two solutions to

$$y''(t) + 3y'(t) - y(t) = e^t$$

is also a solution.

Solution: False. This is an inhomogeneous system. In particular, if y_1 and y_2 are solutions and we plug them into the left hand side, we get $2e^t$ on the right hand side, not e^t .

т ғ

- 2. For each of the following, either find an example (and explain why it has the property) or explain why no such example exists.
 - (a) (3 points) A real 3×4 matrix A and vector $b \in \mathbb{R}^3$ such that Ax = b has exactly 3 solutions.

Solution: No such matrix exists. Every linear system Ax = b has either 0, 1 or infinitely many solutions, and three is not a possibility.

(b) (4 points) A real 3×4 matrix A such that $Col(A) = \{0\}$ and $Null(A) = \{0\}$.

Solution: No such matrix exists. By the dimension theorem, we must have $\dim \operatorname{Col}(A) + \dim \operatorname{Null}(A) = 4$, so both these subspaces cannot have dimension zero.

(c) (4 points) A nonzero symmetric real 3×3 matrix A such that Col(A) = Null(A).

Solution: We are looking for a T such that $T(4te^{3t}) = 4T(te^{3t}) = 0$. This is equivalent to looking for a second order ODE ay'' + by' + cy = 0 with solution $y = te^{3t}$. Such a solution corresponds to an auxiliary equation with a double root at 3, i.e., $(r-3)^2 = r^2 - 6t + 9 = 0$. Thus, the corresponding T is given by a = 1, b = -6, c = 9.

(d) (4 points) A positive real eigenvalue $\lambda > 0$ of the linear operator:

$$T(y) = \frac{d^2}{dt^2}y + \frac{d}{dt}y$$

on the vector space

 $V = \{y : [0, \pi] \to \mathbb{R} \text{ infinitely differentiable, with } y(0) = y(\pi) = 0\}.$

Solution: No such eigenvalues exist. To see this, recall that a positive eigenvalue is a number $\lambda > 0$ such that $T(y) = \lambda y$ for a nonzero function $y \in V$, i.e.

$$y'' + y' = \lambda y.$$

This is a second order ODE with auxiliary equation $r^2 + r - \lambda = 0$, which has roots $r_1 = \frac{-1+\sqrt{1+4\lambda}}{2}$, $r_2 = \frac{-1-\sqrt{1+4\sqrt{\lambda}}}{2}$. Both roots are real and distinct, since $\lambda > 0$. Thus, the general solution to this ODE is given by

$$c_1 e^{r_1 t} + c_2 e^{r_2 t}$$

A nonzero solution in V must additionally satisfy the boundary conditions:

$$c_1 e^0 + c_2 e^0 = 0$$
 $c_1 e^{r_1 \pi} + c_2 e^{r_2 \pi} = 0.$

The first equation implies that $c_1 = -c_2$, which is inconsistent with the second equation since $r_1 \neq r_2$. Thus, there is no solution, and there are no such positive eigenvalues.

3. (6 points) For which values of $h \in \mathbb{R}$ is the following set of vectors linearly independent?

$$v_1 = \begin{bmatrix} 2\\-2\\4 \end{bmatrix} \quad v_2 = \begin{bmatrix} 4\\-6\\7 \end{bmatrix} \quad v_3 = \begin{bmatrix} -2\\2\\h \end{bmatrix}.$$

Show how you got your answer.

Solution: See the attached exam.

4. Let $\mathbb{P}_2 = \{a_0 + a_1t + a_2t^2 : a_0, a_1, a_2 \in \mathbb{R}\}$ be the vector space of polynomials of degree at most 2 with coefficient-wise operations, and consider the linear transformation $T : \mathbb{P}_2 \to \mathbb{P}_2$ defined by

$$T(q) = -\frac{d^2}{dt^2}q + 2t\cdot \frac{d}{dt}q + 3q.$$

(a) (4 points) Find a basis for the Image of T.

Solution: See the attached exam.

(b) (2 points) Is T onto? Explain why or why not.

Solution: See the attached exam.

(c) (6 points) Is there a basis \mathcal{B} of \mathbb{P}_2 such that the matrix of T with respect to \mathcal{B} is diagonal? If so, find such a basis as well as the corresponding matrix $[T]_{\mathcal{B}}$. If not, explain why.

Solution: See the attached exam.

5. Let

$$A = \begin{bmatrix} 1 & 3\\ 1 & 0\\ -1 & 0\\ 1 & 1 \end{bmatrix}$$

(a) (6 points) Compute the projection onto $\operatorname{Col}(A)^{\perp}$ of $v = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Solution: See the attached exam.

(b) (2 points) What is the distance between v and the closest vector to v in $\operatorname{Col}(A)^{\perp}$?

0

Solution: See the attached exam.

6. (a) (4 points) Find a basis for the space of real solutions to the homogeneous differential equation:

$$y''(t) + 2y'(t) + 5y(t) = 0.$$

Solution: See the attached exam.

(b) (3 points) Let V the vector space of solutions you found in part (a), and consider the linear transformation

$$S:V\to \mathbb{R}^2$$

defined by

$$S(y) = \begin{bmatrix} y(0) \\ y'(0) \end{bmatrix}.$$

Is S an isomorphism? Explain why or why not.

Solution: See the attached exam.

(c) (4 points) Find the general solution to the inhomogeneous equation:

$$y''(t) + 2y'(t) + 5y(t) = 4e^{3t} + t.$$

Solution: See the attached exam.

7. Consider the second order homogeneous differential equation:

$$y''(t) + 2y'(t) - 8y(t) = 0.$$

(a) (4 points) Reduce the above equation to a system of first order differential equations, i.e., find a 2 × 2 matrix A such that a vector valued solution $\mathbf{y}(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix}$ of

$$\mathbf{y}'(t) = A\mathbf{y}(t)$$

contains a solution to the given second order equation in its first coordinate.

Solution: See the attached exam.

(b) (4 points) Using your matrix A from part (a), find a fundamental matrix for the system:

$$\mathbf{y}'(t) = A\mathbf{y}(t).$$

Solution: See the attached exam.

(c) (3 points) Without doing any matrix arithmetic, use your answer to (b) to find a fundamental matrix for:

$$\mathbf{y}'(t) = A^3 \mathbf{y}(t)$$

Explain your reasoning.

Solution: See the attached exam.

8. (6 points) Find a solution to the heat equation on a rod of length $L = \pi$:

$$\frac{\partial}{\partial t}u(x,t) = 3\frac{\partial^2}{\partial x^2}u(x,t) \qquad u(0,t) = u(\pi,t) = 0,$$

for all t > 0, with the initial condition

$$u(x,0) = 2\sin(3x) + 3\sin(2x).$$

Solution: See the attached exam.

9. (7 points) Consider the function f(x) = |x| defined on the interval $[-\pi, \pi]$. Draw a sketch of the function. Find coefficients a_n, b_n such that

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_0 \cos(nx) + b_n \sin(nx).$$

Explain your reasoning.

Solution: See the attached exam.

Have a good break!

3. (6 points) For which values of $h \in \mathbb{R}$ is the following set of vectors linearly independent?

$$v_1 = \begin{bmatrix} 2\\-2\\4 \end{bmatrix} \quad v_2 = \begin{bmatrix} 4\\-6\\7 \end{bmatrix} \quad v_3 = \begin{bmatrix} -2\\2\\h \end{bmatrix}.$$

Show how you got your answer.

h ER 7 -4

if
$$v_1 v_2 v_3$$
 are linearly independent,
then the matrix $\begin{bmatrix} v_1 v_2 v_3 \end{bmatrix}$ has a prot in every
column $\begin{bmatrix} v_1 v_2 v_3 \end{bmatrix} = \begin{bmatrix} 2 & 4 & -2 \\ -2 & -4 & 2 \\ -4 & 7 & h \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 \\ 0 & -2 & 0 \\ 0 & -1 & h+4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & h+4 \end{bmatrix}$

This makes since because it
$$h = -4$$
, $v_1 = -v_3$ so
 $v_1 + 0v_2 + v_3 = 0$, so $v_1 v_2 v_3$ for not L.T.

4. Let $\mathbb{P}_2 = \{a_0 + a_1t + a_2t^2 : a_0, a_1, a_2 \in \mathbb{R}\}$ be the vector space of polynomials of degree at most 2 with coefficient-wise operations, and consider the linear transformation $T : \mathbb{P}_2 \to \mathbb{P}_2$ defined by

$$T(q) = -\frac{d^2}{dt^2}q + 2t \cdot \frac{d}{dt}q + 3q.$$

(a) (4 points) Find a basis for the Image of T.

Use basis
$$B = \{1, t, t\}^{2}\}$$
 for in put and output of T
 T with this basis is $A = [T(T)_{0} f(t)]_{B} [T(t)]_{B}$
 $= [B_{0} Ft + 3t]_{0} [-1 + 62(2t) + 3t^{2}]_{B}$
 $= [\frac{3}{2} \frac{9}{5} - \frac{2}{5}]$ Image $T = Col A = Spin \{[\frac{3}{2}][\frac{9}{5}][\frac{1}{2}]\}^{2} = \mathbb{R}^{2}$
proof \rightarrow
 $so = basis for the image of T
is $\{3, 5t, 7t^{2} - 2\}$$

(b) (2 points) Is T onto? Explain why or why not.

12/15/2016

(c) (6 points) Is there a basis \mathcal{B} of \mathbb{P}_2 such that the matrix of T with respect to \mathcal{B} is diagonal? If so, find such a basis as well as the corresponding matrix $[T]_{\mathcal{B}}$. If not, explain why.

When we used basis
$$\{21, 1, 6^{2}\}$$
 we get
Matrix to $\begin{bmatrix} 3 & 0 & -2 \\ 0 & 0 & 7 \end{bmatrix}$ close an new try to
diagonalize A to find a diagonal matrix for T
chara Ltaristic polynomial of A is $det \begin{bmatrix} 5 & 0 & -7 \\ 0 & 0 & 7 & -7 \\ 0 & 0 & 7 & -7 \end{bmatrix} = 0$
 $\Rightarrow (3-1)(5-2)(7-2) = 0$ $\therefore 2 - 3, 5, 7$
Equate for $A = 3$ is found $\begin{bmatrix} 0 & 0 & -2 \\ 0 & 0 & 7 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$
Eigence for $A = 3$ is found $\begin{bmatrix} 0 & 0 & -2 \\ 0 & 0 & 7 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$
Eigence for $A = 5$ is in null $\begin{bmatrix} -7 & 0 & -2 \\ 0 & 0 & 7 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
Eigence for $A = 5$ is in null $\begin{bmatrix} -7 & 0 & -2 \\ 0 & 0 & 7 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
Eigence for $A = 5$ is in null $\begin{bmatrix} -7 & 0 & -2 \\ 0 & 0 & 7 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
Eigence for $A = 5$ is in null $\begin{bmatrix} -9 & 0 & -2 \\ 0 & 0 & 7 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
So $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} -3 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 7 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 7 \end{bmatrix}$
So when we use the basis $B = \{1, 1, 2, -2k^{2} + 1\}$
 $\begin{bmatrix} T \\ B \end{bmatrix} = \begin{bmatrix} 30 & 0 \\ 0 & 5 \\ 0 & 7 \end{bmatrix}$ (diagonal)

5. Let

$$A = \begin{bmatrix} 1 & 3\\ 1 & 0\\ -1 & 0\\ 1 & 1 \end{bmatrix}.$$

(a) (6 points) Compute the projection onto $\operatorname{Col}(A)^{\perp}$ of $v = \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}$. $C_{ol}(A)^{\perp} = \operatorname{Null}(A^{\intercal}) = \operatorname{Null}\begin{bmatrix} 1 & 1 & -1 & 1\\ 3 & 0 & 1 \end{bmatrix}$ $\Rightarrow \operatorname{Ml}\begin{bmatrix} 1 & 1 & -1 & 1\\ 0 & -3 & 3 & -2 \end{bmatrix} \sim \operatorname{Null}\begin{bmatrix} 1 & 0 & 0 & \frac{1}{3} \\ 0 & 1 & -1 & \frac{2}{3} \end{bmatrix} = \operatorname{Sprm} \left\{ \begin{bmatrix} -0\\1\\0 \end{bmatrix} \begin{bmatrix} -1\\-2\\3\\3 \end{bmatrix} \right\}$ Find an arthogonal basis for $\operatorname{Spm} \left\{ \begin{bmatrix} 0\\1\\0 \end{bmatrix} \begin{bmatrix} -1\\-2\\3\\3 \end{bmatrix} \right\}$ $V_{1} = \begin{bmatrix} 0\\1\\0\\2 \end{bmatrix}$ $V_{2} = \begin{bmatrix} -1\\-2\\0\\3 \end{bmatrix} - \begin{bmatrix} \frac{1}{2}\\3\\-2\\2 \end{bmatrix} \cdot \begin{bmatrix} 1\\-2\\0\\3\\-2\\2 \end{bmatrix} = \begin{bmatrix} -1\\-1\\-1\\-3\\3 \end{bmatrix}$

$$\begin{array}{l} \operatorname{prov} \left(0 \right) \left(A \right)^{2} \text{ of } v = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ is } \operatorname{pvst} _{1} = \frac{\sqrt{2} \sqrt{2}}{\sqrt{2} \sqrt{2}} v_{1} + \frac{\sqrt{2} \sqrt{2}}{\sqrt{2} \sqrt{2}} v_{2} \\ = \frac{1}{2} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \frac{-2}{12} \begin{bmatrix} -1 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ \sqrt{2} \\ 0 \end{bmatrix} + \begin{bmatrix} \frac{\sqrt{6}}{\sqrt{6}} \\ -\frac{\sqrt{6}}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} \sqrt{6} \\ \sqrt{6} \\ -\frac{\sqrt{6}}{\sqrt{2}} \end{bmatrix}$$

(b) (2 points) What is the distance between
$$v$$
 and the closest vector to v in $Col(A)^{\perp}$?
 $cbsst$ vector to v in $Col(A)^{\perp}$ is zhe projection
 $dist=$ we just found of $dist(v, point) = 1|v-v'|l = \overline{J(v-v')} \cdot (v-v')$
 $Vi_{i} = \frac{5/6}{2/6} = \int \frac{5/6}{2} = \int \frac{1}{26}$

Math 54 Final

Page 10 of 16

12/15/2016

6. (a) (4 points) Find a basis for the space of real solutions to the homogeneous differential equation:

$$y''(t) + 2y'(t) + 5y(t) = 0.$$

Auxilog eqn is $r^{2} + 2r + 5 = 0$

$$r^{2} = \frac{-2 \pm \sqrt{4-10}}{2} = -1 \pm 2i$$

when $r = 0 + ib$ is a root of oux eqn, 9

$$tasis for a sols is \left\{ e^{\alpha t} \cos bt, e^{\alpha t} \sin bt \right\}$$

So basis for space of real solars here is

$$\left\{ e^{t} \cos 2t, e^{-t} \sin 2t \right\}$$

(b) (3 points) Let V the vector space of solutions you found in part (a), and consider the linear transformation

$$S: V \to \mathbb{R}^2$$

defined by

$$S(y) = \begin{bmatrix} y(0) \\ y'(0) \end{bmatrix}.$$

Is S an isomorphism? Explain why or why not. Using the besis we find above the transformation matrix A for S is $\begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix} \sim \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ $y_1(0) = -e^{0} \cos 2(0) - 2 \sin 2(0) e^{0} = -1$ $y_2'(0) = -e^{0} \sin 2(0) + 2e^{0} \cos 2(0) = 2$ $y_2'(0) = -e^{0} \sin 2(0) + 2e^{0} \cos 2(0) = 2$ (so wrons Kijn know holds (plawph))

(c) (4 points) Find the general solution to the inhomogeneous equation:

$$y''(t) + 2y'(t) + 5y(t) = 4e^{3t} + t.$$
First had a particular solution to $y'(t) + 2y'(t) + 5y(t)$

> hed particulas for $y_{1}^{*}(t) = 3 + 4 + 5pprafely and add elem$

for $y_{1}e^{3t}$, $try = \frac{1}{2}e^{3t}$, $y''(t) + 2y'(t) + 5y(t) = 9c_{1}e^{3t} + 6c_{1}e^{3t} + 5c_{1}e^{3t}$

= $20c_{1}e^{3t}$, $c_{1} = \frac{1}{5}$, so $y(t) = \frac{1}{5}e^{3t}$

for t , $try = y(t) + 2y'(t) + 5y(t) = 2a_{1} + 5a_{0} + 5a_{1} + e^{-2}$

 $a_{1} = \frac{1}{5}$

 $a_{0} = \frac{-2}{25}$ so $y(t) = \frac{1}{5}e^{3t} + \frac{1}{5}t$

So a productor solution is $y(t) = \frac{1}{5}e^{3t} + \frac{1}{5}t - \frac{2}{5}s$

to for t , 0 and 0 add $2e$ particular to the space of t and t

 $a_{1} = \frac{1}{5}$

 $a_{0} = \frac{-2}{25}$ so $y(t) = \frac{1}{5}e^{3t} + \frac{1}{5}t - \frac{2}{5}s$

to find space of t and t are fixed in a_{1} . See so a_{1}

7. Consider the second order homogeneous differential equation:

$$y''(t) + 2y'(t) - 8y(t) = 0.$$

(a) (4 points) Reduce the above equation to a system of first order differential equations, i.e., find a 2 × 2 matrix A such that a vector valued solution $\mathbf{y}(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix}$ of

$$\mathbf{y}'(t) = A\mathbf{y}(t)$$

contains a solution to the given second order equation in its first coordinate.

$$\begin{bmatrix} et & y_1(t) = y_1 \\ t \\ y_2'(t) = y''(t) = \delta(y(t) - 2y'(t) = \delta(y_1(t) - 2y_2(t)) \\ s_0 & \left[y_2' \right]' = \left[0 \\ s - 2 \right] \left[y_2 \\ y_2 \right] \\ (A = \left[0 \\ s - 2 \right] \right]$$

(b) (4 points) Using your matrix A from part (a), find a fundamental matrix for the system:

$$\mathbf{y}'(t) = A\mathbf{y}(t).$$

To do this find eigness of
$$A = \begin{bmatrix} 0 & 1 \\ 8 & -2 \end{bmatrix} \Rightarrow det \begin{bmatrix} -\lambda & 1 \\ 8 & \lambda - \lambda \end{bmatrix} = 0$$

$$\Rightarrow \lambda^{2} + 2\lambda - 8 = 0 \quad (\lambda + 4)(\lambda - 2) = 0 \quad \lambda = -4, 2$$
eignes for $\lambda = -4$ is in null $\begin{bmatrix} +4 & 1 \\ 8 & 2 \end{bmatrix}$ so $\begin{bmatrix} -4 \\ -4 \end{bmatrix}$
eignes for $\lambda = 2$ is in null $\begin{bmatrix} -2 & 1 \\ 8 & 2 \end{bmatrix}$ so $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$
So find soln is $q e^{4} \in \begin{bmatrix} -4 \\ -4 \end{bmatrix} + c_{1}e^{2} \in \begin{bmatrix} 1 \\ 2 \end{bmatrix}$
So q find matrix is $\begin{bmatrix} -44 & e^{24} \\ -4e^{-44} & 2e^{24} \end{bmatrix}$

Math 54 Final

Page 13 of 16

Name and SID:

(c) (3 points) Without doing any matrix arithmetic, use your answer to (b) to find a fundamental matrix for:

$$\mathbf{y}'(t) = A^3 \mathbf{y}(t).$$

Explain your reasoning.

$$\begin{bmatrix} e^{yy} & e^{y} & e^{y} \\ e^{y} e^{y} \\ e^{y} & e^{y} \\ e$$

8. (6 points) Find a solution to the heat equation on a rod of length $L = \pi$:

$$\frac{\partial}{\partial t}u(x,t) = 3\frac{\partial^2}{\partial x^2}u(x,t)$$
 $u(0,t) = u(\pi,t) = 0,$

for all t > 0, with the initial condition

 $u(x,0) = 2\sin(3x) + 3\sin(2x).$

We can use superposition and find solutions for
$$u(x,0) = 2s(n3x)$$

and $u(x,0) = 3sin(2x)$ separately then add then
for $u(x_{10}) = c_{1} sin(2\pi x)$; a solar is $u(x_{1}e) = c_{1} e^{i\beta(2\pi x)^{2}} sin(2\pi x)$
here Letti, $B = 3$, so for $u(x_{1}0) = 2sin^{3}x - solar$ is $2e^{i\pi x} sin^{3}x$
for $u(x_{1}0) = a solar$ is $3e^{-i2t} sin^{2}x$
So a solution for $u(x_{1}0) = 2sin(3x) + 3sin(2x)$
is $u(x_{1}t) = 2e^{i2\pi t} sin^{3}x + 3e^{i2\pi t} sin^{2}x$

Math 54 Final

cleck

9. (7 points) Consider the function f(x) = |x| defined on the interval $[-\pi, \pi]$. Draw a sketch of the function. Find coefficients a_n, b_n such that

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_0 \cos(nx) + b_n \sin(nx).$$

fox)

1 - 1 C

Explain your reasoning.

A sketer of the function is

$$a_{n} = \frac{\langle |k|, \cos nx \rangle}{\langle \cos nx, \cos nx \rangle}$$

$$b_{n} = \frac{\langle |x|, \sin (nx) \rangle}{\langle \sin (nx), \sin (nx) \rangle}$$

$$b_{n} = \frac{\langle |x|, \sin (nx) \rangle}{\langle \sin (nx), \sin (nx), \sin (nx) \rangle}$$

$$a_{n} = \frac{1}{\pi} \left(\frac{1}{n^{2}} \cos (n\pi) - \frac{1}{n^{2}} \right)$$

$$b_{n} = \frac{1}{\pi} \left(\frac{1}{n^{2}} \cos (n\pi) - \frac{1}{n^{2}} \right)$$

$$b_{n} = \frac{\langle |x|, \sin (nx) \rangle}{\langle \sin (nx), \sin (nx),$$

Math 54 Final