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1 The Triangle Inequality Argument

When applying the residue theorem to compute definite integrals, we are often faced with a
situation where we have to show that the integral of some function on a semicircular contour
γR(t) = Reit, t ∈ [0, π] in the upper half plane vanishes as R→∞.

The simplest way to do this, which works for instance when f(z) = P (z)eiaz/Q(z) for
polynomials P,Q satisfying deg(Q) ≥ deg(P )+2, is to use the triangle inequality for integrals.
This gives the bound:∣∣∣∣∫

γR

P (z)eiaz

Q(z)
dz

∣∣∣∣ ≤ ∫ π

0

∣∣∣∣P (γ(t))eiaγ(t)

Q(γ(t))

∣∣∣∣ |γ′(t)|dt ≤ max
z∈γR

(∣∣∣∣P (z)

Q(z)

∣∣∣∣ |eiaz|) · πR. (∗)

When a > 0, we observe that every z = x + iy on γR has y > 0, which gives the absolute
value bound:

|eiaz| = |eiaxei2ay| = 1 · e−ay ≤ 1.

Note that this only works for a > 0; for a < 0 we would have to look at a contour in the
lower half plane (i.e., y < 0).

Since Q has degree at least two larger than Q, applications of the triangle inequality for
addition of complex numbers:

|z1| − |z2| ≤ |z1 + z2| ≤ |z1|+ |z2|,

can be used to isolate the higher order terms, and conclude that∣∣∣∣P (z)

Q(z)

∣∣∣∣ ≤ O(1/R2),

for large R. Plugging these estimates into (∗) tells us that the value of the integral is O(1/R),
which vanishes as R→∞.
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2 Jordan’s Lemma

It turns out that the above argument is wasteful; we only used that |e−ay| ≤ 1 for positive
y, but most of the time, it is actually much smaller! By doing a more delicate calculation,
we can make the above argument work in the more general case when deg(Q) ≥ deg(P ) + 1,
rather than 2, and this is quite useful.

The more delicate bound is called Jordan’s lemma, and it says that∫ π

0

e−R sin θdθ ≤ π

R
.

Before proving this, let’s see why it is useful. Suppose I have some function f(z), such as
f(z) = P (z)/Q(z) for polynomials deg(Q) ≥ deg(P ) + 1, whose maximum value on γR is
MR and MR → 0 as R→∞. Then, the triangle inequality tells us that∣∣∣∣∫

γR

f(z)eiazdz

∣∣∣∣ ≤ ∫ π

0

|f(Reit)||eiR(cos t+i sin t)||iReit|dt

≤MR ·R
∫ π

0

e−aR sin tdt

≤MR ·R ·
π

aR
→ 0,

as R→∞.
Now for the proof. The key observation is that on the interval [0, π/2], the function sin θ

is at least θ
π/2

— this is easy to see graphically, by plotting y = sinx and noticing that the

line y = x
π/2

connecting the points (0, 0) and (π/2, 1) lies strictly below the curve1. Thus,

e−R sin θ ≤ e−2Rθ/π for θ ∈ [0, π/2], and we have∫ π/2

0

e−R sin θdθ ≤
∫ π/2

0

e−2Rθ/πdθ =
e−2R(π/2)/π

−2R/π
− e0

−2R/π
=

π

2R
(1− e−R) ≤ π

2R
.

Since sin(θ) is symmetric about π/2, we can repeat the same argument on the interval
[π/2, π] to get ∫ π

π/2

e−R sin θdθ ≤ π

2R
,

and adding the two gives Jordan’s lemma.
All of the above arguments can be adapted to the case a < 0, but we must use a contour

in the lower half plane (y < 0) rather than in the upper half plane.

1It can also be proven analytically by noticing that sin θ = θ
π/2 at the endpoints θ = 0, π/2, and that

(sin θ)′′ = − sin θ ≤ 0 in the interval [0, π/2] so the function is concave in this interval.

2



3 Cauchy Principal Values

A Cauchy Principal value is obtained by a specific way of defining an improper integral as a
limit of proper integrals. Traditionally, we learn that an improper integral of the first kind
is the following limit of definite integrals:∫ ∞

0

f(x)dx = lim
b→∞

∫ b

0

f(x)dx,

so that we may define∫ ∞
−∞

f(x)dx = lim
a→−∞

∫ 0

a

f(x)dx+ lim
b→∞

∫ b

0

f(x)dx.

Sometimes, neither of the integrals on the right hand side exist (for instance, take f(x) =
sin(x)), but there is a sense in which the integral on the left hand side does. For instance, it
makes sense to assert that ∫ ∞

−∞
sin(x) = 0

since sin(−x) = − sin(x), i.e., the function is odd, and the contributions from positive and
negative x cancel. This can be made formal by taking the limit symmetrically, and this is
what we mean by the principal value:

p.v.

∫ ∞
−∞

f(x)dx := lim
R→∞

∫ R

−R
f(x)dx,

which does indeed give zero in the case of f(x) = sin(x). Such integrals are often useful,
and are moreover easily amenable to contour integration techniques because we can close
the contour with a semicircle whose center is fixed at zero, rather than having to consider
semicircles whose centers vary as their radii increase.

Similarly, for improper integrals of the second kind, such as∫ 1

−1

1

x
dx,

the principal value is defined by taking the limit symmetrically about the point of disconti-
nuity:

p.v.

∫ 1

−1

1

x
dx := lim

ε→0+

(∫ 0−ε

−1

1

x
dx+

∫ 1

0+ε

1

x
dx

)
,

rather than separately on each side. When closing the contour, this corresponds to semicircles
of shrinking radius ε > 0 centered at the point of discontinuity.
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