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Derivation of Eq. (3) in the text:
Within Feynman’s path integral representation the density operator is given by:
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and the end-to-end distribution is:
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We now perform a linear transformation in path space in the expression on the numerator:
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Here y(1) = C — 35 and C'is an arbitrary real number. Then the numerator is given by
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Eq. (3) transforms the open path r(7) into the closed path ¥(7), and the free particle contribution comes naturally
from the derivative of y(7). The choice of the constant C influences the variance of free energy perturbation and
thermodynamic integration estimators in the text. It is found that the lowest variance is achieved when C' = 1/2,
since this choice has the smallest displacement from the closed path configuration. This is Eq. (3) in the text.

Next we present the derivation of Eq. (6) in the text:

The Compton profile is given by
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J(q,y) = /n(p)5(y —p-q)dp. (5)

The direction q is defined by the experimental setup, and the momentum distribution n(p) can be expressed in terms
of the end-to-end distribution n(x) as
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We indicate by x| = x - q, and x| the x component orthogonal to q. Correspondingly pj = p-q, and p, is the p
component orthogonal to q. One has
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Given the end to end distribution can be expressed as
_ mx?
f(x) = e 2on2 U, (8)
the potential of mean force U(x) can be obtained from the Compton profile as
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The mean force F(x) is the gradient of U(x). Taking into account that J(q,y) is an even function of y one obtains
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This is Eq. (6) in the text.
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