Math 121A Spring 2015, Extra Linear Algebra Problems

1. Consider the rotation matrix $\left[R_{\theta}\right]$ in the standard basis, from HW3. Write $\left[R_{\theta}\right]_{B}$ for the basis $B=\left\{(1,1)^{T},(0,1)^{T}\right\}$. Is $\left[R_{\theta}\right]_{B}$ an orthogonal matrix?
Now try it again for $\left[R_{\theta}\right]_{C}$ where $C=\left\{(1,1)^{T},(1,2)^{T}\right\}$. Is $\left[R_{\theta}\right]_{B}=\left[R_{\theta}\right]_{C}$?
2. Boas Section 3.11: 27, 29.
3. The tribonacci sequence is defined by

$$
f_{0}=1, f_{1}=3,
$$

and

$$
f_{n+1}=\frac{f_{n}}{2}+3 f_{n-1}
$$

Use diagonalization to derive an expression for f_{n}. Does it grow faster or more slowly than the Fibonacci sequence?
4. Consider the real vector space of polynomials in two variables x, y of degree at most 1 in each variable:

$$
V=\left\{a_{0}+a_{10} x+a_{01} y+a_{11} x y: a_{0}, a_{01}, a_{10}, a_{11} \in \mathbb{R}\right\} .
$$

Consider the partial differentiation operator $T: V \rightarrow V$ given by:

$$
T(p(x, y))=\frac{\partial p}{\partial y}(x, y)
$$

Write down the matrix of T in the basis $\{1, x, y, x y\}$ (i.e., use this as both the input basis and the output basis).
Bonus: Repeat the exercise for the operator which differentiaties with respect to x :

$$
S(p(x, y))=\frac{\partial p}{\partial x}(x, y)
$$

Do the matrices of S and T commute?
5. Work out the oscillator example from class (page 165, figure 12.1) with three unit masses and four springs of spring constant k.

