1.

(1) Chapter 14, Section 7, Problem 56.

Find the inverse Laplace transform of the function $F(p)=\frac{1}{p^{4}-1}$ by using (7.16).
(2) Chapter 14, Section 7, Problem 62.

Find the inverse Laplace transform of the function $F(p)=\frac{(p-1)^{2}}{p(p+1)^{2}}$ by using (7.16).

Solution:
(1) We first find the poles of $F(z) e^{z t}$ and factor the denominator to get

$$
F(z) e^{z t}=\frac{e^{z t}}{(z-1)(z+1)(z-i)(z+1)} .
$$

Evaluating the residues at the four simple poles, we find

$$
\begin{array}{lll}
\text { residue at } z=1 & \text { is } & \frac{e^{t}}{4} \\
\text { residue at } z=-1 & \text { is } & -\frac{e^{-t}}{4} \\
\text { residue at } z=i & \text { is } & -\frac{e^{i i}}{4 i} \\
\text { residue at } z=-i & \text { is } & \frac{e^{-i t}}{4 i}
\end{array}
$$

Then by (7.16) we have

$$
f(t)=\frac{e^{t}}{4}-\frac{e^{-t}}{4}-\frac{e^{i t}}{4 i}+\frac{e^{-i t}}{4 i}=\frac{\sinh t-\sin t}{2} .
$$

(2) We first find the poles of $F(z) e^{z t}$ and factor the denominator to get

$$
F(z) e^{z t}=\frac{(z-1)^{2} e^{z t}}{z(z+1)^{2}} .
$$

Evaluating the residues at the two poles, we find

$$
\begin{array}{lll}
\text { residue at } z=0 & \text { is } & 1 \\
\text { residue at } z=-1 & \text { is } & -4 t e^{-t}
\end{array}
$$

Then by (7.16) we have

$$
f(t)=1-4 t e^{-t} .
$$

(1) Chapter 8, Section 11, Problem 5.

Solve the differential equation $y^{\prime \prime}+\omega^{2} y=f(t), y_{0}=y_{0}^{\prime}=0$, with $f(t)$ given by the functions in Figure 11.4, by the following methods.
(a) Use the convolution integral, being careful to consider separately the three intervals 0 to t_{0}, t_{0} to $t_{0}+\frac{1}{n}$, and $t_{0}+\frac{1}{n}$ to ∞.
(b) Write $f_{n}(t)$ as a difference of unit step functions as in $L 25$, and use $L 25$ to find $L\left(f_{n}\right)$. Expand $\frac{1}{p\left(p^{2}+\omega^{2}\right)}$ by partial fractions and use $L 28$ to find $y_{n}(t)$. Your result should agree with (a).
(c) Let $n \rightarrow \infty$ and show that your solution in (a) and (b) tends to the same solution (11.5) obtained using the functions of Figure 11.3; that is, either set of functions gives, in the limit, the same solution (11.11) obtained by using the δ function. Note that, when you let $n \rightarrow \infty$, you do not need to consider the interval t_{0} to $t_{0}+\frac{1}{n}$ since, if $t>t_{0}$, then for sufficiently large $n, t>t_{0}+\frac{1}{n}$.
(2) Chapter 8, Section 11, Problem 7.

Using the δ function method, find the response of $y^{\prime \prime}+2 y^{\prime}+y=\delta\left(t-t_{0}\right)$ to a unit impulse.
(3) Chapter 8, Section 11, Problem 11.

Using the δ function method, find the response of $\frac{d^{4} y}{d t^{4}}-y=\delta\left(t-t_{0}\right)$ to a unit impulse.

Solution:
(1) (a) Taking the Laplace transform of each term, substituting the initial conditions, and solving for Y, we get

$$
\begin{gathered}
p^{2} Y+\omega^{2} Y=L\left(f_{n}(t)\right) \\
Y=\frac{1}{p^{2}+\omega^{2}} L\left(f_{n}(t)\right)
\end{gathered}
$$

According to $L 3$, the inverse transform of $\frac{1}{p^{2}+\omega^{2}}$ is $\frac{\sin (\omega t)}{\omega}$. Therefore,

$$
Y=L\left(\frac{\sin (\omega t)}{\omega}\right) L\left(f_{n}(t)\right) .
$$

According to L34,

$$
\begin{aligned}
y(t) & =\int_{0}^{t} \frac{\sin [\omega(t-\tau)]}{\omega} f_{n}(\tau) d \tau \\
& = \begin{cases}0 & \text { if } t<t_{0} \\
\frac{n}{\omega^{2}}\left(1-\cos \left[\omega\left(t-t_{0}\right)\right]\right) & \text { if } t_{0}<t<t_{0}+\frac{1}{n} \\
\frac{n}{\omega^{2}}\left(\cos \left[\omega\left(t-t_{0}-\frac{1}{n}\right)\right]-\cos \left[\omega\left(t-t_{0}\right)\right]\right) & \text { if } t_{0}+\frac{1}{n}<t\end{cases}
\end{aligned}
$$

(b) We write $f_{n}(t)$ as a difference of unit step functions:

$$
f_{n}(t)=n\left(u\left(t-t_{0}\right)-u\left(t-t_{0}-\frac{1}{n}\right)\right)
$$

According to $L 25$,

$$
L\left(f_{n}(t)\right)=n \frac{e^{-t_{0} p}-e^{-\left(t_{0}+\frac{1}{n}\right) p}}{p}
$$

We expand $\frac{1}{p\left(p^{2}+\omega^{2}\right)}$ by partial fractions to get

$$
\frac{1}{p\left(p^{2}+\omega^{2}\right)}=\frac{1}{p}-\frac{p}{p^{2}+\omega^{2}}
$$

Putting it all together, we have

$$
\begin{aligned}
Y & =\frac{1}{p^{2}+\omega^{2}} L\left(f_{n}(t)\right) \\
& =\frac{1}{p^{2}+\omega^{2}} n \frac{e^{-t_{0} p}-e^{-\left(t_{0}+\frac{1}{n}\right) p}}{p} \\
& =\frac{n}{p\left(p^{2}+\omega^{2}\right)}\left(e^{-t_{0} p}-e^{-\left(t_{0}+\frac{1}{n}\right) p}\right) \\
& =n\left(\frac{1}{p}-\frac{p}{p^{2}+\omega^{2}}\right)\left(e^{-t_{0} p}-e^{-\left(t_{0}+\frac{1}{n}\right) p}\right) \\
& =n\left(\frac{1}{p} e^{-t_{0} p}-\frac{1}{p} e^{-\left(t_{0}+\frac{1}{n}\right) p}-\frac{p}{p^{2}+\omega^{2}} e^{-t_{0} p}+\frac{p}{p^{2}+\omega^{2}} e^{-\left(t_{0}+\frac{1}{n}\right) p}\right)
\end{aligned}
$$

According to $L 28$, the inverse Laplace transform of

$$
\begin{array}{rlr}
\begin{array}{r}
\frac{1}{p} e^{-t_{0} p} \mathrm{is}^{2} \\
\frac{1}{p} e^{-\left(t_{0}+\frac{1}{n}\right) p} \\
\frac{p}{p^{2}+\omega^{2}} e^{-t_{0} p}
\end{array} & \text { is } & u\left(t-t_{0}\right) \\
\frac{p}{p^{2}+\omega^{2}} e^{-\left(t_{0}+\frac{1}{n}\right) p} & \text { iscos }\left(\omega\left(t-t_{0}\right)\right) u\left(t-t_{0}\right) \\
u\left(t-t_{0}-\frac{1}{n}\right)
\end{array}
$$

Therefore,

$$
y_{n}(t)= \begin{cases}0 & \text { if } t<t_{0} \\ \frac{n}{\omega^{2}}\left(1-\cos \left[\omega\left(t-t_{0}\right)\right]\right) & \text { if } t_{0}<t<t_{0}+\frac{1}{n} \\ \frac{n}{\omega^{2}}\left(\cos \left[\omega\left(t-t_{0}-\frac{1}{n}\right)\right]-\cos \left[\omega\left(t-t_{0}\right)\right]\right) & \text { if } t_{0}+\frac{1}{n}<t\end{cases}
$$

(c) Letting $n \rightarrow \infty$, we see that

$$
\lim _{n \rightarrow \infty} y_{n}(t)= \begin{cases}0 & \text { if } t<t_{0} \\ \frac{\sin \left(\omega\left(t-t_{0}\right)\right)}{\omega} & \text { if } t>t_{0}\end{cases}
$$

(2) From Problem 6 c , we get the initial conditions $y_{0}=y_{0}^{\prime}=0$. So, taking Laplace transforms, we get

$$
(p+1)^{2} Y=L\left(\delta\left(t-t_{0}\right)\right)
$$

According to $L 6$, the Laplace transform of $t e^{-t}$ is $\frac{1}{(p+1)^{2}}$. Therefore,

$$
Y=L\left(t e^{-t}\right) L\left(\delta\left(t-t_{0}\right)\right) .
$$

According to L28,

$$
y(t)=\left(t-t_{0}\right) e^{-\left(t-t_{0}\right)} u\left(t-t_{0}\right) .
$$

(3) According to 35, taking Laplace transforms yields

$$
\left(p^{4}-1\right) Y=L\left(\delta\left(t-t_{0}\right)\right)
$$

According to Problem 1 of HW12, the Laplace transform of $\frac{\sinh t-\sin t}{2}$ is $\frac{1}{p^{4}-1}$. Therefore,

$$
Y=L\left(\frac{\sinh t-\sin t}{2}\right) L\left(\delta\left(t-t_{0}\right)\right) .
$$

According to L28,

$$
y(t)=\frac{\sinh \left(t-t_{0}\right)-\sin \left(t-t_{0}\right)}{2} u\left(t-t_{0}\right) .
$$

(1) Chapter 8, Section 12, Problem 2.

Use (12.6) to solve (12.1) when $f(t)=\sin \omega t$.
(2) Chapter 8, Section 12, Problem 6.

For Problem 10.17, show that $G\left(t, t^{\prime}\right)=\left\{\begin{array}{ll}0 & 0<t<t^{\prime} \\ \frac{\sinh a\left(t-t^{\prime}\right)}{a} & t>t^{\prime}\end{array}\right.$.
Thus write the solution to 10.17 as an integral similar to (12.6) and evaluate it.
(3) Chapter 8, Section 12, Problem 8.

Solve the differential equation $y^{\prime \prime}+2 y^{\prime}+y=f(t), y_{0}=y_{0}^{\prime}=0$, where

$$
f(t)= \begin{cases}1 & 0<t<a \\ 0 & t>a\end{cases}
$$

As in Problems 6 and 7, find the Green function for the problem and use it in

$$
\begin{equation*}
y(t)=\int_{0}^{\infty} G\left(t, t^{\prime}\right) f\left(t^{\prime}\right) d t^{\prime} . \tag{12.4}
\end{equation*}
$$

Consider the cases $t<a$ and $t>a$ separately.

Solution:
(1) We have from (12.6) that

$$
\begin{aligned}
y(t) & =\int_{0}^{t} \frac{1}{\omega} \sin \omega(t-\tau) f(\tau) d \tau \\
& =\frac{1}{\omega} \int_{0}^{t} \sin \omega(t-\tau) \sin \omega \tau d \tau \\
& =\frac{1}{\omega} \int_{0}^{t}(\sin \omega t \cos \omega \tau-\sin \omega \tau \cos \omega t) \sin \omega \tau d \tau \\
& =\frac{1}{\omega} \int_{0}^{t}(\sin \omega t \cos \omega \tau \sin \omega \tau-\sin \omega \tau \cos \omega t \sin \omega \tau) d \tau \\
& =\frac{1}{\omega}\left(\frac{1-\cos 2 \omega t}{4 \omega} \sin \omega t-\cos \omega t\left[\frac{t}{2}-\frac{\sin 2 \omega t}{4 \omega}\right]\right)
\end{aligned}
$$

(2) The Green function satisfies

$$
\frac{d^{2}}{d t^{2}} G\left(t, t^{\prime}\right)-a^{2} G\left(t, t^{\prime}\right)=\delta\left(t-t^{\prime}\right)
$$

with G and $\frac{d}{d t} G$ equal to 0 on $t=0$. To solve for G, we take the Laplace transform of the differential equation to get

$$
\left(p^{2}-a^{2}\right) L[G]=L\left[\delta\left(t-t^{\prime}\right)\right] .
$$

According to $L 9, L\left[\frac{\sinh a t}{a}\right]=\frac{1}{p^{2}-a^{2}}$. Therefore

$$
L[G]=\frac{e^{-t^{\prime} p}}{p^{2}-a^{2}}=L\left[\frac{\sinh a t}{a}\right] L\left[\delta\left(t-t^{\prime}\right)\right] .
$$

By L28,

$$
G\left(t, t^{\prime}\right)=\frac{\sinh a\left(t-t^{\prime}\right)}{a} u\left(t-t^{\prime}\right) .
$$

Now we solve for $y=y(t)$:

$$
\begin{aligned}
y(t)=\int_{0}^{\infty} G\left(t, t^{\prime}\right) f\left(t^{\prime}\right) d t^{\prime} & =\int_{0}^{\infty} G\left(t, t^{\prime}\right) d t^{\prime} \\
& =\int_{0}^{t} \frac{\sinh a\left(t-t^{\prime}\right)}{a} d t^{\prime} \\
& =-\left.\frac{\cosh a\left(t-t^{\prime}\right)}{a^{2}}\right|_{t^{\prime}=0} ^{t} \\
& =\frac{\cosh a t-1}{a^{2}}
\end{aligned}
$$

(3) The Green function satisfies

$$
\frac{d^{2}}{d t^{2}} G\left(t, t^{\prime}\right)+2 \frac{d}{d t} G\left(t, t^{\prime}\right)+G\left(t, t^{\prime}\right)=\delta\left(t-t^{\prime}\right)
$$

with G and $\frac{d}{d t} G$ equal to 0 on $t=0$. To solve for G, we take the Laplace transform of the differential equation to get

$$
\left(p^{2}+2 p+1\right) L[G]=L\left[\delta\left(t-t^{\prime}\right)\right] .
$$

Since $\frac{1}{p^{2}+2 p+1}=\frac{1}{(p+1)^{2}}, L\left[t e^{-t}\right]=\frac{1}{(p+1)^{2}}$. Therefore

$$
L[G]=\frac{e^{-t^{\prime} p}}{(p+1)^{2}}=L\left[t e^{-t}\right] L\left[\delta\left(t-t^{\prime}\right)\right] .
$$

By L28,

$$
G\left(t, t^{\prime}\right)=\left(t-t^{\prime}\right) e^{-\left(t-t^{\prime}\right)} u\left(t-t^{\prime}\right)
$$

Now we solve for $y=y(t)$:

$$
\begin{aligned}
y(t)=\int_{0}^{\infty} G\left(t, t^{\prime}\right) f\left(t^{\prime}\right) d t^{\prime} & =\int_{0}^{a} G\left(t, t^{\prime}\right) d t^{\prime} \\
& = \begin{cases}\int_{0}^{t}\left(t-t^{\prime}\right) e^{-\left(t-t^{\prime}\right)} d t^{\prime} & \text { if } 0<t<a \\
\int_{0}^{a}\left(t-t^{\prime}\right) e^{-\left(t-t^{\prime}\right)} d t^{\prime} & \text { if } 0<a<t\end{cases}
\end{aligned}
$$

Since

$$
\int\left(t-t^{\prime}\right) e^{-\left(t-t^{\prime}\right)} d t^{\prime}=\left(t-t^{\prime}+1\right) e^{-\left(t-t^{\prime}\right)}
$$

if $0<t<a$, then

$$
y(t)=\left.\left(t-t^{\prime}+1\right) e^{-\left(t-t^{\prime}\right)}\right|_{t^{\prime}=0} ^{t}=1-(t+1) e^{-t}
$$

if $t>a$, then

$$
y(t)=\left.\left(t-t^{\prime}+1\right) e^{-\left(t-t^{\prime}\right)}\right|_{t^{\prime}=0} ^{a}=(t-a+1) e^{-(t-a)}-(t+1) e^{-t} .
$$

4.

Use

$$
\begin{equation*}
y(x)=-\cos x \int_{0}^{x}(\sin \bar{x}) f(\bar{x}) d \bar{x}-\sin x \int_{0}^{\pi / 2}(\cos \bar{x}) f(\bar{x}) d \bar{x} \tag{12.17}
\end{equation*}
$$

to find the solution of

$$
\begin{equation*}
y^{\prime \prime}+y=f(x) \tag{12.7}
\end{equation*}
$$

with $y(0)=y(\pi / 2)=0$ when the forcing function is given $f(x)$.
(1) Chapter 8, Section 12, Problem 11.

$$
f(x)=\sin 2 x
$$

(2) Chapter 8, Section 12, Problem 13.

$$
f(x)= \begin{cases}x & 0<x<\pi / 4 \\ \pi / 2-x & \pi / 4<x<\pi / 2\end{cases}
$$

Solution:
(1)

$$
\begin{aligned}
y(x) & =-\cos x \int_{0}^{x} \sin \bar{x} \sin 2 \bar{x} d \bar{x}-\sin x \int_{0}^{\pi / 2} \cos \bar{x} \sin 2 \bar{x} d \bar{x} \\
& =-\left.\cos x\left(\sin \frac{\bar{x}}{2}-\frac{\sin 3 \bar{x}}{6}\right)\right|_{\bar{x}=0} ^{x}-\left.\sin x\left(\cos \frac{\bar{x}}{2}-\frac{\cos 3 \bar{x}}{6}\right)\right|_{\bar{x}=0} ^{\pi / 2} \\
& =-\cos x\left(\sin \frac{x}{2}-\frac{\sin 3 x}{6}\right)-\frac{\sqrt{2}}{2} \sin x
\end{aligned}
$$

(2) We have two cases: $x<\pi / 4$ and $x>\pi / 4$.

For $x<\pi / 4$,

$$
\begin{aligned}
y(x)= & -\cos x \int_{0}^{x} \bar{x} \sin \bar{x} d \bar{x}-\sin x\left(\int_{0}^{\pi / 4} \bar{x} \cos \bar{x} d \bar{x}+\int_{\pi / 4}^{\pi / 2}\left(\frac{\pi}{2}-\bar{x}\right) \cos \bar{x} d \bar{x}\right) \\
= & -\left.\cos x(\sin \bar{x}-\bar{x} \cos \bar{x})\right|_{\bar{x}=0} ^{x} \\
& -\sin x\left(\left.(\cos \bar{x}+\bar{x} \sin \bar{x})\right|_{\bar{x}=0} ^{\pi / 4}+\left.\frac{\pi}{2} \sin \bar{x}\right|_{\bar{x}=\pi / 4} ^{\pi / 2}-\left.(\cos \bar{x}+\bar{x} \sin \bar{x})\right|_{\bar{x}=\pi / 4} ^{\pi / 2}\right) \\
= & -\cos x(\sin x-x \cos x) \\
& -\left(\left(\frac{\sqrt{2}}{2}+\frac{\pi}{4} \frac{\sqrt{2}}{2}-1\right)+\frac{\pi}{2}\left(1-\frac{\sqrt{2}}{2}\right)-\left(\frac{\pi}{2}-\frac{\sqrt{2}}{2}-\frac{\pi}{4} \frac{\sqrt{2}}{2}\right)\right) \sin x \\
= & -\cos x(\sin x-x \cos x)-(\sqrt{2}-1) \sin x
\end{aligned}
$$

For $x>\pi / 4$,

$$
\begin{aligned}
y(x)= & -\cos x\left(\int_{0}^{\pi / 4} \bar{x} \sin \bar{x} d \bar{x}+\int_{\pi / 4}^{x}\left(\frac{\pi}{2}-\bar{x}\right) \sin \bar{x} d \bar{x}\right) \\
& -\sin x\left(\int_{0}^{\pi / 4} \bar{x} \cos \bar{x} d \bar{x}+\int_{\pi / 4}^{\pi / 2}\left(\frac{\pi}{2}-\bar{x}\right) \cos \bar{x} d \bar{x}\right) \\
=- & \cos x\left(\left.(\sin \bar{x}-\bar{x} \cos \bar{x})\right|_{\bar{x}=0} ^{\pi / 4}-\left.\frac{\pi}{2} \cos \bar{x}\right|_{\bar{x}=\pi / 4} ^{x}-\left.(\sin \bar{x}-\bar{x} \cos \bar{x})\right|_{\bar{x}=\pi / 4} ^{x}\right) \\
& -(\sqrt{2}-1) \sin x \\
=- & \cos x\left(\left(\frac{\sqrt{2}}{2}-\frac{\pi}{4} \frac{\sqrt{2}}{2}\right)-\frac{\pi}{2}\left(\cos x-\frac{\sqrt{2}}{2}\right)-\left(\sin x-x \cos x-\left(\frac{\sqrt{2}}{2}-\frac{\pi}{4} \frac{\sqrt{2}}{2}\right)\right)\right) \\
& -(\sqrt{2}-1) \sin x \\
= & -\cos x\left(\sqrt{2}-\frac{\pi}{2} \cos x-\sin x+x \cos x\right)-(\sqrt{2}-1) \sin x
\end{aligned}
$$

