Math 121A Spring 2015, Homework 10

Due April 20 at 5pm in my office, or in class

We will denote the Fourier transform of $f: \mathbb{R} \rightarrow \mathbb{C}$ as

$$
\hat{f}(\alpha)=(\mathcal{F} f)(\alpha)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i \alpha x} d x
$$

and the inverse Fourier transform of $\hat{f}: \mathbb{R} \rightarrow \mathbb{C}$ as:

$$
\left(\mathcal{F}^{-1} \hat{f}\right)(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{f}(\alpha) e^{i \alpha x} d \alpha
$$

Do not worry about convergence of integrals for this homework - assume all functions are nice enough so that the relevant Fourier transforms exist and the Fourier inversion theorem $\mathcal{F}^{-1} \mathcal{F} f=f$ works.

1. Boas 9.1, 9.20, 9.23, 13.8 .
2. Boas 12.6, 12.10, 12.12, 12.24 (read pages 381-832), 12.27, 12.34 (read page 384).
3. (a) Show that if f is real-valued, then $\hat{f}(-\alpha)=\overline{\hat{f}}(\alpha)$.
(b) Show that if f is even then \hat{f} is even, and if f is odd then \hat{f} is odd.

What do (a) and (b) together say about the Fourier transform of a real even function? A real odd function?
(c) Let $f^{r e v}(x)=f(-x)$ be the reversal/reflection of f. Show that

$$
\mathcal{F}^{-1} f=\mathcal{F} f^{r e v} .
$$

For this problem, you have to ignore the 'type' of f (i.e., whether it is a function of x or of α) and treat \mathcal{F} and \mathcal{F}^{-1} simply as operators which take a function and spit out another function.
4. (a) Show that $f * g=g * f$.
(b) Use 1c and the fact that

$$
\mathcal{F}(f * g)=\sqrt{2 \pi} \mathcal{F} f \cdot \mathcal{F} g
$$

to show that

$$
\mathcal{F}(f \cdot g)=\frac{1}{\sqrt{2 \pi}} \mathcal{F} f * \mathcal{F} g
$$

i.e., that the Fourier transform turns multiplication into convolution.
5. Let

$$
I=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-x^{2} / 2} d x
$$

Express the integral

$$
I^{2}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^{2} / 2} e^{-y^{2} / 2} d x d y
$$

in polar coordinates, and use this expression to conclude that $I=1$.
6. Use the Fourier transform to solve the heat equation on an infinite line:

$$
\frac{d}{d t} u(x, t)=\frac{d^{2}}{d x^{2}} u(x, t)
$$

with initial conditions

$$
u(x, 0)=e^{-x^{2} / 2}
$$

Describe the distribution of heat at time t in words. What happens as $t \rightarrow \infty$?
7. For a function $f: \mathbb{R} \rightarrow \mathbb{C}$ with $f(0) \neq 0$, define the rectangular width of f to be the width of a rectangle with height $f(0)$ and area equal to that under the graph of $f(x)$, i.e.

$$
W_{f}=\frac{1}{f(0)} \int_{-\infty}^{\infty} f(x) d x
$$

Show that the product of the rectangular width of a function and that of its Fourier transform is 2π, i.e.

$$
W_{f} \cdot W_{\mathcal{F} f}=2 \pi
$$

Thus, if a function has small rectangular width, its Fourier transform must have large rectangular width.

This can be viewed as a baby version of the Uncertainty Principle, which says that the product of the variance of f and the variance of $\mathcal{F} f$ is large. (This is the same as the uncertainty principle in physics, since position and momentum are Fourier transforms of each other).

