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1 The Triangle Inequality Argument

When applying the residue theorem to compute definite integrals, we are often faced with a
situation where we have to show that the integral of some function on a semicircular contour
vr(t) = Re',t € [0, 7] in the upper half plane vanishes as R — oo.

The simplest way to do this, which works for instance when f(z) = P(2)e'*/Q(z) for
polynomials P, @) satisfying deg(Q) > deg(P)+2, is to use the triangle inequality for integrals.

This gives the bound:
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When a > 0, we observe that every z = x 4+ ¢y on vz has y > 0, which gives the absolute
value bound:
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Note that this only works for a > 0; for a < 0 we would have to look at a contour in the
lower half plane (i.e., y < 0).

Since () has degree at least two larger than @), applications of the triangle inequality for
addition of complex numbers:

|21 — |22] < |21 + 22| < |z1| + |22,

can be used to isolate the higher order terms, and conclude that
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for large R. Plugging these estimates into (x) tells us that the value of the integral is O(1/R),
which vanishes as R — oo.




2 Jordan’s Lemma

It turns out that the above argument is wasteful; we only used that |e=®| < 1 for positive
y, but most of the time, it is actually much smaller! By doing a more delicate calculation,
we can make the above argument work in the more general case when deg(Q) > deg(P) + 1,
rather than 2, and this is quite useful.

The more delicate bound is called Jordan’s lemma, and it says that
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Before proving this, let’s see why it is useful. Suppose I have some function f(z), such as
f(z) = P(2)/Q(z) for polynomials deg(@)) > deg(P) + 1, whose maximum value on g is
Mg and Mr — 0 as R — oo. Then, the triangle inequality tells us that
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Now for the proof. The key observation is that on the interval [0, 7/2], the function sin ¢
is at least ﬂi/Q — this is easy to see graphically, by plotting ¥y = sinx and noticing that the
line y = -7 connecting the points (0,0) and (7/2,1) lies strictly below the curve'. Thus,

e~ fsin0 < o=2R0/7 for § € [0, 7/2], and we have
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Since sin(f) is symmetric about 7/2, we can repeat the same argument on the interval
[7/2, 7] to get
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and adding the two gives Jordan’s lemma.

All of the above arguments can be adapted to the case a < 0, but we must use a contour
in the lower half plane (y < 0) rather than in the upper half plane.

Tt can also be proven analytically by noticing that sinf = %}2 at the endpoints § = 0,7/2, and that

(sinf)” = —sin# < 0 in the interval [0,7/2] so the function is concave in this interval.



3 Cauchy Principal Values

A Cauchy Principal value is obtained by a specific way of defining an improper integral as a
limit of proper integrals. Traditionally, we learn that an improper integral of the first kind
is the following limit of definite integrals:
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so that we may define
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Sometimes, neither of the integrals on the right hand side exist (for instance, take f(z) =

sin(z)), but there is a sense in which the integral on the left hand side does. For instance, it
makes sense to assert that -
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since sin(—xz) = —sin(z), i.e., the function is odd, and the contributions from positive and
negative x cancel. This can be made formal by taking the limit symmetrically, and this is
what we mean by the principal value:
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p.v. /_Z f(z)dz := lim /_};f(x)dx,

which does indeed give zero in the case of f(x) = sin(z). Such integrals are often useful,
and are moreover easily amenable to contour integration techniques because we can close
the contour with a semicircle whose center is fixed at zero, rather than having to consider
semicircles whose centers vary as their radii increase.

Similarly, for improper integrals of the second kind, such as
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the principal value is defined by taking the limit symmetrically about the point of disconti-

nuity:
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rather than separately on each side. When closing the contour, this corresponds to semicircles
of shrinking radius € > 0 centered at the point of discontinuity.



