Math 54 Fall 2016 Practice Final Solutions

Nikhil Srivastava
180 minutes, closed book, closed notes

1. (20 pts) True or False (no need for justification):
(a) If $A B=0$ for two square matrices A and B then either $A=0$ or $B=0$.

Solution: False. Consider $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$.
(b) If A is a square invertible matrix then A and A^{-1} have the same rank.

Solution: True. If A is invertible A^{-1} is also invertible, so they both have full rank (equal to n if both are $n \times n$).
(c) If A and B are square and invertible then $A B$ and $B A$ have the same eigenvalues. Solution: True. Since B is invertible, we have

$$
B(A B) B^{-1}=B A B B^{-1}=B A
$$

so $A B$ and $B A$ are similar, and therefore have the same eigenvalues.
(d) If every entry of a square matrix A is nonzero, then $\operatorname{det}(A) \neq 0$.

Solution: False. Consider $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$, which has linearly dependent columns and is not invertible.
(e) The sum of two diagonalizable matrices must be diagonalizable.

Solution: False. For example, if $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]$ and $B=\left[\begin{array}{cc}-1 & 0 \\ 0 & -2\end{array}\right]$ then A and B are diagonalizable, but $A+B$ is not diagonalizable.
(f) If A is an $m \times n$ matrix then the rank of $A^{T} A$ is equal to the rank of A.

Solution: True. We will show that $A^{T} A$ and A have the same null space. By the dimension theorem, which says that $n=\operatorname{rank}(A)+\operatorname{dim} \operatorname{Null}(A)=\operatorname{rank}\left(A^{T} A\right)+$ $\operatorname{dim} \operatorname{Null}\left(A^{T} A\right)$, this will imply that they have the same rank.
Suppose $x \in \operatorname{Null}(A)$. Then $A x=0$ so $A^{T} A x=0$, and x must be in $\operatorname{Null}\left(A^{T} A\right)$. For the other direction, suppose $A^{T} A x=0$. Let $y=A x$; our goal is to show that $y=0$, which would imply $x \in \operatorname{Null}(A)$. Observe that $y \in \operatorname{Col}(A)$. Suppose the columns of A are a_{1}, \ldots, a_{m}. Since these are the rows of A^{T}, our equation
$A^{T} A x=A^{T} y=0$ implies that $y \cdot a_{i}=0$ for all i, which means $y \in \operatorname{Col}(A)^{\perp}$. This means y is orthogonal to itself, so $y=0$, as desired.
This was the hardest question on the exam. Understanding all the steps is a good way to make sure you are comfortable with dot products, transposes, and orthogonal complements.
(g) If $A=A^{T}$ and the only eigenvalue of A is $\lambda=1$, then $A=I$.

Solution: True. By the spectral theorem A is diagonalizable since it is symmetric, i.e., $A=P D P^{-1}$ (actually the theorem says P is orthogonal, but we will not use this fact). Since 1 is the only eigenvalue we must have $D=I$. But now $A=P P^{-1}=I$.
(h) Any two orthogonal vectors in an inner product space must be linearly independent.
Solution: False. If both the vectors are equal to zero, then they are orthogonal but not linearly independent.
I did not mean this to be a trick question. I just missed an important word: I should have asked if this is true for two NONZERO vectors. In that case, it is true. For if $\langle v, w\rangle=0$ and $v=c w$ the $n\langle v, c v\rangle=c\langle v, v\rangle=0$, which implies that $v=0$, which is not the case.
(i) Suppose W is a subspace of \mathbb{R}^{n}. If v_{1}, \ldots, v_{k} is a basis for W and u_{1}, \ldots, u_{ℓ} is a basis for W^{\perp} then $v_{1}, \ldots, v_{k}, u_{1}, \ldots, u_{\ell}$ must be a basis for \mathbb{R}^{n}.
Solution: True. Assume $y \in \mathbb{R}^{n}$. By the unique decomposition theorem we have $y=\hat{y}+z$ for unique vectors $\hat{y} \in W$ and $z \in W^{\perp}$. Since v_{1}, \ldots, v_{k} and u_{1}, \ldots, u_{ℓ} are bases for W and W^{\perp} respectively, there are unique coefficients c_{1}, \ldots, c_{k} and b_{1}, \ldots, b_{ℓ} such that $\hat{y}=c_{1} v_{1}+\ldots+c_{k} v_{k}$ and $z=b_{1} u_{1}+\ldots, b_{\ell} u_{\ell}$. But now $y=c_{1} v_{1}+\ldots+b_{\ell} u_{\ell}$ is a unique linear combination of $v_{1}, \ldots u_{\ell}$. Since this is true for all $y \in \mathbb{R}^{n}$, this set must be a basis for \mathbb{R}^{n}.
(j) Two real-valued functions $y_{1}(t)$ and $y_{2}(t)$ are linearly independent if and only if their Wronskian determinant is nonzero everywhere.
Solution: False. This is only necessarily true when $y_{1}(t)$ and $y_{2}(t)$ are solutions of a differential equation.
2. (20 pts) For each of the following, either find an example (and explain why it has the property) or explain why no such example exists.

- A differential operator $T=a\left(d^{2} / d x^{2}\right)+b(d / d x)+c I$ with $a \neq 0$ on the vector space

$$
V=\{f: \mathbb{R} \rightarrow \mathbb{R}, f \text { is infinitely differentiable }\}
$$

which is one to one.
Solution: There is no such T. Since a second order linear ODE with constant coefficients always has a nontrivial solution (by examining roots of the auxiliary
equation), for every T there exists some nonzero function y such that $T(y)=0$. But now $\operatorname{ker}(T) \neq\{0\}$, so T cannot be one to one.

- A second order linear differential equation with constant coefficients which has $y(t)=e^{t}$ and $y(t)=\sin (t)$ among its solutions.
Solution: There is no such equation. Any such equation falls into one of three categories: the auxiliary equation has distinct real roots, a double real root, or complex conjugate roots, in which case the general solution is $c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$, or $c_{1} e^{r t}+c_{2} t e^{r t}$, or $c_{1} e^{\alpha t} \sin (\beta t)+c_{2} e^{\alpha t} \cos (\beta t)$, respectively. So if $\sin (t)$ is a solution then $e^{i t}$ must be a root of the auxiliary polynomial. If e^{t} is a solution then 1 must be a root. But a real polynomial cannot have one real and one complex root, so this is impossible.
I should have said second order homogeneous linear diff eq. If you allow inhomogeneous equations, the answer is yes - just take a second order equation with homogeneous solution $\sin (t)$ and right hand side equal to e^{t}.
- A 2×2 real matrix A such that the system of $\operatorname{ODE} y^{\prime}(t)=A y(t), y: \mathbb{R} \rightarrow \mathbb{R}^{2}$, has a fundamental matrix

$$
\left[\begin{array}{cc}
-e^{t} & e^{2 t} \\
e^{t} & 2 e^{2 t}
\end{array}\right]
$$

Recall that if A is diagonalizable, the solution space of $y^{\prime}(t)=A y(t)$ is spanned by $e^{\lambda t} v$ where $A v=\lambda v$ are eigenvalue-eigenvector pairs of A. This means that the fundamental matrix for a 2×2 diagonalizable system is $F(t)=\left[e^{\lambda_{1} t} v_{1} e^{\lambda_{2} t} v_{2}\right]$. To obtain the matrix above, we take $\lambda_{1}=1, \lambda_{2}=2$ and $v_{1}=\left[\begin{array}{c}-1 \\ 1\end{array}\right], v_{2}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$. The corresponding A is $A=P D P^{-1}$ where D has diagonal entries 1 and 2 and P has columns v_{1} and v_{2}. The row reduction/matrix multiplication steps for calculating A are omitted (and it is fine to give an example without working out all the arithmetic - the important thing is the reasoning that brought you to the example).

- A square matrix A such that A is not diagonal and $A^{2}=A$.

Solution: There are many possibilities here. One is to take $A=\left[\operatorname{Proj}_{W}\right]$ for some one dimensional subspace W of \mathbb{R}^{2} (or more generally, any strict subspace of \mathbb{R}^{n}). Since $\operatorname{Proj}_{W} \circ \operatorname{Proj}_{W}=\operatorname{Proj}_{W}$ we automatically have $A^{2}=A$. For instance, taking $W=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$ gives $A=\left[\begin{array}{ll}1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right]$.
In general, it is good to remember that the matrix of the projection onto a onedimensional subspace spanned by a vector v with is just $A=v v^{T} /\|v\|^{2}$, since $\operatorname{Proj}_{W}(x)=\frac{\left(v^{T} x\right)}{\|v\|^{2}} v$

- Two linearly independent vector-valued functions $y_{1}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ and $y_{2}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ such that the vectors $y_{1}(0)$ and $y_{2}(0)$ are linearly dependent in \mathbb{R}^{2}.

Solution: Again there are many options. We are just looking for two vector valued functions which are not the same, but which have parallel values at zero. So consider:

$$
y_{1}(t)=\left[\begin{array}{c}
1 \\
e^{t}
\end{array}\right] \quad y_{2}(t)=\left[\begin{array}{c}
1 \\
e^{2 t}
\end{array}\right] .
$$

Since $y_{1} \neq c y_{2}$ these are linearly independent, but

$$
y_{1}(0)=y_{2}(0)=\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

3. (6 pts) Let

$$
V=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right],\left[\begin{array}{c}
0 \\
4 \\
1 \\
-1
\end{array}\right]\right\}, W=\operatorname{span}\left\{\left[\begin{array}{c}
4 \\
3 \\
1 \\
-6
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
2 \\
1
\end{array}\right]\right\}
$$

be subspaces of \mathbb{R}^{4}. Find a nonzero vector in $V \cap W$ (i.e., which is in both subspaces).
Solution: Using the definition of span, we see that we are looking for coefficients $c_{1}, c_{2}, c_{3}, c_{4}$ (not all zero) such that

$$
c_{1}\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]+c_{2}\left[\begin{array}{c}
0 \\
4 \\
1 \\
-1
\end{array}\right]=c_{3}\left[\begin{array}{c}
4 \\
3 \\
1 \\
-6
\end{array}\right]+c_{4}\left[\begin{array}{l}
2 \\
1 \\
2 \\
1
\end{array}\right] .
$$

By moving everything to one side, we find that this is the same as solving

$$
\left[\begin{array}{cccc}
1 & 0 & -4 & -2 \\
2 & 4 & -3 & -1 \\
3 & 1 & -1 & -2 \\
4 & -1 & 6 & -1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right]=0
$$

The RREF of A is

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & -2 / 3 \\
0 & 1 & 0 & 1 / 3 \\
0 & 0 & 1 & 1 / 3
\end{array}\right]
$$

so by setting the free variable $c_{4}=3$ we have the solution $c_{1}=2, c_{2}=-1, c_{3}=$ $-1, c_{4}=3$. To get an actual vector in $V \cap W$, we take the linear combination:

$$
2\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]-\left[\begin{array}{c}
0 \\
4 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
5 \\
9
\end{array}\right]
$$

To double check that this worked, we also calculate:

$$
-\left[\begin{array}{c}
4 \\
3 \\
1 \\
-6
\end{array}\right]+3\left[\begin{array}{l}
2 \\
1 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{c}
2 \\
0 \\
5 \\
9
\end{array}\right]
$$

4. (8 pts) Consider the vector space of 2×2 real matrices with entrywise addition:

$$
V=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]: a, b, c, d \in \mathbb{R}\right\}
$$

and consider the function $T: V \rightarrow V$ defined by

$$
T(X)=X+X^{T}
$$

(a) Show that T is a linear transformation.
(b) Find a basis for $\operatorname{Ker}(T)$.
(c) Find a basis for $\operatorname{Im}(T)$.
(d) Find an eigenvector of T, along with the corresponding eigenvalue.

Solution: (a) We check that
$T(X+Y)=(X+Y)+(X+Y)^{T}=X+Y+X^{T}+Y^{T}=\left(X+X^{T}\right)+\left(Y+Y^{T}\right)=T(X)+T(Y)$
and

$$
T(c X)=c X+(c X)^{T}=c\left(X+X^{T}\right)
$$

so T is linear.
(b) Let us find the matrix of T with respect to the basis $E=$

$$
e_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], e_{2}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], e_{3}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], e_{4}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] .
$$

We have

$$
T\left(e_{1}\right)=2 e_{1}, T\left(e_{2}\right)=e_{2}+e_{3}, T\left(e_{3}\right)=e_{3}+e_{2} T\left(e_{4}\right)=2 e_{4}
$$

so

$$
[T]_{E}=\left[\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]
$$

Row reducing this matrix (do it!) reveals that the Null space of $[T]$ is spanned by the vector

$$
\left[\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right]
$$

so the Kernel of T is spanned by

$$
e_{2}-e_{3}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

This makes sense since $T(X)=X+X^{T}=0$ implies that $X=-X^{T}$, which implies that the diagonal entries of X are zero and the off diagonals are negatives of each other. In fact, this is a perfectly valid alternative method to arrive at the same conclusion.
(c) Again by applying row reduction to [T], we find that the pivot columns 1, 2, 4 form a basis for $\operatorname{Col}([T])$. The corresponding vectors in V are $2 e_{1}, e_{2}+e_{3}$, and $2 e_{4}$, so these must form a basis for the image of T.
Again, this makes sense, since a moment's thought reveals that the span of the three vectors above is just the set of symmetric matrices $X=X^{T}$.
(d) The question just asks for one eigenvector, so before trying to compute all of them it is good to inspect $[T]$ to see if any eigenvectors are staring you in the face. Since the first and last columns are multiples of standard basis vectors, we immediately see that

$$
[T]\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]=2\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] \quad \text { and } \quad[T]\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]=2\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] .
$$

Thus, the corresponding vectors in V :

$$
e_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

are eigenvectors of T (either one is fine). There are other eigenvectors, but these are the easiest to find.
5. (6 pts) For which real values of a is the matrix

$$
\left[\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right]
$$

diagonalizable? For which a is it invertible?
Solution: Since the matrix is upper triangular, its eigenvalues are equal to the diagonal entries, which are just 1. The corresponding eigenspace is

$$
E_{1}=\operatorname{Null}\left(\left[\begin{array}{ll}
0 & a \\
0 & 0
\end{array}\right]\right)
$$

If $a \neq 0$ then this matrix has one pivot, and so the null space has dimension one, and the matrix is not diagonalizable. If $a=0$ then it is just zero, and the nullspace is all of \mathbb{R}^{2}, so it is diagonalizable. Thus, the matrix is diagonalizable if and only if $a=0$.
Since the above matrix is in REF and has a pivot in every row, it is always invertible (for every value of a).
6. (7 pts) Let V be the vector space of all real valued continuous functions on the interval $[0,1]$, and consider the inner product

$$
\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x
$$

Find a nonzero function in V which is orthogonal to the functions x and x^{2}, with respect to this inner product.

Solution: We are looking for a function $f:[0,1] \rightarrow \mathbb{R}$ such that $\langle f, x\rangle=\left\langle f, x^{2}\right\rangle=0$. Instead of guessing, let's start with any function that is not in $W=\operatorname{span}\left\{x, x^{2}\right\}$.; the simplest is the constant function $g(x)=1$, and you can check that this is not in W by writing down the linear combination and comparing coefficients. By the unique decomposition theorem, there are unique vectors f and h such that $g=h+f$ with $h \in W$ and $f \in W^{\perp}$. To find h, we first find an orthogonal basis for W : applying Gram-Schmidt to x, x^{2} we obtain the basis

$$
\begin{gathered}
b_{1}=x \\
b_{2}=x^{2}-\frac{\left\langle x^{2}, x\right\rangle}{\langle x, x\rangle} x=x^{2}-\frac{\int_{0}^{1} x^{3} d x}{\int_{0}^{1} x^{2}} x=x^{2}-3 x / 4
\end{gathered}
$$

The projection h is now given by:

$$
h=\frac{\left\langle 1, b_{1}\right\rangle}{\left\langle b_{1}, b_{1}\right\rangle} b_{1}+\frac{\left\langle 1, b_{2}\right\rangle}{\left\langle b_{2}, b_{2}\right\rangle} b_{2} .
$$

We calculate the integrals:

$$
\begin{gathered}
\left\langle 1, b_{1}\right\rangle=\int_{0}^{1} x d x=1 / 2 \\
\left\langle b_{1}, b_{1}\right\rangle=\int_{0}^{1} x^{2} d x=1 / 3 \\
\left\langle 1, b_{2}\right\rangle=\int_{0}^{1} x^{2}-3 x / 4 d x=1 / 3-3 / 8=-1 / 24 \\
\left\langle b_{2}, b_{2}\right\rangle=\int_{0}^{1}\left(x^{2}-3 x / 4\right)^{2} d x=\int_{0}^{1} x^{4}-3 x^{3} / 2+9 x^{2} / 16 d x=1 / 5-3 / 8+3 / 16=1 / 80
\end{gathered}
$$

Plugging these in, we have

$$
h=\frac{1 / 2}{1 / 3} x-\frac{1}{24} 1 / 80\left(x^{2}-3 x / 4\right)
$$

so

$$
f=g-h=1-4 x 10 / 3 x^{2}
$$

is orthogonal to both x and x^{2}, as desired.
Note that the answer to this question is not unique, and you will get different answers if you start with different g.
7. (10 pts) (a) Find a basis of real solutions to the homogeneous differential equation

$$
y^{\prime \prime}(t)-2 y^{\prime}(t)+2 y(t)=0 .
$$

(b) Find the general solution to the inhommogeneous equation

$$
y^{\prime \prime}(t)-2 y^{\prime}(t)+2 y(t)=t^{2}+e^{t}
$$

(c) Find a solution to (b) satisfying the initial conditions $y(0)=1$ and $y^{\prime}(0)=2$.
(d) Write the equation in (a) as $T_{1} \circ T_{2}(y)=0$ for two first order differential operators T_{1} and T_{2}.
Solution: (a) The auxiliary polynomial is $r^{2}-2 r+2=(r-(1+i))(r-(1-i))$. Thus, $e^{(1+i) t}, e^{(1-i) t}$ form a basis for the space of complex solutions, and taking real and imaginary parts using Euler's identity we obtain the basis $e^{t} \sin (t), e^{t} \cos (t)$ of real solutions.
(b) First we find a particular solution to the inhomogeneous equation using the superposition principle. We write $f(t)=f_{1}(t)+f_{2}(t)$ for $f_{1}=t^{2}$ and $f_{2}=e^{t}$. For the inhomogeneity f_{1} the method of undetermined coeffs tells us there is a solution of the form $y(t)=a_{0}+a_{1} t+a_{2} t^{2}$; plugging this into the equation we obtain

$$
2 a_{2}-2\left(a_{1}+2 t a_{2}\right)+2\left(a_{0}+a_{1} t+a_{2} t^{2}\right)=f_{1}(t)=t^{2} .
$$

Matching coefficients gives:

$$
\begin{gathered}
2 a_{2}-2 a_{1}+2 a_{0}=0 \\
-4 a_{2}+2 a_{1}=0 \\
2 a_{2}=1 .
\end{gathered}
$$

which is easily solved by substitution to yield $a_{2}=1 / 2, a_{2}=1, a_{0}=1 / 2$, so $y_{p 1}(t)=$ $t^{2} / 2+t+1 / 2$ is a particular solution to $T(y)=f_{1}$. For the other inhomgeneity $f_{2}(t)=e^{t}$ we observe since 1 is not a root of the auxiliary polynomial, there must be a particular solution of form $y_{p 2}(t)=c e^{t}$. Substituting, we get:

$$
c e^{t}-2 c e^{t}+2 c e^{t}=e^{t} \Rightarrow c=1
$$

Thus, $y_{p 2}(t)=e^{t}$ is a solution to $T(y)=f_{2}$.
By the superposition principle, the sum

$$
y_{p}(t)=t^{2} / 2+t+1 / 2+e^{t}
$$

is a particular solution to $T(y)=f_{1}+f_{2}$. Thus, a general solution to the inhomogeneous equation is given by

$$
y(t)=c_{1} e^{t} \sin (t)+c_{2} e^{t} \cos (t)+t^{2} / 2+t+1 / 2+e^{t} .
$$

(c) To solve the initial value problem, we plug in the initial data:

$$
\begin{gathered}
y(0)=c_{1}(0)+c_{2}(1)+1 / 2+1=1 \\
y^{\prime}(0)=c_{1}\left(e^{0} \cos (0)+e^{0} \sin (0)\right)+c_{2}\left(-e^{0} \sin (0)+e^{0} \cos (0)\right)+1+e^{0}=2
\end{gathered}
$$

The first equation is just $c_{2}=-1 / 2$, and the second becomes

$$
c_{1}-1 / 2+2=2 \rightarrow c_{1}=1 / 2
$$

So the solution to the IVP is

$$
(1 / 2) e^{t} \sin (t)-(1 / 2) e^{t} \cos (t)+t^{2} / 2+t+1 / 2+e^{t}
$$

(d) Applying the same factorization as the auxiliary polynomial, we have

$$
T=\left(d^{2} / d t^{2}\right)-2(d / d t)+2 I=(d / d t-(1+i) I)(d / d t-(1-i) I)
$$

and since multiplying operators corresponds to composition, we can take $T_{1}=d / d t-$ $(1+i) I$ and $T_{2}=d / d t-(1-i) I$. (the order doesn't matter)
8. (8 pts) Find functions $y_{1}(t)$ and $y_{2}(t)$ such that

$$
y_{1}^{\prime}=-2 y_{1}+2 y_{2} \quad y_{2}^{\prime}=2 y_{1}+y_{2}
$$

and $y_{1}(0)=-1, y_{2}(0)=3$.
Solution: Writing this in normal form for $y(t)=\left[\begin{array}{l}y_{1}(t) \\ y_{2}(t)\end{array}\right]$, we have

$$
y^{\prime}(t)=\left[\begin{array}{cc}
-2 & 2 \\
2 & 1
\end{array}\right] y(t)=A y(t)
$$

First we find the general solution, which can be derived from the eigenvalues and eigenvectors of A. The characteristic polynomial is
$\operatorname{det}(A-t I)=\operatorname{det}\left[\begin{array}{cc}-2-t & 2 \\ 2 & 1-t\end{array}\right]=-(1-t)(2+t)-4=t^{2}+t-6=(t+3)(t-2)$,
and the corresponding eigenvectors are

$$
\begin{aligned}
& E_{-3}=\operatorname{Null}\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right]=\operatorname{span}\left\{\left[\begin{array}{c}
2 \\
-1
\end{array}\right]\right\} \\
& E_{2}=\operatorname{Null}\left[\begin{array}{cc}
-4 & 2 \\
2 & -1
\end{array}\right]=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right\}
\end{aligned}
$$

Let us call these vectors v_{1} and v_{2} respectively. Then, a basis of solutions is given by $e^{-3 t} v_{1}$ and $e^{2 t} v_{2}$, and the general solution is $c_{1} e^{-3 t} v_{1}+c_{2} e^{2 t} v_{2}$. To solve the IVP we plug in $t=0$:

$$
c_{1} v_{1}+c_{2} v_{2}=\left[\begin{array}{c}
-1 \\
3
\end{array}\right]
$$

which can be solved by row reducing

$$
\left[\begin{array}{ccc}
2 & 1 & -1 \\
-1 & 2 & 3
\end{array}\right]
$$

to obtain $c_{1}=-1, c_{2}=1$, which yields the solution

$$
-e^{-3 t} v_{1}+e^{2 t} v_{2}=\left[\begin{array}{c}
-2 e^{-3 t}+e^{2 t} \\
e^{-3 t}+2 e^{2 t}
\end{array}\right]
$$

9. (7 pts) Find a real-valued function $u:[0, \pi] \times \mathbb{R} \rightarrow \mathbb{R}$ which satisfies the heat equation

$$
\frac{\partial}{\partial t} u(x, t)=2 \frac{\partial^{2}}{\partial x^{2}} u(x, t) \quad u(0, t)=u(\pi, t)=0
$$

for all $t>0$, as well as the initial condition

$$
u(x, 0)=\sin (3 x)-\sin (5 x)
$$

Solution: We use the superposition principle. The solution for initial data $u(x, 0)=$ $\sin (3 x)$ is $e^{-2(3)^{2} t} \sin (3 x)$, and for $u(x, 0)=-\sin (5 x)$ it is $-e^{-2(5)^{2} t} \sin (5 x)$. By linearity, the solution for the given initial data is

$$
u(x, t):=e^{-18 t} \sin (3 t)-e^{-50 t} \sin (5 t)
$$

10. (8 pts) Consider the function $f:[-\pi, \pi] \rightarrow \mathbb{R}$ defined by $f(x)=|\sin (x)|$. Draw a sketch of the function. Find coefficients a_{n}, b_{n} such that

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{0} \cos (n x)+b_{n} \sin (n x)
$$

(hint: use the product to sum trig formulas)
Solution: The sketching is just so that you realize that the given function is even. This implies that the sine coefficients $b_{n}=0$ for $n=1,2, \ldots$, since

$$
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x=0
$$

because the integrand is a product of an even function and an odd function, and therefore odd.

We find the remaining coefficients by computing the integrals:

$$
a_{0} / 2=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|\sin (x)| d x=\frac{1}{\pi} \int_{0}^{\pi} \sin (x) d x=\frac{1}{\pi}(-\cos (\pi)+\cos (0))=\frac{2}{\pi} .
$$

For the other coefficients we have

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi}|\sin (x)| \cos (n x) d x=\frac{2}{\pi} \int_{0}^{\pi} \sin (x) \cos (n x) d x .
$$

We now apply the product to sum formula $2 \sin (a) \cos (b)=\sin (a+b)+\sin (a-b)$:

$$
a_{n}=\frac{1}{\pi} \int_{0}^{\pi} \sin ((1+n) x)+\sin ((1-n) x) d x
$$

which integrates to

$$
a_{n}=-\frac{2}{\pi} \frac{\cos (n \pi)+1}{n^{2}-1}
$$

when $n \neq 1$ and

$$
a_{1}=\frac{1}{2 \pi} \int_{0}^{\pi} \sin (2 x) d x=0
$$

Note that the terms a_{n} are nonzero only when n is an even integer.

