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Math 54 Fall 2016 Practice Final Solutions

Nikhil Srivastava

180 minutes, closed book, closed notes

1. (20 pts) True or False (no need for justification):

(a) If AB = 0 for two square matrices A and B then either A = 0 or B = 0.

Solution: False. Consider A =

[
1 0
0 0

]
and B =

[
0 0
0 1

]
.

(b) If A is a square invertible matrix then A and A−1 have the same rank.

Solution: True. If A is invertible A−1 is also invertible, so they both have full
rank (equal to n if both are n× n).

(c) If A and B are square and invertible then AB and BA have the same eigenvalues.

Solution: True. Since B is invertible, we have

B(AB)B−1 = BABB−1 = BA,

so AB and BA are similar, and therefore have the same eigenvalues.

(d) If every entry of a square matrix A is nonzero, then det(A) 6= 0.

Solution: False. Consider A =

[
1 1
1 1

]
, which has linearly dependent columns

and is not invertible.

(e) The sum of two diagonalizable matrices must be diagonalizable.

Solution: False. For example, if A =

[
1 1
0 2

]
and B =

[
−1 0
0 −2

]
then A and B

are diagonalizable, but A+B is not diagonalizable.

(f) If A is an m× n matrix then the rank of ATA is equal to the rank of A.

Solution: True. We will show that ATA and A have the same null space. By the
dimension theorem, which says that n = rank(A) + dim Null(A) = rank(ATA) +
dim Null(ATA), this will imply that they have the same rank.

Suppose x ∈ Null(A). Then Ax = 0 so ATAx = 0, and x must be in Null(ATA).

For the other direction, suppose ATAx = 0. Let y = Ax; our goal is to show
that y = 0, which would imply x ∈ Null(A). Observe that y ∈ Col(A). Suppose
the columns of A are a1, . . . , am. Since these are the rows of AT , our equation
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ATAx = ATy = 0 implies that y · ai = 0 for all i, which means y ∈ Col(A)⊥. This
means y is orthogonal to itself, so y = 0, as desired.

This was the hardest question on the exam. Understanding all the steps is a
good way to make sure you are comfortable with dot products, transposes, and
orthogonal complements.

(g) If A = AT and the only eigenvalue of A is λ = 1, then A = I.

Solution: True. By the spectral theorem A is diagonalizable since it is sym-
metric, i.e., A = PDP−1 (actually the theorem says P is orthogonal, but we will
not use this fact). Since 1 is the only eigenvalue we must have D = I. But now
A = PP−1 = I.

(h) Any two orthogonal vectors in an inner product space must be linearly indepen-
dent.

Solution: False. If both the vectors are equal to zero, then they are orthogonal
but not linearly independent.

I did not mean this to be a trick question. I just missed an important word: I
should have asked if this is true for two NONZERO vectors. In that case, it is
true. For if 〈v, w〉 = 0 and v = cw the n 〈v, cv〉 = c〈v, v〉 = 0, which implies that
v = 0, which is not the case.

(i) Suppose W is a subspace of Rn. If v1, . . . , vk is a basis for W and u1, . . . , u` is a
basis for W⊥ then v1, . . . , vk, u1, . . . , u` must be a basis for Rn.

Solution: True. Assume y ∈ Rn. By the unique decomposition theorem we have
y = ŷ + z for unique vectors ŷ ∈ W and z ∈ W⊥. Since v1, . . . , vk and u1, . . . , u`
are bases for W and W⊥ respectively, there are unique coefficients c1, . . . , ck and
b1, . . . , b` such that ŷ = c1v1 + . . . + ckvk and z = b1u1 + . . . , b`u`. But now
y = c1v1 + . . .+ b`u` is a unique linear combination of v1, . . . u`. Since this is true
for all y ∈ Rn, this set must be a basis for Rn.

(j) Two real-valued functions y1(t) and y2(t) are linearly independent if and only if
their Wronskian determinant is nonzero everywhere.

Solution: False. This is only necessarily true when y1(t) and y2(t) are solutions
of a differential equation.

2. (20 pts) For each of the following, either find an example (and explain why it has the
property) or explain why no such example exists.

• A differential operator T = a(d2/dx2) + b(d/dx) + cI with a 6= 0 on the vector
space

V = {f : R→ R, f is infinitely differentiable}

which is one to one.

Solution: There is no such T . Since a second order linear ODE with constant
coefficients always has a nontrivial solution (by examining roots of the auxiliary
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equation), for every T there exists some nonzero function y such that T (y) = 0.
But now ker(T ) 6= {0}, so T cannot be one to one.

• A second order linear differential equation with constant coefficients which has
y(t) = et and y(t) = sin(t) among its solutions.

Solution: There is no such equation. Any such equation falls into one of three
categories: the auxiliary equation has distinct real roots, a double real root, or
complex conjugate roots, in which case the general solution is c1e

r1t + c2e
r2t, or

c1e
rt + c2te

rt, or c1e
αt sin(βt) + c2e

αt cos(βt), respectively. So if sin(t) is a solution
then eit must be a root of the auxiliary polynomial. If et is a solution then 1 must
be a root. But a real polynomial cannot have one real and one complex root, so
this is impossible.

I should have said second order homogeneous linear diff eq. If you allow inho-
mogeneous equations, the answer is yes — just take a second order equation with
homogeneous solution sin(t) and right hand side equal to et.

• A 2 × 2 real matrix A such that the system of ODE y′(t) = Ay(t), y : R → R2,
has a fundamental matrix [

−et e2t

et 2e2t

]
.

Recall that if A is diagonalizable, the solution space of y′(t) = Ay(t) is spanned
by eλtv where Av = λv are eigenvalue-eigenvector pairs of A. This means that
the fundamental matrix for a 2× 2 diagonalizable system is F (t) = [eλ1tv1e

λ2tv2].

To obtain the matrix above, we take λ1 = 1, λ2 = 2 and v1 =

[
−1
1

]
, v2 =

[
1
2

]
.

The corresponding A is A = PDP−1 where D has diagonal entries 1 and 2 and
P has columns v1 and v2. The row reduction/matrix multiplication steps for
calculating A are omitted (and it is fine to give an example without working out
all the arithmetic — the important thing is the reasoning that brought you to the
example).

• A square matrix A such that A is not diagonal and A2 = A.

Solution: There are many possibilities here. One is to take A = [ProjW ] for
some one dimensional subspace W of R2 (or more generally, any strict subspace
of Rn). Since ProjW ◦ ProjW = ProjW we automatically have A2 = A. For

instance, taking W = span{
[
1
1

]
} gives A =

[
1/2 1/2
1/2 1/2

]
.

In general, it is good to remember that the matrix of the projection onto a one-
dimensional subspace spanned by a vector v with is just A = vvT/‖v‖2, since

ProjW (x) = (vT x)
‖v‖2 v

• Two linearly independent vector-valued functions y1 : R → R2 and y2 : R → R2

such that the vectors y1(0) and y2(0) are linearly dependent in R2.
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Solution: Again there are many options. We are just looking for two vector
valued functions which are not the same, but which have parallel values at zero.
So consider:

y1(t) =

[
1
et

]
y2(t) =

[
1
e2t

]
.

Since y1 6= cy2 these are linearly independent, but

y1(0) = y2(0) =

[
1
1

]
.

3. (6 pts) Let

V = span




1
2
3
4

 ,


0
4
1
−1


 ,W = span




4
3
1
−6

 ,


2
1
2
1




be subspaces of R4. Find a nonzero vector in V ∩W (i.e., which is in both subspaces).

Solution: Using the definition of span, we see that we are looking for coefficients
c1, c2, c3, c4 (not all zero) such that

c1


1
2
3
4

+ c2


0
4
1
−1

 = c3


4
3
1
−6

+ c4


2
1
2
1

 .
By moving everything to one side, we find that this is the same as solving

1 0 −4 −2
2 4 −3 −1
3 1 −1 −2
4 −1 6 −1



c1
c2
c3
c4

 = 0.

The RREF of A is 1 0 0 −2/3
0 1 0 1/3
0 0 1 1/3

 ,
so by setting the free variable c4 = 3 we have the solution c1 = 2, c2 = −1, c3 =
−1, c4 = 3. To get an actual vector in V ∩W , we take the linear combination:

2


1
2
3
4

−


0
4
1
−1

 =


2
0
5
9

 .
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To double check that this worked, we also calculate:

−


4
3
1
−6

+ 3


2
1
2
1

 =


2
0
5
9.


4. (8 pts) Consider the vector space of 2× 2 real matrices with entrywise addition:

V =

{[
a b
c d

]
: a, b, c, d ∈ R

}
,

and consider the function T : V → V defined by

T (X) = X +XT .

(a) Show that T is a linear transformation.
(b) Find a basis for Ker(T ).
(c) Find a basis for Im(T ).
(d) Find an eigenvector of T , along with the corresponding eigenvalue.

Solution: (a) We check that

T (X+Y ) = (X+Y )+(X+Y )T = X+Y+XT+Y T = (X+XT )+(Y+Y T ) = T (X)+T (Y )

and
T (cX) = cX + (cX)T = c(X +XT )

so T is linear.
(b) Let us find the matrix of T with respect to the basis E =

e1 =

[
1 0
0 0

]
, e2 =

[
0 1
0 0

]
, e3 =

[
0 0
1 0

]
, e4 =

[
0 0
0 1

]
.

We have
T (e1) = 2e1, T (e2) = e2 + e3, T (e3) = e3 + e2T (e4) = 2e4,

so

[T ]E =


2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2

 .
Row reducing this matrix (do it!) reveals that the Null space of [T ] is spanned by the
vector 

0
1
−1
0

 ,
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so the Kernel of T is spanned by

e2 − e3 =

[
0 1
−1 0

]
.

This makes sense since T (X) = X + XT = 0 implies that X = −XT , which implies
that the diagonal entries of X are zero and the off diagonals are negatives of each other.
In fact, this is a perfectly valid alternative method to arrive at the same conclusion.

(c) Again by applying row reduction to [T ], we find that the pivot columns 1, 2, 4 form
a basis for Col([T ]). The corresponding vectors in V are 2e1, e2 + e3, and 2e4, so these
must form a basis for the image of T .

Again, this makes sense, since a moment’s thought reveals that the span of the three
vectors above is just the set of symmetric matrices X = XT .

(d) The question just asks for one eigenvector, so before trying to compute all of them
it is good to inspect [T ] to see if any eigenvectors are staring you in the face. Since the
first and last columns are multiples of standard basis vectors, we immediately see that

[T ]


1
0
0
0

 = 2


1
0
0
0

 and [T ]


0
0
0
1

 = 2


0
0
0
1

 .
Thus, the corresponding vectors in V :

e1 =

[
1 0
0 0

]
,

[
0 0
0 1

]
are eigenvectors of T (either one is fine). There are other eigenvectors, but these are
the easiest to find.

5. (6 pts) For which real values of a is the matrix[
1 a
0 1

]
diagonalizable? For which a is it invertible?

Solution: Since the matrix is upper triangular, its eigenvalues are equal to the diag-
onal entries, which are just 1. The corresponding eigenspace is

E1 = Null(

[
0 a
0 0

]
).

If a 6= 0 then this matrix has one pivot, and so the null space has dimension one, and
the matrix is not diagonalizable. If a = 0 then it is just zero, and the nullspace is all
of R2, so it is diagonalizable. Thus, the matrix is diagonalizable if and only if a = 0.

Since the above matrix is in REF and has a pivot in every row, it is always invertible
(for every value of a).
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6. (7 pts) Let V be the vector space of all real valued continuous functions on the interval
[0, 1], and consider the inner product

〈f, g〉 =

∫ 1

0

f(x)g(x)dx.

Find a nonzero function in V which is orthogonal to the functions x and x2, with
respect to this inner product.

Solution: We are looking for a function f : [0, 1]→ R such that 〈f, x〉 = 〈f, x2〉 = 0.
Instead of guessing, let’s start with any function that is not in W = span{x, x2}.; the
simplest is the constant function g(x) = 1, and you can check that this is not in W
by writing down the linear combination and comparing coefficients. By the unique
decomposition theorem, there are unique vectors f and h such that g = h + f with
h ∈ W and f ∈ W⊥. To find h, we first find an orthogonal basis for W : applying
Gram-Schmidt to x, x2 we obtain the basis

b1 = x

b2 = x2 − 〈x
2, x〉
〈x, x〉

x = x2 −
∫ 1

0
x3dx∫ 1

0
x2

x = x2 − 3x/4.

The projection h is now given by:

h =
〈1, b1〉
〈b1, b1〉

b1 +
〈1, b2〉
〈b2, b2〉

b2.

We calculate the integrals:

〈1, b1〉 =

∫ 1

0

xdx = 1/2,

〈b1, b1〉 =

∫ 1

0

x2dx = 1/3,

〈1, b2〉 =

∫ 1

0

x2 − 3x/4dx = 1/3− 3/8 = −1/24,

〈b2, b2〉 =

∫ 1

0

(x2 − 3x/4)2dx =

∫ 1

0

x4 − 3x3/2 + 9x2/16dx = 1/5− 3/8 + 3/16 = 1/80.

Plugging these in, we have

h =
1/2

1/3
x− 1

24
1/80(x2 − 3x/4),

so
f = g − h = 1− 4x10/3x2

is orthogonal to both x and x2, as desired.

Note that the answer to this question is not unique, and you will get different answers
if you start with different g.
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7. (10 pts) (a) Find a basis of real solutions to the homogeneous differential equation

y′′(t)− 2y′(t) + 2y(t) = 0.

(b) Find the general solution to the inhommogeneous equation

y′′(t)− 2y′(t) + 2y(t) = t2 + et.

(c) Find a solution to (b) satisfying the initial conditions y(0) = 1 and y′(0) = 2.
(d) Write the equation in (a) as T1 ◦ T2(y) = 0 for two first order differential operators
T1 and T2.

Solution: (a) The auxiliary polynomial is r2 − 2r + 2 = (r − (1 + i))(r − (1 − i)).
Thus, e(1+i)t, e(1−i)t form a basis for the space of complex solutions, and taking real
and imaginary parts using Euler’s identity we obtain the basis et sin(t), et cos(t) of real
solutions.
(b) First we find a particular solution to the inhomogeneous equation using the su-
perposition principle. We write f(t) = f1(t) + f2(t) for f1 = t2 and f2 = et. For the
inhomogeneity f1 the method of undetermined coeffs tells us there is a solution of the
form y(t) = a0 + a1t+ a2t

2; plugging this into the equation we obtain

2a2 − 2(a1 + 2ta2) + 2(a0 + a1t+ a2t
2) = f1(t) = t2.

Matching coefficients gives:
2a2 − 2a1 + 2a0 = 0

−4a2 + 2a1 = 0

2a2 = 1.

which is easily solved by substitution to yield a2 = 1/2, a2 = 1, a0 = 1/2, so yp1(t) =
t2/2 + t + 1/2 is a particular solution to T (y) = f1. For the other inhomgeneity
f2(t) = et we observe since 1 is not a root of the auxiliary polynomial, there must be
a particular solution of form yp2(t) = cet. Substituting, we get:

cet − 2cet + 2cet = et ⇒ c = 1.

Thus, yp2(t) = et is a solution to T (y) = f2.

By the superposition principle, the sum

yp(t) = t2/2 + t+ 1/2 + et

is a particular solution to T (y) = f1+f2. Thus, a general solution to the inhomogeneous
equation is given by

y(t) = c1e
t sin(t) + c2e

t cos(t) + t2/2 + t+ 1/2 + et.
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(c) To solve the initial value problem, we plug in the initial data:

y(0) = c1(0) + c2(1) + 1/2 + 1 = 1,

y′(0) = c1(e
0 cos(0) + e0 sin(0)) + c2(−e0 sin(0) + e0 cos(0)) + 1 + e0 = 2.

The first equation is just c2 = −1/2, and the second becomes

c1 − 1/2 + 2 = 2→ c1 = 1/2.

So the solution to the IVP is

(1/2)et sin(t)− (1/2)et cos(t) + t2/2 + t+ 1/2 + et.

(d) Applying the same factorization as the auxiliary polynomial, we have

T = (d2/dt2)− 2(d/dt) + 2I = (d/dt− (1 + i)I)(d/dt− (1− i)I),

and since multiplying operators corresponds to composition, we can take T1 = d/dt−
(1 + i)I and T2 = d/dt− (1− i)I. (the order doesn’t matter)

8. (8 pts) Find functions y1(t) and y2(t) such that

y′1 = −2y1 + 2y2 y′2 = 2y1 + y2

and y1(0) = −1, y2(0) = 3.

Solution: Writing this in normal form for y(t) =

[
y1(t)
y2(t)

]
, we have

y′(t) =

[
−2 2
2 1

]
y(t) = Ay(t).

First we find the general solution, which can be derived from the eigenvalues and
eigenvectors of A. The characteristic polynomial is

det(A− tI) = det

[
−2− t 2

2 1− t

]
= −(1− t)(2 + t)− 4 = t2 + t− 6 = (t+ 3)(t− 2),

and the corresponding eigenvectors are

E−3 = Null

[
1 2
2 4

]
= span{

[
2
−1

]
}.

E2 = Null

[
−4 2
2 −1

]
= span{

[
1
2

]
}.
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Let us call these vectors v1 and v2 respectively. Then, a basis of solutions is given by
e−3tv1 and e2tv2, and the general solution is c1e

−3tv1 + c2e
2tv2. To solve the IVP we

plug in t = 0:

c1v1 + c2v2 =

[
−1
3

]
,

which can be solved by row reducing[
2 1 −1
−1 2 3

]
to obtain c1 = −1, c2 = 1, which yields the solution

−e−3tv1 + e2tv2 =

[
−2e−3t + e2t

e−3t + 2e2t

]
.

9. (7 pts) Find a real-valued function u : [0, π]×R→ R which satisfies the heat equation

∂

∂t
u(x, t) = 2

∂2

∂x2
u(x, t) u(0, t) = u(π, t) = 0,

for all t > 0, as well as the initial condition

u(x, 0) = sin(3x)− sin(5x).

Solution: We use the superposition principle. The solution for initial data u(x, 0) =
sin(3x) is e−2(3)

2t sin(3x), and for u(x, 0) = − sin(5x) it is−e−2(5)2t sin(5x). By linearity,
the solution for the given initial data is

u(x, t) := e−18t sin(3t)− e−50t sin(5t).

10. (8 pts) Consider the function f : [−π, π] → R defined by f(x) = | sin(x)|. Draw a
sketch of the function. Find coefficients an, bn such that

f(x) =
a0
2

+
∞∑
n=1

a0 cos(nx) + bn sin(nx).

(hint: use the product to sum trig formulas)

Solution: The sketching is just so that you realize that the given function is even.
This implies that the sine coefficients bn = 0 for n = 1, 2, . . ., since

bn =
1

π

∫ π

−π
f(x) sin(nx)dx = 0

because the integrand is a product of an even function and an odd function, and
therefore odd.

10



We find the remaining coefficients by computing the integrals:

a0/2 =
1

2π

∫ π

−π
| sin(x)|dx =

1

π

∫ π

0

sin(x)dx =
1

π
(− cos(π) + cos(0)) =

2

π
.

For the other coefficients we have

an =
1

π

∫ π

−π
| sin(x)| cos(nx)dx =

2

π

∫ π

0

sin(x) cos(nx)dx.

We now apply the product to sum formula 2 sin(a) cos(b) = sin(a+ b) + sin(a− b):

an =
1

π

∫ π

0

sin((1 + n)x) + sin((1− n)x)dx

which integrates to

an = − 2

π

cos(nπ) + 1

n2 − 1

when n 6= 1 and

a1 =
1

2π

∫ π

0

sin(2x)dx = 0.

Note that the terms an are nonzero only when n is an even integer.

11


