Laurent Series and Residue Calculus

Nikhil Srivastava

March 19, 2015

If f is analytic at z_0 , then it may be written as a power series:

$$f(z) = a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \dots$$

which converges in an open disk around z_0 . In fact, this power series is simply the Taylor series of f at z_0 , and its coefficients are given by

$$a_n = \frac{1}{n!} f^{(n)}(z_0) = \frac{1}{2\pi i} \oint \frac{f(z)}{(z - z_0)^{n+1}},$$

where the latter equality comes from Cauchy's integral formula, and the integral is over a positively oriented contour containing z_0 contained in the disk where it f(z) is analytic. The existence of this power series is an extremely useful characterization of f near z_0 , and from it many other useful properties may be deduced (such as the existence of infinitely many derivatives, vanishing of simple closed contour integrals around z_0 contained in the disk of convergence, and many more).

The situation is not much worse when z_0 is an isolated singularity of f, i.e., f(z) is analytic in a puncured disk $0 < |z - z_0| < r$ for some r. In this case, we have:

Laurent's Theorem. If z_0 is an isolated singularity of f and f(z) is analytic in the annulus $0 < |z - z_0| < r$, then

$$f(z) = a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \ldots + \frac{b_1}{z - z_0} + \frac{b_2}{(z - z_0)^2} + \ldots + \frac{b_n}{(z - z_0)^n} + \ldots, \qquad (*)$$

where the series converges absolutely in the annulus. In class I described how this can be done for any annulus, but the most useful case is a punctured disk around an isolated singularity. The terms with negative powers of $(z - z_0)$ are called the *principal part* of the Laurent series, and the singularity is classified into one of three types depending on how many terms there are in the principal part (see page 680 for a taxonomy).

The main reason we are interested in Laurent series is that given a Laurent series, it is extremely easy to calculate the value of any closed contour integral around z_0 which is contained in the annulus of convergence. In particular, if we integrate both sides of (*) term by term along a small positively oriented circle centered at z_0 , $\gamma(t) = z_0 + \rho e^{it}$, $t \in [0, 2\pi]$, we find that:

$$\oint f(z)dz = \sum_{n=0}^{\infty} a_n \oint (z-z_0)^n dz + \oint \frac{b_1}{z-z_0} dz + \sum_{n=2}^{\infty} \oint \frac{b_n}{(z-z_0)^n} dz$$
$$= \sum_{n=0}^{\infty} a_n \cdot 0 + b_1(2\pi i) + \sum_{n=2}^{\infty} b_n \cdot 0 = 2\pi i b_1.$$

since the $(z - z_0)^n$ terms vanish (they are polynomials and therefore analytic) and by a calculation we did in class,

$$\oint \frac{1}{(z-z_0)^n} dz = 0$$

whenever $n \ge 2$. By an argument similar to the proof of Cauchy's Integral formula, this may be extended to any closed contour around z_0 containing no other singular points.

Thus, the coefficient b_1 in the Laurent series is especially significant; it is called the *residue* of f at z_0 , denoted $\text{Res}(f, z_0)$. By a simple argument again like the one in Cauchy's Integral Formula (see page 683), the above calculation may be easily extended to any integral along a closed contour containing isolated singularities:

Residue Theorem. If f is analytic on and inside C except for a finite number of isolated singularities z_1, \ldots, z_k , then

$$\oint_C f(z)dz = 2\pi i \sum_{j=1}^k \operatorname{Res}(f, z_j)$$

The upshot is that by virtue of the existence of a Laurent expansion, it is often easy to calculate the right hand side without doing any integration whatsoever, as long as we know all the z_j . For instance, if we actually know the Laurent series, then it is very easy to calculate the residue: we just read off the coefficient of $1/(z - z_0)$:

Example. $f(z) = ze^{1/z}$ has a singularity at z = 0, and is analytic everywhere else. We investigate this by computing the Laurent expansion:

$$f(z) = z \left(1 + (1/z) + \frac{(1/z)^2}{2!} + \dots \right) = z + 1 + \frac{(1/z)}{2!} + \dots$$

whence $\operatorname{Res}(f, 0) = 1/2$ and we know $\oint_C z e^{1/z} dz = 2\pi i \cdot 1/2$ for any closed contour containing the origin.

Even better is that we can leverage the fact that the Laurent expansion exists to compute the residue when z_0 is a pole without necessarily even knowing the entire series. Here is how to do it for a pole of order m at z_0 . We know that

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \frac{b_1}{z - z_0} + \dots \frac{b_m}{(z - z_0)^m},$$

in some punctured disk $0 < |z-z_0| < r$. Our goal is to isolate the coefficient b_1 by performing some operations on f(z) and thereby on the Laurent expansion (which is hidden from us). This can be done in three steps:

• Multiply by $(z - z_0)^m$ to turn the Laurent series into a power series:

$$(z-z_0)^m f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^{n+m} + b_1 (z-z_0)^{m-1} + b_2 (z-z_0)^{m-2} + \dots + b_m.$$

Note that this only works when we have a pole of finite order, and not when we have an essential singularity.

• Kill off the b_2, \ldots, b_m terms by differentiating m-1 times (this happens because they all have degree strictly less than m-1 — note that the b_1 term survives)

$$\frac{d^{m-1}}{dz^{m-1}}(z-z_0)^m f(z) = \sum_{n=0}^{\infty} a_n \frac{d^{m-1}}{dz^{m-1}}(z-z_0)^{n+m} + (m-1)\cdot(m-2)\cdot\ldots\cdot\cdot\cdot b_1 + 0 + \ldots + 0.$$
$$= \sum_{n=0}^{\infty} a_n \frac{(n+m)!}{(n+1)!}(z-z_0)^{n+1} + (m-1)!b_1.$$

• Kill off all the remaining terms by taking a limit as $z \to z_0$ — this happens because they all have degree strictly greater than 0, and again the b_1 term survives because it is a constant:

$$\lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} (z - z_0)^m f(z) = \sum_{n=0}^\infty a_n \frac{(n+m)!}{(n+1)!} \lim_{z \to z_0} (z - z_0)^{n+1} + (m-1)! b_1$$
$$= (m-1)! b_1.$$

Thus, we can read off the residue by dividing the expression on the left hand side by (m-1)!.