Math 121A Spring 2015, Homework 3

Due February 13 at 10am

1. Chapter 3 Section 9: 17.
2. Chapter 3 Section 11: 41.
3. Let $R_{\theta}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the linear transformation which rotates its input by angle of θ counterclockwise.
(a) Find the matrix $\left[R_{\theta}\right]$ of R_{θ} in the standard basis.
(b) Find the matrix $\left[R_{\theta}\right]_{B}$ of R_{θ} in the basis $B=\left\{(1,1)^{T},(-1,1)^{T}\right\}$.
(c) Show that $\left\|\left[R_{\theta}\right] x\right\|=\|x\|$ for every $x \in \mathbf{R}^{2}$. Is this also true for $\left[R_{\theta}\right]_{B}$?
4. Suppose U is an $n \times n$ unitary matrix. Show that U^{\dagger} is also unitary, and that $\|U x\|=$ $\left\|U^{\dagger} x\right\|=\|x\|$ for all $x \in \mathbf{C}^{n}$. Hint: remember that $\|x\|^{2}=\sum_{i}\left|x_{i}\right|^{2}=\sum_{i} x_{i}^{*} \cdot x_{i}$ for complex vectors.
5. Let P_{2} be the vector space of polynomials in t of degree at most 2, with complex coefficients. Consider the linear operators $S: P_{2} \rightarrow P_{2}$ and $T: P_{2} \rightarrow P_{2}$ defined by:

$$
S(p)=\frac{\partial}{\partial t} p \quad \text { and } \quad T(p)=t \frac{\partial}{\partial t} p
$$

Write the matrices of S and T with respect to the standard basis of monomials $\left\{1, t, t^{2}\right\}$. Find the eigenvalues and eigenvectors of S and T. Is either one diagonalizable?
6. We say that A is similar to B if there is an invertible matrix C such that $A=C B C^{-1}$. Show that if A is similar to B then B is similar to A. Show that similar matrices have the same eigenvalues. What is the relationship between the eigenvectors of A and those of B ?
7. The trace of a matrix is defined as $\operatorname{tr}(A)=\sum_{i} A_{i i}$, the sum of the diagonal entries. Show that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$. Use this to conclude that if A is diagonalizable, then $\operatorname{tr}(A)$ is equal to the sum of the eigenvalues of A.

Bonus: Show that $\operatorname{tr}(A)$ is always equal to the sum of the eigenvalues, even if A is not diagonalizable.
8. Compute the eigenvalues and eigenvectors of the matrix

$$
A=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]
$$

Use diagonalization to compute $A^{5}-A^{3}+A$, as well as $\operatorname{tr}\left(A^{10}\right)$.
9. The Fibonacci sequence $1,1,2,3,5, \ldots$ is defined by the recurrence relation $f_{n+1}=$ $f_{n}+f_{n-1}$, with initial conditions $f_{0}=1$ and $f_{1}=1$. In matrix notation, this may be written as:

$$
\left[\begin{array}{c}
f_{n+1} \\
f_{n}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
f_{n} \\
f_{n-1}
\end{array}\right]
$$

(a) Diagonalize the matrix

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]
$$

(b) Use this to compute an expression for

$$
\left[\begin{array}{c}
f_{n+1} \\
f_{n}
\end{array}\right]=A^{n}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

(c) Use this to derive a formula for f_{n}. What is $\lim _{n \rightarrow \infty} \frac{f_{n}}{2^{n}}$?
10. Consider the arrangement of masses and springs shown in figure 12.1 (page 165), and also discussed in class. In class, we assumed that the masses were both equal to 1 and that the spring constants were all equal to k. Now consider the situation where the spring constants are k, h and k, i.e., the middle spring is different.
Letting $x_{1}(t)$ and $x_{2}(t)$ denote the positions of the masses at time t, this system is described by the second-order differential equations:

$$
\begin{aligned}
& \frac{\partial^{2} x_{1}(t)}{\partial t^{2}}=-k x_{1}(t)-h\left(x_{1}(t)-x_{2}(t)\right), \\
& \frac{\partial^{2} x_{2}(t)}{\partial t^{2}}=-k x_{2}(t)-h\left(x_{2}(t)-x_{1}(t)\right),
\end{aligned}
$$

Use diagonalization to decouple and solve these equations, for initial conditions $x_{1}(0)=$ $1, x_{2}(0)=0$, and $\dot{x_{1}}(0)=\dot{x_{2}}(0)=0$. What are the normal modes? What happens as $h \rightarrow 0$? As $h \rightarrow \infty$?

