Math 121A Spring 2015, Homework 9

Due April 14 at 10am in my office, or April 13 in class

We will use the notation $\hat{f}(n)$ to denote the nth (exponential) Fourier coefficient of f, i.e.,

$$
f(x)=\sum_{n} \hat{f}(n) e^{i n x} .
$$

1. Determine which of the following functions on the real line are periodic. If they are, determine the fundamental period; if not, explain why.

$$
\sin (\pi x), e^{x}, e^{i x}+\sin (x), \sin (3 x)+\cos (5 x), \sin (3 x)+\sin (\sqrt{5} x) .
$$

2. If $f: \mathbb{R} \rightarrow \mathbb{C}$ is periodic with period $2 L$ (i.e., $f(x)=f(x+2 L))$ what are the periods of $g(x)=f(c x)$, $h(x)=f(x-t)$, and $k(x)=f(-x)$?
Calculate $\hat{h}(n)$ and $\hat{k}(n)$ in terms of $\hat{f}(n)$.
3. Calculate the integrals:

$$
\int_{-\pi}^{\pi} \sin n x \sin m x d x, \quad \int_{-\pi}^{\pi} e^{i n x} e^{-i m x} d x
$$

for all integer values of m and n. Then calculate

$$
\int_{-1}^{1} \sin n x \sin m x d x, \quad \int_{-1}^{1} e^{i n x} e^{-i m x} d x .
$$

4. Boas 4.1, 5.10, 6.10, 7.10, 7.11, 8.11, 8.12, 8.13.
5. (a) Evaluate the (exponential) Fourier coefficients $\hat{f}(n)$ of the sawtooth function:

$$
f(x)=x, \quad-\pi \leq x<\pi .
$$

(b) Use Parseval's theorem to conclude that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6} .
$$

(c) Use a similar method applied to the function

$$
f(x)=x^{2} \quad-\pi \leq x<\pi
$$

to find the sum of the series:

$$
\sum_{n=1}^{\infty} \frac{1}{n^{4}} .
$$

6. Show that if f has only finitely many nonzero Fourier coefficients $\hat{f}(n) \neq 0$, then f must be infinitely differentiable. Conclude that the sawtooth function must have infinitely many nonzero Fourier coefficients.
7. (Optional) Suppose $f:[0,2 \pi] \rightarrow \mathbb{C}$ is given by $f(\theta)=F\left(e^{i \theta}\right)$ where $F(z)$ is analytic on the unit circle $|z|=1$. Show that the Laurent series for F in an annulus containing the unit circle may be used to compute the (exponential) Fourier series of f. What happens if F is analytic on and inside the unit circle?
8. (Optional) Suppose that the partial sums of the Fourier series of $f \in L^{2}[-\pi, \pi]$ are

$$
S_{N}=\sum_{n=-N}^{N} \hat{f}(n) e^{i n x}
$$

Show that for any coefficients d_{n},

$$
\left\|f-S_{N}\right\|^{2} \leq\left\|f-\sum_{n=-N}^{N} d_{n} e^{i n x}\right\|^{2}
$$

i.e., the partial sums of the Fourier series minimize the mean square error among all linear combinations of $e^{-i N x}, \ldots, e^{i N x}$.
(hint: expand

$$
\left\|f-\sum_{n=-N}^{N} d_{n} e^{i n x}\right\|^{2}=\left\langle f-\sum_{n=-N}^{N} d_{n} e^{i n x} \mid f-\sum_{n=-N}^{N} d_{n} e^{i n x}\right\rangle
$$

expand f as a Fourier series, and use orthogonality of the exponential functions.)

