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The chain rule is a simple consequence of the fact that differentiation produces the linear
approximation to a function at a point, and that the derivative is the coefficient appearing
in this linear approximation.

Let’s see this for the single variable case first. It is especially transparent using o()
notation, where once again f(x) = o(g(x)) means that

lim
x→0

∣∣∣∣f(x)

g(x)

∣∣∣∣ = 0.

Suppose we are interested in computing the derivative of (f ◦ g)(x) = f(g(x)) at x, where
f and g are both differentiable functions from R to R. Since g is differentiable, we have (by
the definition of differentiation as a limit):

g(x + ∆x) = g(x) + g′(x)∆x + o(∆x)

for a number g′(x) which we call the derivative of g at x. In words, this says that g is
well-approximated by its linear approximation in a neighborhood of x. Similarly, we have

f(y + ∆y) = f(y) + f ′(y)∆y + o(∆y).

Letting y = g(x) and ∆y = g′(x)∆x + o(∆x), we now find that

(f ◦ g)(x + ∆x) = f(g(x + ∆x))

= f (g(x) + g′(x)∆x + o(∆x))

= f(g(x)) + f ′(g(x)) (g′(x)∆x + o(∆x)) + o(∆y)

= f(g(x)) + f ′(g(x)) · g′(x)∆x + o(∆x) + o(∆y) since f ′(g(x)) · o(∆x) = o(∆x).

Thus, we have

lim
∆x→0

(f ◦ g)(x + ∆x)− (f ◦ g)(x)

∆x
= lim

∆x→0

f ′(g(x)) · g′(x) + o(∆x) + o(∆y)

∆x
= f ′(g(x))·g′(x),

establishing the chain rule.
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A very similar thing happens in the multivariable case. Suppose f : R2 → R and g :
R2 → R2 are differentiable. To parallel the notation used in class, let z = f(x, y) and (x, y) =
g(s, t). Since both functions are differentiable, they must have linear approximations:

f(x + ∆x, y + ∆y) = f((x, y) + (∆x,∆y)) ≈ f(x, y) + Lf (∆x,∆y) (∗),

g(s + ∆s, t + ∆t) = g((s, t) + (∆s,∆t)) ≈ g(s, t) + Lg(∆s,∆t) (∗∗)

where Lf : R2 → R and LG : R2 → R2 are linear functions, and I have used ≈ to indicate
equality up to o(∆x) terms1.

But we know that all linear functions are implemented by matrices so there must be a
1× 2 matrix Df such that

Lf (∆x,∆y) = Df

[
∆x
∆y

]
.

In fact, we know exactly what this matrix is (by comparing coefficients):

Df =
[
∂f
∂x

∂f
∂y

]
,

so that we have the explicit formula

Lf (∆x,∆y) =
[
∂f
∂x

∂f
∂y

] [∆x
∆y

]
=

∂f

∂x
∆x +

∂f

∂y
∆y,

which is the same as what is given by the total differential df .
Repeating this process for Lg, we get that for the 2× 2 matrix

Dg =

[
∂x
∂s

∂x
∂t

∂y
∂s

∂y
∂t

]
,

the linear approximation of g at (s, t) is given by

Lg(∆s,∆t) = Dg

[
∆s
∆t

]
=

[
∂x
∂s

∂x
∂t

∂y
∂s

∂y
∂t

] [
∆s
∆t

]
=

[
∂x
∂s

∆s + ∂x
∂t

∆t
∂y
∂s

∆s + ∂y
∂t

∆t

]
.

Now for the punch line: just as in the univariate case, we write:

(f ◦ g)((s, t) + (∆s,∆t)) = f(g((s, t) + (∆s,∆t)))

≈ f

(
g(s, t) + Dg

[
∆s
∆t

])
by (∗∗)

≈ f(g(s, t)) + DfDg

[
∆s
∆t

]
by (∗), treating Dg

[
∆s
∆t

]
as

[
∆x
∆y

]
1There is a subtlety about uniform convergence vs pointwise convergence here, but for the purposes of

this course you can ignore it, and what is written here is good enough.
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On the other hand, since f ◦ g is a differentiable function from R2 to R1, it must have a
linear approximation, which is given by a 2× 1 matrix Df◦g:

(f ◦ g)((s, t) + (∆s,∆t)) ≈ (f ◦ g)(s, t) + Df◦g

[
∆s
∆t

]
,

whose entries are by definition given by the partial derivatives of f ◦ g:

Df◦g =
[
∂(f◦g)

∂s
∂(f◦g)

∂t

]
.

But these two linear approximations must be the same, so we have the rather crystalline
identity:

Df◦g = DfDg,

which is the chain rule written in matrix notation. In the single variable case these are 1× 1
matrices containing a single entry (the derivative), so we recover the familiar identity:

(f ◦ g)′(x) = f ′(g(x))g′(x).

In the two-dimensional case, writing out the entries gives:[
∂(f◦g)

∂s
∂(f◦g)

∂t

]
=
[
∂f
∂x

∂f
∂y

] [∂x
∂s

∂x
∂t

∂y
∂s

∂y
∂t

]
=
[
∂f
∂x

∂x
∂s

+ ∂f
∂y

∂y
∂s

∂f
∂x

∂x
∂t

+ ∂f
∂y

∂y
∂t

]
,

which is identical to the multivariable chain rule that we derived in class using total differ-
entials.

Conceptually, what is going on is that a differentiable function is locally approximated
by a linear function (which is just a matrix), so composing two differentiable functions
corresponds to composing these linear approximations, which is just matrix multiplication.

The matrix Df is called the gradient of f , and is defined similarly — as a row vector of
partial derivatives — for all functions from Rn to R. The matrix Dg is called the Jacobian
of g, and is defined similarly for functions from Rn to Rm. These matrices are a satisfactory
generalization of the notion of derivative to higher dimensions. Their entries are the partial
derivatives, which tell us how individual pairs of variables interact, but to get the whole
story you need to look at the entire matrix.
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