Supplemental material for displaced path integral formulation for the momentum distribution of quantum particles

Lin Lin, ${ }^{1}$ Joseph A. Morrone,,${ }^{2, *}$ Roberto Car,,${ }^{2,3, \dagger}$ and Michele Parrinello ${ }^{4}$
${ }^{1}$ Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544
${ }^{2}$ Department of Chemistry, Princeton University, Princeton, NJ 08544
${ }^{3}$ Department of Physics, Princeton University, Princeton, NJ 08544
${ }^{4}$ Computational Science, Department of Chemistry and Applied Biosciences, ETH Zurich, USI Campus, Via Giuseppe Buffi 12, CH-6900 Lugano, Switzerland

Derivation of Eq. (3) in the text:
Within Feynman's path integral representation the density operator is given by:

$$
\begin{equation*}
\rho\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\int_{\mathbf{r}(0)=\mathbf{r}, \mathbf{r}(\beta \hbar)=\mathbf{r}^{\prime}} \mathfrak{D r}(\tau) e^{-\frac{1}{\hbar} \int_{0}^{\beta \hbar} d \tau\left(\frac{m \dot{\mathbf{r}}^{2}(\tau)}{2}+V[\mathbf{r}(\tau)]\right)} \tag{1}
\end{equation*}
$$

and the end-to-end distribution is:

$$
\begin{align*}
\widetilde{n}(\mathbf{x}) & =\frac{1}{Z} \int d \mathbf{r} d \mathbf{r}^{\prime} \delta\left(\mathbf{r}-\mathbf{r}^{\prime}-\mathbf{x}\right) \rho\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \\
& =\frac{\left.\int_{\mathbf{r}(0)-\mathbf{r}(\beta \hbar)=\mathbf{x}} \mathfrak{D} \mathbf{r}(\tau) e^{-\frac{1}{\hbar} \int_{0}^{\beta \hbar} d \tau\left(\frac{m \dot{\mathbf{r}}^{2}(\tau)}{2}+V[\mathbf{r}(\tau)]\right.}\right)}{\int_{\mathbf{r}(\beta \hbar)=\mathbf{r}(0)} \mathfrak{D} \mathbf{r}(\tau) e^{-\frac{1}{\hbar} \int_{0}^{\beta \hbar} d \tau\left(\frac{m \dot{\mathbf{r}}^{2}(\tau)}{2}+V[\mathbf{r}(\tau)]\right)}} . \tag{2}
\end{align*}
$$

We now perform a linear transformation in path space in the expression on the numerator:

$$
\begin{equation*}
\mathbf{r}(\tau)=\widetilde{\mathbf{r}}(\tau)+y(\tau) \mathbf{x} \tag{3}
\end{equation*}
$$

Here $y(\tau)=C-\frac{\tau}{\beta \hbar}$ and C is an arbitrary real number. Then the numerator is given by

$$
\begin{align*}
& \int_{\mathbf{r}(0)-\mathbf{r}(\beta \hbar)=\mathbf{x}} \mathfrak{D r}(\tau) e^{-\frac{1}{\hbar} \int_{0}^{\beta \hbar} d \tau\left(\frac{m \dot{\mathbf{r}}^{2}(\tau)}{2}+V[\mathbf{r}(\tau)]\right)} \tag{4}\\
= & e^{-\frac{m \mathbf{x}^{2}}{2 \beta \hbar^{2}}} \int_{\widetilde{\mathbf{r}}(\beta \hbar)=\widetilde{\mathbf{r}}(0)} \mathfrak{D} \widetilde{\mathbf{r}}(\tau) e^{-\frac{1}{\hbar} \int_{0}^{\beta \hbar} d \tau\left(\frac{m \dot{\mathbf{r}}^{2}(\tau)}{2}+V[\widetilde{\mathbf{r}}(\tau)+y(\tau) \mathbf{x}]\right)} .
\end{align*}
$$

Eq. (3) transforms the open path $\mathbf{r}(\tau)$ into the closed path $\widetilde{\mathbf{r}}(\tau)$, and the free particle contribution comes naturally from the derivative of $y(\tau)$. The choice of the constant C influences the variance of free energy perturbation and thermodynamic integration estimators in the text. It is found that the lowest variance is achieved when $C=1 / 2$, since this choice has the smallest displacement from the closed path configuration. This is Eq. (3) in the text.

Next we present the derivation of Eq. (6) in the text:
The Compton profile is given by

$$
\begin{equation*}
J(\hat{\mathbf{q}}, y)=\int n(\mathbf{p}) \delta(y-\mathbf{p} \cdot \hat{\mathbf{q}}) d \mathbf{p} \tag{5}
\end{equation*}
$$

The direction $\hat{\mathbf{q}}$ is defined by the experimental setup, and the momentum distribution $n(\mathbf{p})$ can be expressed in terms of the end-to-end distribution $\widetilde{n}(\mathbf{x})$ as

$$
\begin{equation*}
n(\mathbf{p})=\frac{1}{(2 \pi \hbar)^{3}} \int d \mathbf{x} e^{\frac{i}{\hbar} \mathbf{p} \cdot \mathbf{x}} \widetilde{n}(\mathbf{x}) \tag{6}
\end{equation*}
$$

We indicate by $x_{\|}=\mathbf{x} \cdot \hat{\mathbf{q}}$, and \mathbf{x}_{\perp} the \mathbf{x} component orthogonal to $\hat{\mathbf{q}}$. Correspondingly $p_{\|}=\mathbf{p} \cdot \hat{\mathbf{q}}$, and \mathbf{p}_{\perp} is the \mathbf{p} component orthogonal to $\hat{\mathbf{q}}$. One has

$$
\begin{align*}
J(\hat{\mathbf{q}}, y) & =\frac{1}{(2 \pi \hbar)^{3}} \int d \mathbf{x} d \mathbf{p} \widetilde{n}(\mathbf{x}) e^{\frac{i}{\hbar} \mathbf{p} \cdot \mathbf{x}} \delta(y-\mathbf{p} \cdot \hat{\mathbf{q}}) \\
& =\frac{1}{(2 \pi \hbar)^{3}} \int d x_{\|} d \mathbf{x}_{\perp} d p_{\|} d \mathbf{p}_{\perp} \widetilde{n}(\mathbf{x}) e^{\frac{i}{\hbar} x_{\|} p_{\|}+\frac{i}{\hbar} \mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp}} \delta\left(y-p_{\|}\right) \tag{7}\\
& =\frac{1}{2 \pi \hbar} \int d x_{\|} \widetilde{n}\left(x_{\|} \hat{\mathbf{q}}\right) e^{\frac{i}{\hbar} x_{\|} y}
\end{align*}
$$

Given the end to end distribution can be expressed as

$$
\begin{equation*}
\widetilde{n}(\mathbf{x})=e^{-\frac{m x^{2}}{2 \beta \hbar^{2}}} e^{-U(\mathbf{x})}, \tag{8}
\end{equation*}
$$

the potential of mean force $U(\mathbf{x})$ can be obtained from the Compton profile as

$$
\begin{equation*}
U\left(x_{\|} \hat{\mathbf{q}}\right)=-\frac{m x_{\|}^{2}}{2 \beta \hbar^{2}}-\ln \int d y J(\hat{\mathbf{q}}, y) e^{-\frac{i}{\hbar} x_{\|} y} . \tag{9}
\end{equation*}
$$

The mean force $\mathbf{F}(\mathbf{x})$ is the gradient of $U(\mathbf{x})$. Taking into account that $J(\hat{\mathbf{q}}, y)$ is an even function of y one obtains

$$
\begin{equation*}
\hat{\mathbf{q}} \cdot \mathbf{F}\left(x_{\|} \hat{\mathbf{q}}\right)=-\frac{m x_{\|}}{\beta \hbar^{2}}+\frac{\int_{0}^{\infty} d y y \sin \left(x_{\|} y / \hbar\right) J(\hat{\mathbf{q}}, y)}{\hbar \int_{0}^{\infty} d y \cos \left(x_{\|} y / \hbar\right) J(\hat{\mathbf{q}}, y)} . \tag{10}
\end{equation*}
$$

This is Eq. (6) in the text.

* Present address: Department of Chemistry, Columbia University, New York NY 10027
${ }^{\dagger}$ Electronic address: rcar@princeton.edu

