Math 121A Spring 2015, Homework 7

Due March 13 at 10am

1. Chapter 14, Section 3: 19, 21, 22.
2. If $f(z)$ is analytic on a region R and $f(z)=\frac{d F}{d z}(z)$ on R, then F is called an antiderivative of f. Show that if f has an antiderivative on R, then for any contour C in R beginning at z_{1} and ending at z_{2} :

$$
\int_{C} f(z) d z=F\left(z_{2}\right)-F\left(z_{1}\right)
$$

(hint: use the chain rule and the fundamental theorem of calculus for functions of a real variable). Use this to evaluate

$$
\int_{\gamma}\left(e^{z}+\sin z\right) d z
$$

where $\gamma(t)=e^{i t}, t \in[0, \pi]$ is a half-circle of radius one.
3. Use Cauchy's integral formula to evaluate the following integrals:

$$
\int_{C} \frac{e^{z}+\sin z}{z} d z \quad \int_{C^{\prime}}, \quad \frac{z^{2} e^{z}}{2 z+i} d z
$$

where C is the circle $|z-2|=3$, oriented positively, and C^{\prime} is the unit circle $|z|=1$, oriented negatively.
4. Suppose f is analytic on and inside the simple closed contour C. What is the value of

$$
\frac{1}{2 \pi i} \oint \frac{f(z)}{z-a} d z
$$

when a lies outside C ?
5. Show that if f is of the form

$$
f(z)=g(z)+\frac{a_{1}}{z}+\frac{a_{2}}{z^{2}}+\ldots+\frac{a_{n}}{z^{n}}
$$

where $g(z)$ is analytic on and inside the circle $|z|=1$, then

$$
\oint f(z) d z=2 \pi i a_{1}
$$

where the integral is taken in the positive direction.
6. Use Cauchy's formula to show that if f is analytic inside and on a circle $|z-a|=r$, then

$$
f(a)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(a+r e^{i \theta}\right) d \theta
$$

This is known as the mean value property, since the right hand side is an average over the circle
7. Chapter 14, Section 4: 3, 7, 10cd. (read page 680 for the definition of a pole and the order of a pole).
8. Chapter 14, Section 5: 1.

