Homework 5 Solutions

Section 5

Problem 1. $\frac{1}{1+i}=\frac{1}{2}-\frac{1}{2} i$

Problem 2. $\frac{1}{i-1}=-\frac{1}{2}-\frac{1}{2} i$

Problem 7. $\frac{3+i}{2+i}=\frac{7}{5}-\frac{1}{5} i$

Problem 28. $\left|\frac{z}{\bar{z}}\right|=1$

Problem 34. $\left|\left(\frac{1+i}{1-i}\right)^{5}\right|=\left(\left|\frac{1+i}{1-i}\right|\right)^{5}=(1)^{5}=1$

Problem 46.

$$
\begin{array}{rll}
\frac{x+i y}{x-i y}=-i & \Longleftrightarrow & x+i y=(-i)(x-i y) \\
& \Longleftrightarrow & x+i y=-y-i x \\
& \Longleftrightarrow & x=-y
\end{array}
$$

$$
\begin{aligned}
& \text { Problem 50. } \\
& \begin{array}{ll}
|x+i y|=y-i x & \Longleftrightarrow \\
& \Longleftrightarrow \sqrt{x^{2}+y^{2}}=y-i x \\
& \Longleftrightarrow \\
& \Longleftrightarrow
\end{array} \quad \begin{aligned}
x^{2}+y^{2} & \Longleftrightarrow y \text { and } 0=-x \\
y \geq 0 & \text { and } x=0
\end{aligned}
\end{aligned}
$$

Problem 60. Since

$$
\begin{aligned}
|z-1+i|=2 & \Longleftrightarrow|z-(1-i)|=2 \\
& \Longleftrightarrow \text { the distance between } z \text { and } 1-i \text { is } 2,
\end{aligned}
$$

$|z-1+i|=2$ is the circle with center $1-i$ and radius 2 .

Section 6

Problem 1.

Hypothesis: $\sum z_{n}$ is absolutely convergent. Each $z_{n}=x_{n}+i y_{n}$, where x_{n} and y_{n} are real numbers.
Claim: $\sum z_{n}$ is convergent.
Proof: We need to show that $\sum x_{n}$ and $\sum y_{n}$ are convergent. According to the definition of an absolutely convergent series,
$\sum z_{n}$ is absolutely convergent $\Longrightarrow \sum \sqrt{x_{n}^{2}+y_{n}^{2}}$ is convergent. By the Comparison Test,
$\sum \sqrt{x_{n}^{2}+y_{n}^{2}}$ is convergent $\Longrightarrow \sum x_{n}$ is absolutely convergent. According to Problem 7.9 of Chapter 1, $\sum x_{n}$ is absolutely convergent $\Longrightarrow \sum x_{n}$ is convergent.
The same argument shows that $\sum y_{n}$ is convergent.

Problem 2. This is a geometric series with ratio $z=1+i$; it converges if and only if $|z|<1$ (see Chapter 2, Section 6, Example 3). Since $|1+i|>1$, the geometric series $\sum(1+i)^{n}$ is divergent.

Problem 4. This is a geometric series with ratio $z=\frac{1-i}{1+i}$; it converges if and only if $|z|<1$ (see Chapter 2, Section 6, Example 3). Since $\left|\frac{1-i}{1+i}\right|=1$, the geometric series $\sum\left(\frac{1-i}{1+i}\right)^{n}$ is divergent.

Problem 13. This is a geometric series with ratio $z=\frac{1+i}{2-i}$; it converges if and only if $|z|<1$ (see Chapter 2, Section 6, Example 3). Since $\left|\frac{1+i}{2-i}\right|<1$, the geometric series $\sum\left(\frac{1+i}{2-i}\right)^{n}$ is convergent.

Section 7

Problem 1. From the ratio test,

$$
\rho=\lim _{n \rightarrow \infty}\left|\frac{z^{n+1}}{(n+1)!} \div \frac{z^{n}}{n!}\right|=\lim _{n \rightarrow \infty}\left|\frac{z}{n+1}\right|=0 .
$$

This series converges for all values of z.

Problem 4. From the ratio test,

$$
\rho=\lim _{n \rightarrow \infty}\left|z^{n+1} \div z^{n}\right|=\lim _{n \rightarrow \infty}|z|=|z| .
$$

This series converges for $|z|<1$, the disk centered at 0 with radius 1 .

Problem 7. From the ratio test,

$$
\rho=\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1} z^{2(n+1)}}{[2(n+1)]!} \div \frac{(-1)^{n} z^{2 n}}{(2 n)!}\right|=\lim _{n \rightarrow \infty}\left|\frac{-z^{2}}{4 n^{2}+6 n+2}\right|=0 .
$$

This series converges for all values of z.

Problem 13. From the ratio test,

$$
\rho=\lim _{n \rightarrow \infty}\left|\frac{(z-i)^{n+1}}{n+1} \div \frac{(z-i)^{n}}{n}\right|=|z-i| \lim _{n \rightarrow \infty}\left|\frac{n}{n+1}\right|=|z-i| .
$$

This series converges on $|z-i|<1$, the disk centered at i with radius 1 .

Section 8 Along with (8.1), we use the formulas

$$
\sum_{n=0}^{\infty} a_{n} \cdot \sum_{n=0}^{\infty} b_{n}=\sum_{n=0}^{\infty} c_{n} \quad \text { where } \quad c_{n}:=\sum_{k=0}^{n} a_{k} b_{n-k}
$$

and

$$
(a+b)^{n}=\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} a^{k} b^{n-k}
$$

Problem 1.

$$
\begin{aligned}
e^{z_{1}} \cdot e^{z_{2}} & =\sum_{n=0}^{\infty} \frac{z_{1}^{n}}{n!} \cdot \sum_{n=0}^{\infty} \frac{z_{2}^{n}}{n!} \\
& =\sum_{n=0}^{\infty} c_{n} \quad \text { where } \quad c_{n}=\sum_{k=0}^{n} \frac{z_{1}^{k}}{k!} \frac{z_{2}^{n-k}}{(n-k)!}=\sum_{k=0}^{n} \frac{z_{1}^{k} z_{2}^{n-k}}{k!(n-k)!}=\frac{\left(z_{1}+z_{2}\right)^{n}}{n!} \\
& =\sum_{n=0}^{\infty} \frac{\left(z_{1}+z_{2}\right)^{n}}{n!}=e^{z_{1}+z_{2}}
\end{aligned}
$$

Problem 2.

$$
\begin{aligned}
\frac{d}{d z} e^{z} & =\frac{d}{d z} \sum_{n=0}^{\infty} \frac{z^{n}}{n!}=\frac{d}{d z}\left(1+\sum_{n=1}^{\infty} \frac{z^{n}}{n!}\right)=\frac{d}{d z} 1+\frac{d}{d z} \sum_{n=1}^{\infty} \frac{z^{n}}{n!} \\
& =0+\frac{d}{d z} \sum_{n=1}^{\infty} \frac{z^{n}}{n!}=\frac{d}{d z} \sum_{n=1}^{\infty} \frac{z^{n}}{n!}=\sum_{n=1}^{\infty} \frac{d}{d z} \frac{z^{n}}{n!} \\
& =\sum_{n=1}^{\infty} \frac{1}{n!} \frac{d}{d z} z^{n}=\sum_{n=1}^{\infty} \frac{1}{n!} n z^{n-1}=\sum_{n=1}^{\infty} \frac{1}{(n-1)!} z^{n-1} \\
& =\sum_{n=0}^{\infty} \frac{1}{n!} z^{n}=e^{z}
\end{aligned}
$$

Section 9

Problem 27. For any real y,

$$
\left|e^{i y}\right|=|\cos y+i \sin y|=\sqrt{\cos ^{2} y+\sin ^{2} y}=\sqrt{1}=1
$$

Hence, for every complex $z=x+i y$,

$$
\left|e^{z}\right|=\left|e^{x+i y}\right|=\left|e^{x} e^{i y}\right|=\left|e^{x}\right|\left|e^{i y}\right|=\left|e^{x}\right|=e^{x}
$$

Section 10

Problem 1. The cube roots of 1 are $1,-\frac{1}{2}+\frac{\sqrt{3}}{2} i$, and $-\frac{1}{2}-\frac{\sqrt{3}}{2} i$.

Problem 11. The cube roots of -8 are $-2,1-\sqrt{3} i$, and $1+\sqrt{3} i$.

Problem 22. The cube roots of $-2+2 i$ are $\sqrt{2}+i \sqrt{2}, \frac{-1-\sqrt{3}}{2}+i \frac{1-\sqrt{3}}{2}$, and $\frac{-1+\sqrt{3}}{2}-i \frac{1+\sqrt{3}}{2}$.

Problem 30. (Follows from Problem 31)

Problem 31. Suppose w is a complex number. Let $w_{1}, w_{2}, w_{3}, \ldots, w_{n}$ be the $n n$th roots of w. We want to show that $\sum_{k=1}^{n} w_{k}=0$. Since each w_{k} is an nth root of w, each w_{k} solves the equation $z^{n}-w=0$. Since $z^{n}-w$ is a polynomial of degree n,

$$
z^{n}-w=\left(z-w_{1}\right)\left(z-w_{2}\right)\left(z-w_{3}\right) \cdots\left(z-w_{n}\right)
$$

But
$\left(z-w_{1}\right)\left(z-w_{2}\right)\left(z-w_{3}\right) \cdots\left(z-w_{n}\right)=z^{n}-\left(\sum_{k=1}^{n} w_{k}\right) z^{n-1}+\cdots+(-1)^{n} w_{1} w_{2} w_{3} \cdots w_{n}$.
So
$z^{n}-w=z^{n}+0 z^{n-1}+\cdots+(-w)=z^{n}-\left(\sum_{k=1}^{n} w_{k}\right) z^{n-1}+\cdots+(-1)^{n} w_{1} w_{2} w_{3} \cdots w_{n}$.
Therefore $0=\sum_{k=1}^{n} w_{k}$.

Section 10, \#31 (Alternate solution)
Suppose $z=r e^{i \theta}$. The $n^{\text {th }}$ roots of z are given by

$$
r^{1 / n} e^{i\left(\frac{\theta+2 \pi k}{n}\right)}, k=0,1, \ldots n-1 .
$$

So, the sum of the roots is

$$
\begin{aligned}
& r^{1 / n}\left(e^{i \frac{\theta}{n}}+e^{i\left(\frac{Q}{n}+\frac{2 \pi}{n}\right)}+e^{i\left(\frac{\theta}{n}+\frac{4 \pi}{n}\right)}+\cdots e^{i\left(\frac{\theta}{n}+\frac{2 \pi n-1)}{n}\right)}\right) \\
= & r^{1 / n}\left(e^{i \theta / n}+e^{i \theta / n} e^{i 2 \pi / n}+e^{i} e^{i 4 \pi / n}+\cdots+e^{i \theta / n} e^{i \frac{2 \pi(n-1)}{n}}\right) \\
= & r^{1 / n} e^{i \theta / n}\left(1+e^{i \pi \pi / n}+e^{i \frac{i \pi}{n}}+\cdots+e^{i \frac{i(n-1) \pi}{n}}\right) .
\end{aligned}
$$

Notice that the terms in the paratueses are just the $n^{\text {th }}$ roots of 1 .
Letting $\omega=e^{i 2 \pi / n}$, their sum may be rewintten as

$$
\begin{aligned}
& \text { letting } \omega=e^{2-1 / n} \text {, their sum may } \\
& S=1+e^{i \frac{2 \pi}{n}}+\left(e^{i \frac{2 \pi}{n}}\right)^{2}+\left(e^{i \frac{2 \pi}{n}}\right)^{3}+\cdots\left(e^{i \frac{2 \pi}{n}}\right)^{n-1}=1+\omega+\omega^{2}+\omega^{3} \cdots \omega^{n-1} \text {. }
\end{aligned}
$$

Geometrically, these numbers are vertices of a regular polygon.
They are located on the ut are, and consentive powers are equally spaced, by an angle of $\frac{2 \pi}{n}$.
The crucial geometric observation is that this polygon does not change if we rotate it by $\frac{2 \pi}{n}$ conterelockwise each vortex simply gets mapped to the next one (modulo n)
Since rotation by $\frac{2 \pi}{n}$ is the save as nuttpplication by ω, this man be seer algebraically os:

$$
\begin{aligned}
& \omega \cdot 1=w \\
& w \cdot w=w^{2} \\
& w \cdot w^{2}=w^{3} \\
& w \cdot w^{3}=w^{4} \\
& \vdots \\
& w \cdot w^{n-1}=w^{n}=1 .
\end{aligned}
$$

In particulars we have

$$
\begin{aligned}
\omega S & =\omega\left(1+\omega+\omega^{2} \cdots+\omega^{n-1}\right) \\
& =\left(\omega+\omega^{2}+\omega^{3} \cdots+1\right) \\
& =S .
\end{aligned}
$$

Thus $(\omega-1) S=0$.
Sine $\omega \neq 1$ this meas $S=0$, and we are done

Another Solution:
Obdore $S=1+\omega+\omega^{2}+\cdots+\omega^{n-1}$ is a geometry series.
Thus, its sum is giver by: $\quad S=\frac{\omega^{n}-1}{\omega-1}=\frac{1-1}{\omega-1}=0$.

