Laurent Series and Residue Calculus

Nikhil Srivastava

March 19, 2015

If f is analytic at z_{0}, then it may be written as a power series:

$$
f(z)=a_{0}+a_{1}\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right)^{2}+\ldots
$$

which converges in an open disk around z_{0}. In fact, this power series is simply the Taylor series of f at z_{0}, and its coefficients are given by

$$
a_{n}=\frac{1}{n!} f^{(n)}\left(z_{0}\right)=\frac{1}{2 \pi i} \oint \frac{f(z)}{\left(z-z_{0}\right)^{n+1}},
$$

where the latter equality comes from Cauchy's integral formula, and the integral is over a positively oriented contour containing z_{0} contained in the disk where it $f(z)$ is analytic. The existence of this power series is an extremely useful characterization of f near z_{0}, and from it many other useful properties may be deduced (such as the existence of infinitely many derivatives, vanishing of simple closed contour integrals around z_{0} contained in the disk of convergence, and many more).

The situation is not much worse when z_{0} is an isolated singularity of f, i.e., $f(z)$ is analytic in a puncured disk $0<\left|z-z_{0}\right|<r$ for some r. In this case, we have:
Laurent's Theorem. If z_{0} is an isolated singularity of f and $f(z)$ is analytic in the annulus $0<\left|z-z_{0}\right|<r$, then
$f(z)=a_{0}+a_{1}\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right)^{2}+\ldots+\frac{b_{1}}{z-z_{0}}+\frac{b_{2}}{\left(z-z_{0}\right)^{2}}+\ldots+\frac{b_{n}}{\left(z-z_{0}\right)^{n}}+\ldots$,
where the series converges absolutely in the annulus. In class I described how this can be done for any annulus, but the most useful case is a punctured disk around an isolated singularity. The terms with negative powers of $\left(z-z_{0}\right)$ are called the principal part of the Laurent series, and the singularity is classified into one of three types depending on how many terms there are in the principal part (see page 680 for a taxonomy).

The main reason we are interested in Laurent series is that given a Laurent series, it is extremely easy to calculate the value of any closed contour integral around z_{0} which is contained in the annulus of convergence. In particular, if we integrate both sides of $(*)$ term
by term along a small positively oriented circle centered at $z_{0}, \gamma(t)=z_{0}+\rho e^{i t}, t \in[0,2 \pi]$, we find that:

$$
\begin{aligned}
\oint f(z) d z & =\sum_{n=0}^{\infty} a_{n} \oint\left(z-z_{0}\right)^{n} d z+\oint \frac{b_{1}}{z-z_{0}} d z+\sum_{n=2}^{\infty} \oint \frac{b_{n}}{\left(z-z_{0}\right)^{n}} d z \\
& =\sum_{n=0}^{\infty} a_{n} \cdot 0+b_{1}(2 \pi i)+\sum_{n=2}^{\infty} b_{n} \cdot 0=2 \pi i b_{1}
\end{aligned}
$$

since the $\left(z-z_{0}\right)^{n}$ terms vanish (they are polynomials and therefore analytic) and by a calculation we did in class,

$$
\oint \frac{1}{\left(z-z_{0}\right)^{n}} d z=0
$$

whenever $n \geq 2$. By an argument similar to the proof of Cauchy's Integral formula, this may be extended to any closed contour around z_{0} containing no other singular points.

Thus, the coefficient b_{1} in the Laurent series is especially significant; it is called the residue of f at z_{0}, denoted $\operatorname{Res}\left(f, z_{0}\right)$. By a simple argument again like the one in Cauchy's Integral Formula (see page 683), the above calculation may be easily extended to any integral along a closed contour containing isolated singularities:
Residue Theorem. If f is analytic on and inside C except for a finite number of isolated singularities z_{1}, \ldots, z_{k}, then

$$
\oint_{C} f(z) d z=2 \pi i \sum_{j=1}^{k} \operatorname{Res}\left(f, z_{j}\right)
$$

The upshot is that by virtue of the existence of a Laurent expansion, it is often easy to calculate the right hand side without doing any integration whatsoever, as long as we know all the z_{j}. For instance, if we actually know the Laurent series, then it is very easy to calculate the residue: we just read off the coefficient of $1 /\left(z-z_{0}\right)$:

Example. $f(z)=z e^{1 / z}$ has a singularity at $z=0$, and is analytic everywhere else. We investigate this by computing the Laurent expansion:

$$
f(z)=z\left(1+(1 / z)+\frac{(1 / z)^{2}}{2!}+\ldots\right)=z+1+\frac{(1 / z)}{2!}+\ldots
$$

whence $\operatorname{Res}(f, 0)=1 / 2$ and we know $\oint_{C} z e^{1 / z} d z=2 \pi i \cdot 1 / 2$ for any closed contour containing the origin.

Even better is that we can leverage the fact that the Laurent expansion exists to compute the residue when z_{0} is a pole without necessarily even knowing the entire series. Here is how to do it for a pole of order m at z_{0}. We know that

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\frac{b_{1}}{z-z_{0}}+\ldots \frac{b_{m}}{\left(z-z_{0}\right)^{m}}
$$

in some punctured disk $0<\left|z-z_{0}\right|<r$. Our goal is to isolate the coefficient b_{1} by performing some operations on $f(z)$ and thereby on the Laurent expansion (which is hidden from us). This can be done in three steps:

- Multiply by $\left(z-z_{0}\right)^{m}$ to turn the Laurent series into a power series:

$$
\left(z-z_{0}\right)^{m} f(z)=\sum_{n=0} a_{n}\left(z-z_{0}\right)^{n+m}+b_{1}\left(z-z_{0}\right)^{m-1}+b_{2}\left(z-z_{0}\right)^{m-2}+\ldots b_{m}
$$

Note that this only works when we have a pole of finite order, and not when we have an essential singularity.

- Kill off the b_{2}, \ldots, b_{m} terms by differentiating $m-1$ times (this happens because they all have degree strictly less than $m-1$ - note that the b_{1} term survives)

$$
\begin{aligned}
\frac{d^{m-1}}{d z^{m-1}}\left(z-z_{0}\right)^{m} f(z) & =\sum_{n=0}^{\infty} a_{n} \frac{d^{m-1}}{d z^{m-1}}\left(z-z_{0}\right)^{n+m}+(m-1) \cdot(m-2) \cdot \ldots 1 \cdot b_{1}+0+\ldots+0 \\
& =\sum_{n=0}^{\infty} a_{n} \frac{(n+m)!}{(n+1)!}\left(z-z_{0}\right)^{n+1}+(m-1)!b_{1}
\end{aligned}
$$

- Kill off all the remaining terms by taking a limit as $z \rightarrow z_{0}$ - this happens because they all have degree strictly greater than 0 , and again the b_{1} term survives because it is a constant:

$$
\begin{aligned}
\lim _{z \rightarrow z_{0}} \frac{d^{m-1}}{d z^{m-1}}\left(z-z_{0}\right)^{m} f(z) & =\sum_{n=0}^{\infty} a_{n} \frac{(n+m)!}{(n+1)!} \lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{n+1}+(m-1)!b_{1} \\
& =(m-1)!b_{1}
\end{aligned}
$$

Thus, we can read off the residue by dividing the expression on the left hand side by $(m-1)!$.

