Math 121A Spring 2015, Sample Final Exam

May 4, 2015

1 Sample Final

1. Consider the 2π-periodic function defined by

$$
f(x)= \begin{cases}-1 & -\pi<x \leq 0 \\ 1 & 0<x \leq \pi\end{cases}
$$

Expand f in a Fourier series and use Parseval's theorem to find the sum of

$$
1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots
$$

2. Compute the (exponential) Fourier transform of

$$
f(x)=\frac{e^{i x}}{1+x^{2}}
$$

3. Derive an expression for the function $(f * f)^{2}$, where

$$
f(x)=e^{-x^{2} / 2}
$$

4. Using the Laplace transform method or otherwise, solve the differential equation

$$
y^{\prime \prime}(t)+\omega^{2} y(t)=\delta\left(t-t_{0}\right)+\delta\left(t-2 t_{0}\right) \quad y(0)=y^{\prime}(0)=0 \quad t \geq 0,
$$

describing a harmonic oscillator, initially at rest, struck twice by a hammer at times t_{0} and $2 t_{0}$ with $t_{0}>0$. For which values of t_{0} is the oscillator eventually at rest?
5. Find the Green's function for the boundary value problem:

$$
y^{\prime \prime}(x)+y(x)=f(x) \quad y(0)=0 \quad y^{\prime}(\pi)=0 \quad x \in[0, \pi] .
$$

Use the Green's function to find a solution of:

$$
y^{\prime \prime}(x)+y=x \quad y(0)=0 \quad y^{\prime}(\pi)=0 .
$$

6. Evaluate the integral

$$
\int_{|z|=3} z^{3} \exp \left(1 / z^{2}\right) d z
$$

where the contour is oriented positively (counterclockwise).
7. Using a keyhole contour or otherwise, evaluate the integral

$$
\int_{0}^{\infty} \frac{\sqrt{x}}{(1+x)^{2}} d x
$$

8. Determine the radius of convergence of the power series

$$
\sum_{n=0}^{\infty} n(n-1) x^{n-2} .
$$

To what function does the series converge within this radius?
9. Determine whether the matrix

$$
\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

is diagonalizable. If it is, find an eigenbasis, if not, explain why.
10. If $z=x e^{-y}, x=\cosh (t)$, and $y=\cos (s)$, find $\partial z / \partial s$ and $\partial z / \partial t$.

2 Practice Problems

1. Suppose $f(x)$ is a 2π-periodic function, $f^{\prime}(x)$ exists and is continuous everywhere, and $\int_{-\pi}^{\pi} f(x) d x=0$. Use Parseval's theorem to show that

$$
\int_{-\pi}^{\pi}|f(x)|^{2} d x \leq \int_{-\pi}^{\pi}\left|f^{\prime}(x)\right|^{2} d x .
$$

2. Calculate the (exponential) Fourier series expansion for the function

$$
f(x)=\frac{1}{1+\lambda e^{i x}}, \quad \lambda<1 .
$$

3. Find the Laplace transform of $g(t)=t f(t)$ in terms of the Laplace transform of $f(t)$ (Hint: differentiate the definition of the Laplace transform). Use this to calculate the Laplace transform of

$$
t^{2} e^{-\pi t} \sin (t)
$$

4. Calculate

$$
\cos (\theta)+\cos (2 \theta)+\ldots+\cos (n \theta)
$$

5. Find the principal value of the integral

$$
\int_{-\infty}^{\infty} \frac{x \sin (x)}{1-x^{2}} d x
$$

6. Compute the exponential Fourier transform of

$$
f(x)=e^{-|x|} \cos (x) .
$$

7. Use the Laplace transform and the Bromwich inversion integral to solve the initial value problem

$$
\frac{d^{4} y(t)}{d t^{4}}+y(t)=1 \quad y(0)=1, y^{\prime}(0)=y^{\prime \prime}(0)=y^{\prime \prime \prime}(0)=0 \quad t \geq 0 .
$$

8. Find the Green's function for the boundary value problem:

$$
y^{\prime \prime}(x)-y(x)=f(x) \quad y^{\prime}(0)=y^{\prime}(\pi)=0 .
$$

9. Find the Green's function for the boundary value problem:

$$
y^{\prime \prime}(x)-y(x)=f(x) \quad y(0)=y(\pi) \quad y^{\prime}(0)=y^{\prime}(\pi) .
$$

