Homework 5 Solutions
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Problem 60. Since
z—14i=2 <= |z —(1—1)| =2
<> the distance between z and 1 — 7 is 2,

|z — 14| = 2 is the circle with center 1 — ¢ and radius 2.



Problem 1.
Hypothesis: > z, is absolutely convergent. Each z, = z,, +iy,, where z,, and
Y, are real numbers.
Claim: ) z, is convergent.
Proof: We need to show that > x, and >y, are convergent. According to
the definition of an absolutely convergent series,

z, 18 absolutely convergent — 22 4+ y2 is convergent.
Yy g n T Yn g
By the Comparison Test,

> v/ x2 +y2 is convergent —> >z, is absolutely convergent.
According to Problem 7.9 of Chapter 1,

> x, is absolutely convergent — ) x, is convergent.
The same argument shows that >y, is convergent.

Problem 2. This is a geometric series with ratio z = 1 + ¢; it converges if
and only if |z] < 1 (see Chapter 2, Section 6, Example 3). Since |1 +i| > 1,
the geometric series Y (1 4 ¢)" is divergent.
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only if |2] < 1 (see Chapter 2, Section 6, Example 3). Since |{74| = 1, the

Problem 4. 'This is a geometric series with ratio z = it converges if and

geometric series ) ({74)" is divergent.

Problem 13. This is a geometric series with ratio z = %—“_L;; it converges if

and only if |z| < 1 (see Chapter 2, Section 6, Example 3). Since |s] < 1,
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2—2') IS convergent.

the geometric series (



|Section 7]

Problem 1. From the ratio test,
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This series converges for all values of z.
Problem 4. From the ratio test,
p = lim |z"" +2"| = lim |2| = |2].
n—oo n—o0

This series converges for |z| < 1, the disk centered at 0 with radius 1.

Problem 7. From the ratio test,
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This series converges for all values of z.
Problem 13. From the ratio test,
. . (z_i)n+1 . (Z—Z)n _ o . n _ o
p o= lm = = |z —if lim n+1‘ |2 = l.

This series converges on |z — i| < 1, the disk centered at i with radius 1.



Along with (8.1), we use the formulas
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Problem 27. For any real y,

€] = |cosy +isiny| = \/0082y+sin2y = V1 =1
Hence, for every complex z = x + 1y,
] = (e ] = [enel] = [eflle?] = |eF] = e
Problem 1. The cube roots of 1 are 1, —% + 731', and —% — */732

Problem 11. 'The cube roots of —8 are —2, 1 — \/§i, and 1+ v/3i.

Problem 22. The cube roots of —2 + 2i are v/2 + iv/2, _15\/3 + 2-1—2\/57 and

—14v3 _ -14V3
2 =

Problem 30. (Follows from Problem 31)

Problem 31. Suppose w is a complex number. Let wy, wo, ws, ..., w, be
the n nth roots of w. We want to show that > ;_; wy = 0. Since each wy, is
an nth root of w, each wy solves the equation z" — w = 0. Since 2" —w is a
polynomial of degree n,

2'—w=(z—w)(z—w)(z—ws3) (2 —wy).

But

(z=wi)(z—wa)(z—w3) - - - (z—wn) = 2"~ (Z wk) &l (= 1) wiwaws - wy.
k=1

So

n
e = 202" e (—w) = z”—( wk> e (D) wwaws - - - w,.
k=1

Therefore 0 = > "7 wy.
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