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1. 1/10

The topic of the course is functional analysis and applications. These include harmonic
analysis and partial differential equations. These applications were the reason much of the
theory was created.

Today we will review some facts about topological spaces and metric spaces, and state
some fundamental theorems.

Definition 1.1. We have metric spaces (M,d). Here M is some set, and d : M ×M → R+

satisfying

(1) d(x, y) ≥ 0
(2) d(x, y) = d(y, x)
(3) d(x, y) = 0 iff x = y
(4) d(x, y) ≤ d(x, z) + d(z, y).

The simplest examples are things we know:

Example 1.2. Euclidean space Rn with d(x, y) =
√∑

(xi − yi)2

Other examples include the following:

Example 1.3.

• Finite sets with metrics. Here M is a finite set.
• On the interval a ≤ x ≤ b, the real-valued continuous functions are C([a, b]). This

has a metric d(f, g) = supa≤x≤b |f(x)− g(x)|. We can define B(f, ε) as the set of all
g such that d(f, g) < ε. These are all continuous functions that never stray too far
from f , inside a tube around f .
• C1([a, b]) are continuously differentiable functions, so f ∈ C1 if f ∈ C0 and f ′ ∈ C0.

This means that there are no sharp corners, and the derivative doesn’t stray too far
either. The metric is d(f, g) = supx∈[a,b](|f(x)− g(x)|+ |f ′(x)− g′(x)|).
• L2[a, b] are functions with metric d(f, g) = (

∫
|f(x)− g(x)|2 dx)1/2. Here, d(f, g) = 0

iff f = g almost everywhere; this notion is one reason why the Lebesgue integral
exists. In fact, L2 functions are actually equivalence classes of functions, where
f ∼ g if they agree almost everywhere. This eliminates some interesting functions.
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• Lp[a, b] for 1 ≤ p ≤ ∞. Here ‖f‖∞ = sup |f |. The triangle inequality holds by the
Holder inequality.

All of these are special cases of normed spaces (V, ‖·‖). Here, M is the vector space V , and
the norm is ‖·‖ : V → R+. By definition, we can write d(v, w) = ‖v − w‖. A consequence
is that d(v + b, w + b) = d(v, w). All of linear functional analysis is the interaction between
the vector space and the underlying topology. Slightly more generally, we can talk about
topological vector spaces.

We want to apply our finite dimensional intuition, and we can for Hilbert spaces, but not
for more exotic cases. But we don’t have compactness, even for closures of balls! We’ll start
with the simplest examples and build up to more generality.

At the bottom, we have Hilbert spaces (i.e. having inner products, like L2). More generally,
there are Banach spaces (having norms such as Lp or Ck), but they are very ubiquitous but
harder to deal with. Then there are Frechet spaces (with a countable set of norms like C∞),
and then locally convex topological vector spaces (e.g. distributions).

Let’s go back to general metric spaces. The really important property is the notion of
completeness.

Definition 1.4. A sequence of elements {xn} in M is a Cauchy sequence if given any ε > 0
there exists N such that m,n > N then d(xm, xn) < ε.

Definition 1.5. A space (M,d) is called complete if every Cauchy sequence has a limit in
M .

Example 1.6. Here are examples of complete spaces.

• R or Rn are complete. The rational numbers are not complete, but its completion is
all of R. But this makes many elements of R somewhat intangible – all we know is
that they are limits of Cauchy sequences.
• C0(I) or any Ck(I).
• L1(I) is complete. (Riesz-Fisher Theorem)

Example 1.7. Here are some counterexamples.
Consider (C1, ‖·‖C0). That’s certainly a normed metric space because C1 is a subset of

C0, but it is not complete; there are differentiable functions that approach a sharp corner.
The sup norm doesn’t force the derivative to converge.

Theorem 1.8. C0([a, b]) is complete.

Proof. Let {fn} be Cauchy with this norm. We want to produce a function which is the
limit, and we need to show that it is still in C0.

If x ∈ I then {fn(x)} is a sequence in R, and it is still Cauchy, because |fn(x)− fm(x)| ≤
‖fn − fm‖C0 → 0. So define f(x) = limn→∞ fn(x). So now we’ve shown that this sequence
{fn} converges pointwise.

Now, we need to show that f is C0, i.e. if ε > 0 is fixed, then there exists δ > 0 such
that we want |f(x) − f(y)| < ε if |x − y| < δ. (This is actually uniform continuity, but
we’re working on a compact interval, so that’s ok.) To show this, we have |f(x) − f(y)| ≤
|f(x) − fN(x)| + |fN(x) − fN(y)| + |fN(y) − f(y)|. Fix ε > 0 and choose N such that
‖fn − fN‖ < ε if n ≥ N . Then supx |f(x) − fN(x)| = supx limn→∞ |fn(x) − fN(x)| ≤
supx supn≥N |fn(x)− fN(x)| = supn≥N ‖fn − fN‖ < ε. Now the result follows by choosing N
appropriately. �
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Now, we will head toward the main theorem that we will do today: the Arzela-Ascoli
theorem. The question is: What sets of continuous functions are compact?

Definition 1.9. Suppose that F ⊂ C0(I) is some collection of continuous functions. This
is called uniformly equicontinuous if given any ε > 0 there exists δ such that if |x − y| < δ
and any f ∈ F we have |f(x)− f(y)| < ε.

There are a lot of natural examples of equicontinuous functions, and this is the main
motivating example.

Example 1.10. Let F = {f ∈ C1(I) : ‖f‖C1 ≤ A}. Then F ⊂ C0 is uniformly equicontin-
uous. This is because

|f(x)− f(y)| =
∣∣∣∣∫ x

y

f ′(t) dt

∣∣∣∣ ≤ ∫ y

x

|f ′(t)| dt ≤ A|y − x|.

Here are a couple of preparatory theorems.

Theorem 1.11. Suppose {fn ∈ C0(X, Y )} which is equicontinuous. If {fn} converges point-
wise to f , then f is continuous.

Proof. Left to your vivid imaginations. �

Theorem 1.12. Let Y be complete, and let D ⊂ X be a dense set in X. Suppose that fn
is equicontinuous on X and fn converges pointwise on D. Then, in fact, fn → f uniformly.
(Uniform needs that X is compact.)

Proof. First, if x ∈ D, we need to define f(x). Take any sequence xk → x with xk ∈ D.
Then the limit limn→∞ fn(xk) is well-defined. Define

f(x) = lim
k→∞

lim
n→∞

fn(xk).

There’s something to check: any other sequence yk → x gives the same limit. This comes
from equicontinuity. We have d(xk, yl) < δ, so therefore ρ(fn(xk) − fn(yl)) < ε, and this is
well-defined.

We still need to show that f is actually continuous, and the convergence is uniform. Go
through the details yourself. �

We illustrate this with an example:

Theorem 1.13. Suppose that {fn} is a uniformly equicontinuous family on [0, 1] and D ⊂
[0, 1] is dense with pointwise convergence of fn on D. Then fn → f uniformly.

Proof. Fix ε. There exists δ such that |fn(x)− fn(y)| < ε if |x− y| < δ. For that δ, choose
y1, . . . , ym ∈ [0, 1] such that yj ∈ D and B(yj, δ) cover I. Then choose N so large that
|fn(yi)− f(yi)| < ε if n ≥ N .

Now, |f(x)−f(x̃)| ≤ |f(x)−fN(x)|+|fN(x)−fN(yj)|+|fN(yj)−fN(x̃)|+|fN(x̃)−f(x̃)|. �

Theorem 1.14 (Arzela-Ascoli Theorem). Suppose that {fn} is a family with fn : [0, 1]→ R
uniformly bounded (i.e. there exists A such that |fn(x)| ≤ A for all n, x. Suppose that fn is
equicontinuous. Then there exists fnj which converges uniformly.

This is extremely useful and is the template for all compactness theorems in infinite
dimensional spaces. The proof uses the diagonalization argument.

3



Lemma 1.15. Suppose that {fn(m)} is bounded in m and n uniformly. Then there exists
nj such that fnj(m) converges for each m.

Proof. For m = 1, fn(1) is a bounded sequence. Choose fn(1)j(1) convergent. Take a further
subsequence such that fn(2)j(2) converges.

So we get numbers n(k)j. Then define nj = n(j)j. This is the diagonalization. �

Proof of Theorem 1.14. Let D = Q ∩ I be dense. Call D = {xk}. For every rational, we
have fn(xk) is uniformly bounded in n, k, so we can apply the diagonalization lemma above
to choose nj →∞ so fnj(xk)→ f(xk) for all xk. Now, using Theorem 1.12 gives the desired
result. �

Remark. This is in fact a very general theorem about maps between general metric spaces.

This is a nice proof. Let’s give a different proof that is easier to visualize.
First, here’s a characterization of compactness.

Theorem 1.16. (K, d) is compact if and only if for each δ > 0 there is a finite δ-net
y1, . . . , yN ∈ K such that Bδ(yj) cover K.

This allows a picture proof of Arzela-Ascoli. Draw a grid, ranging from −A to A in the
vertical direction and along some interval in the horizontal direction. Equicontinuous means
that the function stays within each box and doesn’t move too much. Take every function
that connects vertices and never jumps more than one step and is linear in between. Every
function is deviating very much because it always sticks to one of these piecewise linear
functions.

2. 1/12

Today we will discuss inner product spaces. We start with a vector space V over R or C.
Call the field F.

Definition 2.1. A map (·, ·) : V × V → F is called an inner product if it is

(1) positive definite, i.e (v, v) ≥ 0 for all v ∈ V and (v, v) > 0 unless v = 0.
(2) linear in the second entry: (v, w1 + w2) = (v, w1) + (v, w2) and (v, cw) = c(v, w)

(3) Hermitian symmetry: (v, w) = (w, v).

(If F = R then we can ignore the complex conjugation.)

Note that (2) and (3) show that the inner produce is conjugate linear in the first variable,
i.e. (v1 + v2, w) = (v1, w) + (v2, w) and (cv, w) = c(v, w). If F = R, the inner product is
linear in the first variable.

Example 2.2. In Rn, we can take the standard inner product: (x, y) =
∑n

j=1 xjyj. Or we

can take a different inner product: (x, y) =
∑n

j=1 λjxjyj.

In Cn, we have (x, y) =
∑n

j=1 xjyj.

Let `2 be sequences (real or complex valued) {an}∞n=1 with
∑∞

n=1 |an|2 <∞. Then we have
({an}, {bn}) =

∑∞
n=1 anbn.

In the case L2([0, 1]), we have (f, g)L2 =
∫ 1

0
f(x)g(x) dx.

In the case C([0, 1];F), we have (f, g)L2 =
∫ 1

0
f(x)g(x) dx.

We’ll soon see that inner products give norms, and L2([0, 1]) is complete as a normed
space, while C([0, 1]) is not (and in fact has L2 as completion).
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The metric space completion of an inner product space is always an inner product space.

Definition 2.3. ‖x‖ =
√

(x, x) for any x ∈ V . This yields a map ‖·‖ : V → [0,∞).

We certainly know that this is positive definite by the positive definiteness of the inner
product. Also, it is absolutely homogeneous, i.e. ‖cx‖ =

√
(cx, cx) = |c|

√
(x, x) = |c| ‖x‖.

To show that this is a norm, we need to check the triangle inequality. We’ll do this instruc-
tively in a slightly roundabout way.

Definition 2.4. We say that x and y are orthogonal if (x, y) = 0.

Proposition 2.5 (Pythagoras). If (x, y) = 0 then ‖x± y‖2 = ‖x‖2 + ‖y‖2.

Proof. Indeed, ‖x± y‖2 = (x± y, x± y) = (x, x)± (x, y)± (y, x) + (y, y) = ‖x‖2 + ‖y‖2. �

Proposition 2.6 (Parallelogram Law). ‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2).

Proposition 2.7. If y ∈ V and y 6= 0, and we have x ∈ V , then we can write x = cy + w
such that (w, y) = 0.

Proof. Notice that (y, x) = (y, cy) + (y, w) = c ‖y‖2, so set c = (y,x)

‖y‖2 . So to actually show

that c and w exist, just let c be given as above, and let w = x−cy. We just need to compute
(y, w) = (y, x− cy) = (y, x)− c ‖y‖2 = 0. �

We call cy = (y,x)

‖y‖2 y the orthogonal projection of x to span(y).

Theorem 2.8 (Cauchy-Schwarz). If x, y ∈ V then |(x, y)| ≤ ‖x‖ ‖y‖, with equality if and
only if x and y are collinear, i.e. one is a multiple of the other.

Proof. The linearity and conjugate linearity (sesquilinearity) of the inner product implies
that if y = 0 then (x, y) = 0 for all x ∈ V , and so in particular (y, y) = 0. So if y = 0 then
Cauchy-Schwarz holds and both sides are zero.

Suppose that y 6= 0. Then write x = cy + w and (y, w) = 0, so Pythagoras gives that
‖x‖2 = ‖cy‖2 + ‖w2‖ ≥ c2 ‖y‖2, so ‖x‖2 ‖y‖2 ≥ |(y, x)|2. And the inequality is strict unless
‖w‖2 = 0, i.e. x and y are collinear. �

So far we’ve just used the inner product structure, and haven’t done any real analysis.
Now we can prove the triangle inequality.

Theorem 2.9. ‖·‖ is a norm.

Proof. We only need to show the triangle inequality, i.e. ‖x+ y‖ ≤ ‖x‖+ ‖y‖. Equivalently,
we have ‖x+ y‖2 ≤ (‖x‖ + ‖y‖)2 = ‖x‖2 + 2 ‖x‖ ‖y‖ + ‖y‖2. But the left hand side is
‖x+ y‖2 = ‖x‖2 + (x, y) + (y, x) + ‖y‖2 ≤ ‖x‖2 + 2|(x, y)| + ‖y‖2, so Cauchy-Schwarz
completes the proof. �

Therefore, any inner product space is a normed space in a canonical manner.

Definition 2.10. A Hilbert space is a complete inner product space.

Example 2.11. The spaces Rn, Cn, L2([0, 1]), `2 are complete. C([0, 1]) is not complete.
Any inner product space can be completed to an inner product space. Whenever you can
an inner product space that’s not complete, complete it to get a Hilbert space!
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Definition 2.12. A subset S of an inner product space is orthonormal if for all x, y ∈ S,
x 6= y implies (x, y) = 0, and ‖x‖ = 1.

Proposition 2.13. If {x1, . . . , xn} is an orthonormal set in V and y ∈ V then we can write
y =

∑n
j=1 cjxj + w such that (w, xj) = 0 for all j.

Proof. This is the same argument as before. Indeed, if so, (xk, y) = ck ‖xk‖2 = ck, and
now we use this to check that this works. Let ck = (xk, y) and w = y −

∑
ckxk. Then

(xk, w) = (xk, y)− ck = 0. �

Corollary 2.14 (Bessel’s inequality). If {x1, . . . , xn} is orthonormal then for all y ∈ V we
have

‖y‖2 =
n∑
j=1

|cj|2 + ‖w‖2 ≥
n∑
j=1

|cj|2.

There are some general constructions that we can do.

Definition 2.15. If V and W are two inner product spaces, then we can take V ⊕W is an
inner product space with 〈(v1, w1), (v2, w2)〉V⊕W = 〈v1, v2〉V + 〈w1, w2〉W . If V and W are
complete, so is V ⊕W .

In fact, we aren’t limited to two. We could even do this uncountably many times.

Definition 2.16. If V is an inner product space and A 6= ∅ is a set, let `2(A;V ) be maps A→
V such that

∑
a∈A ‖f(a)‖2

V <∞. This is an inner product space 〈f, g〉 =
∑

a∈A 〈f(a), g(a)〉V .

If A is a set and c : A→ [0,∞) then one can define

∑
a∈A

c(A) = sup


∑
a∈B
B⊂A
B finite

c(a)

 .

(This could be +∞, if it is not bounded above.) This agrees with the usual notion when A
is finite, or A = N.

Also, if this sum is finite, then {a ∈ A : c(a) 6= 0} is countable because each set of the sets
{a : c(a) > 1

n
} for n ∈ N is finite. So we can take uncountable sums of Hilbert spaces.

The Hilbert spaces are the best kind of infinite dimensional vector spaces.

Definition 2.17. If M is a subspace of an inner product space V , let

M⊥ = {v ∈ V : (v, w) = 0 for all w ∈M}

=
⋂
w∈M

ker(v 7→ (v, w)).

Also, the map v 7→ (v, w) are continuous because they are bounded conjugate linear maps:

|(v, w)| ≤ ‖v‖ ‖w‖, so M⊥ is closed. Also, M ⊂ M⊥⊥ . (This is true in any inner product
space.)

Theorem 2.18. Suppose H is a Hilbert space, and M is a closed subspace. Then for x ∈ H,
there exists unique y ∈M and z ∈M⊥ such that x = y + z.

Thus, H = M ⊕M⊥ with the sum being orthogonal.
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The key lemma in proving this is as follows:

Lemma 2.19. Suppose that H is a Hilbert space, and M is a convex closed subset (i.e.
x, y ∈ M , t ∈ [0, 1] implies tx + (1 − t)y ∈ M). Then for x ∈ H there is a unique point
y ∈ M which is closest to x, i.e. for all z ∈ M , ‖z − x‖ ≥ ‖y − x‖, with strict inequality if
z 6= y.

Proof. Let d = infz∈M ‖z − x‖ ≥ 0. Then there exists some yn ∈M such that limn→∞ ‖yn − x‖ =
d. The main claim is that yn is Cauchy, and thus it converges to some y ∈ M since
M is complete. Once this is done, the distance function being continuous, we have d =
limn→∞ ‖yn − x‖ = ‖y − x‖. So z ∈M implies that ‖z − x‖ ≥ ‖y − x‖. Further, if y and y′

are both distance minimizers, then y, y′, y, y′, . . . would have to be Cauchy, so y = y′, giving
uniqueness.

We will work out the main claim (Cauchyness of yn) using the parallelogram law. Applying
the parallelogram law to yn − x and ym − x yields

2(‖yn − x‖2 + ym − x2) = ‖yn − ym‖2 + ‖yn + ym − 2x‖2 = ‖yn − yn‖2 + 4

∥∥∥∥yn + ym
2

− x
∥∥∥∥2

,

so

‖yn − ym‖2 = 2(‖yn − x‖2+‖ym − x‖2)−4

∥∥∥∥yn + ym
2

− x
∥∥∥∥2

≥ 2(‖yn − x‖2+‖ym − x‖2)−4d2.

As n,m→∞, we see that ‖yn − ym‖2 → 0.
This proves this closest point lemma. �

Note that a subspace M is always convex.

Proof of Theorem 2.18. Suppose M is a closed subspace and x ∈ H. Let y be the closest
point in M to x by Lemma 2.19. Let z = x−y, so x = y+z. We need to show that z ∈M⊥,
i.e. for all w ∈M , (w, z) = 0. But for t ∈ R, we have ‖y + tw − x‖2 ≥ ‖y − x‖2 since y is a
distance minimizer. Then expanding the left hand side yields 2tRe(w, x− y) + t2 ‖w‖2 ≥ 0.
This can only happen if Re(w, x− y) = 0. If the field is C, repeat with it in place of t to get
Im(w, x− y) = 0. In any case, (w, z) = 0 for all w ∈M , so z ∈M⊥, and we are done.

For uniqueness, if y + z = y′ + z′ with y, y′ ∈ M and z, z′ ∈⊥ M , then y − y′ = z′ − z =
v ∈M ∩M⊥, so (y − y′, y − y′) = 0 so y − y′ = 0 and hence y = y′. �

This theorem is what makes Hilbert spaces really good. A consequence will be the Riesz
representation theorem, and completeness is important.

3. 1/17

Recall the definition of Hilbert spaces. For infinitely dimensional Hilbert spaces, finite
dimensional intuition holds extremely well. The only issue is that infinite dimensional Hilbert
spaces are not locally compact.

Example 3.1. Suppose we take B1(0) = {x : ‖x‖ ≤ 1}. From the sequential definition of
compactness, this is not compact.

Example 3.2. As a concrete example, consider the space `2. This is the basic example of a
Hilbert space.
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Proposition 3.3. Suppose that x(k) ∈ `2 are Cauchy. There exists x ∈ `2 such that x(k) → x.
This shows that `2 is complete.

Proof. We have |x(k)
j − x

(l)
j | ≤

∥∥x(k) − x(l)
∥∥. Hence each {x(k)

j }k is Cauchy, so x
(k)
j → xj. We

need to check that
∑
|xj|2 <∞. �

We are interested in showing that `2 is not locally compact. Consider e1 = (1, 0, 0, . . . ),

e2 = (0, 1, 0, . . . ), . . . . These are all in the unit ball, but ‖ej − ek‖ =
√
〈ej − ek, ej − ek〉 =√

2, so the closed unit ball in `2 is not compact.
Recall the notions of Cauchy-Schwarz inequality, and orthonormality. There is also the

notion of separability: H has a countable dense subset.

Example 3.4. Why is `2 separable? Take the subspace

V = {x : xj = 0 for j large, all xj ∈ Q}.

We need that {x : xj = 0 for j large} is dense in `2.

We also discussed Bessel’s inequality: Suppose {ej} is an infinite orthonormal set. For

v ∈ H, set 〈v, ej〉 = aj. Then
∑N

j=1 |aj|2 ≤ ‖v‖
2.

Now, {ej} is called an orthonormal basis if

• it is orthonormal
• {
∑

finite ajej} is dense in H.

To make that precise, consider W = {
∑

finite ajej} ⊂ H, i.e. w ∈ W means that there
exists aj such that

lim
N→∞

∥∥∥∥∥w −
N∑
j=1

ajej

∥∥∥∥∥ = 0.

Why is W a subspace? There are two things to do:

• {
∑

finite ajej} is a subspace

• V is a subspace implies that V is a subspace.

Suppose that we have an infinite orthonormal set {ej}. The question is: Is W = H? This
is true in some cases but not always. If W = H, then we’ve found a basis. Suppose that
W ( H. Then the claim is that there exists w 6= 0 where w ⊥ W .

Proof. To prove this, find any v /∈ W , and write v = w+ w̃. Arrange for ‖v − w̃‖ minimizes
among all w̃ ∈ W , which then means v − w̃ = w ⊥ W . �

Now, take {ẽj} = {ej}∪{w}. This proves that if {ej} is any orthonormal set, with closure

of its span = W ( H, then there exists a countable set {ẽj} with closure of its span W̃ ) W .

Proposition 3.5. Suppose that H is separable. Then H is isomorphic to `2.

Proof. Suppose that {ej} is a basis. If we have any v ∈ H, with v =
∑
ajej, and ‖v‖ =∑

|aj|2. Then we have a map H → `2 via v → (aj). �

So why do we care about other Hilbert spaces? Because they are other representations of
`2 with their own interesting features and motivations.
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Consider the space L2(S1) = {f(θ) is periodic of period 2π, with
∫ 2π

0
|f(θ)|2 dθ}, where

〈f, g〉 =
∫ 2π

0
f(θ)g(θ) dθ. This is a separable Hilbert space by taking step functions with

rational heights and endpoints.
This has an interesting basis: en with n ∈ Z where

en =
einθ√

2π
.

Then

〈en, em〉 =
1

2π

∫ 2π

0

ei(n−m)θ dθ =

{
0 n 6= m

1 n = m.

Why does this have dense span?

Theorem 3.6 (Stone-Weierstrass Theorem). If f ∈ C0(S1) then there exists
∑
ane

inθ such
that

lim
N→∞

sup
θ∈S1

∣∣∣∣∣f(θ)−
N∑
−N

ane
inθ

∣∣∣∣∣ .
That’s density in C0 but not in L2. But the point is that C0 is dense in L2, which can be

done slickly via mollification.
Consider f ∈ L2 and pick χ ∈ C∞0 ((−π, π)) with χ ≥ 0 and

∫
x = 1. This is a bump

function. Then define χε(θ) = ε−1χ( θ
ε
). Now, we have

∫
χε(θ) dθ = 1. Now define fε(θ) =

(f ? χε)(θ) =
∫ 2π

0
f(θ̃)χε(θ − θ̃) dθ̃. Then |fε(θ)| ≤ ‖f‖L2 ‖χε‖L2 , which is bounded for

each ε (but not uniformly). We need to check that fε(θ) ∈ C∞ for all ε > 0, and that
‖fε − f‖L2 → 0.

The first fact is true because ∂jθfε = f ? (∂jθχε). For the second fact, we have∫
S1

∣∣∣∣∫
S1

f(θ̃)χε(θ − θ̃)− f(θ)

∣∣∣∣2 dθ ≤ ∫
S1

∣∣∣∣∫
S1

(fε(θ)− f(θ))χε(θ − θ̃) dθ̃
∣∣∣∣ dθ

=

∫
S1

∣∣∣∣∫
S1

χε(θ̂)(f(θ − θ̂)− f(θ)) dθ̂

∣∣∣∣2 dθ → 0

as a simple estimate. We can apply a class of inequalities known as Young’s inequalities.

Proposition 3.7. ‖u ? v‖Lp ≤ ‖u‖L1 ‖v‖Lp.

This implies that fε ∈ L2 uniformly in ε, which is already much better than what we had
before.

Now, we’ve shown that C0 is dense in L2. Now, we have that
∑

finite ane
inθ is dense in C0

and hence L2.
So now we have that for f ∈ L2, we can find g ∈ C0 such that ‖f − g‖L2 < ε and we can

find
∑N
−N ane

inθ such that
∥∥g −∑ ane

inθ
∥∥
C0 < ε, and hence

‖g − h‖L2 =

(∫
|g − h|2 dθ

)2

≤ ‖g − h‖C0

(∫
1

)1/2

= C ‖g − h‖C0 ≤ Cε.

This closely relates to Parseval’s Theorem.

Theorem 3.8 (Parseval’s Theorem). If f ∈ L2(S1) has coefficients an then ‖f‖2 =
∑∞
−∞ |an|2.

9



Now we can discuss the Riesz Representation Theorem. Given a Hilbert space H, we have
the dual space H∗ given by continuous and linear ` : H → C.

Theorem 3.9 (Riesz Representation Theorem). Given any ` ∈ H∗ there exists w ∈ H such
that `(v) = 〈v, w〉.

Fix w. Then the map v → 〈v, w〉 satisfies | 〈v, w〉 | ≤ ‖v‖ ‖w‖ = C ‖v‖. The claim is that
these are the only ones.

Proof. Fix any ` ∈ H∗. Define W = `−1(0) = {w ∈ H : `(w) = 0}. This is a closed subspace.
Then the projection theorem that we proved last time says that if W ( H then there exists
v0 ⊥ W . We can even assume that ‖v0‖ = 1.

We then see that F (v) = `(v0) 〈v, v0〉 ∈ H∗. We claim that F = `. Note that F and `
both vanish on W and they agree on v0. So they agree on W ⊕ span v0.

The final thing to check is that W ⊕Cv0 = H. Suppose that v1, v2 ⊥ W are independent.
Then we have find α`(v1) + β`(v2) = 0, but then `(αv1 + βv2) = 0, which is a contradiction.

�

This theorem in fact gives us something even slightly stronger: a norm on H∗. We have
‖`‖H∗ = sup‖v‖≤1 |`(v)|.

Corollary 3.10. Given any `, we associated to it a vector w. Then ‖`‖H∗ = ‖w‖H .

Proof. We have
‖`‖ = sup

‖v‖≤1

|`(v)| = sup
‖v‖≤1

| 〈v, w〉 | ≤ ‖w‖H .

The other inequality is

‖`‖H = sup |`(v)| ≥
∣∣∣∣`( w

‖w‖

)∣∣∣∣ =
| 〈w,w〉 |
‖w‖

= ‖w‖ . �

What is the broader context of the Riesz Representation Theorem? Already, last week
we discussed the general idea of the normed linear space or Banach space (V, ‖·‖). In this
context, we can talk about the dual space in exactly the same way. The question is: Can we
identify the dual space V ∗?

In the case where V is a Hilbert space, we have V ∗ = V . As a more interesting example,
we have (L1([0, 1]))∗ = L∞([0, 1]) and more generally, we have (Lp([0, 1]))∗ = Lq([0, 1]) with
1
p

+ 1
q

= 1.

Here’s the whole point of studying measure theory: C0([0, 1])∗ = M([0, 1]) is the set of
signed Borel measures. This is the Riesz-Fisher theorem. The point is that `(u) =

∫
u dµ.

Now, we have Ck([0, 1])∗ is the collection of things that are k derivatives of measures,
which makes sense using distributions.

Next time, we’ll talk more about dual spaces and give nice examples of the Riesz Repre-
sentation Theorem.

4. 1/19

Today, we will discuss a few small extensions of the Riesz Representation Theorem 3.9,
and do lots of examples.

Recall that the Riesz Representation Theorem says that if H is a Hilbert space and H∗

is the dual space, then H ∼= H∗, i.e. give any y ∈ H, we can define `y ∈ H∗ such that
10



`y(x) = 〈y, x〉 and ‖ly‖ = ‖y‖ because | 〈x, y〉 | ≤ ‖x‖ ‖y‖. Conversely, given any ` ∈ H∗,
there exists unique y ∈ H such that ` = `y.

Here’s an alternate formulation:

Theorem 4.1. Suppose B : H × H → C is sesquilinear, satisfying |B(x, y)| ≤ C ‖x‖ ‖y‖.
Then there exists a linear operator A : H → H bounded (A ∈ B(H)) i.e. ‖Ax‖ ≤ C ‖x‖
such that B(x, y) = 〈x,Ay〉 for all x, y ∈ H.

Proof. Fix x and note that y 7→ B(x, y) is in H∗, i.e. B(x, y) = 〈x, vy〉. This defines Ay = vy.
We just need to check that y → vy is linear and bounded.

• B(x, y1 + y2) = 〈x, vy1+y2〉 = B(x, y1) +B(x, y2) = 〈x, vy1〉+ 〈x, vy2〉.
• ‖Ay‖ = ‖vy‖ ≤ C ‖y‖, or | 〈x, vy〉 | = |B(x, y)| ≤ C ‖x‖ ‖y‖.

�

Here is a slight generalization with a bit more content:

Theorem 4.2 (Lax-Milgram Lemma). Take B : H×H → C sesquilinear such that |B(x, y)| ≤
C ‖x‖ ‖y‖ and B(x, x) ≥ c1 ‖x‖2 (with c1 > 0). This property is often called coercivity.
Then, given any ` ∈ H∗, there exists a unique v ∈ H so that `(u) = B(u, v) for all u ∈ H.

Remark. If B(x, x) ≥ −c2 ‖x‖2 then we can study B̂(x, y) = B(x, y) + (c2 + 1) 〈x, y〉.

This is just Riesz representation with respect to this other inner product.

Proof. First, B(x, y) = 〈x,Ay〉. We know that ‖Ay‖ ≤ C ‖y‖, and c1 ‖y‖2 = B(y, y) =
〈y, Ay〉 ≤ ‖y‖ ‖Ay‖, so ‖Ay‖ ≥ c1 ‖y‖. Then c1 ‖y‖ ≤ ‖Ay‖ ≤ C ‖y‖.

This tells us that as a bounded linear transformation, A : H → H is injective. We want it
to be invertible. Also, A is surjective. For if not, we can define V = im(A) ( H is a proper
closed subspace. Now, assume that V is closed. Choose z ∈ H with z 6= 0 and z ⊥ V . Then
〈z, Ay〉 = 0 for all y, so B(z, y) = 0 for all y. Choose y = z to see that z = 0, which is a
contradiction.

We claimed that V is closed, and we will prove it now. Suppose wj ∈ V and wj → w in
H. So we can write wj = Ayj. Then c1 ‖yj − yk‖ ≤ ‖A(yj − yk)‖ = ‖wj − wk‖ → 0, so we
have a Cauchy sequence in a complete space, so we win.

We’ve now proved that A : H → H is an isomorphism. Here, c1 ‖y‖ ≤ ‖Ay‖ if and only
if c1 ‖A−1w‖ ≤ ‖w‖, so the inverse is bounded.

Now, ` ∈ H∗. Ordinary Riesz gives us `(x) = 〈x,w〉 = B(x,A−1w). �

Our basic example is that (`2)∗ = `2. We want to define a family of separable Hilbert
spaces `2

s = {x : ‖x‖2
s :=

∑∞
j=1 |xj|2j2s < ∞}. This is what is called a natural pairing:

`2
s × `2

−s → C via x, y →
∑∞

j=1 xjyj. Why is this well-defined? We have∣∣∣∑xjyj

∣∣∣ ≤ (∑ |xj|2j2s
)1/2 (∑

|yj|2j−2s
)1/2

.

We can think of this as H1×H2 → C is a perfect pairing. If we have ` : H1 → C is bounded
then the claim is that there exists y ∈ `2

−s with `(x) = 〈x, y〉`2 , which is not on `2
s.

So now, we take `(x) = 〈x, ŷ〉`2s =
∑
xj ŷjj

2s. Define yj = ŷjj
2s, The claim is that ŷ ∈ `2

s.

This implies that y ∈ `2
−s.
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Now, consider L2(S1) with orthonormal basis einx/
√

2π. Note that any f ∈ L2(S1) corre-
sponds to an infinite sequence {an}∞−∞, where we can write

an =
〈
f, einθ/

√
2π
〉
L2

=
1

2π

∫
S1

f(θ)e−inθ dθ.

Here, f =
∑
anen implies that f =

∑∞
−∞

aneinθ√
2π

.

Then SN(f) =
∑N
−N

aneinθ√
2π
→ f in L2. The problem is that this convergence in L2 is not

so great. Can we do better? There are many questions here.

Definition 4.3. Define Hs(S1) = L2
s(S

1) given by {f : (an) ∈ `2
s, i.e.

∑∞
−∞ |an|2(1+n2)s <

∞}. If s > 0, we have Hs ⊂ L2 ⊂ H−s.

This may look artificial, but it comes from something very natural. Take the case s = 1.
We have

H1(S1) =
{
f :
∑
|an|2(1 + n2) <∞

}
.

Then

f(θ) =
1√
2π

∑
ane

inθ

and

f ′(θ) =
1√
2π

∑
inane

inθ.

Suppose that both f, f ′ ∈ L2. Then
∑
|an|2(1 + n2) < ∞. So Hs consists of f such that

f, f ′ ∈ L2. These are called Sobolev spaces, and they are very fundamental examples of
Hilbert spaces.

Now, what is H−1? We have a pairing H1 ×H−1 → C. We have f and g corresponding
to {an} and {bn}. It makes sense to consider

∑
anbn,

Then we have ∫ 2π

0

f(θ)g(θ) dθ.

Here, f is better than L2, so we integrate it by something worse than L2. Also g really
should be thought of as a distribution: it doesn’t converge as a usual function.

If f ∈ L2, does SN(f) → f almost everywhere? If f is continuous, does SN(f) → f in
C0? What if f ∈ Ck, or f ∈ Hs?

One of the famous examples is that the answer to the first question is no! This convergence
is extraordinarily badly behaved.

We will use Cesaro summation to define

σN(f) =
S0(f) + · · ·+ SN(f)

N + 1
.

These are called the Cesaro partial sums and the Fejer partial sums. It turns out that this
is

σN(f) =
1√
2π

N∑
−N

(
1− |n|

N + 1

)
ane

inθ.

(2π = 1 is the basic assumption of harmonic analysis.)
Now the point is that we’re summing with a smoother filter, making the properties for σN

much better behaved than for sN .
12



So let’s ask the same questions for σN instead of sN . For the first question, the answer is
now yes!

There are two very good references:

• Katznelson: Harmonic analysis
• Pinsky: Fourier analysis and wavelets

Proposition 4.4. There exist functions DN(θ) and KN(θ) such that SN(f)(θ) = (DN ?f)(θ)
and σN(f)(θ) = (KN ? f)(θ).

Here we think of the circle as a group S1 ∼= R/2πZ in order to think about convolution.

Proof. Write

SN(f) =
1

2π

N∑
−N

einθ
∫
S1

f(θ̃)e−inθ̃dθ̃ =

∫
f(θ̃)

N∑
−N

1

2π
ein(θ−θ̃)dθ̃.

For σN , we do the same thing.

σn(f)(θ) =

∫
f(θ̃)

1

2π

N∑
−N

(
1− |n|

N + 1

)
ein(θ−θ̃)dθ̃.

�

In fact, we can write

DN(θ) = e−iNθ + · · ·+ eiNθ =
1

2π

sin(N + 1
2
)θ

sin 1
2
θ

.

This is an even function that oscillates, and it has lots of nice properties. For example,∫ π
−πDN(θ) = 1. This is the Dirichlet kernel.
With a bit more calculation, we have

KN(θ) =
1

N + 1

(
sin(N + 1

2
)θ

sin θ
2

)2

.

This has
∫
KN(θ) = 1 as well, and it is positive. It is called the Fejer kernel.

Our question is now: DN ? f → f in L2? Does KN ? f → f in L2? Both answers are yes.
We can now finish a calculation that we started last time.

‖f ? KN(θ)− f(θ)‖2
L2 =

∫ ∣∣∣∣∫ KN(θ̂)(f(θ − θ̂)− f(θ))dθ̂

∣∣∣∣2 dθ
≤
∫ (∫

KN(θ̂)dθ̂

)(∫
KN(θ̂)(f(θ − θ̂)− f(θ)) dθ̂

)
dθ

≤
∫ ∫

KN(θ̂)(f(θ − θ̂)− f(θ)) dθ dθ̂.

Now we split the integral up into two pieces, and the two pieces are small in different ways.
One is because the Fejer kernel is uniformly small. The other piece needs that L2 norm is
translation invariant, which is because the continuous integrals are dense, and we can do
that by Lusin’s theorem. So that’s a very fundamental technique.
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5. 1/24

Suppose that H is a Hilbert space with orthonormal basis {en}. As an example, we
can consider the theory on L2(S1). Last time, we discussed Plancherel’s theorem, giving a
norm-preserving map L2 → `2. We also saw two approximations: SN(u) = Dn ? u(θ) and
σN(u) = Kn ? u(θ). We clearly have SN(u), σN(u) → u in L2. Here’s the question we’ll
discuss today: Suppose u ∈ C0(S1) ↪→ L2(S1). Does SN(u)→ u and σN(u)→ u in C0? The
answer is no and yes respectively.

Proposition 5.1. If u ∈ C0 then σN(u)→ u in C0.

Proof. We need to verify that
|KN ? u(θ)− u(θ)| → 0

as N →∞. Recall that

KN =
1

N + 1

(
sin((N + 1

2
)θ)

sin θ
2

)2

.

Then we need to estimate∣∣∣∣∫ KN(θ − θ′)(u(θ′)− u(θ)) dθ′
∣∣∣∣ ≤ ∫

S1

KN(θ − θ′)|u(θ′)− u(θ)| dθ′

=

(∫
|θ−θ′|<η

+

∫
|θ−θ′|>η

)
KN(θ − θ′)|u(θ′)− u(θ)| dθ′,

and each piece is small. �

A general principle is that regularity of u corresponds to delay of the Fourier coefficients
an. For example, u ∈ C∞ corresponds to |an| ≤ CN(1 + |u|)−N for any N .

Proof. We have

an =

∫
e−inθu(θ) dθ

u(θ) =
∑

ane
inθ.

⇐: We can differentiate under the summation sign to get that all series
∑
ann

keinθ are
absolutely convergent, so u ∈ C∞.
⇒: We have

∫
e−inθu(k)(θ) dθ = (in)kan, so that {nkan} ∈ `2 for any k. �

We now mention some other interesting orthonormal bases.

(1) Take L = − d2

dθ2
+ q(θ) on S1. This is an ordinary differential operator on S1. If

u ∈ C2(S1) then Lu ∈ C0(S1). We want to consider L : L2(S1) → L2(S1). This is
linear, but not continuous. This is defined on the dense subspace H2 ↪→ L2.

We are interested in the spectrum of this operator. There exists uk(θ) ∈ C∞(S1)
and λk → +∞ where 〈uk, ul〉 = δkl, and Luk = λkuk. These are eigenfunctions
and eigenvalues. Moreover, {un} are dense in L2, so u =

∑
anun(θ). This is a

generalization of Fourier series.
In the special case q = 0, we have L0e

inθ = n2einθ. So all of Fourier series is a
special case of this. We can also do this on any compact manifold, and this is only
the tip of the iceberg. There is a general theorem that says that we always have
orthonormal sequences of eigenfunctions.
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(2) Wavelet bases. We want an orthonormal basis for L2([0, 1]). For u ∈ L2, we can
write u =

∑
ane

2πinθ.
Many signals are messy in some parts of the interval and pretty smooth for most

of the time. How do we detect the complicated but localized geometric properties?
With Fourier series, we cannot, and the Fourier series converges only through lots of
mysterious cancellations. To study this type of signal, we need different bases.

We start with a function that is 1/2 on [0, 1/2] and−1/2 on [1/2, 1]. Then ψn,k(x) =
ψ(2nx− k). This sort of basis allows us to isolate the interesting behavior in a signal
and identify where a signal is flat and boring.

Finally, we have one more topic about Hilbert spaces. This is an application of the Riesz
representation theorem 3.9 or its slight generalization, the Lax-Milgram lemma 4.2: Given a
bilinear function B(x, y), we require |B(x, y)| ≤ ‖x‖ ‖y‖ and c ‖x‖2 ≤ B(x, x) (coercivity).
Then, given any ` ∈ H∗, there exists v such that `(u) = B(u, v) for all u ∈ H.

Take a domain Ω ⊂ Rn. This is a bounded smooth domain, e.g. |x| ≤ 1. Consider a
positive definite matrix of functions (aij(x)) > 0 with aij ∈ C∞. Then

B(u, v) =

∫
Ω

aij(x)
∂u

∂xi

∂v

∂xj
+
∑

bk(x)
∂u

∂xk
v + c(x)uv

for u, v ∈ H1 and u, v,∇u,∇v ∈ L2.
We verify that this satisfies the conditions of the Lax-Milgram lemma. That is,

|B(u, v)| ≤ C

(∫
|u|2 + |∇u|2

)1/2(∫
|v|2 + |∇v|2

)1/2

.

Also,

c

∫
|u|2 + |∇u|2 ≤

∫
Ω

aij(x)
∂u

∂xi

∂u

∂xj
+
∑

bk(x)
∂u

∂xk
u+ c(x)|u|2

Assume that c(x) ≥ A� 0. Then∫
aij(x)

∂u

∂xi

∂u

∂xj
≥ inf

x∈Ω
λmin(x) ‖∇u‖2 .

Also ∫
bk(x)

∂u

∂xk
u ≥ −η ‖∇u‖2 − C

η
‖u‖2 .

To see that, note that we can write

| 〈f, g〉 | ≤ ‖f‖ ‖g‖ ≤ η

2
‖f‖2 +

1

2η
‖g‖2 .

Then ∫
c(x)|u|2 ≥ A ‖u‖2 .

Now, Lax-Milgram says that given any ` ∈ (H1)∗, there exists v ∈ H1 such that `(u) =
B(u, v).

For example, `(u) =
∫
uf for f ∈ L2, and |

∫
uf | ≤ ‖u‖H1 ‖f‖L2 .
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This tells me that∫
uf =

∫
aij(x)

∂u

∂xi

∂v

∂xj
+
∑

bk(x)
∂u

∂xk
v + c(x)uv

=

∫
u

(
−
∑ ∂

∂xi

(
aij(x)

∂v

∂xj

)
− ∂

∂xk
(bk(x)v) + c(x)v

)
for all u, so we end up finding that

f =
∑
− ∂

∂xi

(
aij

∂v

∂xj

)
−
∑ ∂

∂xk
(bk(x)v) + c(x)v.

This is an abstract theorem and the motivating example for Lax and Milgram.
Now, we will move on to the theory of Banach spaces. There are complete normed vector

spaces (X, ‖·‖).

Example 5.2. Here are some examples:

(1) `p = {x : ‖x‖p = (
∑
|xj|p)1/p <∞}

(2) Lp(Ω, dµ) for 1 ≤ p ≤ ∞
(3) C0(Rn)
(4) Ck(Rn)

However,

{x : ‖x‖2,N =
∑
|xj|2j2N <∞ for some N}.

This is a slightly more general type of space, and it is not a Banach space, as it is regulated
by a countable set of norms instead of just one norm.

Let X and Y be Banach spaces. Then define the space B(X, Y ) = {A : X → Y, ‖Ax‖ ≤
C ‖x‖ for all x}. This has the operator norm

‖A‖ = sup
x 6=0

‖Ax‖
‖x‖

.

Theorem 5.3. (B(X, Y ), ‖·‖) is a Banach space.

When Y = C, B(X,C) = X∗ is called the dual space.

Proof. We only need to prove completeness. That is, let An ∈ B(x, y) be Cauchy with respect
to the operator norm: ‖An − Am‖ → 0 for n,m→∞.

Effectively, if X is the unit ball, then AX is a generalized squashed ellipsoid. A is contin-
uous if this image is bounded, and the norm is the diameter of the image.

First, for x ∈ X, then Anx is a sequence in Y . This is Cauchy because ‖Anx− Amx‖ ≤
‖An − Am‖ ‖x‖ → 0, so therefore we can define Ax = limn→∞Anx. It is straightforward to
check that A is linear.

We need to check that A is bounded, and then that ‖A− An‖ → 0.
First, using the triangle inequality, we have ‖An‖ ≤ ‖An − Am‖ + ‖Am‖, so | ‖An‖ −
‖Am‖ | ≤ ‖An − Am‖, i.e. {‖An‖} is a Cauchy sequence too. Then ‖Ax‖ = lim ‖Anx‖ ≤
lim ‖An‖ ‖x‖ ≤ C ‖x‖.

Finally,
‖(A− An)x‖
‖x‖

= lim
n→∞

‖(Am − An)x‖
‖x‖

≤ lim
n→∞

‖Am − An‖ → 0
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as n→∞. �

Now, what are dual spaces? We have (Lp)∗ = Lq if 1 ≤ p < ∞ and 1
p

+ 1
q

= 1. This is

true even for general measure spaces. This is related to the fact that∣∣∣∣∫ fg

∣∣∣∣ ≤ ‖f‖p ‖g‖q
for f ∈ Lp and g ∈ Lq. However, (L∞)∗ is complicated and we don’t think about it.

Now, for 1 < p < ∞, we can map Lp → (Lp)∗ = Lq → (Lp)∗∗ = (Lq)∗ = Lp. This is a
special property, and it means that Lp is reflexive.

It is true in general, however, that X ↪→ X∗∗ injects into its double dual.
Given x ∈ X and ` ∈ X∗, we can take x(`) = `(x). Then ` → x(`) is a continuous

linear functional on X∗, and |`(x)| ≤ ‖`‖X∗ ‖x‖X . Then x 7→ µx ∈ X∗∗. This shows us that
‖µx‖X∗∗ ≤ ‖x‖X .

6. 1/26

Last time, we talked about the general notion of a Banach space, and we defined a dual
space. An interesting question is: Can we identify the dual of any given space?

Proposition 6.1. Suppose that (M,µ) is a measure space, and µ(M) = 1. Suppose 1 < p <
2. Then (Lp(M,dµ))∗ = Lq(M,dµ) where 1

p
+ 1

q
= 1.

Note that for p = 2 this is given by the Riesz representation theorem 3.9.

Proof. Use the Holder inequality to see that

‖f‖pLp =

∫
|f |p ≤

(∫
1

)(∫
|f |2
)2/p

≤
(∫
|f |2
)2/p

,

so hence ‖f‖p ≤ ‖f‖2. This means that we have inclusions L2 ↪→ Lp.

Take ` ∈ (Lp)∗ is a bounded linear functional ` : Lp → C. Then |`(f)| ≤ C ‖f‖p ≤ C ‖f‖2.

Then L2 ↪→ Lp is dense, so `L2 is continuous with respect to the L2 norm, so we can think
of ` ∈ (L2)∗. Therefore, `(f) =

∫
fg, g ∈ L2. The last trick is to show that g ∈ Lq, which

we do not get for free.
Define the truncations |gk|(x) = min{|g(x)|, k}. Then |gn| ≤ Lr for all r. We will show

that ‖|gk|‖q ≤ C uniformly in k.

For ease of notation, assume g is real-valued (i.e. take real and imaginary parts). Write
fk = |gk|q−1 sgn g. Then

`(fk) =

∫
|gk|q−1(sgn g)g =

∫
|gk|q−1|g| ≥

∫
|gk|q.

Also,

‖fk‖pp =

∫
|fk|p =

∫
|gk|p(q−1) =

∫
|gk|q.

(Note that 1
p

+ 1
q

= 1, so that q = p(q − 1).) Note, we have∫
|gk|q ≤ C

(∫
|gk|q

)1/p

,
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which shows that (∫
|gk|q

)1/q

≤ C.

Therefore, g ∈ Lq because it is the limit of truncations. This concludes the proof. �

We have a mapping X → X∗, and we can do it again: X → X∗ → X∗∗. We claim that
there exists a natural mapping F : X → X∗∗ that is an isometric injection.

Definition 6.2. X is reflexive if this F is onto, i.e. X = X∗∗.

For x ∈ X, we can write the map F as F (x)(`) = `(x). Then

|F (x)(`)| ≤ ‖`‖X∗ ‖x‖X .
Therefore, ‖F (x)‖X∗∗ ≤ ‖x‖X . Then

‖F (x)(`)‖
‖`‖

≤ ‖x‖ .

Given any x ∈ X, we can choose an ` ∈ X∗ so that ‖`‖X∗ = 1 and |`(x)| = ‖x‖.
Note that

‖F (x)‖X∗∗ = sup

∥∥∥F (x)(ˆ̀)
∥∥∥∥∥∥ˆ̀

∥∥∥ ≥ ‖x‖

which implies that this is norm-preserving and hence F is an isometry.
Here is a remarkable geometric characterization of reflexivity:

Theorem 6.3. X is reflexive if and only if it is uniformly convex.

Take the unit ball, and take points y, z in the ball. Then the line αy + βz for α + β = 1
and 0 < α, β, so then ‖αy + βz‖ ≤ α ‖y‖ + β ‖z‖ ≤ α + β = 1. Let ‖y‖ = 1 = ‖z‖. Then
for every ε > 0 there exists δ > 0 such that∥∥∥∥y + z

2

∥∥∥∥ > 1− δ

implies that ‖y − z‖ < ε. This is the meaning of uniform convexity.
How can that fail? Take ‖x‖∞ = supj=1,2 |xj|. Then the unit ball with respect to this

norm is a square. Alternatively, ‖x‖1 gives a diamond. These are clearly far from uniformly
convex.

Fact 6.4. Lp is reflexive if 1 < p <∞.

This means that (Lp)∗ = Lq.
We would like to construct a lot of linear functionals. This doesn’t depend on completeness,

and it holds in great generality. We will prove three different versions of this.

Theorem 6.5 (Hahn-Banach). Suppose that X is a real Banach space. Choose a function
p : X → R+ (gauge) to be subadditive and positively homogeneous. (This means that p(αx+
βy) ≤ αp(x) + βp(y) and p(ax) = ap(x) for a > 0.)

Suppose we have ` : Y → R where Y is a closed subspace of X with |`(y)| ≤ p(y) for all

y ∈ Y . Then there exists ˜̀ : X → R bounded such that |˜̀(x)| ≤ p(x) for all x ∈ X.
18



This is an extension theorem. Given a linear function on a small space (such as a line),
we can extend without increasing the norm.

Proof. The proof is squishy.
Take Y ⊂ X and pick any z ∈ X \ Y . Define ˜̀(y + az) = `(y) + a˜̀(z) ≤ p(y + az). Using

positive homogeneity, we can scale this to factor out a factor of a. It is enough to check this
for a = ±1.

Then `(y) + ˜̀(z) ≤ p(y + z) and `(y)− ˜̀(z) ≤ p(y − z). This means that

`(y)− p(y − z) ≤ ˜̀(z) ≤ p(y′ + z)− `(y′).

for any y and y′. In order for this to work, we need

p(y − z + y′ + z) ≥ `(y − z + y′ + z) = `(y + y′) = `(y) + `(y′) ≤ p(y − z) + p(y′ + z),

so those are true for any y, y′. We’ve shown that if Y ( X then ` can be extended nontrivially.
So look at

E = {(Ỹ , ˜̀) : Ỹ ) Y , ˜̀ : Ỹ → R bounded, st |˜̀(y)| ≤ p(y) for all y ∈ Ỹ , ˜̀|Y = `}.

This is a poset, so Zorn’s Lemma implies that there exists a maximal set (Y , `). If Y ( X
then there exists an extension, so Y = X. �

Here’s the geometric version.

Definition 6.6. Take some S ⊂ X. x0 is called an interior point of S if x0 + ty ∈ S for
|t| < ε (depending on y).

Choose a convex set K and suppose 0 ∈ K. Then define pK(x) = inf{a > 0 : x
a
∈ K}.

This is positively homogeneous, and pK(x) <∞ always. Subadditivity uses convexity: Pick
x, y ∈ K and any numbers a, b > 0 such that x

a
∈ K and y

b
∈ K. Now,

x+ y

a+ b
=

a

a+ b

x

a
+

b

a+ b

y

b
∈ K,

so pK(x+ y) ≤ a+ b, and therefore pK(x+ y) ≤ pK(x) + pK(y).
Now, note that K = {x : pK(x) ≤ 1}. So convex sets and these gauge functions are

exactly the same thing.

Theorem 6.7. Suppose we take K so that it is nonempty and convex, and all points of K
are interior.

If y /∈ K, we can choose a bounded linear functional ` ∈ X∗ such that `(y) = c and
`(x) < c for all x ∈ K.

This is some sort of separation theorem. We have a level set {` = c} so that the convex
set is on one side of it.

Proof. We have 0 ∈ K and define pK as before. Then pK(x) < 1 for all x ∈ K. Then we have
a point y /∈ K, and we define ` on {ay} for `(y) = 1 and `(ay) = a. Therefore `(y) ≤ pK(y).
Then by homogeneity, we have `(ay) ≤ pK(ay) for all a ∈ R.

Extend to ˜̀ : X → R. Then ˜̀(x) ≤ pK(x) for all x ∈ K. If x ∈ K and pK(x) < 1 then
˜̀(x) < 1. �
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This is also a complex version of this. We don’t have this picture; separation results do
not make sense. This is an exercise.

There are many applications of the Hahn-Banach theorem.

Proposition 6.8. Suppose that Y ⊂ X is closed and ` ∈ Y ∗. Then there exists a continuous
linear functional L ∈ X∗ so that L|Y = ` so ‖L‖X∗ = ‖`‖Y ∗.

Proof. Let p(x) = ‖`‖Y ∗ ‖x‖X . Then |`(y)| ≤ p(y). Choose extensions L : X → R so that
|L(x)| ≤ ‖`‖Y ∗ ‖x‖X , so ‖L‖X∗ ≤ ‖`‖Y ∗ . �

Proposition 6.9. Fix y ∈ X. Then there exists Λ 6= 0 on X∗ such that Λ(y) = ‖Λ‖X∗ ‖y‖X .

Proof. Let Y = {ay}. Then let `(ay) = a ‖y‖. Choose Λ an extension with ‖Λ‖ = ‖`‖. Then
‖`‖ = 1 implies that ‖Λ‖ = 1. Now we can extend Λ to the whole space. �

Proposition 6.10. If W ∈ X is any subspace then

W = {x ∈ X : `(x) = 0 for all ` ∈ X∗, `(W ) = 0}.

Proof. If x /∈ W , choose any ` ∈ X∗ so that `(x) 6= 0 and `|W = 0. �

Here is a beautiful result. Suppose that {ζj}∞j=1 is a discrete set in C. Consider eixζj ∈
C0([−π, π]). When is their span dense? As an example, if ζj were the integers, it would be
dense.

Theorem 6.11. Define N(t) = #{j : |ζj| < t}. If lim sup N(t)
2t

> 1 then span{eixζj} is
dense.

Proof. If the span is not dense, then there exists ` ∈ (C0)∞ such that ` 6= 0 and `(eixζj) = 0,
i.e. there exists measure µ such that ∫ π

−π
eixζj dµ = 0

for all j. Then

F (ζ) =

∫ π

−π
eixζ dµ.

Now, F is holomorphic in C and F (ζj) = 0 for all j.
Let N1(t) be the number of zeros of F in |ζ| < t. Then |F (ζ)| ≤ Ceπ| Im ζ|. A theorem in

complex analysis says that
N1(t)

2t
→ diam suppµ

2π
.

But on the other hand, N(t)
2t
≤ N1(t)

2t
, which is a contradiction. �

7. 1/31

Last time, we were talking about two notions: When X is a Banach space, we wanted to
identify dual spaces X∗, and we were interested in reflexivity, when X∗∗ = X.

The central problem in analysis is solving equations, and we want to find substitutes for
compactness. Working with duals will allow us to do this.

Reflexivity is closely tied to the geometry of the closed unit ball. Last time, given the
interior of a compact set, we could define a gauge function, which was effectively a norm.
So we are talking about some flavor of convex set. The geometry of a convex set gives us
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information about the gauge function. We stated last time that reflexivity is equivalent to
uniform convexity.

Another remarkable geometric characterization is: Reflexivity is equivalent to for all ` ∈
X∗ there exists x ∈ X with ‖x‖ = 1 such that `(x) = ‖`‖.

Recall that given x ∈ X, there exists ` ∈ X∗ such that `(x) = ‖x‖ with ‖`‖ = 1. This is
the dual statement, which is related to the result about level sets that we derived from the
Hahn-Banach theorem. Reflexivity means: If the unit ball is rotund enough, it touches its
support planes rather than just getting very close. This is due to James.

Proposition 7.1. If X∗ is separable then X is separable.

Example 7.2. The converse is not true. L1 is separable, but its dual is L∞, which is not
separable.

Proof. Choose {λn} dense in X∗. For each n, choose xn ∈ X with ‖xn‖ = 1 such that
λn(xn) ≥ 1

2
‖λn‖.

Then define D = {
∑

finite anxn, an ∈ Q}. We claim that D ⊂ X is dense. If not, then

D ( X, and we can choose a λ ∈ X∗ such that λ|D = 0 and λ 6= 0.
We can now choose λnk → λ in X∗. Then

‖λ− λnk‖X∗ ≥ ‖(λ− λnk)(xnk)‖ = |λnk(xnk)| ≥
1

2
‖λnk‖ .

Hence λnk → 0 in X∗, so λ = 0, and we are done. The key here was the Hahn-Banach
theorem 6.5. �

Now, we will move on to the three big theorems of Banach space theory.
Here is an illustrative theorem:

Theorem 7.3. Then T : X → Y is bounded (i.e. ‖Tx‖ ≤ C ‖x‖ for some C independent
of x) if and only if T−1({‖y‖ ≤ 1}) has nontrivial interior.

Proof. Note that ⇒ is obvious. We do ⇐.
Suppose that ‖T (a)‖ ≤ 1 and {‖x− a‖ < ε} ⊂ T−1{‖y‖ ≤ 1}. Then if ‖x‖ < ε then it

doesn’t get distorted too much: ‖Tx‖ = ‖T (−a) + T (x+ a)‖ ≤ ‖T (a)‖ + 1 ≤ 2. The point
is that it doesn’t get infinitely distorted when we apply T .

Take any z ∈ X then ε
2
z
‖z‖ ∈ Bε(0) implies that

∥∥∥T ( ε
2
z
‖z‖)
∥∥∥ ≤ 2, so therefore linearity gives

‖T (z)‖ ≤ 4
ε
‖z‖. �

Here is the first of the big theorems:

Theorem 7.4 (Baire Category Theorem). Let (M,d) be any complete metric space with an
infinite number of points. Then M 6=

⋃∞
j=1Aj where each Aj is nowhere dense, i.e. where

Aj has no interior.

Remark. The key is that we only allow ourselves a countable number of sets Aj. We will
see lots of applications of this, and we will primarily apply this when M is a Banach space.

Proof. Suppose M =
⋃∞
j=1Aj where each Aj is nowhere dense. We will construct a Cauchy

sequence with limit (using completeness) outside every one of the Aj.
Pick x1 ∈M \ A1, and choose a ball B1 so that x1 ∈ B1 ⊂M \ A1 with radius r1 < 1.
Pick x2 ∈ B1 \ A2, and choose a ball B2 so that x2 ∈ B2 ⊂ B1 \ A2 with radius r2 <

1
2
.
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We continue in this way: Pick xn ∈ Bn ⊂ Bn ⊂ Bn+1 and Bn ⊂ Bn−1 \ An with radius
rn < 21−n. So {xn} is defined, and d(xn, xm) ≤ 21−n if m > n. So this is a Cauchy sequence.
Finally, let x = limxn. Note that xn ∈ BN if n ≥ N , so therefore x ∈ BN ⊂ BN−1, disjoint
from AN . This is true for all AN , so we have a contradiction. �

We will now discuss various corollaries of the Baire Category Theorem.

• Uniform boundedness principle (Banach-Steinhaus)
• Open mapping theorem
• Closed graph theorem.

Let T be some collection of linear operators T : X → Y . Recall that there are three ways
of measuring the size of an operator:

• ‖T‖ operator norm
• ‖T (x)‖ for any x (strong boundedness)
• |`(T (x))| weak boundedness for any x, ` fixed.

The uniform boundedness principle connects the first two ideas.

Theorem 7.5 (Uniform boundedness principle). If, for each x ∈ X, {‖T (x)‖}T∈T is bounded
(i.e. ‖T (x)‖ ≤ C(x)), then {‖T‖}T∈T is bounded, i.e. ‖T (x)‖ ≤ C ‖x‖ for C independent
of x ∈ X and T ∈ T .

Remark. We are looking at a uniform modulus of continuity: The unit ball doesn’t get
squished arbitrarily much.

Proof. Define An = {x : ‖T (x)‖ ≤ n for all T ∈ T }. Our hypothesis implies that
⋃∞
n=1An =

X. The Baire Category Theorem 7.4 implies that some An has nonempty interior.
Then the argument of the proof of theorem 7.3 implies that {‖T‖ : T ∈ T } is bounded,

by picking x ∈ Bε(0) and showing that ‖T (x)‖ ≤ 2. �

Here is an application of this.

Proposition 7.6. There exists f ∈ C0(S1) such that SN(f)(0) are not bounded.

Proof. Recall SNf(θ) = Dn ? f(θ). We can write

SNf(0) =

∫
f(θ)DN(θ) dθ = `N(f).

These are continuous linear functionals. If |`N(f)| ≤ C (depending on f), then the ‖`n‖ ≤ C
by the uniform boundedness principle 7.5. Here, strongly bounded means that the operators
are bounded.

The claim now is that
∫
S1 |DN(θ)| dθ = LN →∞. These LN are called Lebesgue numbers.

We sketch a proof of this. DN(θ) = 0 when (N + 1
2
)θ = kπ, so when θk = kπ

N+ 1
2

. Take

αk ∈ (θk, θk+1) with αk =
(k+ 1

2
)π

N+ 1
2

, and then we approximate each bump by a triangle. This

is |θk+1 − θk| ≤ π
N

and

sin((N + 1
2
)αk)

sin(1
2
αk)

.
sin((k + 1

2
)π)

kπ
2N

≈ N

k
.

Therefore, the area of each triangle is ≈ 1
k
, so the sum of areas of triangles is approximately∑N

k=1
1
k
≈ logN , which is a contradiction to uniform boundedness. �
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Remark. This depends on DN not being positive. The Fejer kernel does not suffer from
this issue.

Now, we discuss two more basic theorems about linear transformations.

Theorem 7.7 (Open Mapping Theorem). Suppose we have T : X → Y is bounded and
surjective. Then T (open set) is an open set.

Corollary 7.8. If T is bijective, then it is an isomorphism, i.e. T−1 is bounded.

Example 7.9. Suppose X ⊃ Y1, Y2. Suppose Y1∩Y2 = {0} and every x ∈ X can be written
as x = y1 + y2, i.e. X = Y1 + Y2. Now, think of Y1 ⊕ Y2 with norm ‖(y1, y2)‖ = ‖y1‖+ ‖y2‖.
Then T : (y1, y2) → y1 + y2 is surjective and bounded since ‖T (y1, y2)‖ = ‖y1 + y2‖ ≤
‖y1‖ + ‖y2‖. Also T−1 is bounded and ‖y1‖ + ‖y2‖ ≤ C ‖x‖. This is the Open Mapping
theorem.

Proof of Open Mapping Theorem 7.7. We will use linearity and translation invariance. It is
enough to check that T (Br(0)) ⊃ Br′(0). In fact, it’s enough to check for a single radius r
(by scaling).

Now, take Y =
⋃∞
n=1 T (Bn(0)) (by surjectivity). Then the Baire Category Theorem 7.4

says that some T (Bn(0)) has nonempty interior. Assume Bε(0) ⊂ T (Bn(0)). Then the claim

is that T (B1) ⊂ T (B2), which would be what we wanted.

Take y ∈ T (B1) and show that y = Tx for x ∈ B2. Pick x1 ∈ T (B1) such that

‖y − T (x1)‖ < ε
2
. Then y − T (x1) ∈ T (B1/2).

Choose x2 ∈ T (B1/2) such that ‖y − T (x1)− T (x2)‖ < ε
4

and y−T (x1)−T (x2) ∈ T (B1/4).
We continue doing this to get points x1, x2, . . . so that x =

∑∞
j=1 xj converges since

‖xj‖ ≤ 2−j. Then T (x) =
∑
T (xj) = y. In addition, clearly ‖x‖ < 2, so y ∈ T (B2), which

is what we wanted. �

8. 2/2

Last time, we discussed theorems relating to uniformity. We want to finish the last of
these theorems. This is yet another criterion for continuity or boundedness.

Theorem 8.1 (Closed Graph Theorem). We have two Banach spaces X and Y , and A :
X → Y is a continuous mapping. If graph(A) is a closed subspace of X × Y then A is
bounded, and conversely.

Here, graph(A) = {(x,Ax) : x ∈ X} and ‖(x, y)‖ = ‖x‖X + ‖y‖Y .

Remark. In real life, many maps (e.g. in quantum mechanics) are not bounded, and are
defined on a dense subspace of X. So many of our theorems aren’t true in that context.

Here, graph(A) closed means that for xj ∈ X and yj = Axj, suppose that (xj, yj) →
(x, y) ∈ X ×Y then y = Ax. Note that this is obvious if we know that A is continuous. The
other direction contains the content of the theorem.

Remark. It is possible to define A : X → Y define on all of X such that the graph is not
closed. Such an A would need to be badly discontinuous and we would need the axiom of
choice.
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Remark. It is possible that graph(A) is closed but A is not bounded. (A is only densely
defined.)

Example 8.2. Let X = Y = L2(S1). Then take A = ∂
∂θ

. Strictly, A : L2(S1) → L2(S1)
doesn’t make dense. This means that the domain of A is dom(A) = {u ∈ L2(S1) : Au ∈
L2(S1)} ( L2. Actually, we have dom(A) = H1(S1) = {u =

∑
ane

inθ :
∑
n2|an|2 < ∞}.

This is a dense subspace (e.g. consider sequences with only finitely many nonzero entries).
Fact: graph(A) = {(u, ∂u

∂θ
)} is closed, i.e. (uj, fj) ∈ graph(A) and if uj → u and fj → f

then Au = f (and u ∈ H1). Here, we are saying that
∫
|uj − uk|2 → 0 and

∫
|u′j − u′k|2 → 0.

This means that the uj converge in a sense that is a bit better than in L2.
Here, A = ∂

∂θ
is called a closed operator. These are the nice generalizations of bounded

operators. Most natural examples of operators are closed.

Proof of closed graph theorem 8.1. We have A : X → Y and dom(A) = X and graph(A) is
closed. Then graph(A) is a Banach space.

Now, there are two natural projections. Let π1 : graph(A)→ X. This is surjective, and by
the open mapping theorem 7.7, π1 is invertible. Hence π−1

1 : X → graph(A) is continuous.
Now, we can factor A : X → Y through graph(A) , i.e. A = π2 ◦ π−1

1 is the composition of
bounded operators, so A is bounded too. �

We’ve now finished the three big theorems about uniformity and boundedness.
We want to review some basic theorems in point set topology.

Definition 8.3. We’re interested in (X,F) where X is a set and F is a collection of subsets
of X. This is the definition of a general topological space, where F are the open sets.

Here, ∅, X ∈ F . If {Uα}α∈A and Uα ∈ F then
⋃
α∈A Uα ∈ F . Also Uα1 ∩ · · · ∩ UαN ∈ F .

The main examples for us are as follows:

Example 8.4. Metric spaces (X, d). Here, U ∈ F if for any p ∈ U there is some r > 0 such
that Bρ(r) ⊂ U . The open sets are arbitrary unions of open balls.

As a special case, Banach spaces (X, ‖·‖).

Example 8.5. Banach spaces X but with the weak topology. Here F is generated by `−1(V )
where ` ∈ X∗ and V ∈ C is open.

Suppose that ` : X → R. Then `−1(a, b) is some open set contained between two parallel
hyperplanes `−1(a) and `−1(b). We can take arbitrary unions and finite intersections.

In `2, we might have `j(x) = xj. Then we might have U1 × · · · × UN × `2
N where `2

N has
first n entries 0.

Example 8.6. Frechet spaces. This is a vector space X with topology generated by a
countable number of norms (or seminorms): (X, {‖·‖k}∞j=0). Taking any one norm gives a
Banach space, but open sets only need to be open under any one norm.

As an example, consider C∞(S1) with ‖u‖k = supj≤k |∂
j
θu|.

This is a generalization of Banach spaces, and it’s clearly something that we should care
about. We can define a metric

d(x, y) =
∞∑
j=0

2−j
‖x− y‖j

1 + ‖x− y‖j
.
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A nasty example is C∞(S1)∗ = D∗(S1) is the space of distributions on S1, and it is not
Frechet.

The topology of Frechet spaces is in some sense the intersection of countably many topolo-
gies, so this is very strong. What would the topology on the dual space be? Consider
` : C∞(S1) → C is continuous. If uj → u in C∞ then `(uj) → `(u). Then the topology on
the dual looks like the union of all of these topologies, and it’s not Frechet.

The key idea is compactness. Here’s the primitive definition:

Definition 8.7. K ⊂ X is called compact if every open cover {Uα} of K (i.e. K ⊂
⋃
α Uα)

has a finite subcover K ⊂
⋃N
j=1 Uj.

An alternate formulation is this. Suppose we have a sequence of open sets {Wα}. Every
collection of open sets in F which does not finitely subcover K does not cover K.

There are some subclasses of topological spaces.

Definition 8.8. T2 are spaces where for all x 6= y ∈ X, there are open sets Ux 3 x and
Uy 3 y so that Ux ∩Uy = ∅. This is called Hausdorff, and it can be thought of as separating
points.

A more restrictive condition is T3: We can separate a point and a closed set (complement
is open). This is also called regular.

Finally, we have T4, which can separate disjoint closed sets. This is called normal.

Definition 8.9. Recall that f : X → Y is called continuous if f−1(open) is open.

Note that weakening the topology in X makes it much harder for f : X → Y to be
continuous. On the other hand, weakening the topology on Y makes it easier for f to be
continuous.

Proposition 8.10. Take f : X → Y is a continuous bijection between compact Hausdorff
spaces X and Y . Then f is a homeomorphism, i.e. f−1 is continuous.

This is some sort of generalization of the open mapping theorem 7.7. If we used the weak
topology, do we still separate points? Yes, by Hahn-Banach 6.5.

Proof. Suppose that Z ⊂ X is closed, then Z is compact. To see this, take an open cover of
Z, and add X \ Z, so there’s a finite subcover, and X \ Z can’t cover Z, so we have a finite
subcover of Z.

Continuity of f says that f−1 maps open to open, or equivalently, f−1 maps closed to
closed. Then continuity of f−1 says that f takes closed sets to closed sets.

Now, f(compact) is compact and hence closed. This a general fact about continuous
functions. �

There are three main theorems:

(1) Tychonoff
(2) Urysohn
(3) general form of Weierstrass approximation.

Theorem 8.11 (Tychonoff). Consider some compact topological spaces {Aα}α∈I . Define
A = ×α∈IAα with the weak topology: We want natural projection map `α : A → Aα to be
continuous, so `α(Uα) generates the weak topology.

If all Aα are compact, then A itself is compact in the weak topology.
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This theorem is equivalent to the axiom of choice.

Proof. If X and Y are compact, then we want to show that X × Y is compact.
Suppose we have W = {Wγ} is some collection of open sets. Suppose that this does not

finitely subcover X × Y .
Step 1: There exists x0 ∈ X such that no product U × Y with x0 ∈ U is finitely covered

by W . If not, then every x ∈ X has a neighborhood Ux such that Ux × Y is finitely covered
by W , so choose x1, . . . , xN such that X = Ux1 ∪· · ·∪UxN by compactness of X, so therefore
X × Y is finitely covered, which is a contradiction.

Step 2: There exists y0 ∈ Y such that no rectangle U ×V for x0 ∈ U and y0 ∈ V is finitely
covered. If not, then for all y ∈ Y , can find Uy × Vj with x0 ∈ Uy which are finitely covered.
Choose y1, . . . , yN ∈ Y so that Vy1 ∪ · · · ∪ VyN = Y . Then U = Uy1 ∩ · · · ∩ UyN 3 x0, then
U × Y is finitely covered by Uyj × Vyj .

We have a reformulation. Given z0 = (x0, y0), no open rectangle U × V containing z0 is
finitely covered.

Step 3: Now, we do the product of three spaces X × Y × Z. Suppose that there exists
x0 ∈ X such that no U × Y × Z is finitely covered by {Wγ}. If Y is compact, there exists
y0 ∈ Y such that no U × V × Z is finitely covered. This is the same argument as before.
We’ve explicitly found a z0 /∈ Wγ.

Suppose we have a countable collection X = ×∞j=1Xj where each Xj is compact. Then
{Wγ} is some collection of open sets with no finite subcover. We find a point x ∈ X for
x = (xj)

∞
j=1 and x /∈ Wγ for any γ.

First, find x1 ∈ X1 such that no tube U1 ××∞j=2Xj is finitely subcovered.
Now, find x2 ∈ X2 such that no U1 × U2 ××∞j=3Xj is finitely subcovered.
Now, by induction, having chosen x1, . . . , xn−1 so (X1 × · · · × Xn−1) × Xn × ×∞j=n+1Xj.

Define x = (xj).
Any open set around x contains U1 × · · · × UN ××∞N+1Xj. Hence, this cannot be finitely

subcovered, so x ∈
⋃
Wγ.

The last step is arbitrary covers. If we have ×α∈IXα, choose a well-ordering of the index
set I. We now do exactly the same thing. If β ∈ I, then ×α<βXα is compact, and we have
×α<βXα ×Xβ ××γ>βXγ. This is transfinite induction, and we use the axiom of choice. �

Next, we will discuss Urysohn, which says that in a normal space, there are lots of con-
tinuous functions. This is an analog of the Hahn-Banach theorem.

9. 2/7

Suppose we have spaces P = ×α∈JXα and each Xα is compact. Then P is compact in the
weak topology. We have projection maps πα : P → Xα. The weak topology is the weakest
topology so that these projections are continuous. Then for any Uα ⊂ Xα open, we need
π−1
α (Uα) are open.
In general, if X is any linear space, with a locally convex topology. Here, the locally

convex topology means that we have a collection of open convex sets around 0 (by translation
invariance) that generate the topology. Then we can define the weak topology on X, with
base as all `−1(U) for U ⊂ C is open.

Recall that we had an isometric embedding X ↪→ X∗∗. For each x, we have ϕx ∈ X∗∗ such
that ϕx(`) = `(x). On X∗, there are two weak topologies, namely, the one from X∗∗ with
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the above weak topology, or the one from X (called the weak* topology, where we restrict
to functionals coming from X itself).

It turns out that as we weaken the topology, it’s more likely that something is compact.
The danger is that we weaken too far and get something stupid. The weak* topology allows
us to prove theorems, but it is still interesting.

Note that when X is reflexive (X∗∗ = X), then the weak and weak-* topologies are the
same.

We now prove the first application of the Tychonoff theorem.

Theorem 9.1 (Banach-Alaoglu). If X is Banach, then the unit ball B ⊂ X∗ is weak*
compact.

As an application, let X be a Hilbert space. Then the unit ball is weakly compact. For
example, take Ω as a domain in Rn (or a compact manifold). The space we are interested
in is X = H1

0 (Ω) is the closure of C∞0 (Ω) with respect to ‖u‖2
H1 =

∫
|u|2 + |∇u|2. Then

uj ∈ H1
0 , so ‖u‖j ≤ C, and then there exists ujk such that ujk → u.

Here, weak convergence means that there exists v ∈ H1
0 such that

∫
ujv + ∇uj · ∇v →∫

uv +∇u · ∇v.
If we have a u ∈ H1

0 satisfying
∫
uv +∇u · ∇v = 0 for all v, then

∫
(−∆u + u)v = 0 for

all v, so then we should have −∆u+ u = 0, so this gives us a way to find weak solutions of
such equations. This is an application of our generality.

Proof of Theorem 9.1. Define a map X∗ → RX = ×x∈XR via ` 7→ (`(x))x∈X . If ` ∈ B, then
we have |`(x)| ≤ ‖x‖, so in fact Φ : B → P = ×x∈X [−‖x‖ ,+ ‖x‖], we have ` 7→ (`(x))x∈X ∈
P . Now, P is a product of compact spaces, so it is compact by the Tychonoff theorem 8.11.
Then compactness of P implies that B is compact.

We need to check that Φ is injective. Here, Φ(`) = 0 means that `(x) = 0 for all x ∈ X,
so ` = 0. Linearity is obvious.

We want to say that Φ is continuous. The open sets in P are generated by projections
πx : P → [−‖x‖ , ‖x‖], i.e. U ⊂ [−‖x‖ , ‖x‖] with Φ−1(U) = {` : `(x) ∈ U} = π−1

x (U).
There are exactly the weak* open sets.

We need to check that Φ(B) is a closed set in P . If p ∈ P , p ∈ Φ(B), we want to say that
p = Φ(`) for some ` ∈ B.

If p = Φ(`) then px+y = px + py. Similarly, pax = apx. But these are relationships
between a finite number of components of P , so they are preserved under the (weak) topology
on P . These conditions mean that the image Φ(B) is therefore closed. Now we’re done
by Tychonoff’s theorem and compactness. This is using the full power of the transfinite
induction and logic that we’ve done. �

Now, we want to return to general topology, and come back to weak and weak* topology.

Lemma 9.2 (Urysohn’s Lemma). If (X, T ) is normal (T4), then for all A,B ⊂ X closed
and disjoint, there exists a continuous function f : X → R such that f |A = 0 and f |B = 1.

Proof. Enumerate Q∩ [0, 1] = {pi}. For all n, define Un and Vn closed and disjoint such that
A ⊂ Un and B ⊂ Vn. We require that if m < n and pm < pn then Um ⊂ Um and Vm ⊂ Vm,
while if pm > pn then Un ⊂ Um and Vn ⊂ Vm.

Define f on X by f(x) < pn if x ∈ Un. This is continuous, and the details are left as an
exercise. �

27



Theorem 9.3 (Stone-Weierstrass). Let X be a compact Hausdorff space. Then the real
valued continuous functions C(X) is a Banach space. Suppose B ⊂ C(X) is a subspace with
the following properties:

(1) subalgebra
(2) closed
(3) separates points
(4) 1 ∈ B.

Then B = C(X).

Remark. This is a density theorem, because if we have subspace satisfying these but isn’t
closed, then we can take its closure and say that the closure is all of C(X).

We also have a complex version, with B as before, but with another property: the space
is closed under complex conjugation B = B.

Definition 9.4. S ⊂ CR(X) is called a lattice if for all f, g ∈ S, we can define f ∧ g =
min{f, g} and f ∨ g = max{f, g}. (This is why we want real-valued.)

Lemma 9.5. If B is as in theorem 9.3, then it is a lattice.

Proof. Note that f ∨ g = 1
2
|f − g| + 1

2
(f + g) and f ∧ g = −((−f) ∨ (−g)). It’s enough to

show that f ∈ B implies that |f | ∈ B. This isn’t free from algebra-ness because it isn’t a
linear statement.

We can assume that ‖f‖∞ ≤ 1. Choose polynomials Pn(x) ∈ C([−1, 1]) such that Pn(x)→
|x| on [−1, 1]. This is the version of Weierstrass approximation that we’ve proved before.
Since B is an algebra, then Pn(f) ∈ B, and Pn(f)→ |f | ∈ B also. �

Theorem 9.6 (Kakutani-Krein). Suppose X is compact and Hausdorff, and suppose L ⊂
CR(X) is a lattice which is closed, separates points, with 1 ∈ L. Then L = CR(X).

Proof. Fix any h ∈ CR(X), and find f ∈ L such that ‖f − h‖ < ε.
For each x ∈ X, find fx ∈ L such that fx(x) = h(x) and h < fx + ε on all of X.
Choose a neighborhood Ux so that fx − ε < h on Ux. Define X =

⋃
Ux = Ux1 ∪ · · · ∪ UxN

by compactness, and choose f = fx1 ∧ · · · ∧ fxN ∈ (h− ε, h+ ε).
Then f(y) + ε = mini{fxi(y) + ε} > h(y). If y ∈ Uxi , then h(y) > fxi(y) + ε > f(y) + ε,

which means that f ∈ (h− ε, h+ ε), so ‖f − h‖ < ε.
How do we find these various fx’s? Now, for x, y ∈ X, choose fx,y ∈ L with fx,y(x) = h(x)

and fx,y(y) = h(y). Now, for any ε > 0, let Vy = {z : fx,y(z) + ε ≥ h(z)}. These Vy’s
cover, so Vy1 ∪ · · ·Vyk = X. Then fx = fx,y1 ∨ · · · ∨ fx,yk . Why should this work? Firstly,
fx(x) = h(x). For any z, we have fx(z) + ε = max{fx,yi(z) + ε} ≥ h(z).

The idea is that first we go above h and then below it by taking maximums and minimums,
using the lattice property, to squeeze within an ε-neighborhood of h. �

Now, we will return to weak convergence.
Let X be a Banach space. What do weakly convergent sequences look like? We do this

by giving a lot of examples. The answer depends on the Banach space – in some cases, this
is restrictive, not so much on others.

Example 9.7. In `2, let x
πn−→ xn.

Then x(k) → 0 means that x
(k)
n → 0 for each n. So we are only controlling one component

at a time.
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Now, take x(k) = (0, 0, . . . , 0, 1, 0, 0, · · · , 0) with a 1 in the kth position and 0s elsewhere.
This converges to zero. Geometrically, take the unit ball, and take the intersections of
coordinate axes with the unit ball. These converge to zero.

Example 9.8. In L2(S1), take einθ. We claim that these converge to 0 weakly. Then for
any f ∈ L2(S1), we have

∫
einθf(θ) dθ → 0 as n → ∞. The point is that einθ oscillates so

much that it sees f as essentially constant, and we get lots of cancellation.

Example 9.9. In `1, weak convergence is no weaker than strong convergence!

10. 2/9

We want to give some intuition about the weak topology. We discussed two examples: `2

and L2(S1). In the second case, the point was that high oscillations imply that the mean
converges to 0.

Example 10.1. Consider C([0, 1]) and consider functions un(t) that are triangles of height 1
and width 2

n
, and 0 elsewhere. This converges weakly to 0, but it definitely does not converge

to 0 in the sup norm.
To prove this, choose any ` ∈ C([0, 1])∗. Suppose that `(un) → 0. Assume that `(un) ≥

δ > 0. Pass to a subsequence nk such that nk+1 ≥ 2nk. Define vN(t) =
∑N

j=1 unj . We can

check that vN(t) ≤ 4 (Exercise). Then Nδ ≤ `(vN) ≤ 4 ‖`‖, which is a contradiction.

Theorem 10.2. Suppose xn ∈ X is a sequence in a Banach space satisfying ‖xn‖ ≤ C and
there exists a dense set D ⊂ X such that `(xn)→ `(x) for all ` ∈ D, then xn → x.

Proof. Take any ˆ̀ ∈ X∗, and chose ` ∈ D so
∥∥∥`− ˆ̀

∥∥∥ < ε. Then we have ˆ̀(xn) = `(xn) +

(ˆ̀− `)(xn), so therefore |ˆ̀(xn)− ˆ̀(x)| < 2ε for n large. �

We want to head toward the converse. Consider a collection {fα}α∈A of subadditive,
real-valued, positively homogeneous functions on X, i.e. fα(x + y) ≤ fα(x) + fα(y) and
fα(λx) = |λ|fα(x). For example, |`| satisfies this.

Proposition 10.3. Assume that supα∈A fα(x) ≤ C(x) for all x ∈ X. Then |fα(x)| ≤ C ‖x‖
for all x ∈ X.

Proof. There exists a ball Bz(r) ⊂ X so that if y ∈ Bz(r) then |fα(y)| ≤ C.
If y = z + x for |x| < r, then |fα(x)| = |fα(y)| + |fα(z)| ≤ C ′. Then for any x, x =

2‖x‖
r

( x
‖x‖

r
2
), so therefore |fα(x)| ≤ C ′′ ‖x‖. �

Theorem 10.4. If {`α} ⊂ X∗ such that |`α(x)| ≤ C(x) for each x ∈ X, then ‖`α‖ ≤ C.

Here is a weak* version of the same thing:

Theorem 10.5. If {xα}α∈A ⊂ X ⊂ X∗∗ such that for all ` ∈ X∗. Then |`(xn)| ≤ C(`)
implies that ‖xα‖ ≤ C.

Corollary 10.6. If xn → x weakly then `(xn)→ `(x) for all ` ∈ X∗, so therefore |`(xn)| ≤
C(`). This tells us that ‖xn‖ ≤ C.

This should look like Fatou:

Theorem 10.7. If xn ∈ X and xn → x weakly, then ‖x‖ ≤ lim infn→∞ ‖xn‖.
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(For example, points on the sphere can converge weakly to 0.)

Proof. Choose ` ∈ X∗ such that ‖`‖ = 1 and `(x) = ‖x‖ by the Hahn-Banach theorem.
Then ‖x‖ = `(x) = lim `(xn). Since |`(xn)| ≤ ‖`‖ ‖xn‖ = ‖xn‖, we are done after taking
lim inf. �

Theorem 10.8. Suppose that X is reflexive. Then take the ball B = {x : ‖x‖ ≤ 1}. Then
B is weakly sequentially compact, i.e. for any xn ∈ B there exists xnj → x weakly.

Proof. Take a sequence {yn} ⊂ B. Take Y = span{yn}. By construction, this is a separable
closed subspace. Then X is reflexive implies that Y is reflexive. Then Y ∗∗ is separable, and
hence Y ∗ is separable.

Choose a sequence {`k} ∈ Y ∗ that is dense. Choose a subsequence of yn, so ynj such that
`k(ynj) converges for each k.

All
∥∥ynj∥∥ ≤ 1. Hence for all ` ∈ Y ∗, `(ynj) converges to a limit.

We’ve now passed to a subsequence such that `(ynj) converges for all ` ∈ Y ∗. Define
ϕ ∈ Y ∗∗ so that ϕ(`) = limj→∞ `(ynj). Then ϕ(`) = `(y) for some y ∈ Y .

We’ve shown that `(ynj)→ `(y) for all ` ∈ Y ∗. But we want to do this for X. If we have
ˆ̀∈ X∗, define ` ∈ Y ∗ by ` = ˆ̀|Y . �

Theorem 10.9. If `n is weak* convergent, then ‖`n‖ ≤ C.

Theorem 10.10. If X is separable, then the unit ball B ⊂ X∗ is weak* sequentially compact.

Proof. Suppose that `n ≤ X∗ and ‖`n‖ ≤ 1. Choose a dense sequence xn ∈ X and a
subsequence `nj such that `nj(xk) has a limit as j → ∞. This defines a number lim `nj(x)
for each x ∈ X, so that ` ∈ X∗ and `(x) = lim `nj(x). �

Now we move on to discussing a broader class of spaces. The reason is that there are
interesting and useful applications.

Definition 10.11. A locally convex topological vector space means a vector space X with
a topology T . If U ∈ T then we demand that U + x ∈ T and xU ∈ T , i.e. the topology
should be translation and dilation invariant.

We require that there exists {Uα}α∈A which generates T , satisfying 0 ∈ Uα and Uα convex.
We need these to be absorbing: the union of all dilates covers the entire space.

Example 10.12. For example, Lp(I) for 0 < p < 1 is not a locally convex topological vector
space. The open neighborhoods of 0 are not convex!

For each Uα, associate a function ρα (seminorms), so that ρα(x) = inf{λ : x ∈ λUα}. This
makes since because Uα is absorbing.

The open sets Uα satisfy three properties:

• convexity
• balancing: For a point x ∈ U , we have λx ∈ U for all |λ| = 1.
• absorbing:

⋃
λ≥0 λU = X.

Remark. The Hahn-Banach theorem extends to this situation. To make sense of this, we
need to define X∗ to be the continuous linear functionals. Go back and look at this: the
proof didn’t use completeness or norms!
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Now, we specialize:

Definition 10.13. X is Frechet if the topology T is generated by a countable family of Uj,
or seminorms ρj.

Suppose we have T : X → Y where X and Y are both Frechet. Suppose X and Y
have seminorms ρj and di. Then for each i, there exist j1, . . . , jN such that di(T (x)) =

C(ρj1(x) + · · ·+ ρjN (x)). Then any ` : X → C satisfies |`(x)| ≤ C
∑N

j=1 ραj(x).

Example 10.14.

(1) C∞(S1)
(2) Schwartz space: S.

Example 10.15. This is not Frechet but is a locally convex topological vector space:
C∞0 (Rn).

Example 10.16. In the case C∞(S1), we use norms ‖u‖k = supj≤k |∂
j
θu|.

Exercise 10.17. Take any sequence an ∈ R. Then there exists u ∈ C∞0 (R) such that
u(n)(0) = an. The derivatives can be as bad as we like. We can control some finite number of
derivatives, but we cannot control all derivatives. This is called Borel’s lemma. The idea of
the proof is to take the Taylor series and try to make it converge:

∑
an
n!
xnχ(x/εn) for some

cutoff function χ. We need this sum to converge, along with all of its derivatives.

This has a dual space (C∞(S1))∗ = D′(S1), which is the space of generalized functions or
distributions.

Suppose we have some `(u) ∈ C for all u ∈ C∞(S1). Then continuity means that |`(u)| ≤
C ‖u‖k, so it only sees some finite number of derivatives.

Example 10.18. Suppose f ∈ L1(S1). Then 〈f, u〉 =
∫
fu for all u ∈ C∞(S1). Then

| 〈f, u〉 | ≤ ‖f‖L1 ‖u‖, so any function is a distribution.

There is also δ ∈ D′, with δ(u) = u(0) and | 〈δ, u〉 | ≤ ‖u‖. Here, δ(k)(u) = (−1)ku(k)(0).
Another important example is the principal value function: p.v. 1

x
:

lim
ε→0

∫
|x|≥ε

u(x)

x
dx.

This is a distribution: ∫
|x|≥ε

u(x)

x
dx =

∫ π

x=ε

u(x)− u(−x)

x
dx.

Note that |u(x)− u(−x)| ≤ ‖u′‖0 2 ‖x‖, so therefore |
〈
p.v. 1

x
, u
〉
| ≤ C ‖u‖1.

There are all sorts of exotic distributions, and we will talk about this later.

Example 10.19. S(Rn) = {|xα∂βxu| ≤ Cαβ}, i.e.

|u| ≤ CN
1 + |x|N

for any N , and

|∂βxu| ≤
CN,β

(1 + |x|)N
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for any N and β. This is the space of rapidly decreasing functions, e.g. Gaussians e−|x|
2

or
e−(1+|x|2)α/2 .

We have a dual space S ′ of tempered distributions, which means that they are slowly
growing. If f ∈ S ′ then

| 〈f, u〉 | ≤ C
∑

|α|≤k,|β|≤l

sup |xα∂βxu|.

Now, consider C∞0 (Rn).

Definition 10.20. uj ∈ C∞0 (Rn) is convergent to u if uj → u in any Ck and suppuj ⊆ K.

The condition on the support is to avoid a bump that runs away to infinity. Its dual space
is the space of all distributions.

11. 2/14

We’ve discussed some main structural theorems and some applications. We’ll say a bit
more about distributions, and then we’ll jump into the study of linear operators, which will
occupy us for the remainder of the course.

We had two main examples of Frechet spaces:

• C∞(Ω) where Ω is any compact manifold or bounded domain in Rn with smooth
boundary.
• Schwartz space S of rapidly decreasing functions on Rn.

Recall: for nonnegative integers k and l,

‖u‖k,l = sup
x∈Rn

sup
|α|≤k
|β|≤l

|xk∂βxu|

The Schwartz space is nice because we can do anything we like to them without things going
wrong.

To contrast, consider C∞0 (Rn), which is not a Frechet space. This is called the space of
test functions.

Definition 11.1.
C∞0 (Rn) =

⋃
K

C∞0 (K).

If ϕj → ϕ̃ in C∞0 (Rn) then

(1) ϕj → ϕ̃ in every Ck

(2) suppϕj all lie in a fixed compact K.

This prevents ϕj(x) = ϕ(x− j), which is a bump that runs away.

Definition 11.2. The dual space C∞0 (Rn)′ is the space of all distributions on Rn, and S ′ is
the space of all tempered distributions.

What does it mean to be an element of S ′?
Definition 11.3. u ∈ S ′ means that there exists k and l such that | 〈u, ϕ〉 | ≤ C ‖ϕ‖k,l for
all ϕ ∈ S.

Definition 11.4. u ∈ D′ means that for each K, there exists k such that | 〈u, ϕ〉 | ≤ CK ‖ϕ‖k
for all ϕ ∈ C∞0 (K).
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Think of a distribution as a black box that spits out a number given certain rules.
Here are the main examples:

Example 11.5. If u ∈ L1
loc, i.e.

∫
K
|u| < ∞ for any compact K, then we can define

〈u, ϕ〉 =
∫
Rn uϕ.

Then if suppϕ ⊂ K, we have | 〈u, ϕ〉 | ≤ (
∫
K
|u|) ‖ϕ‖0, so u ∈ D′. Is such a u in S ′? No.

Take u = e|x|. Then for ϕ ∈ S,
∫
uϕ is not defined in general.

Suppose u ∈ L1
loc and |u| ≤ C(1 + |x|)N for some fixed N . Then∣∣∣∣∫ uϕ

∣∣∣∣ ≤ C

∫
(1 + |x|)Nq ≤ C ′ ‖ϕ‖q,0

and |ϕ| ≤ Cq(1 + |x|)−q for any q. Here Cq = ‖ϕ‖q,0.
Slightly more generally, define

〈u, ϕ〉 =
∑
|a|≤l

∫
aα(x)∂αxϕ

(1) aα ∈ L1
loc implies u ∈ D′ and | 〈u, ϕ〉 | ≤ C ‖ϕ‖l.

(2) |aα| ≤ C(1 + |x|)N for fixed N implies that u ∈ S ′.

Example 11.6. δ ∈ D′ and S ′. We take 〈δ, ϕ〉 = δ(0) and
〈
δ(α), ϕ

〉
= (−1)|α|ϕ(α)(0).

We can also take u =
∑
cjδpj .

Case 1: pj is discrete in Rn. In this case, 〈u, ϕ〉 =
∑
cjϕ(pj). Then u ∈ D′ because the ϕ

are test functions, so compactly supported, so we only consider finite sums. We don’t have
u ∈ S ′ because the cj might grow exponentially. The same is true if we instead consider

u =
∑
cjδ

α(j)
pj .

Case 2: u =
∑
cjδpj and pj ∈ B (not discrete), and

∑
|cj| < ∞. Can we make sense of

〈u, ϕ〉 =
∑
cjϕ(pj)? Yes: | 〈u, ϕ〉 | ≤ sup |ϕ|

∑
|cj|. Then u ∈ D′ and u ∈ S ′.

Example 11.7. Suppose we have a sequence of elements uN ∈ C0(B)∗, e.g. uN =
∑N

j=1 cjδpj .

When does uN lie in the unit ball in this dual space C0(B)∗?

sup
ϕ∈C0,‖ϕ‖≤1

∣∣∣∣∣
N∑
j=1

cjϕ(pj)

∣∣∣∣∣ ≤ 1

for each N . This is true if
∑∞

j=1 |cj| ≤ 1. Is this necessary? Weak* compactness from the

Banach-Alaoglu theorem 9.1 implies that uNl → u in the weak* sense, i.e. 〈uNl , ϕ〉 → 〈u, ϕ〉
and u =

∑
cjδpj ∈ C0(B)∗.

Theorem 11.8. Let µN be a sequence of probability measures, and fix some measure space

(X, dν), so that
∫
X
dµN = 1 or sup‖ϕ‖≤1

∫
ϕdµN = 1. This implies that µN

w∗−→ µ is a
probability measure.

There are various structure theorems. We want to solve some equation, and we look for a
solution in the most general sense, like a distribution. But distributions are like black boxes.
We want to say that it is nice.

Suppose that u ∈ D′ and u|U ∈ C∞(U). This means that for all ϕ ∈ C∞0 (U), 〈u, ϕ〉 =
∫
fϕ

for f ∈ C∞(U).
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Example 11.9. suppu = {0} means that 〈u, ϕ〉 = 0 for all ϕ with 0 /∈ suppϕ. Then by the
problem set, u =

∑
|a|≤N cαδ

(α).

Here’s a more substantial structure theorem.

Theorem 11.10. Suppose that u is a distribution u ∈ D′(Rn). For each R > 0,

u|BR(0) =
∑
|α|≤N

cα∂
α
xuα

where uα ∈ C0(BR).

Definition 11.11. If u ∈ D′, ∂xju ∈ D′ defined by
〈
∂xju, ϕ

〉
= −

〈
u, ∂xjϕ

〉
.

So this theorem tells us that if suppϕ ∈ BR then

〈u, ϕ〉 =

∫
BR

∑
|α|≤N

(−1)|α|cα(x)∂αxϕdx.

Example 11.12. How does the δ function arise this way? Define the Heaviside function

H(x) =

{
1 x ≥ 0

0 x < 0.

Then

〈H,ϕ〉 =

∫ ∞
−∞

H · ϕ =

∫ ∞
0

ϕ,

so

〈H ′, ϕ〉 = −〈H,ϕ′〉 = −
∫ ∞

0

ϕ′(x) dx = ϕ(0),

i.e. H ′ = δ. Now, taking

x+ =

∫ x

0

H(t) dt =

{
x x ≥ 0

0 x < 0.

We have x′+ = H because〈
x′+, ϕ

〉
= −〈x+, ϕ

′〉 = −
∫ ∞

0

xϕ′(x) dx =

∫ ∞
0

ϕ(x) dx = 〈H,ϕ〉 .

Here we just followed the definitions.

What does uj → u in D′ mean? This means that for all ϕ ∈ C∞0 (Rn), we have 〈uj, ϕ〉 →
〈u, ϕ〉.
Example 11.13. Suppose that uj(x) = χ(jx)jN where χ is a standard bump function,
i.e. χ ∈ C∞0 (Rn), χ ≥ 0, suppχ ⊂ B,

∫
χ = 1. Note that uj ∈ B1/j and

∫
uj(x) dx =∫

χ(jx)jN dx = 1.

Proposition 11.14. uj → δ0, i.e. 〈uj, ϕ〉 → ϕ(0).

Proof. ∫
jNχ(jx)ϕ(x) dx− ϕ(0) =

∫
|x|≤1/j

jNχ(jx)(ϕ(x)− ϕ(0)) dx.

Given any ε > 0, choose j such that |ϕ(x)−ϕ(0)| < ε for |x| < 1/j. Then the above quantity
has size ≤ ε

∫
χj(x) dx = ε. �
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This means that the Fejer kernel KN → δ. This is not true for the Dirichlet kernel Dn 6→ δ
because it is not positive.

Theorem 11.15. C∞(Rn) ⊂ D′(Rn) is a dense subspace.

Proof. We use convolution. Choose χ and χj exactly as before. For u ∈ D′, we claim that
χj ? u ∈ D′, 〈χj ? u, ϕ〉 → 〈u, ϕ〉, and χj ? u ∈ C∞.

Define χj ? u by duality.

〈χj ? u, ϕ〉 =

∫
χj(y)u(x− y)ϕ(x) dy dx =

∫
u(z)χj(y)ϕ(z + y) dz dy.

Then ϕ becomes (where χ̃j(y) = χj(−y))

χ̃j ? ϕ =

∫
χ̃j(y)ϕ(x− y) dy =

∫
χj(y)ϕ(x+ y) dy.

So 〈χj ? u, ϕ〉 = 〈u, χ̃j ? ϕ〉.
We still need χ̃j ? ϕ ∈ C∞0 (Rn). We know that χ̃j ? ϕ→ ϕ in C∞0 (Rn).
Note that supp χ̃j ? ϕ ⊂ suppϕ + B1/j(0). Also, for all α, ∂αx χ̃j ? ϕ→ ∂αxϕ, which means

that χ̃j ? ∂
α
xϕ→ ∂αxϕ. This shows that χj ? u ∈ D′.

Next, we show χj ? u ∈ C∞.

〈χj ? u, ϕ〉 =

∫
u(y)χj(x− y)ϕ(x) dx dy.

We have a family of test functions χj,x = χj(x− y). Then 〈u, χj,x〉 depends continuously on
χj,x. So now we claim that 〈u(·), χj(x− ·)〉 is smooth in x. Suppose we take

〈u, χj(x+ h− ·)〉 − 〈u, χj(x− ·)〉
h

=

〈
u,
χj(x+ h− ·)− χj(x− ·)

h

〉
.

Taking limits, and noting that continuity of u implies that we can take the limit inside,
implies that this goes to 〈u, ∂xχj〉. Hence x→ 〈u, χj(x− ·)〉 is C∞.

Finally,

〈χj ? u, ϕ〉 = 〈u, χ̃j ? ϕ〉 → 〈u, ϕ〉 . �

12. 2/16

Today’s topic is the Fourier transform.

(1) Definitions and properties
(2) Two consequences
(3) Fourier inversion
(4) Plancherel’s theorem; extension to L2

(5) Tempered distributions; examples

The Fourier transform is an essential tool in PDEs. We need it to define Sobolev spaces
and analyze linear PDEs.

Definition 12.1. If f(x) ∈ C∞0 (Rn), then let

f̂(ξ) =

∫
Rn
e−ix·ξf(x) dx.
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What kind of function can we plug into it? The domain extends beyond C∞0 to S and in
fact to all of L1. Note that ∣∣∣f̂(ξ)

∣∣∣ ≤ ∫
Rn
|f(x)| dx = ‖f‖1 .

So the
∥∥∥f̂∥∥∥

∞
≤ ‖f‖1. For now, let the domain be L1. It will be really nice to try to extend

this to L2. It can’t be L2 because if n = 1, the function f(x) = x−2/3 on [−1, 1] will be bad;
f is integrable but f 2 is not integrable.

Proposition 12.2. If f ∈ L1 then f̂ ∈ C0 is continuous.

Proof. Pick any sequence ξi → ξ0. We will show that f̂(ξi)→ f̂(ξ0). Then the question is:∫
eix·ξif(x) dx

?−→
∫
ein·ξ0f(x) dx.

The integrands converge. The absolute values are bounded uniformly by
∫
|e−ix·ξif(x)| dx =

‖f‖1, so we are done by dominated convergence. �

We now state some properties of the Fourier transfoirm.

Properties 12.3.

(1) Fix y ∈ Rn. Let fy(x) = f(x− y). Then

f̂y(ξ) =

∫
eiy·ξe−ix·ξf(x) dx

after changing variables, and hence f̂y(ξ) = eiy·ξf̂(ξ).

(2) Suppose f ∈ L1; then xf ∈ L1. What is x̂f? We have

x̂f(ξ) =

∫
xe−ix·ξf(x) dx =

∫
i
∂

∂ξ
e−ix·ξf(x) dx = i

∂

∂ξ
f̂(ξ).

(3) Suppose that f → 0 at ∞, f ∈ L1, and ∂f
∂x
∈ L1, then

∂̂f

∂x
(ξ) =

∫
e−ix·ξ

df

dx
dx = iξf̂(ξ)

by integration by parts.
(4) Compute

(f̂ ? g)(ξ) =

∫
e−ix·ξ

(∫
f(y)g(x− y) dy

)
dx

=

∫∫
g(x− y)e−i(x−y)·ξf(y)e−iy·ξ dx dy = f̂(ξ)ĝ(ξ).

(5) For f(x) and g(x), we have∫
f(ξ)ĝ(ξ) dξ =

∫
f(ξ)

∫
g(x)e−ix·ξ dx dξ =

∫∫
f(ξ)g(x)e−ix·ξ dx dξ.

This is symmetric in x and ξ, so therefore
∫
fĝ =

∫
f̂ g.

Here are some consequences of these basic properties:
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Proposition 12.4. F(S) ⊂ S and F : S → S is continuous.

Proof. Let f ∈ S. For any α and β, xα∂βf ∈ S ⊂ L1, so
∥∥∥x̂α∂bf∥∥∥

∞
is bounded. So therefore

x̂α∂βf = (i ∂
∂ξ

)α(iξ)bf̂ is bounded. This precisely means that f̂ ∈ S.

Remark. This is why Schwartz space is space. The Fourier transform exchanges smooth-
ness and decay at infinity. Schwartz space has both, so it behaves well under the Fourier
transform.

As for continuity, take

|F(f)|α,β =
∥∥∥∂α(ξβ f̂)

∥∥∥
∞
≤
∥∥xα∂βf∥∥

1
=

∫
|xα(∂bf)| dx

≤
∫
|x|<1

|xα(∂bf)| dx+

∫
|x|>1

1

|x|n+1
|xα+n+1(∂βf)| dx

The second integral is bounded by a constant and some seminorms, and the first integral is
bounded by some constant times

∥∥∂βf∥∥∞. So we’re done. �

Lemma 12.5 (Riemann-Lebesgue Lemma). If f ∈ L1 then lim|ξ|→∞ f̂(ξ) = 0.

Proof. First, suppose that f ∈ C1
0 . Then ∂f

∂x
∈ L1 ∩ C0, so | ∂̂f

∂x
|, so |ξf̂(ξ)| is bounded. But

also f ∈ L1, so |f̂(ξ)| is bounded. So lim|ξ|→∞ |f̂(ξ)| = 0.

To extend to the whole space, take fn ∈ C1
0 ∩L1 converging to f ∈ L1. So f̂n → f̂ in L∞,

and lim|ξ|→∞ |f̂n(ξ)| = 0 for each n. This is enough. �

There’s a key computation that we will need: What is f̂(ξ) when f(x) = e−a|x|
2
? Note

that |x|2 =
∑
x2
j , this reduces to the 1-D case. Then

f̂(ξ) =

∫
e−ixξe−ax

2

dx =

√
π

a
e−|ξ|

2/4a

by computing the square in the exponent.

Theorem 12.6 (Fourier inversion). Given v(ξ) ∈ L1(Rn
ξ ), define

v∨(x) = (2π)−n
∫
eix·ξv(ξ) dξ.

If f, f̂ ∈ L1 then (f̂)∨ = f almost everywhere.

Proof. We attempt

(f̂)∨(x) =

∫∫
f(y)e−2πiy·ξe2πix·ξ dy dξ.

But we can’t use Fubini! So instead we use an approximate identity.

For t > 0, let ϕt(ξ) = eix·ξ−
t2

2
|ξ|2 . By computation, we have (using the Gaussian formula)

F
(
e−

t2

2
|ξ|2
)

(y) = (2π)n/2t−ne−|y|
2/2t2 .

So ϕ̂t(y) = (2π)n/2t−ne−|x−y|
2/2t2 .
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Consider

lim
t→0

∫
f̂ϕt = lim

t→0

∫
eix·ξ−

t2

2
|ξ|2 f̂(ξ) dξ =

∫
eix·ξf̂(ξ) = (2π)n(f̂)∨(x).

On the other hand,

lim
t→0

∫
f̂ϕt = lim

t→0

∫
fϕ̂t = lim

t→0

∫
f(y)(2π)n/2t−ne−|x−y|

2/2t2 = lim
t→0

f ? gt

where gt(x) = t−ng(x/t) and g(x) = (2π)n/2e−|x|
2/2.

Here’s a fact: For any g ∈ L1, we can define gt(x) = t−ng(x/t). As t→ 0, gt turns into a
delta function. Then limt→0(f ? gt) = f · ‖g‖L1 .

So this means that limt→0

∫
fϕ̂t = f · ‖g‖L1 = (2π)nf . Therefore, (f̂)∨ = f . �

We now want to extend the domain of F to L2.

Theorem 12.7 (Plancherel’s Theorem). If f ∈ L1 ∩ L2 then f̂ ∈ L2, and F|L1∩L2 extends
uniquely to an isomorphism of L2.

(In fact, it is actually a constant times isometry.)

Proof. Let H = {f ∈ L1 : f̂ ∈ L1}. Of course f̂ ∈ L1 implies f ∈ L∞ by Fourier inversion,
so H ⊂ L2. Also since S ⊂ H ⊂ L2 we know that H ⊂ L2 is dense.

Let f, g ∈ H and let h = ĝ. We have

ĥ(ξ) =

∫
e−ix·ξĝ(x) dx = (2π)ng(ξ).

So

〈f, g〉L2 =

∫
fg = (2π)n

∫
fĥ = (2π)n

∫
f̂h = (2π)n

∫
f̂ ĝ = (2π)n

〈
f̂ , ĝ
〉
L2

In particular, ‖f‖L2 = (2π)n/2
∥∥∥f̂∥∥∥

L2
. So F extends by continuity from H to an isomorphism

of L2. �

There’s one technical question that we need to check. Does the extension agree with F
on L1 ∩ L2?

Proof. Let f ∈ L1 ∩ L2 and let gt be an approximate identity.

We claim that f ? gt ∈ H. This is because g ∈ S, so (f̂ ? gt)(ξ) = f̂(ξ)ĝt(ξ) has infinite-
order decay at |ξ| =∞ (since it is bounded times Schwartz).

Now f?gt → f in L1 and L2 by a fact about approximate identities. In addition, f̂ ? gt → f̂
pointwise (directly, as ĝt → 1) and in L2 (by the isomorphism). �

How do we find f̂ when f ∈ L2? We can just plug in the integral, but we can approximate
by taking fn ∈ S converging to f (in L2). This allows us to make sense of some divergent
integrals.

Proposition 12.8. We know that f : S → S is an isomorphism. We claim that it actually
extends to a map from S ′ → S ′. This map is continuous in σ(S ′,S), which means that
`i ∈ S ′ → ` ∈ S ′ if for all g ∈ S, `i(g)→ `(g) in C; this is the weak* topology.
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Proof. For ` ∈ S ′, define (for any g ∈ S) [F(`)](g) = `(ĝ). Why? If ϕ ∈ S, let ` be
integration against ϕ, and use

∫
ϕ̂g =

∫
ϕĝ.

Why is F : S ′ → S ′ continuous? Suppose `i → ` in S ′. Then for each g ∈ S, [F(`i)]g →
`i(ĝ)→ `(ĝ) = [F(`)]g in C.

This is more or less by definition, and there’s a general method to extend maps S → S to
maps S ′ → S ′. �

Example 12.9. [F(δ0)](g) = δ0(ĝ) = ĝ(0) =
∫
g(x) dx, so F(δ0) is integration against 1.

Example 12.10.

[F(x)](g) =

∫
ξĝ(ξ) dξ =

∫
i
∂̂g

∂x
(ξ) dξ =

(
î
∂g

∂x

)∨
(0) · (2π)n = (2π)ni

∂g

∂x
(0).

So F(p(x)) = (2π)n(p(i ∂
∂x

)g)(0).

13. 2/21

We will discuss bounded linear operators. We’ve been talking about various types of
spaces, and the point of all of this is to understand continuous linear operators between
these spaces.

Definition 13.1. Consider two spaces X, Y (Banach or Hilbert). Then

B(X, Y ) = {A : X → Y linear and continuous}.

Recall that continuous means that for all x ∈ X, ‖Ax‖ ≤ C ‖x‖. When Y = X, we write
B(X).

There are several different themes:

(1) Examples and explicit operators:
We look at some “natural” operator A. Is it bounded?

(2) General structure theory:
Given A ∈ B(X), understand its “internal structure”, e.g. “Jordan form”.

(3) Interesting subclasses of operators.

Here are some key examples to keep in mind.

Example 13.2.

(1) Infinite matrices. Consider operators A : `2 → `2, A = (aij), where (Ax)i =
∑
aijxj.

We ask for general criteria on (aij) such that A is bounded.
(2) Integral operators. u(x) 7→

∫
K(x, y)u(y) dy. Here, K is a function on M ×M for

some measure space M . Is K bounded as a map Lp → Lq? Is is true that(∫ ∣∣∣∣∫ K(x, y)u(y) dy

∣∣∣∣q dx)1/q

≤ C

(∫
|u(x)|p dx

)1/p

.

(3) Convolution kernels. Consider some k(z) and K(x, y) = k(x − y). Then ‖k ? u‖q ≤
C ‖u‖p. This relates to Young’s inequality.

Everything is an integral kernel.
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Theorem 13.3 (Schwartz kernel theorem). Let A : C∞0 (Rn) → D′(Rn) be a continuous
linear mapping. Then there exists a distribution KA ∈ D′(Rn × Rn) such that Au(x) =∫
KA(x, y)u(y) dy.
This really means 〈Au, ϕ〉 = 〈KA, ϕ⊗ u〉 where ϕ⊗ u = ϕ(x)u(y), for all ϕ ∈ C∞0 (Rn).

Sketch of proof. Define KA as an element of C∞0 (Rn × Rn)∗. We need to “define” 〈KA, ψ〉
for ψ ∈ C∞0 (R2n).

But we define KA as an operator acting on C∞0 (Rn)⊗ C∞0 (Rn).
We need to check the following:

• Continuity of A implies that KA is continuous with respect to the topology of
C∞0 (R2n) restricted to C∞0 (Rn) ⊗ C∞0 (Rn). This is a matter of writing down the
definitions.
• C∞0 (Rn)⊗ C∞0 (Rn) is dense in C∞0 (R2n). �

We have the completed tensor product C∞0 (Rn)⊗̂C∞0 (Rn) = C∞0 (R2n) is the limits of
elements in the tensor product, by the result above. This means that if ψ(x, y) ∈ C∞0 (R2n)

then we can find
∑N

j=1 uj(x)vj(y) = ψN(x, y) so that ψN → ψ.

Consider ψ compactly supported in R2n, so suppψ ⊂ [−L,L]2n. Extend this periodically
to ψ ∈ C∞((R/2LZ)2n). This is then a function on the torus, and we can take its Fourier
series. This gives

ψ(x, y) =
∑

eix·p+iy·qψpq

for some ψpq ∈ C where p = (p1, . . . , pn) and q = (q1, . . . , qn) and pi, qj ∈ π
L
Z.

Example 13.4. Here are more examples of integral operators. Consider

u(y) 7→
∫

u(y)

|x− y|n−2
dy

is the Newtonian potential, or the solution operator for ∆. Note that ∆(Nu) = u.
Another example is the Fourier transform.

u(x) 7→
∫
e−ixξu(x) dx = û(ξ) = Fu.

We also have Fourier multipliers m(ξ). Define

Amu = F−1(mF)u = (2π)−n
∫
eixξm(ξ)e−iyξu(y) dy dξ.

Is Am : L2 → L2 bounded? Equivalently, when is û 7→ mû bounded on L2. We claim that
this is true if and only if m ∈ L∞.

Consider pseudodifferential operators

u 7→
∫
ei(x−y)·ξa(x, y, ξ)u(y) dy dξ =

∫ (∫
a(x, y, ξ)ei(x−y)·ξ dξ

)
u(y) dy.

Finally, consider L2(D) ⊃ H = {holomorphic L2 functions on D}.

Proposition 13.5. H is a closed subspace. This means that uj ∈ H, i.e.
∂uj
∂z

= 0 for all j,

i.e.
∫
|uj|2 <∞ and uj → u in L2, then ∂u

∂z
= 0
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This uses the Cauchy integral formula.
Define π : L2 → H as the orthogonal projector. For any u ∈ L2(D), πu(z) ∈ H, and

(I − π)u ⊥ H. Then πu(z) =
∫
D
B(z, w)u(w) dw. In fact, B ∈ C∞(D × D) called the

Bergman kernel.

Now, we discuss structure theory and special classes of operators. Given a Banach space
X, take B(X). Inside, we have B(X)0 = {A ∈ B(X) invertible}.

Theorem 13.6. B(X)0 ⊂ B(X) is an open set.

Proof. If A ∈ B(X)0, we wish to show that there exists ε > 0 so that ‖B‖ < ε implies that
A+B is invertible.

Here is a fact: ‖B1 ◦B2‖ ≤ ‖B1‖ ‖B2‖. This means that B(X) is actually a Banach
algebra.

We guess that the inverse is A−1. Then we have (A+B)A−1 = I +BA−1, and ‖BA−1‖ ≤
‖B‖ ‖A−1‖. Choose ε = 1

2
‖A−1‖−1

. Then ‖BA−1‖ ≤ 1
2
.

Now, we’ve reduced the problem to showing that I+K with ‖K‖ ≤ 1
2

is invertible. We’ve
shifted this problem to being centered around the identity.

To do this, we have the Neumann series (I +K)−1 =
∑∞

j=0(−1)jKj = I −K +K2 − · · · .
Why does this make sense? Let KN =

∑N
j=0(−1)jKj. Then ‖KN‖ =

∑N
j=0 ‖K‖

j is uniformly

bounded in N since ‖Kj‖ ≤ ‖K‖j. In fact, KN is Cauchy, so KN → (I +K)−1.
Now, we can write (A + B)A−1(I + K)−1 = I. Strictly speaking, this is a right inverse.

Now, take A−1(A+ B) = I + A−1B = I +K ′. Then write (I +K ′)−1A−1(A+ B) = I, and
we get a left inverse (with the same ε).

Given an operator C, we can find left and right inverses CD1 = I and D2C = I. Then
D2CD1 = D2 = D1. �

This gives us a large class of invertible operators. Any operator in the open ball B1(I) is
invertible. Products of invertible operators are also invertible, and we can fill out a lot of
space this way.

Suppose we take any A ∈ B(X). Then for λ ∈ C we can perturb it: A − λI. We would
like to perturb in a way that makes this invertible. We claim that A − λI is invertible if λ
is large. As before, A− λI = (−λ)(I − λ−1A). Now ‖λ−1A‖ = 1

‖λ‖ ‖A‖ < 1, and |λ| > ‖A‖
implies that (A− λI)−1 exists. (A− λI)−1 is called the resolvent family.

Definition 13.7. The spectrum of A, written spec(A), is defined as

{λ ∈ C : A− λI is not invertible}.

Note that spec(A) ⊆ B‖A‖(0) ⊂ C. This is a closed set, since its complement is open.

In fact, there exists A such that spec(A) = {0} or spec(A) = B. Does there exist A with
empty spectrum?

Remark. (λI − A)−1 is a holomorphic function on C \ spec(A).

Let K = {A ∈ B(X) compact operators}. This means that A maps any bounded set to
a precompact set. Alternatively, if {xj} ⊂ X has ‖xj‖ < C then Axj has a convergent
subsequence.

Note that finite rank operators are compact.
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Theorem 13.8. K ⊂ B(X) is a closed space.

Proof. Consider Aj ∈ K where Aj → A. We want to show A ∈ K.
Suppose xk are bounded. Choose a subsequence xkl such that Aj(xkl) converges as `→∞

for each j. Now, Axkl = Ajxkl + (A − Aj)xkl . The first term converges, and the second
term has small norm ‖(A− Aj)xkl‖ ≤ ‖A− Aj‖C. We can pick another subsequence and
diagonalize and get that the second term goes away. �

Proposition 13.9. If X is a separable Hilbert space, then K is the closure of finite rank
operators.

Proof. Choose {ϕn} is a countable orthonormal basis. Define

λn = sup
ψ⊥ϕj ,j=1,...,n
‖ψ‖=1

‖Kψ‖ .

We impose more restrictions, so we have a decreasing sequence λ1 ≥ λ2 ≥ · · · → λ ≥ 0.
If λ > 0, then there exist ψn ⊥ ϕj for j ≥ n. Then ‖Kψn‖ ≥ 1

2
λ. But ψn → 0. This

means that Kψn → 0, which is a contradiction, so therefore λ = 0.
We also claim that

N∑
j=1

〈ϕj, ·〉Kϕj → K. �

14. 2/23

Last time, we talked about compact operators K, and we showed that K is closed in the
operator norm.

Example 14.1. Consider a diagonal operator A on `2 and Aen = λnen. We claim that
A ∈ K if and only if λn → 0. If A ∈ K then {en} is bounded, so Aen = λnen must have a
convergent subsequence, so λn → 0. Conversely, if λn → 0, then define AN be a truncation
so that ANen = λnen for n ≤ N and ANen = 0 otherwise. Then AN is finite-rank, so hence
compact. Then ‖An − A‖ → 0. Then ‖AN − A‖ = supn≥N+1 |λn| is the largest eigenvalue.

Proposition 14.2. If X is a separable Hilbert space, then K is the closure of finite rank
operators.

Proof. We finish the proof from last time. So we have K =
∑∞

j=1 〈ϕj, ·〉Kϕj. Then Kϕl =

Kϕl, so this does the right thing on the basis elements. Then ‖Kϕj‖ ≤ λj, and hence

KN =
∑N

j=1 〈ϕj, ·〉Kϕj satisfies Kn → K. �

There are also trace class operators:
∑
|λn| < ∞. Also Hilbert-Schmidt operators:∑

|λn|2 <∞. These are subclasses of compact operators.

Example 14.3. SupposeX = C0(I). Then define the integral operatorGu(x) =
∫
G(x, y)u(y) dy.

Suppose G ∈ C0(I × I). We have a sequence of bounded continuous functions |uj(x)| ≤ C
for all j. Then {Guj(x)} satisfies |Guj(x)| ≤

∫
|G(x, y)||uj(y)| dy ≤ C

∫
|G(x, y)| dy ≤ C ′,

and

|Guj(x)−Guj(x̃)| ≤
∫
|G(x, y)−G(x̃, y)||u(y)| dy ≤ ε

has uniform equicontinuity. Therefore, Arzela-Ascoli applies, and hence G is compact.
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Proposition 14.4. If K is compact then K maps weakly convergent sequences to strongly
convergent ones.

Proof. Suppose we have xn ⇀ x weakly. Then ‖xn‖ ≤ C. Then Kxnj = yj → y. But

`(xnj)→ `(x) for every `. But now take some ˜̀∈ X∗, and

˜̀(yj − yi) = ˜̀(Kxnj −Kxni) = (K∗ ˜̀)(xnj − xni)→ 0.

where ˜̀(Kx) = K∗(˜̀)(x). Therefore, yj is weakly Cauchy and yj ⇀ ỹ = y. �

Since K ⊂ B(X), we can take the quotient B(X)/K. Note that B(X) is an algebra, and
K is an ideal. This means that if A ∈ B(X) and K ∈ K then KA,AK ∈ K. Why? Think
about what happens to bounded sequences and subsequences. This means that B(X)/K is
also an algebra, with coset operations (A+K)(B +K) = AB +K. This is called the Calkin
algebra.

What does it mean for A ∈ B(X)/K to be invertible? This is the basic theorem of
Fredholm theory:

Theorem 14.5. The following are equivalent:

(1) Given A ∈ B(X), A is invertible
(2) There exists B ∈ B(X) and K1, K2 ∈ K such that AB = I +K1 and BA = I +K2.
(3) A is Fredholm:

(a) kerA is finite dimensional
(b) ranA is closed
(c) X/ ranA is finite dimensional.

Example 14.6. What are Fredholm operators? Given kerA, this has a complementary
subspace W that is mapped into ranA, with complementary subspace W ′. Ignoring finite
dimensional subspaces, these are invertible, and A : W → ranA is an isomorphism.

Choose a basis v1, . . . , vk forX/ ranA, which corresponds to linearly independent v1, . . . , vk
missing ranA, and their span covers W ′.

Proof. (1) =⇒ (2): Let B = A
−1

. Choose a representative B ∈ B(x) with [B] = B. Then
[AB] = I, so AB = I +K1, and we get (2).

(2) =⇒ (1): This is trivial.
(3) =⇒ (2): A|W : W → ranA is an isomorphism. This means that we can find an

inverse for this. Choose B′ : ranA → W . Extend B′ to B : X → X such that B is B′

on ranA and 0 on W ′. Do this by projection. Then AB is I on ranA and 0 on W ′, so
AB = I −ΠW ′ . Similarly, BA = I −ΠkerA. These projections are finite rank operators, and
hence compact. We’ve therefore found inverses up to compact error.

(2) =⇒ (3): We know that AB = I − K1 and BA = I − K2. We prove (a). If
x ∈ kerA, then BA(x) = x−K2x, so x = K2x, and hence I|kerA = K2|kerA, so kerA is finite
dimensional.

Now we do (b): If xm ∈ X then Axn = yn ∈ ranA. Suppose yn → y. Then our goal
is to show y = Ax. Let x̃n be the projection of xn onto W . So we want to show that
x̃n converges; we still have Ax̃n = yn. So then BA(x̃n) = x̃n − K2x̃n = Byn, so that
x̃n = Byn + K2x̃n. If ‖x̃n‖ ≤ C then K2x̃n converges (up to subsequence), so therefore x̃n
converges. If not, suppose ‖x̃n‖ = cn →∞. Then A(x̃n/cn) = yn/cn → 0, so that (x̃n/cn) =
B(yn/cn) +K2(x̃n/cn), and therefore x̃n/cn → x̂ with ‖x̂‖ = 1. Then A(x̃n/cn) = yn/cn and
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Ax̂ = 0. But then x̂ ∈ kerA, which is a contradiction, since it is in the complement of the
kernel.

Finally, we prove (c). We take a side route. Suppose that X is a Hilbert space. Then
we have perpendicular complements. We also have the adjoint A∗ defined via 〈Ax, y〉 =
〈x,A∗y〉. Given y, define A∗y as an element of X∗, and we have (A∗y)(x) = 〈Ax, y〉, so that
|(A∗y)(x)| ≤ ‖Ax‖ ‖y‖ ≤ ‖A‖ ‖x‖ ‖y‖. This defines the adjoint operator. Also, recall from
linear algebra that kerA∗ = (ranA)⊥ and ranA∗ = (kerA)⊥. For example, A∗y = 0 if and
only if 〈A∗y, x〉 = 〈y, Ax〉 = 0 for all x.

Now, A satisfies (2) if and only if A∗ does. That is, AB = I − K1 and BA = I − K2.
Then B∗A∗ = I −K∗1 and A∗B∗ = I −K∗2 . So what we actually need is this:

Proposition 14.7. K is compact if and only if K∗ is compact.

In fact, this is true in Banach spaces, and we will do this in generality.

Proof. Suppose that K ∈ K. Then K∗ : X∗ → X∗ so that (K∗`)(x) = `(Kx). Then let

B∗ ⊂ X∗ be the unit ball. Then we show that K∗(B∗) is precompact. We consider K(B)
is a compact set. Suppose we have `n ∈ B∗. Then u ∈ K(B), and we have {`n|K(B)} is

uniformly bounded and uniformly equicontinuous. Indeed, for u = Kx, we have `n(u) =
`n(Kx), so |`n(u)| ≤ ‖`n‖ ‖x‖ ‖K‖ ≤ C. In addition, |`n(u) − `n(v)| ≤ ‖u− v‖, so hence

`n has a uniformly convergent subsequence as an element of C0(K(B)). This now says that
| 〈`n − `m, Kx〉 | = | 〈K∗`n −K∗`m, x〉 | < ε, which implies that ‖K∗`n −K∗`m‖ < ε. This is
what we wanted to show. �

In the Hilbert space setting, this finishes this Fredholm theorem. It remains to show that
if (2) holds, i.e. BA = I −K2 and AB = I −K1 for compact K1, K2, then ranA has finite
codimension. The problem is that we cannot use duality.

Suppose we have Ax = y. We guess x = By, leading to Ax = y −K2y, so this isn’t good
enough. So what if x = Bz? Then Ax = z −K2z = y, so we want to solve (I −K2)z = y.
We’ve reduced this to a nicer problem, with a simpler Fredholm operator. �

15. 3/1

Recall that we have B(X, Y ) is a space of bounded linear operators X → Y , and a space
of invertible operators I. We proved that I is an open set. There is also K is the space of
compact operators. This is an ideal. Finally, we have the space F of Fredholm operators,
which we will continue to discuss.

Definition 15.1. A ∈ F if

(1) kerA is finite dimensional
(2) ranA is closed
(3) ranA has finite codimensional.

Equivalently, A ∈ F if and only if there exist operator B and compact operators K1 and K2

such that AB = I −K1 and BA = I −K2.

We showed that if K is compact then K∗ is compact. Note that A∗B∗ = I − K∗1 and
B∗A∗ = I −K∗2 , so therefore kerA∗ is finite dimensional, and kerA∗ = (ranA)◦.

There is a mapping F → Z called the index.

Definition 15.2. Ind(A) = dim kerA− dim(Y/ ranA).
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First, we will check that this is a very stable object that is constant on big open sets. This
makes it easily computable and a useful object.

Example 15.3. Note that dim kerA does not have these nice stability properties. For ex-
ample, if A = ( 1 0

0 2 ). Then A−λI has kernel with dimension that changes in a noncontinuous
way.

Proposition 15.4. If A = I +K ∈ F(X) then Ind(A) = 0.

Proof. First, assume that kerA = {0}. Then look at X1 = A(X) ⊆ X. If X1 = A(X) ( X,
then take a descending series Xj = A(Xj−1) to get · · · ⊂ X3 ⊂ X2 ⊂ X1 ⊂ X. We claim
that this series has to stabilize. Here’s a Banach space trick (in Hilbert spaces, this is
easier): Choose xk ∈ Xk with ‖xk‖ = 1 and dist(xk, Xk−1) > 1

2
. Note that Aj = (I +K)j =

I+K+2K2+· · ·+Kj, which is still identity plus compact. Now, if m < n then Kxm−Kxn =
(A − I)xm − (A − I)xn = −xm + Xm+1, which means that ‖Kxm −Kxn‖ > 1

2
, which is a

contradiction since there must be a Cauchy sequence. Hence the sequence stabilizes. Hence,
X1 = X so IndA = 0.

Now, suppose that Nj = kerAj. Notice that N1 ⊂ N2 ⊂ · · · ⊂ Nj ⊂ Nj+1. Then if all
inclusions are proper, choose xj ∈ Nj and dist(xj, Nj−1) > 1

2
and ‖xj‖ = 1. Then just as

before, the sequence must stabilize. So we cannot have any infinite Jordan blocks. Now,
suppose Nj = Nj+1 = · · · . Then A : Nj → Nj, so it passes to a mapping of the quotient

space Ã : X/Nj → X/Nj. Similarly, K̃ is the operator induced by K, so Ã = I + K̃.
Hence, for all points y ∈ X, there exists z ∈ Nj such that Ax = y + z has a solution, so
ranA+Nj = X.

Suppose we consider ranA ∩ Nj = {w = Aw′, Ajw = 0} = W . Then Ajw = Aj+1w′, so
hence Ajw′ = 0. Then w′ ∈ kerAj so W = ran(A|Nj). So we’ve reduced our problem to a
finite dimensional thing. So we can now think about A|Nj = Nj → Nj. Then dim(kerA|Nj) =
dim(cokerA|Nj) by the rank-nullity theorem. Since X = ranA + Nj, so dim cokerA =
dim(Nj)− dimW = dim(A|Nj) = dim kerA. This is what we wanted. �

Proposition 15.5. If A ∈ F(X) and K ∈ K then Ind(A+K) = Ind(A).

This depends on the following lemma.

Lemma 15.6. If A1, A2 ∈ F then A2A1 ∈ F and Ind(A2A1) = Ind(A2) + Ind(A1).

Proof. We can write B1A1 = I−K1
1 , A1B1 = I−K1

2 , B2A2 = I−K2
1 , A2B2 = I−K2

2 . Then
(B1B2)(A2A1) = B1(I−K2

1)A1 = I−K1
1 −B1K

2
1A1 and similarly for the other composition.

So A2A1 ∈ F .

Sublemma 15.7. Take an exact sequence 0 → V0
A0−→ V1

V1−→ V2
A2−→ · · · AN−1−−−→ VN → 0.

Then
∑

(−1)j dimVj = 0.

Proof. This is because Vj = ranAj ⊕Wj. Just write down exactness. �

Now, we can write down the sequence

0→ kerA1 ↪→ kerA2A1
A1−→ imA1∩kerA2 → X/ ranA1 →

A2−→ X/ ran(A2A1)→ X/ ranA2 → 0.

Exercise 15.8. Fix this.

Then we can observe that it is exact and finish the proof. Note that this requires no
topology at all. It is a purely algebraic lemma. �
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Now we can go back to the proposition.

Proof of Proposition 15.5. Suppose that AB = I + K1. Then IndA + IndB = 0. Also,
(A+K)B = I +K1 +KB, so therefore Ind(A+K) = − IndB, so we’re done. �

This shows that F +K = F .

Proposition 15.9. F ⊂ B(X) is open.

Proof. This means that if A ∈ F then for all C with ‖C‖ < ε we have A + C ∈ F . If
AB = I + K then (A + C)B = I + K + CB, so therefore I + CB + K, so (I + CB)−1 =
I − CB + (CB)2 − · · · if ‖CB‖ < 1. Then (A+ C)B(I + CB)−1 = I +K(I + CB)−1. �

Proposition 15.10. The index is also stable under small norm perturbations.
This means that Ind(A+ C) = Ind(A).

We won’t prove this now.
Now, we have a homomorphism Ind : F → Z. They form huge open components, and the

index tells you which component you are in.

Fact 15.11. The index “counts” the components of F . This means that F = tj∈ZFj where
each Fj is connected and open, and Ind |Fj = j.

We still haven’t produced any operators of nonzero index, so to show this we would need
to do this.

Example 15.12. Consider the shift operator A : `2 → `2. Then (Ax)j = xj+1 where
(x1, x2, . . . )→ (x2, x3, . . . ). Then IndA = 1.

Consider L2(S1) = span{einθ, n ∈ Z}. Then u(θ) =
∑∞
−∞ ane

inθ, which corresponds to
(an) ∈ `2.

Consider H = span{einθ, n ≥ 0}. We claim that H is the set of u(θ) such that there exists
u(r, θ) holomorphic in the unit disk, with supr<1

∫
|u(r, θ)|2 <∞ and u(1, θ) = u(θ). This is

called a Hardy space. Then H ⊂ L2 is a closed subspace.
Here is an interesting Fredholm operator. Choose f : S1 → C with f ∈ C∞. Then define

Mf : H → H via Mfu = Πfu where Π : L2 → H is a projection.

Theorem 15.13 (Toeplitz Index Theorem). Mf is Fredholm if and only if f 6= 0 everywhere
on S1. If this is the case, Ind(Mf ) = −(winding number of f).

This is very easy to prove given what we’ve done.

Sketch of proof. If f 6= 0, then we want to construct a pseudoinverse for Mf ; we claim that
this is Mf−1 . Then Mf−1Mf = Πf−1Πfu where u ∈ H. If f ∈ H then this wouldn’t be so

bad, since fu ∈ H. For general f , let fN =
∑∞
−N bne

inθ =
∑−1
−N +

∑∞
0 = f ′N + f ′′N . Write

u =
∑∞

0 ane
inθ. Then f−1Πfu = u if u =

∑∞
N ane

inθ, so this is invertible on a space of finite
codimension. Then Mf−1

N
MfN = I −KN , where Mf = MfN + CN where ‖CN‖ � 1.

If f(θ0) = 0, then there exists a sequence uj ∈ H such that Mfuj → h but uj 6→ h. �

Now, if f does not vanish, it can be homotoped to some Zn for n ∈ Z, and IndMZn = −n.
This is because MZn sends u =

∑∞
0 ane

inθ →
∑
ane

i(n+N)θ for N ≥ 0, so the index is −N .
This is important because it shows that the indices can be reasonably computed.

46



16. 3/6

Recall the notion of the spectrum of A ∈ B(X). If λ ∈ C then λ /∈ specA if and only if
λI − A is invertible. Note that if |λ − λ′| < ε then ‖(λI − A)− (λ′I − A)‖ < ε, so in fact
C \ spec(A) is an open set, and hence spec(A) is closed.

Proposition 16.1. If |λ| > ‖A‖ then λ /∈ specA.

Proof. λI − A = λ(I − λ−1A). Then (λI − A)−1 = λ−1
∑∞

j=0 λ
−jAj. �

Proposition 16.2. spec(A) 6= ∅.
Proof. R(λ) = (λI −A)−1 is holomorphic away from specA. Note that R(λ) holomorphic in
Ω means that (equivalently)

(1) If λ0 ∈ Ω = C \ specA then R(λ) =
∑∞

j=0 Rj(λ− λ0)j for |λ− λ0| < ε.

(2) For all f ∈ X, R(λ)f =
∑
fj(λ− λ0)j for fj ∈ X.

(3) For all f ∈ X, ` ∈ X∗, then `(R(λ)f) =
∑
aj(λ− λ0)j.

These three definitions are equivalent. One of the advantages of working with holomorphic
functions is that we can use all of the machinery of complex analysis. So we can use the
Cauchy integral formula: ∫

|λ|=R
(λI − A)−1 dλ = I +O(1/R)→ I

because only the leading term of the Neumann series is important. If R were holomorphic
in |λ| ≤ R then the integral would be zero, which isn’t true. �

In fact, any closed bounded nonempty set can be the spectrum of some operator. We will
concentrate on nicer operators.

Proposition 16.3. If K ∈ K(X) is compact, then

(1) spec(K) = {λj} ∪ {0} for λj discrete in C \ {0}.
(2) Each λj ∈ spec(K) is an eigenvalue of finite multiplicity, i.e. ker(λjI −K) is finite

dimensional, and ker(λjI −K)` is finite dimensional and stabilizes for large `.

If we look at (λI −K)−1 =
∑

n≥−N Cn(λ − λj)n, the Laurent series only has finitely many
terms with negative n, and C−N , . . . , C−1 are finite rank operators.

Proof. λI − K = λ(I − λ−1K). Suppose that λ 6= 0. This is noninvertible if and only if
(I − λ−1K) is noninvertible, if and only if ker(I − λ−1K) 6= 0.

We now have that λj ∈ specK if and only if there exists wj ∈ X such that Kwj = λjwj.
Now, let Yn = span{w1, . . . , wn}. Then we have a sequence Y1 ⊂ Y2 ⊂ · · · ⊂ Yn ⊂ · · · .
Choose an element yn ⊂ Yn with ‖yn‖ = 1 and dist(yn, Yn−1) > 1

2
. We can write yn =∑n

j=1 ajwj. Then (K − λnI)yn =
∑n

j=1 aj(λj − λn)wj ∈ Yn−1. When n > m, we have

Kyn−Kym = (K−λnI)yn−λnyn−Kym ∈ λn(yn+Yn−1). Therefore ‖Kyn −Kym‖ ≥ 1
2
|λn|.

So necessarily |λn| → 0 or else {Kyn} wouldn’t have a Cauchy subsequence. �

Why is 0 ∈ specK? Because specK is an infinite closed sequence accumulating at 0.
We will discuss an important special case.

Theorem 16.4. Let H be a separable Hilbert space, and let K be a self-adjoint compact
operator K∗ = K. Under these conditions, there exist {xj} and {λj} so that {λj ∈ R} and
λj → 0 so that Axj = λjxj and {xj} is an orthonormal basis for H.
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Proof. Define Q(x) = 〈Kx,x〉
‖x‖2 for x 6= 0. (Alternatively, work with Q̃(x) = ‖Kx‖2

‖x‖2 , and the

argument works almost identically.)

First, Q is bounded for x 6= 0. Actually, |〈Kx,x〉|‖x‖2 ≤ ‖K‖.
Now, we try to maximize A. Choose yl ∈ H so ‖yl‖ = 1 and Q(yl) → supQ or →

inf Q. Note that −‖K‖ ≤ Q(x) ≤ ‖K‖. The claim is that there exists a convergent
subsequence of the yl. Since yl are bounded and K is compact, we have a convergent
Kylj → z. Then Q(ylj) =

〈
Kylj , ylj

〉
. Passing to a subsequence if necessary, we can assume

ylj ⇀ ỹ weakly. Drop the index j. We want the yl to converge strongly. We can write
〈Kyl, yl〉 = 〈Kyl − z, yl〉+ 〈z, yl〉 → 〈z, ỹ〉 = 〈Kỹ, ỹ〉. Therefore, Q(yl)→ supQ = Q(ỹ).

Then ỹ must be an eigenvalue, and Q(ỹ+ tw) ≤ Q(ỹ) for all t. We claim that d
dt
|t=0Q(ỹ+

tw) = 0. Then

d

dt

∣∣∣∣
t=0

〈K(ỹ + tw), ỹ + tw〉
‖ỹ + tw‖2 = 2 〈Kỹ, w〉 − (supQ)2 〈ỹ, w〉 = 0.

Therefore, 〈Kỹ − λ1ỹ, w〉 = 0 for all w where λ1 = supQ. Set x1 = ỹ, so then Kx1 = λ1x1

and λ1 = supQ ∈ R. So we’ve found a single eigenvector.
Now, let H1 = {x ∈ H : x ⊥ x1}. Then Kx1 = λ1x1 implies that Cx1 is invariant by K, so

(Cx1)⊥ is also invariant by K. Then 〈x, x1〉 = 0 and 〈Kx, x1〉 = 〈x,Kx1〉 = λ1 〈x, x1〉 = 0.
So now restrict to Q|H1 and apply exactly the same argument. Find a maximizer x2 for Q|H1 .
We want Q(x2) ≥ Q(w) for all w ∈ H1. Then Q(x2 + tw) ≤ Q(x2) if w ∈ H1. Running the
argument gives us 〈Kx2 − λ2x2, w〉 = 0 for all w ∈ H1. Therefore, Kx2 = λ2x2 + cx1, and
hence actually Kx2 = λ2x2. Notice that by definition, λ2 ≤ λ1.

We continue inductively. Define x1, x2, . . . , xN , . . . , each satisfying Kxj = λjxj. These are
orthonormal, λj ∈ R, and |λ1| ≥ |λ2| ≥ · · · . This is a monotone decreasing sequence, so it

converges to λ. Is this zero? By the previous theorem, yes; more primitively, otherwise we
would contradict compactness.

Finally, we should check completeness. Let Y = span{xj}. Let Y ⊥ ⊂ H be its orthogonal
complement. We want K|Y ⊥ = 0. Suppose not. Then Q|Y ⊥ has nonzero supremumm µ.
This is impossible because µ > |λj| for j large. That’s the end of the proof. �

This is a spectral theorem in the strongest possible sense.

Corollary 16.5. Consider A = I+K where K is compact and self-adjoint, so A is Fredholm
and A∗ = A. Then all of the spectral accumulation is at 1.

If Kxj = λjxj, then Axj = (1 + λj)xj. If we want to solve Ax = y, we write y =
∑
bjxj,

then we hope that x =
∑
ajxj. But we want Ax =

∑
(1 + λj)ajxj, so aj =

bj
1+λj

.

There is nothing too exotic happening yet, but we’ll see more general results next time.

17. 3/8

Recall from last time: A is a symmetric operator, compact on H.

Proposition 17.1. If A∗ = A then spec(A) ⊂ R.

Proof. If Ax = λx then λ ‖x‖2 = 〈Ax, x〉 = 〈x,A∗x〉 = λ ‖x‖2. But the spectrum is more
than just the eigenvalues.
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We really need λ /∈ R implies that λI−A is invertible. Then if λ = a+ ib, define B(x, y) =
〈(A− λ)x, y〉. We have |B(x, x)|2 = | 〈(A− aI)x, x〉 − ib 〈x, x〉 |2 = | 〈(A− aI)x, x〉 |2 +
b2 ‖x‖2 ≥ b2 ‖x‖2. This means that this B is still coercive (recall the Lax-Milgram 4.2), i.e.
|B(x, y)| ≤ C ‖x‖ ‖y‖ and |B(x, y)|2 ≥ c ‖x‖2. This means that there is some version of the
Riesz representation theorem.

Hence given z, there exists x ∈ H such that y 7→ B(x, y) = 〈z, y〉, which is the statement
that 〈(A− λI)x, y〉 = 〈z, y〉, which is true if and only if (A− λI)x = z. �

Proposition 17.2. If A∗ = A and A is compact, then spec(A) is discrete in R \ {0}.
Proof. The proof was fairly constructive. Given y 7→ 〈Ay, y〉, we realize the supremum
sup‖y‖=1 〈Ay, y〉 by choosing yn with ‖yn‖ = 1 to get that 〈Ayn, yn〉 → sup 〈Ay, y〉. Using
some of our standard theorems about weak convergence, we saw that 〈Ayn, yn〉 → 〈Aỹ, ỹ〉.
To do this, we have yn ⇀ ỹ but not strong convergence. If ‖ỹ‖ < 1 then〈

A
ỹ

‖ỹ‖
,
ỹ

‖ỹ‖

〉
=
〈Aỹ, ỹ〉
‖ỹ‖2 sup

‖y‖=1

〈Ay, y〉 ,

which is bad. Hence, yn → ỹ and ‖y‖ = 1 = lim ‖yn‖. This implies (see the homework) that
yn → ỹ. �

Definition 17.3. Suppose L = −∆ + V on T n = S1 × S1 × · · · × S1, where ∆ =
∑n

j=1
∂2

∂θ2j
.

Then

〈−∆u, u〉 =
n∑
j=1

∥∥∥∥ ∂u∂θj
∥∥∥∥2

= ‖∇u‖2

for u ∈ C∞(T n) and V real-valued in C∞.

We want to think of L as a compact operator.
There are two points of view.

Definition 17.4. Firstly, consider Hs ⊂ L2 where

Hs =

u =
∑

k=(k1,...,kn)

ake
ikθ :

∑
k∈Zn

(1 + |k|2)s|ak|2 <∞

 ,

and kθ = k1θ1 + · · ·+ knθn.

An easy fact is this:

Proposition 17.5. If u ∈ Hs then ∂θju ∈ Hs−1.

Proof. If u =
∑
ake

ikθ then ∂θju =
∑
ak(ikj)e

ikθ, so then∑
(1 + |k|2)s−1|(ikjak)|2 ≤ C

∑
(1 + |k|2)s|ak|2. �

In particular, look at s = 2, i.e. the space of functions where
∑

(1 + |k|2)2|ak|2 < ∞.
Applying the fact twice, we see that ∆ : H2(T n)→ L2(T n).

Also, we see that L = −∆ + V : H2(T n) → L2(T n) is a bounded mapping. One way to
do this is to follow the definition: (V u)k =

∑
`∈Zn V`ak`. Then we need to compute

‖V u‖2 =
∑
k∈Zn
|(V u)k|2 =

∑
k

∣∣∣∣∣∑
`

V`ak`

∣∣∣∣∣
2

< C
∑
|ak|2 = C ‖u‖2

L2 .
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This is a standard fact about convolutions but it is a bit of a mess.
Instead, to make this easier, think of H2 in a different way:

Proposition 17.6. H2 = {u ∈ L2 : u, ∂θju, ∂
2
θjθ`
∈ L2}.

Proposition 17.7. This L is Fredholm.

Proof. We start with a reference operator: L0 = −∆ + 1 : H2 → L2 is invertible. This is
because

L0u = (−∆ + 1)u =
∑

(1 + |k|2)ake
ikθ =

∑
bke

ikθ

is satisfied for ak = bk
1+|k|2 . Then u =

∑
ake

ikθ ∈ H2 because we have
∑
|ak|2(1 + |k|2)2 =∑

|bk|2 <∞.
Now (−∆+V )(−∆+1)−1 = (−∆+1+V −1)(−∆+1)−1 = I+(V −1)(−∆+1)−1 = I+K.

We need to show that (V − 1)(−∆ + 1)−1 : L2 → L2 is compact. It suffices to show that
(−∆ + 1)−1 is compact.

We just checked that (−∆ + 1)−1 : L2 → H2 is bounded. How about (−∆ + 1)−1 :
L2 → H2 ↪→ L2? The claim is that H2 ↪→ L2 is a compact inclusion. This means that if
we have {uj : ‖uj‖H2 ≤ c} then there exists a convergent subsequence in L2. So we want∑
|u(j)k|2(1 + |k|2)2 ≤ C.
Given any ε > 0, there exists N such that∥∥∥∥∥∥uj −

∑
|kl|≤N

u(j)ke
ikθ

∥∥∥∥∥∥
2

L2

< ε.

We know that the |u(j)k| ≤ C ′ uniformly, so therefore the tail of the series is < ε, i.e.∑
some kl>N

|u(j)k|2 ≤ ε.

The upshot is what we wanted: (−∆ +V )(−∆ + 1)−1 = I+K. We can do the same thing
on the other side: (−∆ + 1)−1(−∆ + V ) : H2 → H2. Write this as (−∆ + 1)−1(−∆ + V ) =
I+(−∆+1)−1(V −1). Now, we have (−∆+1)−1(V −1) represents mappingsH2 → H4 ↪→ H2,
where the last map is a compact inclusion. This requires a slight generalization of before,
and then we are done. �

Then we’ve shown that −∆ + V : H2 → L2 is Fredholm. But we can’t talk about
spectrum because it is a map between different spaces. But this is great for discussing
solvability: (−∆ + V )u = f . What is the index? The index is invariant under deformation,
so we deform this so that V is carried to 1, where the operator is invertible. So therefore
L = −∆ + V is Fredholm of index 0. So as long as there is trivial null space, it is surjective,
so we are reduced to studying (−∆ + V )u = 0.

If V = 0, then −∆(1) = 0, and in fact that’s the only solution, since −∆u = 0 means
〈−∆u, u〉 =

∫
|∆u|2 = 0, so u is constant. So when can we solve −∆u = f? The dimensional

of the null space is 1, so the range has codimensional 1. Then (ranL)⊥ = ker ∆ = constant.
Therefore, −∆u = f is solvable if and only if

∫
f = 0.

Equivalently, if u =
∑
ake

ikθ then −∆u =
∑
|k|2akeikθ =

∑
bke

ikθ = f requires ak = bk
|k|2 ,

which means that b0 = 0, so then
∫
f = 0. This is actually very concrete.

Suppose that V > 0. Then what happens to (−∆ + V )u = 0? Expanding by Fourier
series would be a mess, but we can write 〈(−∆ + V )u, u〉 =

∫
|∆u|2 +V |u|2 = 0 implies that
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u = 0, so ker(−∆ + V ) = 0, so hence ran(−∆ + V ) = L2, and hence (−∆ + V )u = f is
always solvable!

Here’s a second point of view. Think of −∆ + V : L2 → L2 as an unbounded operator.
Then C∞0 (T n) ↪→ L2. For all u ∈ C∞0 , we have (−∆ + V )u ∈ L2. We can now consider the
graph {(u, Lu)} for u ∈ C∞0 . This is definitely not the whole thing, and it isn’t even closed.
So consider

{(u, Lu) : u ∈ C∞0 (T n)} = {(u, f) : uj ∈ C∞0 , uj
L2

−→ u, Luj
L2

−→ f}.
Is this still a graph? Are there some points (u, f1), (u, f2) in the closure of the graph, or

alternatively, can there be (0, f1 − f2) in this closure? Can we have uj
L2

−→ 0 and Luj
L2

−→
f 6= 0? It turns out that this cannot happen, and this is still a graph.

Then

{(u, f) : uj ∈ C∞0 , uj
L2

−→ u, Luj
L2

−→ f} = Gr(A)

for some A defined on DA ⊂ L2. Then C∞0 ⊂ DA ⊂ L2 is dense, and we call (A,DA) a closed
extension of L on C∞0 , and we denote this (L,D).

Now, we can consider C \ spec(L,D) = {λ : (L− λI)−1 exists as a bounded operator}.
Choose λ0 so large that −∆ + V + λ0 where V + λ0 ≥ 1. What we showed earlier is that
(−∆ + V + λ0)−1 : L2 → L2 is bounded. Despite the operator being unbounded, the inverse
is bounded. So then −λ0 /∈ spec(L).

It turns out that L∗ = L is still true, which we will do next time. Then spec(L,D) ⊂ R,
and there is nothing that is too negative. Instead consider spec((−∆ + V + λ0)−1) = {µj}
is some positive sequence converging to zero. Then we have (−∆ + V + λ0)−1uj = µjuj.
Then (−∆ + V )uj = (−λ0 + 1

µj
)uj. Then λj = −λ0 + 1

µj
→ +∞, which gives us the spectral

resolution of this unbounded operator via considering the spectral resolution of its inverse.
We also know that the uj form an orthonormal basis for L2.

18. 3/13

Recall that we were talking about the spectral theorem. We did the case of compact self-
adjoint operators, and we were doing the case of unbounded operators in the special case of
A = −∆ + V for V real-valued and C∞. We can talk about this on T n = S1 × · · · × S1 or
on some smoothly bounded Ω ⊂ Rn. Our goal is to show that we have eigendata {ϕj, λj}∞j=0

where Aϕj = λjϕj and λj →∞ without accumulation points.
Recall that we have (A,D) whereD ⊂ L2 is a dense subspace and Gr(A,D) = {(u,Au), u ∈
D} is a closed subspace of L2 × L2. This means that A is a closed operator. Think of
D ⊃ C∞0 (Ω) or C∞0 (T n).

Remark. We cannot just work with the unbounded operator A; we need to work with A
and its domain D together.

Definition 18.1. We wish to define (A,D)∗.
We have v ∈ D∗ if u 7→ 〈Au, v〉 for u ∈ D extends to an element of (L2)∗. If | 〈Au, v〉 | ≤

C ‖u‖L2(Ω) for all u ∈ D then we can extend to a continuous linear functional on L2. Then

〈Au, v〉 = 〈u,A∗v〉 by the Riesz representation theorem.

Example 18.2. A = − ∂2

∂x2
on C∞0 ((0, 1)). The graph is not closed, so consider Gr(A) =

{(u,−u′′) : u ∈ C∞0 } in L2(I)× L(I).
51



We claim that (u, f) ∈ Gr(A) if and only if u ∈ H2
0 (I), which is the closure of C∞0 with

respect to the H2 norm ‖u‖L2 + ‖u′‖L2 + ‖u′′‖L2 .

We have (u, f) ∈ Gr(A) if there exist uj ∈ C∞0 such that uj
L2

−→ u and u′′j
L2

−→ f . Then

u ∈ H2
0 . Why? The u′j satisfy

∫
u′ju

′
j = −

∫
uju

′′
j , so

∫
|u′j|2 ≤ C ‖uj‖

∥∥u′′j∥∥.

Exercise 18.3. u′j is also Cauchy in L2.

If u′ ∈ L2, then

|u(x)− u(x̃)| ≤
∣∣∣∣∫ x̃

x

u′(t) dt

∣∣∣∣ ≤ (∫ |u′(t)|2)1/2(∫ x̃

x

1

)1/2

≤ ‖u′‖L2

√
|x− x̃|.

Now, this shows that H2
0 = {u : u, u′, u′′ ∈ L2, u(0) = u(1) = u′(0) = u′(1) = 0} is the

closure that we want.
What we’ve shown is that

Gr

(
− ∂2

∂x2
, C∞0

)
=

(
− ∂2

∂x2
, H2

0

)
.

We want the adjoint to satisfy 〈Au, v〉 = 〈u,A∗v〉. Completely formally, we have∫ 1

0

−u′′v dx =

∫ 1

0

u(−v′′) dx+ (u(1)v′(1)− u′(1)v(1))− (u(0)v′(0)− u′(0)v(0)).

We need these boundary terms to vanish, because v ∈ D∗ if and only if | 〈Au, v〉 | ≤ C ‖u‖L2 .
We need v′′ ∈ L2. Also, when u ∈ H2

0 , all boundary terms are zero. This proves that(
− ∂2

∂x2
, H2

0

)∗
=

(
− ∂2

∂x2
, H2

)
.

This means that (− ∂2

∂x2
, H2) is a bigger closed extension of (− ∂2

∂x2
, C∞0 ). Here, we write

(− ∂2

∂x2
, H2

0 ) ⊂ (− ∂2

∂x2
, H2).

Definition 18.4. (A,D) is called self-adjoint if (A,D)∗ = (A,D).

Proposition 18.5. (− ∂2

∂x2
, H2 ∩H1

0 ) is self-adjoint.

Here, H2 ∩H1
0 = {u ∈ H2, u(0) = u(1) = 0} ⊃ C∞0 .

Proof. Take u ∈ H2 ∩H1
0 . Then

〈−u′′, v〉 = 〈u,−v′′〉+ (u(1)v′(1)− u′(1)v(1))− (u(0)v′(0)− u′(0)v(0)).

v ∈ D∗ means that | 〈−u′′, v〉 | ≤ C ‖u‖L2 can only happen if there are no boundary terms.
So v is in the adjoint domain if and only if v ∈ H2 and v(0) = v(1) = 0, i.e. v ∈ H2∩H1

0 . �

So now we have (− ∂2

∂x2
, C∞0 ) ⊂ (− ∂2

∂x2
, H2

0 ) ⊂ (− ∂2

∂x2
, H2 ∩H1

0 ) ⊂ (− ∂2

∂x2
, H2). Somehow we

wanted to impose half of the boundary conditions. Picking different boundary conditions
give different extensions.

How do we connect this to spectral theory?

Proposition 18.6. Consider A = − ∂2

∂x2
+ V (x) on L2((0, 1)), and consider (A,H2 ∩ H1

0 )
as a self-adjoint operator. Then there is an orthonormal set of eigenfunctions {ϕj} where

(− ∂2

∂x2
+ V )ϕj = λjϕj with ϕj(0) = ϕj(1) = 0 and λj →∞.
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Proof. Shift the operator so that − ∂2

∂x2
+ V (X) + C > 0. Then 〈(A+ C)u, u〉 ≥ ‖u‖2 for all

u ∈ D.
Define (− ∂2

∂x2
+V (x)+C)−1. For (A+C)u = f ∈ L2, we can find u ∈ D. The Lax-Milgram

lemma 4.2 was a good way to think about this. This tells us that there exists u ∈ H1
0 such

that
∫
vf = B(u, v) for all v ∈ H1

0 . This means that∫
∇u∇v + (V + C)uv =

∫
fv,

so for all u ∈ H1
0 we have u ∈ H2 ∩H1

0 .

So given f we can find u = (− ∂2

∂x2
+ V +C)−1f ∈ H2 ∩H1

0 . Since K = (− ∂2

∂x2
+ V +C)−1

is compact on L2. We have K : L2 → H2 ∩ H1
0 ↪→ L2 where the second map is a compact

inclusion by Arzela-Ascoli. That is, for uj with
∫
|uj|2 + |u′j|2 + |u′′j |2 ≤ C we have

|uj(x)− uj(x̃)| ≤ C
√
|x− x̃|

which gives uniform equicontinuity. Also, |uj(x) − 0| ≤ C
√
x ≤ C for all j, giving uniform

boundedness.
Therefore, K has orthonormal eigenfunctions and discrete spectrum, i.e. Kϕj = µjϕj

with µj > 0 since we have a positive operator, and (− ∂2

∂x2
+V +C)ϕj = 1/µjϕj, so therefore

Aϕj = (−C + 1
µj

)ϕj. Setting λj = −C + 1
µj

we see that we have λj →∞. �

Remark. Similarly, we can do this for −∆ +V on T n or on Ω ⊂ Rn to get a complete basis
of eigenfunctions.

Now, we go back to bounded self-adjoint operators, where there is no unpleasantness with
adjoint domains. Take A ∈ B(H) with A∗ = A. In fact, any closed subset can be a spectrum.

First, we discuss functional calculus. Given an operator A, we can compute An and hence
take polynomials p(A) =

∑N
k=0 ckA

k ∈ B(H). In fact, if we have f ∈ C0(spec(A)), we can
define f(A). If Aϕ = λϕ then p(A)ϕ = (

∑
ckA

k)ϕ = p(λ)ϕ. Here, the eigenvectors are the
same but the eigenvalues have changed by p. This is what we want for continuous functions.

Theorem 18.7. There is a unique map ϕ : C0(spec(A))→ B(H) such that

(1) ϕ(fg) = ϕ(f)ϕ(g), ϕ(λf) = λϕ(f), ϕ(1) = I, ϕ(f) = ϕ(f)∗.
(2) ‖ϕ(f)‖B(H) ≤ C ‖f‖L∞.

(3) ϕ(x) = A.
(4) Aψ = λψ implies that ϕ(f)(ψ) = f(λ)ψ.
(5) spec(ϕ(f)) = f(spec(A)).
(6) f ≥ 0 implies that ϕ(f) ≥ 0 (i.e. 〈ϕ(f)u, u〉 ≥ 0 for all u ∈ H).
(7) ‖ϕ(f)‖B(H) ≤ ‖f‖L∞.

We will actually prove (v) and (vii) and extend by continuity.

Lemma 18.8. spec(P (A)) = P (spec(A)).

Proof. If λ0 ∈ spec(A), then p(x) − p(λ0) has root x = λ0, so p(x) − p(λ0) = (x − λ0)q(x).
Then p(A)− p(λ0)I = (A−λ0I)q(A), so therefore p(A)− p(λ0)I is not invertible, so p(λ0) ∈
spec(p(A)).

Conversely, if µ ∈ spec(p(A)). Then factor the polynomial p(x)−µ = a(x−λ1) · · · (x−λn).
Now, p(A)−µI = a(A−λ1I) · · · (A−λnI), which implies that some A−λjI is not invertible,
so therefore p(λj) = µ and hence λj ∈ spec(A). �
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Lemma 18.9. ‖p(A)‖ = supλ∈spec(A) |p(λ)| = ‖p‖∞.

From this, we can claim that the properties above are all preserved under operator limits,
so that they are true for continuous f .

Next, given f , we can get 〈f(A)x, y〉 =
∫
f(λ)dµAx,y by the Riesz-Markov theorem. So we’ll

be able to talk about the spectral measure.

19. 3/15

Recall that we are working with A ∈ B(H) where H is a separable Hilbert space, and
A∗ = A.

The first goal was to develop the continuous functional calculus. Suppose we have any
f ∈ C∞0 (specA) and f(A) ∈ B(H). Using Weierstrass approximation, choose a sequence of
polynomials so that pn(λ)→ f(λ) in C0(specA).

We proved two lemmas last time:

Lemma 19.1. If P (λ) is a polynomial then specP (A) = P (specA).

Lemma 19.2. ‖P (A)‖B(H) = supλ∈specA |P (λ)| = ‖P‖∞.

Proof. First recall that ‖B∗B‖ = ‖B‖2. This is because ‖B∗B‖ ≤ ‖B∗‖ ‖B‖ = ‖B‖2, and
on the other hand, ‖B‖2 = sup‖x‖=1 ‖Bx‖

2 = sup‖x‖=1 | 〈B∗Bx, x〉 | ≤ ‖B∗B‖.
‖P (A)‖2 = ‖P (A)∗P (A)‖ =

∥∥(PP )(A)
∥∥ = supλ∈specPP (A) |λ| = supλ∈specA |PP (λ)| =

supλ∈specA |P (λ)|2. �

This allows us to carry out our scheme.

Theorem 19.3. ϕ : C0(specA) → B(H) via f 7→ f(A). Here, fg 7→ f(A)g(A) and
f 7→ f(A)∗. If Aψ = λψ then f(A)ψ = f(λ)ψ.

One corollary of this whole construction is the following:

Corollary 19.4. (A − λI)−1 = RA(λ) is defined when λ /∈ spec(A). Then ‖RA(λ)‖ =
1/ dist(λ, spec(A)).

This means that given (A− λI)−1 for λ ≈ λ0, then this blows up at most like 1/(λ− λ0).
We see that λ→ 〈RA(λ)x, y〉 is holomorphic, so we can expand it in a Laurent series to see

that it has at worst a simple pole, with RA(λ) = A−1

λ−λ0 + Ã(λ).

What is A−1? Note that (A− λI)RA(λ) = I. Expanding this gives

(A− λI)RA(λ) = ((A− λ0I)− (λ− λ0)I)

(
A−1

λ− λ0

+ Ã(λ)

)
=

(A− λ0I)A−1

λ− λ0

+ Â(λ) = I

where Â is regular. Then (A − λ0I)A−1 = 0. So if λ0 is isolated in spec(A) (and A∗ = A),
then A−1 = −Πλ0 is a projector onto an eigenspace {x : Ax = λ0x}. Now, checking that
A−1A−1 = A−1 and A∗−1 = A−1 yields what we want.

What goes wrong if we lose self-adjointness? Consider A = 0 1
0 0 . Then

RA(λ) =

(
−1/λ 1/λ2

0 −1/λ

)
.

This is a feature of having Jordan blocks that are not diagonal.
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In general, the spectrum might not have isolated points and it could just be a mess. What
do we do then?

Pick any x ∈ H. Then C0(specA) 3 f 7→ 〈f(A)x, x〉 is a continuous linear functional.
This means that this has to be representable by a measure 〈f(A)x, x〉 =

∫
specA

f(λ)dµx(λ).

In general, we don’t have a good way to identify the measure, however. Let’s think about a
couple of special cases.

Suppose A∗ = A > 0 is compact. This means that we have a basis Aψn = λnψn where
{ψn} form an orthonormal basis for H and λ1 ≥ λ2 ≥ · · · → 0. For x = ψn, we have
〈f(A)x, x〉 = f(λn) ‖x‖2 =

∫
f(λ)dµx =

〈
δ(λ− λn) ‖x‖2 , f

〉
, so here the measure is just

some δ-measure at that point.
For a general x, we have x =

∑
xnϕn. Then

〈f(A)x, x〉 =
∑

f(λn)|xn|2 =

〈∑
n

δ(λ− λn) |〈x, ϕn〉|2 , f

〉
,

and this sum of delta-measures is dµx(λ).

There are different ways to think about dµx. Fix x, and define Hx = span{Anx} ⊂ H.

Definition 19.5. x is called cyclic in H ′ if the Anx span a dense subspace in H ′.

Lemma 19.6. Clearly, A : Hx → Hx.
There exists a unitary mapping U : Hx → L2(specA, dµx) such that UAU−1 is multiplica-

tion by λ:

Hx

U
��

A // Hx

U
��

L2
Mλ

// L2

Proof. Take any f(A)x ∈ Hx. Then U sends f(A)x to f(λ).
Then ‖f(A)x‖2 = 〈f(A)∗f(A)x, x〉 =

∫
specA

|f(λ)|2 dµx.
This defines a mapping Hx → C0(specA) that intertwines ‖·‖Hx and ‖·‖L2(specA,dµx). Fi-

nally, use that C0 ↪→ L2 is dense. �

This means that A|Hx is unitarily equivalent to multiplication by κ on L2(specA, dµx).
This is a very simple and concrete operator. This is now like the spectral theorem. We have
A(U−1f) = U−1(λf).

We can write

H =
N⊕
n=1

Hxj

where N ≤ ∞. So we can write the entire separable Hilbert space as a direct sum of these
special subspaces, where A|Hxj looks like multiplication by λ.

In general, if A corresponds to Mλ then f(A) corresponds to Mf(λ). When does Mf(λ)

exist as a bounded operator on L2(specA, dµx)? This is still ok if f is a Borel function in
L∞. Hence, for such functions, f(A) makes sense.

What are interesting characteristic functions? Here’s the upshot: Let Ω ⊂ specA be any
Borel subset. We’ve defined χΩ(A), and we have some properties: χΩ(A) ◦ χΩ(A) = χΩ(A)
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and χΩ(A)∗ = χΩ(A). This means that χΩ(A) = PΩ is an orthogonal projector on H. If we
have any bounded operator so that P 2 = P and P ∗ = P , then we have P (I − P ) = 0, so
ran(P ) = ker(I − P ), so this P is just projecting onto a closed subspace.

Then PΩ is the orthogonal projector onto the “sum of the eigenspaces with eigenvalues
in Ω”. This is exactly correct if we have discrete spectrum. Then PΩ = Πϕn + Πϕn+1 and
PΩx = 〈x, ϕn〉ϕn + 〈x, ϕn+1〉ϕn+1.

In general, suppose that we have the spectrum that decomposes into Ω1 and Ω2 so that
spec(A) = Ω1 ∪ Ω2 and Ω1 ∩ Ω2 = 0. and we have PΩ1 and PW2 . Then PΩ1PΩ2 = 0 and
PΩ1 + PΩ2 = I. So therefore ranPΩ1 and ranPΩ2 are orthogonal subspaces that fill out H.

So we have this family of projectors PΩ satisfying some characteristic properties:

(1) P∅ = 0
(2) P(−a,a) = I

(3) If Ω =
⋃∞
n=1 Ωn where Ωn ∩ Ωm = ∅ then PΩ = lim

∑N
n=1 PΩn where the limit is a

strong limit, i.e.
∑N

n=1 PΩnx→ PΩx ∈ H, and not an operator norm limit; operator
norm corresponds to L∞ and this is an L2 statement.

(4) PΩ1∩Ω2 = PΩ1PΩ2 .

This looks like properties of an ordinary measure.
Given any family {PΩ}, think of Ω → 〈PΩx, x〉. For any f Borel, we can look at∫
f(λ) 〈dPλx, x〉 = 〈f(A)x, x〉.
Finally, we can think of f(A) =

∫
f(λ)dPλ. Let’s think about what this means in cases

that we understand.
If f = 1 then

∫
1 dPλ = I. Here Pλ = P(−∞,λ]. In general, it doesn’t make sense to

project onto a certain λ because the spectrum can be messy and there might not be an
eigenspace there. But it makes sense to project onto everything ≤ λ, and take the sum of
those eigenspaces.

Example 19.7. If A is compact, A ≥ 0 and A∗ = A. If λ > 0, we have an infinite rank
projector. This is a nice example.

Example 19.8. This is the motivation for all of this. We’ll have to go back to unbounded
operators. Consider −∆ on L2(Rn). We can still talk about spec(−∆) = [0,∞). We have
some unitary transformation

L2(Rn)

F
��

−∆ // L2(Rn)

F
��

L2(Rn) // L2(Rn)

with F ◦ (−∆) ◦ F = M|ξ|2 and (−∆f)∧ = |ξ|2f̂(ξ). Then spec(−∆) = spec(−M|ξ|2). Then

(M|ξ|2 − λI)−1 = M(|ξ|2−λ)−1 makes sense if and only if λ ∈ C \ R+.
Now, we have

f(x) = (2π)−n
∫
eix·ξf̂(ξ) dξ.

The mysterious thing is that eix·ξ /∈ L2, but −∆x(e
ix·ξ) = |ξ|2eix·ξ. So we have a perfectly

nice set of eigenvectors, but they don’t lie in our space.
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Now, consider {ξ : |ξ|2 ≤ λ}. The spectral projector here is then∫
|ξ|≤
√
λ

eix·ξ dξ ∈ L2.

This is the projector onto {f : f̂(ξ) = 0, |ξ| >
√
λ}.

So in other words, we can take any function and project it onto f → P(−∞,λ]f
L2

−→ f for
λ→ +∞. This is the Fourier inversion formula. We have∫

eix·ξχ(−∞,
√
λ](ξ)f̂(ξ) dξ → f

as λ→∞.

We have this family of measures dµx. This decomposes into

(1) an atomic part (supported at points)
(2) absolutely continuous part (with respect to Lebesgue measure)
(3) singular continuous part (invisible with respect to Lebesgue measure).

Then we can write H = Hpp ⊕ Hac ⊕ Hsc. In the first piece, this is most familiar, where
A|Hpp has only eigenvalues and eigenvectors in the usual sense. The absolutely continuous
part morally looks like what we have for the Laplacian. The final piece is just weird.

This was all developed for quantum mechanics, for studying L = −∆+V acting on L2(R)
where V is a real-valued potential function. In general, we get some complicated picture
with the spectrum, and mathematical physics studies this.

E-mail address: moorxu@stanford.edu
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