Tools for Applying Residue Calculus to Definite Integrals

Nikhil Srivastava

March 17, 2015

1 The Triangle Inequality Argument

When applying the residue theorem to compute definite integrals, we are often faced with a situation where we have to show that the integral of some function on a semicircular contour $\gamma_{R}(t)=R e^{i t}, t \in[0, \pi]$ in the upper half plane vanishes as $R \rightarrow \infty$.

The simplest way to do this, which works for instance when $f(z)=P(z) e^{i a z} / Q(z)$ for polynomials P, Q satisfying $\operatorname{deg}(Q) \geq \operatorname{deg}(P)+2$, is to use the triangle inequality for integrals. This gives the bound:

$$
\begin{equation*}
\left|\int_{\gamma_{R}} \frac{P(z) e^{i a z}}{Q(z)} d z\right| \leq \int_{0}^{\pi}\left|\frac{P(\gamma(t)) e^{i a \gamma(t)}}{Q(\gamma(t))}\right|\left|\gamma^{\prime}(t)\right| d t \leq \max _{z \in \gamma_{R}}\left(\left|\frac{P(z)}{Q(z)}\right|\left|e^{i a z}\right|\right) \cdot \pi R . \tag{*}
\end{equation*}
$$

When $a>0$, we observe that every $z=x+i y$ on γ_{R} has $y>0$, which gives the absolute value bound:

$$
\left|e^{i a z}\right|=\left|e^{i a x} e^{i^{2} a y}\right|=1 \cdot e^{-a y} \leq 1
$$

Note that this only works for $a>0$; for $a<0$ we would have to look at a contour in the lower half plane (i.e., $y<0$).

Since Q has degree at least two larger than Q, applications of the triangle inequality for addition of complex numbers:

$$
\left|z_{1}\right|-\left|z_{2}\right| \leq\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|
$$

can be used to isolate the higher order terms, and conclude that

$$
\left|\frac{P(z)}{Q(z)}\right| \leq O\left(1 / R^{2}\right)
$$

for large R. Plugging these estimates into $(*)$ tells us that the value of the integral is $O(1 / R)$, which vanishes as $R \rightarrow \infty$.

2 Jordan's Lemma

It turns out that the above argument is wasteful; we only used that $\left|e^{-a y}\right| \leq 1$ for positive y, but most of the time, it is actually much smaller! By doing a more delicate calculation, we can make the above argument work in the more general case when $\operatorname{deg}(Q) \geq \operatorname{deg}(P)+1$, rather than 2 , and this is quite useful.

The more delicate bound is called Jordan's lemma, and it says that

$$
\int_{0}^{\pi} e^{-R \sin \theta} d \theta \leq \frac{\pi}{R}
$$

Before proving this, let's see why it is useful. Suppose I have some function $f(z)$, such as $f(z)=P(z) / Q(z)$ for polynomials $\operatorname{deg}(Q) \geq \operatorname{deg}(P)+1$, whose maximum value on γ_{R} is M_{R} and $M_{R} \rightarrow 0$ as $R \rightarrow \infty$. Then, the triangle inequality tells us that

$$
\begin{aligned}
\left|\int_{\gamma_{R}} f(z) e^{i a z} d z\right| & \leq \int_{0}^{\pi}\left|f\left(R e^{i t}\right)\left\|e^{i R(\cos t+i \sin t)}\right\| i R e^{i t}\right| d t \\
& \leq M_{R} \cdot R \int_{0}^{\pi} e^{-a R \sin t} d t \\
& \leq M_{R} \cdot R \cdot \frac{\pi}{a R} \rightarrow 0,
\end{aligned}
$$

as $R \rightarrow \infty$.
Now for the proof. The key observation is that on the interval $[0, \pi / 2]$, the function $\sin \theta$ is at least $\frac{\theta}{\pi / 2}$ - this is easy to see graphically, by plotting $y=\sin x$ and noticing that the line $y=\frac{x}{\pi / 2}$ connecting the points $(0,0)$ and $(\pi / 2,1)$ lies strictly below the curve ${ }^{1}$. Thus, $e^{-R \sin \theta} \leq e^{-2 R \theta / \pi}$ for $\theta \in[0, \pi / 2]$, and we have

$$
\int_{0}^{\pi / 2} e^{-R \sin \theta} d \theta \leq \int_{0}^{\pi / 2} e^{-2 R \theta / \pi} d \theta=\frac{e^{-2 R(\pi / 2) / \pi}}{-2 R / \pi}-\frac{e^{0}}{-2 R / \pi}=\frac{\pi}{2 R}\left(1-e^{-R}\right) \leq \frac{\pi}{2 R}
$$

Since $\sin (\theta)$ is symmetric about $\pi / 2$, we can repeat the same argument on the interval $[\pi / 2, \pi]$ to get

$$
\int_{\pi / 2}^{\pi} e^{-R \sin \theta} d \theta \leq \frac{\pi}{2 R}
$$

and adding the two gives Jordan's lemma.
All of the above arguments can be adapted to the case $a<0$, but we must use a contour in the lower half plane $(y<0)$ rather than in the upper half plane.

[^0]
3 Cauchy Principal Values

A Cauchy Principal value is obtained by a specific way of defining an improper integral as a limit of proper integrals. Traditionally, we learn that an improper integral of the first kind is the following limit of definite integrals:

$$
\int_{0}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{0}^{b} f(x) d x
$$

so that we may define

$$
\int_{-\infty}^{\infty} f(x) d x=\lim _{a \rightarrow-\infty} \int_{a}^{0} f(x) d x+\lim _{b \rightarrow \infty} \int_{0}^{b} f(x) d x
$$

Sometimes, neither of the integrals on the right hand side exist (for instance, take $f(x)=$ $\sin (x))$, but there is a sense in which the integral on the left hand side does. For instance, it makes sense to assert that

$$
\int_{-\infty}^{\infty} \sin (x)=0
$$

since $\sin (-x)=-\sin (x)$, i.e., the function is odd, and the contributions from positive and negative x cancel. This can be made formal by taking the limit symmetrically, and this is what we mean by the principal value:

$$
\text { p.v. } \int_{-\infty}^{\infty} f(x) d x:=\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) d x
$$

which does indeed give zero in the case of $f(x)=\sin (x)$. Such integrals are often useful, and are moreover easily amenable to contour integration techniques because we can close the contour with a semicircle whose center is fixed at zero, rather than having to consider semicircles whose centers vary as their radii increase.

Similarly, for improper integrals of the second kind, such as

$$
\int_{-1}^{1} \frac{1}{x} d x
$$

the principal value is defined by taking the limit symmetrically about the point of discontinuity:

$$
\text { p.v. } \int_{-1}^{1} \frac{1}{x} d x:=\lim _{\epsilon \rightarrow 0^{+}}\left(\int_{-1}^{0-\epsilon} \frac{1}{x} d x+\int_{0+\epsilon}^{1} \frac{1}{x} d x\right),
$$

rather than separately on each side. When closing the contour, this corresponds to semicircles of shrinking radius $\epsilon>0$ centered at the point of discontinuity.

[^0]: ${ }^{1}$ It can also be proven analytically by noticing that $\sin \theta=\frac{\theta}{\pi / 2}$ at the endpoints $\theta=0, \pi / 2$, and that $(\sin \theta)^{\prime \prime}=-\sin \theta \leq 0$ in the interval $[0, \pi / 2]$ so the function is concave in this interval.

