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If f is analytic at z0, then it may be written as a power series:

f(z) = a0 + a1(z − z0) + a2(z − z0)2 + . . .

which converges in an open disk around z0. In fact, this power series is simply the Taylor
series of f at z0, and its coefficients are given by

an =
1

n!
f (n)(z0) =

1

2πi

∮
f(z)

(z − z0)n+1
,

where the latter equality comes from Cauchy’s integral formula, and the integral is over a
positively oriented contour containing z0 contained in the disk where it f(z) is analytic. The
existence of this power series is an extremely useful characterization of f near z0, and from
it many other useful properties may be deduced (such as the existence of infinitely many
derivatives, vanishing of simple closed contour integrals around z0 contained in the disk of
convergence, and many more).

The situation is not much worse when z0 is an isolated singularity of f , i.e., f(z) is
analytic in a puncured disk 0 < |z − z0| < r for some r. In this case, we have:
Laurent’s Theorem. If z0 is an isolated singularity of f and f(z) is analytic in the annulus
0 < |z − z0| < r, then

f(z) = a0 +a1(z− z0) +a2(z− z0)2 + . . .+
b1

z − z0
+

b2
(z − z0)2

+ . . .+
bn

(z − z0)n
+ . . . , (∗)

where the series converges absolutely in the annulus. In class I described how this can
be done for any annulus, but the most useful case is a punctured disk around an isolated
singularity. The terms with negative powers of (z − z0) are called the principal part of the
Laurent series, and the singularity is classified into one of three types depending on how
many terms there are in the principal part (see page 680 for a taxonomy).

The main reason we are interested in Laurent series is that given a Laurent series, it
is extremely easy to calculate the value of any closed contour integral around z0 which is
contained in the annulus of convergence. In particular, if we integrate both sides of (∗) term
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by term along a small positively oriented circle centered at z0, γ(t) = z0 + ρeit, t ∈ [0, 2π],
we find that:∮

f(z)dz =
∞∑
n=0

an

∮
(z − z0)ndz +

∮
b1

z − z0
dz +

∞∑
n=2

∮
bn

(z − z0)n
dz

=
∞∑
n=0

an · 0 + b1(2πi) +
∞∑
n=2

bn · 0 = 2πib1.

since the (z − z0)
n terms vanish (they are polynomials and therefore analytic) and by a

calculation we did in class, ∮
1

(z − z0)n
dz = 0

whenever n ≥ 2. By an argument similar to the proof of Cauchy’s Integral formula, this
may be extended to any closed contour around z0 containing no other singular points.

Thus, the coefficient b1 in the Laurent series is especially significant; it is called the residue
of f at z0, denoted Res(f, z0). By a simple argument again like the one in Cauchy’s Integral
Formula (see page 683), the above calculation may be easily extended to any integral along
a closed contour containing isolated singularities:
Residue Theorem. If f is analytic on and inside C except for a finite number of isolated
singularities z1, . . . , zk, then ∮

C

f(z)dz = 2πi
k∑

j=1

Res(f, zj).

The upshot is that by virtue of the existence of a Laurent expansion, it is often easy
to calculate the right hand side without doing any integration whatsoever, as long as we
know all the zj. For instance, if we actually know the Laurent series, then it is very easy to
calculate the residue: we just read off the coefficient of 1/(z − z0):

Example. f(z) = ze1/z has a singularity at z = 0, and is analytic everywhere else. We
investigate this by computing the Laurent expansion:

f(z) = z

(
1 + (1/z) +

(1/z)2

2!
+ . . .

)
= z + 1 +

(1/z)

2!
+ . . .

whence Res(f, 0) = 1/2 and we know
∮
C
ze1/zdz = 2πi ·1/2 for any closed contour containing

the origin.
Even better is that we can leverage the fact that the Laurent expansion exists to compute

the residue when z0 is a pole without necessarily even knowing the entire series. Here is how
to do it for a pole of order m at z0. We know that

f(z) =
∞∑
n=0

an(z − z0)n +
b1

z − z0
+ . . .

bm
(z − z0)m

,
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in some punctured disk 0 < |z−z0| < r. Our goal is to isolate the coefficient b1 by performing
some operations on f(z) and thereby on the Laurent expansion (which is hidden from us).
This can be done in three steps:

• Multiply by (z − z0)m to turn the Laurent series into a power series:

(z − z0)mf(z) =
∑
n=0

an(z − z0)n+m + b1(z − z0)m−1 + b2(z − z0)m−2 + . . . bm.

Note that this only works when we have a pole of finite order, and not when we have
an essential singularity.

• Kill off the b2, . . . , bm terms by differentiating m− 1 times (this happens because they
all have degree strictly less than m− 1 — note that the b1 term survives)

dm−1

dzm−1
(z − z0)mf(z) =

∞∑
n=0

an
dm−1

dzm−1
(z − z0)n+m + (m− 1) · (m− 2) · . . . 1 · b1 + 0 + . . .+ 0.

=
∞∑
n=0

an
(n+m)!

(n+ 1)!
(z − z0)n+1 + (m− 1)!b1.

• Kill off all the remaining terms by taking a limit as z → z0 — this happens because
they all have degree strictly greater than 0, and again the b1 term survives because it
is a constant:

lim
z→z0

dm−1

dzm−1
(z − z0)mf(z) =

∞∑
n=0

an
(n+m)!

(n+ 1)!
lim
z→z0

(z − z0)n+1 + (m− 1)!b1

= (m− 1)!b1.

Thus, we can read off the residue by dividing the expression on the left hand side by
(m− 1)!.
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