Homework 2 Solutions
(1)(a) Diverges: by the prelinuary test, because $\lim _{n \rightarrow \infty} \sin (\log n) \neq 0$ (actually does not exist).

Proving this is kind of tricky because we only cave abate $\sin (\log n)$ for integer n, aid this may have different linting behavior from $\sin (\log x)$ for real x as $x \rightarrow 0$ (for example, $\sin (2 \pi x)$ oscillates as $x \rightarrow \infty$ bit $\sin (2 \pi n)=0$ for all integess $n)$.

Proof: Obsove that $\log (n+1)-\log (n)$

$$
\begin{aligned}
=\log \left(\frac{1+n}{n}\right)=\log \left(1+\frac{1}{n}\right) & =\frac{1}{n}-\frac{1}{2 n^{2}}+O\left(\frac{1}{n^{3}}\right) \\
& \leqslant \frac{1}{n} \text { since the seres }
\end{aligned}
$$ alternates and terms are deceasing aid turing to zero.

Thus, for $n \geqslant 100$ (say), the sequence $b_{n}=\log n$ is nearing by noevents of at most $\frac{1}{100}$, i.e. $b_{n_{t}}-b_{n} \leqslant \frac{1}{100^{\circ}}$.
Since $b_{n} \rightarrow \infty$, this means that for every real $x \geqslant 100$ there is some $\left|b_{n}-x\right| \leqslant \frac{1}{100}$, Which implies (in particular) that b_{n} is in the interval $\left[(2 k+1) \frac{\pi}{2}-\frac{1}{100},(2 k+1) \frac{\pi}{2}+\frac{1}{100}\right]$ for inhutely many integer k, so $\lim _{n \rightarrow \infty} \sin \left(b_{n}\right) \neq 0$.
(1) (b)

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \log \left(n \sin \left(\frac{1}{n}\right)\right)=\sum_{n=1}^{\infty} \log \left(n\left(\frac{1}{n}-\frac{1}{3 \cdot n^{3}}+O\left(\frac{1}{n^{5}}\right)\right)\right. \\
&= \sum_{n=1}^{\infty} \log \left(1-\frac{1}{6 n^{2}}+O\left(\frac{1}{n^{4}}\right)\right) \\
&= \sum_{n=1}^{\infty}-\left(\frac{1}{6 n^{2}}-O\left(\frac{1}{n^{4}}\right)\right)-\frac{1}{2}\left(\frac{1}{6 n^{2}}-O\left(\frac{1}{n^{4}}\right)\right)^{2} \\
&-\frac{1}{3}\left(\frac{1}{6 n^{2}}-O\left(\frac{1}{n^{4}}\right)\right)^{3} \cdots
\end{aligned}
$$

$=\sum_{n=1}^{\infty}-\frac{1}{6 n^{2}}+O\left(\frac{1}{n^{4}}\right)$ Since all fortuo terns are of degree at least 4
which converges since $\sum \frac{1}{n^{2}}$ and $\sum \frac{1}{n^{4}}$ converge.
People have beer confused about how to use $O()$ notation. Ore simple way to truck of it is taus:

Since $f=O(g)$ means $\lim _{n \rightarrow \infty}\left|\frac{f}{g}\right|$ is Since, $f=O(g)$ just means there is a constant C such that $|f| \leqslant C|g|$ for sufficiently lave n. So the $O()$ just "hides" this constant, and ignores lower order tons, eg:

$$
\frac{1}{6 n^{2}}=O\left(\frac{1}{n^{2}}\right), \quad \frac{1}{6 n^{2}}-\frac{1}{5!n^{4}}=\frac{1}{6 n^{2}}-O\left(\frac{1}{n^{4}}\right)
$$

Note that thus notation does not cave if f is negative or positive, so we car ever waste $-\frac{1}{6 n^{2}}=O\left(\frac{1}{n^{2}}\right)$, which is uschl when we doit h care about the sign.
(1) (c)

Notice that for $\log n \geqslant 3$, we have

$$
\begin{aligned}
\frac{1}{(\log n)} \log n \leq \frac{1}{3^{\log n}} & =\frac{1}{e^{\log n \log 3}} \\
& =\frac{1}{n^{\log 3}}
\end{aligned}
$$

Since $\log 3>1$, we know that the sores

$$
\sum_{n=1}^{\infty} \frac{1}{n^{\log 3}} \text { converges. }
$$

Let N be the first integer greater than e^{3}, so that $\log N \geqslant 3$.
and comparing the latter part with $\sum_{N+1}^{\infty} \frac{1}{n^{\log 3}}$, we conclude that the seres converges.
(2) Section 10
(4)

$$
\begin{aligned}
\rho & =\lim _{n \rightarrow \infty}\left|\frac{x^{2 n+2}}{2^{n+1}(n+1)^{2}} \cdot \frac{2^{n} n^{2}}{x^{2 n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{x^{2}}{2}\left(\frac{n}{n+1}\right)^{2}\right|=\frac{x^{2}}{2}
\end{aligned}
$$

So the sores converges when $|x|<\sqrt{2}$.
at $n=\sqrt{2}: \quad \sum_{n=1}^{\infty} \frac{(\sqrt{2})^{2 n}}{2^{n} n^{2}}=\sum \frac{1}{n^{2}} \quad$ converges.
$\underline{x}=-\sqrt{2}: \quad \sum_{n=1}^{\infty} \frac{(-\sqrt{2})^{2 n}}{2^{n} n^{2}}=\sum \frac{1}{n^{2}}$ converges
(5)

$$
\begin{aligned}
\rho & =\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{((n+1)!)^{2}} \cdot \frac{(n!)^{2}}{x^{n}}\right| \\
& =\operatorname{lx} \lim _{n \rightarrow \infty}\left|\frac{1}{(n+1)^{2}}\right|=0 \quad \text { for every } x .
\end{aligned}
$$

(II)

$$
\begin{aligned}
\rho=\lim _{n \rightarrow \infty}\left|\frac{\frac{1}{n+1}\left(\frac{x}{5}\right)^{n+1}}{\frac{1}{n}\left(\frac{x}{5}\right)^{n}}\right| & =\left|\frac{x}{5}\right| \lim _{n \rightarrow \infty}\left|\frac{n}{n+1}\right| \\
& =\left|\frac{x}{5}\right|
\end{aligned}
$$

So the series converges for $|x|<5$.
at $x=5: \sum_{n=1}^{\infty} \frac{1}{n}\left(\frac{5}{5}\right)^{n}$ diverges
$\underline{n=-5} \sum_{n=1}^{\infty} \frac{1}{n}\left(-\frac{5}{5}\right)^{n}$ converges by the alternatug $\begin{gathered}\text { test. }\end{gathered}$
So the interval of convergence is $[5,5$).
(22) Write $y=\frac{1}{x}$. Then

$$
\begin{aligned}
& \text { Write } y=x . \\
& \sum_{0}^{\infty} \frac{n!(-1)^{n}}{x^{n}}=\sum_{0}^{\infty} n!(-1)^{n} y^{n} \text {. Then } \\
& \left.\rho=\lim _{n \rightarrow \infty}\left|\frac{\left.(n+1)!y^{n+1}(-1)\right)^{n+1}}{\left.n!y^{n}(-1)\right)}=|y| \lim _{n \rightarrow \infty}\right| n+1 \right\rvert\,=\infty \\
& \text { for ever } y
\end{aligned}
$$

So the series diverges everywhere.
(3) Section 13
(a)

$$
\begin{aligned}
\frac{1+x}{1-x}=1+x \cdot \frac{1}{1-x} & =(1+x)\left(1+x+x^{2}-\cdots\right) \\
& =1+2 x+2 x^{2}+2 x^{3} \cdots \\
& =1+2 \sum_{n=1}^{\infty} x^{n}
\end{aligned}
$$

(12)

$$
\begin{aligned}
\int_{0}^{x} \cos t^{2} d t & =\int_{0}^{x} 1-\frac{\left(t^{2}\right)^{2}}{2!}+\frac{\left(t^{2}\right)^{4}}{4!} \cdots d t \\
& =\int_{0}^{x} 1 \partial t-\int_{0}^{x} \frac{t^{4}}{2!} d t+\int_{0}^{x} \frac{t^{8}}{4!} \partial t \cdots \\
& =\left.t\right|_{0} ^{x}-\left.\frac{t^{5}}{5 \cdot 2!}\right|_{0} ^{x}+\left.\frac{t^{9}}{9 \cdot 4!}\right|_{0} ^{x} \cdots \\
& =x-\frac{x^{5}}{5 \cdot 2!}+\frac{x^{9}}{9 \cdot 4!} \cdots \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n+1}}{(4 n+1)(2 n)!}
\end{aligned}
$$

(23) Substitute $y=x+x^{2}$, and note that $|y|<1$ for x in a small interval around 0 , which is what we are interested in for Maclaunn sores.
Thus we may use thus substitution in the geometric sores:

$$
\begin{aligned}
\frac{1}{1+y} & =1-y+y^{2} \\
& =1-\left(x+x^{2}\right)+\left(x+x^{2}\right)^{2}-\left(x+x^{2}\right)^{3}
\end{aligned}
$$

$$
\begin{aligned}
& =1-\left(x+x^{2}\right)+x^{2}(x+1)^{2}-x^{3}(x+1)^{3} \\
& =1-\left(x+x^{2}\right)+\left(x^{4}+2 x^{3}+x^{2}\right)-\left(x^{6}+3 x^{5}+3 x^{4}+x^{3}\right) \ldots \\
& =1-x+x^{3}-x^{4}+O\left(x^{5}\right) .
\end{aligned}
$$

(24) $\sec x=\frac{1}{\cos x}=\frac{1}{1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!} \cdots}=1+\frac{x^{2}}{2!}+\frac{5 x^{4}}{24}+\cdots$
long division:

$$
1-\frac{x^{2}}{2!}+\frac{x^{4} \cdots}{4!} \sqrt{1+\frac{x^{2}}{2!}+\frac{5 x^{4}}{24} \cdots}
$$

(28)

$$
\begin{aligned}
& \sin (\log (1+x))= \sin \left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+O\left(x^{5}\right)\right) \\
&=\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+O\left(x^{5}\right)\right)-\frac{1}{3!}\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+O\left(x^{5}\right)\right)^{3} \\
&+O\left(x^{5}\right) \\
&= x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{3}}{3!}-\frac{x^{4}}{4}-\frac{1}{3!}\left(x \cdot x \cdot\left(-\frac{x^{2}}{2}\right)\right) \\
&+O\left(x^{5}\right)
\end{aligned}
$$

(4) Section 14
(3) The series $(1+x)^{1 / 2}=1+\left(\frac{1}{2}\right) x+\frac{\left(\frac{1}{2}\right)(-1 / 2) x^{2}}{2!}+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right) x^{3}}{3!}$ is alternating and the $\left|q_{n}\right|$ we decreasing:

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\left|\begin{array}{ll}
\frac{\frac{1}{2}\left(\frac{1}{2}-1\right) \ldots\left(\frac{1}{2}-n\right) x^{n+1}}{(n+1)!} \\
\frac{\frac{1}{2}\left(\frac{1}{2}-1\right) \cdots\left(\frac{1}{2}-(n-1)\right)}{n!} x^{n}
\end{array}\right|=\left|\frac{\left.\left\lvert\, \frac{1}{2}-n\right.\right) x}{n+1}\right|<1
$$

So the error is bounded by the next tom:
So the error is bounded by the next rom.

This is ar increasing function on $[0,1 / 2]$, so its maximum is aclueved at the ad point : $\frac{1}{8}\left(\frac{1}{2}\right)^{2}=\frac{1}{32}=0.03125$

$$
<0.032 .
$$

Thus $|\operatorname{err}(x)|<0.032$ for os $x<1 / 2$.
(5) $\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!} \cdots \quad$ is alternating and the terns deciare in magmtode for $(x \mid<1$, so $\operatorname{err}(x)=\left|1-\frac{x^{2}}{2}-\cos x\right|<\frac{x^{4}}{4!}$ which is increasing on $[0,1 / 2]$ and decreasing on $[-1 / 2,0]$, so that for $|x|<1 / 2$ we have

$$
\frac{x^{4}}{4!}<\frac{\left(\frac{1}{2}\right)^{4}}{24}=\frac{1}{384}=0.0026 \ldots
$$

(8) The remainder is
$R_{3}^{(x)} \sum_{n=4}^{\infty} \frac{x^{n}}{n^{4}}$. Since the coefficuels are deceasing in magminde, we have

$$
\begin{aligned}
\left|R_{3}(x)\right| & \leqslant \frac{1}{4^{4}} \sum_{n=4}^{\infty} x^{n} \\
& =\frac{x^{4}}{4^{4}} \sum_{n=0}^{\infty} x^{n}=\frac{x^{4}}{256(1-x)}
\end{aligned}
$$

It is not immediately obvious that the maximum of the function over $[-1 / 2,1 / 2]$ is acherved at the eidpoids, because it is not obviously incensing or deceasing on $[-1 / 2,0]$ (the numerator is deceasing and so is the denominator).

But we car estimate

$$
\begin{aligned}
\max _{x \in[-1 / 2,1 / 2]}\left|\frac{x^{4}}{256(1-x)}\right| & \leq \frac{1}{256} \max _{[-1 / 242]}\left|x^{4}\right| \cdot \max _{[-1 / 21 / 2]}\left|\frac{1}{1-x}\right| \\
& =\frac{1}{256}\left(\frac{1}{2}\right)^{4} \cdot \frac{1}{(1-1 / 2)} \\
& =\frac{8}{256}=\frac{1}{32}
\end{aligned}
$$

(alternately, we cold obsore that $R_{3}(-x) \leq R_{3}(x)$ for every $x \in[0,1 / 2]$, So we know the max must be achieved on $[0,1 / 2]$, on which $R_{3}(x)$ is increasing so it is sufficient to check the endpoint $x=1 / 2$).
(5) bection 15
(2)

$$
\begin{aligned}
& \left(1+x^{4}\right)^{-1 / 2}-\cos x^{2} \\
= & 1+(-112) x^{4}+\frac{(-1 / 2)(-1 / 2-1)}{2!} x^{8}+O\left(x^{12}\right) \\
& -\left(1-\frac{x^{4}}{2!}+\frac{x^{8}}{4!}+O\left(x^{(4)}\right)\right. \\
= & \frac{3 x^{8}}{16}<\frac{x^{8}}{24}+O\left(x^{(2)}\right) \\
= & \frac{7 x^{8}}{48}+\theta\left(x^{12}\right) . \quad=\frac{(18-2)}{48} x^{8}=\frac{x^{8}}{3}
\end{aligned}
$$

which is

$$
\begin{aligned}
& \approx \frac{7}{48}(0.012)^{8}=\frac{(0.012)^{8}}{3} \\
& =\frac{7.122}{48} \times 10^{-24}=1.433 \times 10^{-16} \\
& =7.52 \times 10^{-16}
\end{aligned}
$$

(3)

First we calulate

$$
\begin{aligned}
& \text { (3) First we calulate } \\
& \qquad \frac{1}{x^{3}} \log \left(1+x^{3} e^{x}\right)=\frac{1}{x^{3}} \log \left(1+x^{3}+\frac{x^{4}}{1!}+\frac{x^{5}}{2!}+\frac{x^{6}}{3!}+O\left(x^{7}\right)\right) \\
& =\frac{1}{x^{3}}\left(\left(x^{3}+x^{4}+\frac{x^{5}}{2}+\frac{x^{6}}{6}+O\left(x^{2}\right)\right)-\frac{1}{2}\left(x^{3}+x^{4}+\frac{x^{5}}{2}+\frac{x^{6}}{6}+O\left(x^{2}\right)\right)^{2}+O\left(x^{9}\right)\right) \\
& =\frac{1}{x^{3}}\left(x^{3}+x^{4}+\frac{x^{5}}{2}+\frac{x^{6}}{6}+O\left(x^{7}\right)-\frac{x^{6}}{2}+O\left(x^{2}\right)\right) \\
& = \\
& =1+x+\frac{x^{2}}{2}-\frac{x^{3}}{3}+O\left(x^{4}\right) .
\end{aligned}
$$

The other term is $e^{\sin x}$

$$
\begin{aligned}
& \begin{array}{l}
=1+\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+O\left(x^{2}\right)\right)+\frac{1}{2!}\left(\frac{x-x^{3}}{3!}+\frac{x^{5}}{5!}+O\left(x^{2}\right)\right)^{2} \\
\\
\quad \quad+\frac{1}{3!}\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+O\left(x^{2}\right)\right)^{3} \\
=1+\left(x-x^{3}+O\left(x^{5}\right)\right)+\frac{1}{2}\left(x^{2}+O\left(x^{4}\right)\right)+O\left(x^{4}\right) \\
\\
\quad+\frac{1}{6}\left(x^{3}+O\left(x^{4}\right)\right)+O\left(x^{4}\right) \\
=1+x+\frac{x^{2}}{2}-\frac{5}{6} x^{3}+O\left(x^{4}\right) .
\end{array}
\end{aligned}
$$

So the difference is

$$
\begin{aligned}
& \text { defferce is } \\
& e^{\sin x}-\left(\frac{1}{x^{3}}\right) \log \left(1+x^{3} e^{x}\right)=\left(1+x+\frac{x^{2}}{2}-\frac{5}{6} x^{3}+O\left(x^{4}\right)\right) \\
&-\left(1+x+\frac{x^{2}}{2}-\frac{x^{3}}{3}+O\left(x^{4}\right)\right) \\
&=-\frac{1}{2} x^{3}+O\left(x^{4}\right) .
\end{aligned}
$$

plugging in $x=3.5 \times 10^{-4}$ gives

$$
-\frac{1}{2}(3.5)^{3} \times 10^{-12}=-6.125 \times 10^{-12}
$$

(6)

$$
\begin{aligned}
& \frac{\partial^{4}}{\partial x^{4}}\left(x^{3}-\frac{x^{6}}{2}+\frac{x^{9}}{3} \cdots\right) \\
= & 0-\frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot x^{2}}{2}+\frac{9 \cdot 8 \cdot 7 \cdot 6}{3} x^{5} \cdots
\end{aligned}
$$

$$
=0 \quad \text { at } \quad x=0
$$

(11)

$$
\begin{aligned}
= & =\lim _{x \rightarrow 0} \frac{\sin ^{2} 2 x}{x^{2}}=x_{x \rightarrow 0} \frac{\left(2 x-\frac{8 x^{3}}{3!}+0\left(x^{5}\right)\right)^{2}}{x^{2}} \\
= & \lim _{x \rightarrow 0} \frac{4 x^{2}+0\left(x^{4}\right)}{x^{2}}=4
\end{aligned}
$$

(23a) Write $\frac{1}{x}-\frac{1}{e^{x}-1}=\frac{e^{x}-1-x}{\left(e^{x}-1\right) x}$

$$
\begin{aligned}
& =\frac{\frac{x^{2}}{2!}+O\left(x^{3}\right)}{\left(x+\frac{x^{2}}{2}+O\left(x^{3}\right)\right) x}=\frac{\frac{x^{2}}{2}+O\left(x^{3}\right)}{x^{2}+O\left(x^{3}\right)} \\
& \text { So the limit is } \lim _{x \rightarrow 0} \frac{\frac{x^{2}}{2}+O\left(x^{3}\right)}{x^{2}+O\left(x^{3}\right)}=1 / 2 .
\end{aligned}
$$

(28) $\left(1-\frac{v^{2}}{c^{2}}\right)^{-1 / 2}=1+\frac{1}{2} \frac{v^{2}}{c^{2}}+\cdots \cdot$

So $m c^{2}\left(1-\frac{v^{2}}{c^{2}}\right)^{-1 / 2}=m c^{2}+\frac{1}{2} m v^{2}+\cdots$
Sothe second torm is the kinetic evergy.
(29) (a)

$$
\begin{aligned}
& \frac{F}{w}=\frac{\sin \theta}{\cos \theta}=\sin \theta \sec \theta \\
& =\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!} \cdots\right)\left(1+\frac{x^{2}}{2}+\frac{5}{24} x^{4} \cdots\right)
\end{aligned}
$$

by Jection 13 \#24

$$
\begin{aligned}
& =x+\frac{x^{3}}{2}-\frac{x^{3}}{6}+\frac{x^{5}}{5!}+\frac{5}{24} x^{5}+O\left(x^{2}\right) \\
& =x+\frac{1}{3} x^{3}+\frac{1}{20} x^{5}+O\left(x^{7}\right) \ldots
\end{aligned}
$$

(b) $\frac{x}{l}=\sin \theta$. Let $y=\frac{x}{l}$.

So $\frac{p}{w}=\frac{y}{\sqrt{1-y^{2}}}=y\left(1-y^{2}\right)^{-1 / 2}$

$$
\begin{aligned}
& =y\left(1+(-1 / 2)\left(-y^{2}\right)+\frac{(-1 / 2)(-3 / 2)}{2!}\left(-y^{2}\right)^{2}-\cdots\right) \\
& =y\left(1+\frac{y^{2}}{2}+\frac{3}{8} y^{4} \cdots\right)=\frac{x}{l}+\frac{1}{2}\left(\frac{x}{l}\right)^{3}+\frac{3}{8}\left(\frac{x}{l}\right)^{5} \cdots
\end{aligned}
$$

(6)

$$
\begin{aligned}
& \int_{1}^{3} \frac{\sin x}{2} d x \\
= & \int_{1}^{3} \frac{x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+O\left(x^{7}\right)}{x} \partial x \\
= & \int_{1}^{3} 1-\frac{x^{2}}{6}+\frac{x^{4}}{120}-\frac{x^{6}}{7!}+\frac{x^{8}}{9!} \cdots \\
= & \left.x\right|_{1} ^{3}-\left.\frac{x^{3}}{3.6}\right|_{1} ^{3}+\left.\frac{x^{5}}{5 \cdot 120}\right|_{1} ^{3}-\left.\frac{x^{7}}{7 \cdot 7!}\right|_{1} ^{3}+\left.\frac{x^{9}}{9 \cdot 9!}\right|_{1} ^{3}
\end{aligned}
$$

Notice that the sores is alternating and the terms we deceasing after the turd term. Thus the error of the 4-tern approximation is at most

$$
\begin{aligned}
\left.\frac{x^{9}}{9 \cdot 9!}\right|_{1} ^{3} & =\frac{3^{9}-1}{9 \cdot 9!} \\
& \leq \frac{3^{7}}{9!} \leq 0.01
\end{aligned}
$$

(7) We have $\int_{1}^{N} \log x d x=\left.\log x \cdot x\right|_{1} ^{N}-\left.x\right|_{1} ^{N}$

$$
\begin{aligned}
& =N \log N-(N-1) . \\
\log ((N-1)!)=\sum_{n=1}^{N-1} \log (n) & \leq N \log N-(N-1)
\end{aligned}
$$

Taking exponectuls:

$$
(N-1)!\leqslant \frac{e^{N \log N}}{e^{N-1}}=\frac{N^{N}}{e^{N}} \cdot e
$$

Thus $N!\leq e N \cdot\left(\frac{N}{e}\right)^{N}$.
For the lower bound, ne have

$$
N \log N-(N-1) \leqslant \sum_{n=2}^{N} \log (a)=N!
$$

Taking expontials as before:
$e\left(\frac{N}{e}\right)^{N} \leq N!$, as desired.

