Math 121A Spring 2015, Homework 2

Due February 6 at 10am

All sections are from Chapter 1. Using a computer to plot or calculate things is optional in questions where it is asked for, but it is a great way to get a more visceral feel for the subject.

1. Do the following series converge or diverge? Why?:
(a) $\sum_{n=1}^{\infty} \sin (\log n)$.
(b) $\sum_{n=1}^{\infty} \log (n \sin (1 / n))$.
(c) $\sum_{n=2}^{\infty} \frac{1}{(\log n)^{\log n}}$.
2. Section 10: 4, 5, 11, 22.
3. Section 13: 9, 12, 23, 24, 28. Reading Sec 13A, B, D might help if you are confused about how to divide/substitute/etc. with series.
4. Section 14: 3, 5, 8 .
5. Section 15: 2, 3, 6, 11, 23a, 28, 29.
6. Use Taylor series to approximate

$$
\int_{1}^{3} \frac{\sin x}{x} d x
$$

to within ± 0.01 of its exact value.
7. The proof of the integral test tells us that for a nonnegative increasing function $f(x)$,

$$
\sum_{n=1}^{N-1} f(n) \leq \int_{1}^{N} f(x) d x \leq \sum_{N=2}^{N} f(n)
$$

Apply this to the function $f(x)=\log x$ (where I mean natural \log) to deduce the useful inequalities

$$
e \cdot\left(\frac{N}{e}\right)^{N} \leq N!\leq e \cdot\left(\frac{N+1}{e}\right)^{N+1}
$$

Note: The slightly stronger inequality:

$$
e \cdot\left(\frac{N}{e}\right)^{N} \leq N!\leq e N \cdot\left(\frac{N}{e}\right)^{N}
$$

which is what was originally written here, is also true. If you can prove that then of course that is fine too.

