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Derivation of Eq. (3) in the text:
Within Feynman’s path integral representation the density operator is given by:
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and the end-to-end distribution is:
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We now perform a linear transformation in path space in the expression on the numerator:

r(τ) = r̃(τ) + y(τ)x. (3)

Here y(τ) = C − τ
β~ and C is an arbitrary real number. Then the numerator is given by∫
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Eq. (3) transforms the open path r(τ) into the closed path r̃(τ), and the free particle contribution comes naturally
from the derivative of y(τ). The choice of the constant C influences the variance of free energy perturbation and
thermodynamic integration estimators in the text. It is found that the lowest variance is achieved when C = 1/2,
since this choice has the smallest displacement from the closed path configuration. This is Eq. (3) in the text.

Next we present the derivation of Eq. (6) in the text:
The Compton profile is given by

J(q̂, y) =
∫

n(p)δ(y − p · q̂)dp. (5)

The direction q̂ is defined by the experimental setup, and the momentum distribution n(p) can be expressed in terms
of the end-to-end distribution ñ(x) as
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We indicate by x‖ = x · q̂, and x⊥ the x component orthogonal to q̂. Correspondingly p‖ = p · q̂, and p⊥ is the p
component orthogonal to q̂. One has
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Given the end to end distribution can be expressed as

ñ(x) = e
− mx2

2β~2 e−U(x), (8)

the potential of mean force U(x) can be obtained from the Compton profile as
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The mean force F(x) is the gradient of U(x). Taking into account that J(q̂, y) is an even function of y one obtains
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This is Eq. (6) in the text.
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