Sample Midterm 1 Solutions
(1) (a) Since $|\sin n| \leqslant 1$, we have $\left|a_{n}\right|=\left|\frac{2+\sin n}{n^{2}+3}\right| \leq \frac{3}{n^{2}}$.

However, $\sum_{n=1}^{\infty} \frac{3}{n^{2}}=3 \sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges,
So by the comparison test, $\sum_{n=1}^{\infty} a_{n}$ must also converge.
(b) We apply the ratio test:

$$
\rho=\lim _{n \rightarrow \infty}\left|\frac{2^{n+1}}{(n+1)!} \cdot \frac{n!}{2^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{e}{n+1}\right|=0<1
$$

So the sores converges.
(2) The Madlaurin Sores for the numerator is

$$
\log (1+x)=\quad x-\frac{x^{2}}{2}+\frac{x^{3}}{3} \cdots
$$

To find the Madownn seres for $\frac{1}{1+x+x^{2}}$, we make the substitution $y=x+x^{2}$. Noting that $\left|x+x^{2}\right|<1$ in a neighborhood of $x=0$, we have

$$
\begin{aligned}
& \frac{1}{1+x+x^{2}}=\frac{1}{1+y}=1-y+y^{2}-y^{3} \cdots \\
& =1-\left(x+x^{2}\right)+\left(x+x^{2}\right)^{2}-\left(x+x^{2}\right)^{3} \cdots
\end{aligned}
$$

$$
\begin{aligned}
& =1^{-\left(x+x^{2}\right)+\left(x^{2}+2 x^{3}+x^{4}\right)-\left(x^{3}+3 x^{4}+3 x^{5}+x^{6}\right) \cdots} \\
& =1-x+x^{3} \ldots
\end{aligned}
$$

Mulinplying these together, we have

$$
\begin{aligned}
& \frac{\log (1+x)}{1+x+x^{2}}=\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots\right)\left(1-x+x^{3} \cdots\right) \\
&=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-x^{2}+\frac{x^{3}}{2}-\frac{x^{4}}{3}+x^{4} \cdots \\
&=x-\frac{3}{2} x^{2}+\frac{5}{6} x^{3}+\cdots \\
&
\end{aligned}
$$

So the first four coeffruents are $0,1,-3 / 2,5 / \%$.
(3) The characteristic equations

$$
\operatorname{det}(\lambda \mid-A)=\left|\begin{array}{cc}
\lambda & -2 \\
-2 & \lambda
\end{array}\right|=\lambda^{2}-4=0 \text {, so the eigenvalues are }
$$

$$
\lambda_{1}=2 \text { and } \lambda_{2}=-2 \text {. }
$$

To find the eigenvectors, we solve the linear equation:

$$
\begin{array}{cc}
{\left[\begin{array}{cc}
2 & -2 \\
-2 & 2
\end{array}\right] \bar{V}_{1}=0} & {\left[\begin{array}{cc}
-2 & -2 \\
-2 & -2
\end{array}\right] \bar{V}_{2}=0} \\
\downarrow \\
\bar{V}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] & \overline{V_{2}}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
\end{array}
$$

These are the corresponding eigenvectors.

Since \bar{v}_{1} and \bar{v}_{2} are linearly indeperiect, we may diagonalize A and waite
$A=C D C^{-1}$ for $C=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$ and $D=\left[\begin{array}{ll}2 & 0 \\ 0 & -2\end{array}\right]$.
Thus, A is daayonalizable (though this is also dear because it is symmetric)
and $\operatorname{Tr}\left(A^{\prime \prime}\right)=\operatorname{Tr}\left(C D^{\prime \prime} C^{-1}\right)$

$$
\begin{aligned}
& =\operatorname{Tr}\left(C^{-1} C D^{\prime \prime}\right) \\
& =\operatorname{Tr}\left(D^{\prime \prime}\right) \\
& =2^{\prime \prime}+(-2)^{\prime \prime} \\
& =2^{\prime \prime}\left(1+(-1)^{\prime \prime}\right)=0 .
\end{aligned}
$$

(4) Taking total differchuls of each equation, we have:

$$
\begin{aligned}
& \frac{\partial}{\partial x}\left(x^{2} s+y^{2} t\right) d x+\frac{\partial}{\partial y}\left(x^{2} s+y^{2} t\right) d y \\
& \quad+\frac{\partial}{\partial s}\left(x^{2} s+y^{2} t\right) d s+\frac{\partial}{\partial t}\left(x^{2} s+y^{2} t\right) d t=0
\end{aligned}
$$

and

Computing the partial derivatives, we find that:

$$
2 x s d x+2 y t d y+x^{2} d s+y^{2} d t=0
$$

ad $d x+d y=t d s+s d t$.

To find $\left(\frac{\partial x}{\partial s}\right)_{t}$, we hold t constant, so $d t=0$:

$$
\begin{aligned}
2 x s d x+2 t y d y+x^{2} d s & =0 \\
d x+d y=t d s \quad & \Rightarrow \quad d y=z d s-d x
\end{aligned}
$$

Substituting the second equation in the firsts we get

$$
\begin{gathered}
2 x s d x+2 t y(t d s-d x)+x^{2} d s=0 \\
\| \\
(2 x s-2 t y) d x+\left(2 t^{2} y+x^{2}\right) d s=0 \\
\frac{d x}{d s}=-\frac{\left(2 t^{2} y+x^{2}\right)}{2 x s-2 t y} \quad \text { for } t \text { fixed. }
\end{gathered}
$$

Thus, $\left(\frac{\partial x}{\partial s}\right)_{t}=\frac{-\left(2 t^{2} y+x^{2}\right)}{2 x s-2 t y}$.

To find $\left(\frac{\partial x}{\partial t}\right)_{s}$, we repeat the save thing with s held constant (ie., $d s=0$):

$$
\begin{aligned}
& 2 x s d x+2 y t d y+y^{2} d t=0 \\
& d x+d y=s d t \Longrightarrow d y=s d t-d x
\end{aligned}
$$

Substituting the expression for $d y$:

$$
\begin{aligned}
& 2 x s d x+2 y t(s d t-d x)+y^{2} d t=0 \\
& \frac{d x}{d t}=\frac{-\left(2 y s t+y^{2}\right)}{2 x s-2 y t} \quad \text { for } \quad s \text { fixed } \\
& \text { So }\left(\frac{\partial x}{\partial t}\right)_{S}=-\frac{\left(2 y s t+y^{2}\right)}{2 x s-2 y t} .
\end{aligned}
$$

(5) Let (x, y, z) be the corner of the box which has all coordinates positive.

Then the volume is $8 x y z$, aid since the optimal corner lies on the ellipsoid's surface, we are interested in:
$\max V(x, y, z)=8 x y z$
Sub $\phi(x, y, z)=\frac{x^{2}}{4}+\frac{y^{2}}{9}+\frac{z^{2}}{16}=1$.
At the optimum, we must have $\nabla V=\lambda \nabla \varphi$ for some λ, so:
$(1)-\frac{\partial V}{\partial x}=\lambda \frac{\partial \phi}{\partial x} \Rightarrow 8 y z=\lambda\left(\frac{2 x}{4}\right)$
$(2)-\frac{\partial V}{\partial y}=\lambda \frac{\partial \varphi}{\partial y} \Rightarrow 8 x z=\lambda\left(\frac{2 y}{9}\right)$
(3)- $\frac{\partial V}{\partial z}=\lambda \frac{\partial \varphi}{\partial z} \Rightarrow 8 x y=\lambda\left(\frac{2 z}{16}\right)$.

Since $x, y, z \neq 0$ we must have $\lambda \neq 0$ by (1).

Thus, dividing (2) by (1) gives:

$$
\frac{x}{y}=\frac{\frac{2 y}{9}}{\frac{2 x}{4}} \Rightarrow \frac{x^{2}}{y^{2}}=\frac{4}{9} \Rightarrow y^{2}=\frac{9}{4} x^{2}
$$

Similarly, dividing (3) by (1) gives:

$$
\frac{x}{z}=\frac{2 z / 16}{2 x / 4} \Rightarrow \frac{x^{2}}{z^{2}}=\frac{4}{16} \Rightarrow z^{2}=4 x^{2}
$$

This, we have

$$
\begin{aligned}
& \begin{aligned}
1=\frac{x^{2}}{4}+\frac{y^{2}}{9}+\frac{z^{2}}{16} & =\frac{x^{2}}{4}+\frac{1}{9} \frac{9}{4} x^{2}+\frac{1}{16} 4 x^{2} \\
& =\frac{3}{4} x^{2}
\end{aligned} \\
& \text { So } x=\sqrt{\frac{4}{3}}=\frac{2}{\sqrt{3}}, y=\sqrt{\frac{9}{4} \cdot \frac{4}{3}}=\sqrt{3} \\
& \text { and } z=\sqrt{4 \cdot \frac{4}{3}}=\frac{4}{\sqrt{3}}
\end{aligned}
$$

and the volume is

$$
8 \cdot \frac{2}{\sqrt{3}} \cdot \sqrt{3} \cdot \frac{4}{\sqrt{3}}=\frac{16}{\sqrt{3}} .
$$

