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Momentum distribution, vibrational dynamics, and the potential of mean force in ice
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By analyzing the momentum distribution obtained from path integral and phonon calculations we find that the
protons in hexagonal ice experience an anisotropic quasiharmonic effective potential with three distinct principal
frequencies that reflect molecular orientation. Due to the importance of anisotropy, anharmonic features of the
environment cannot be extracted from existing experimental distributions that involve the spherical average. The
full directional distribution is required, and we give a theoretical prediction for this quantity that could be verified
in future experiments. Within the quasiharmonic context, anharmonicity in the ground-state dynamics of the
proton is substantial and has quantal origin, a finding that impacts the interpretation of several spectroscopies.
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Investigating the impact of hydrogen (H) bonding on
molecular properties is the focus of intense research, but even
behavior as fundamental as the equilibrium dynamics of the
protons participating in H bonds remains poorly understood.
Proton dynamics is reflected in the momentum distribution
probed by deep inelastic neutron scattering (DINS).1 Recent
DINS studies of H-bonded systems have made striking
observations, such as the presence of a secondary feature in
the tail of the spherically averaged distribution in confined
water,2 and estimates of a surprisingly large quantum kinetic
energy of the proton in undercooled water.3 The secondary
feature was attributed to quantum tunneling between the two
wells of an anharmonic one-dimensional (1D) potential.2 It
is not clear, however, to what extent the dynamics of an
interacting many-body system can be reduced to that of a single
proton along a bond. For instance, it has been pointed out that
anisotropy can mimic features of a spherical distribution that
one might associate to anharmonicity in a 1D model,4 and
yet so far there has been no conclusive study of this issue. To
interpret experiments in confined and undercooled water, the
unknown details of the molecular structure are a severe source
of difficulty. However, even in the simpler case of ice Ih, it
is not clear if the physics can be captured by simple model
potentials, and how anharmonicity, anisotropy, and structural
disorder influence the momentum distribution.

In order to tackle these issues we consider the open path
integral Car-Parrinello molecular dynamics (PICPMD) data
for ice Ih that yielded the accurate spherical momentum
distribution reported in a prior publication.5 In this prior
study, no attempt was made to relate the distribution to the
equilibrium dynamics of the proton or to investigate the role
of the environment in terms of a potential of mean force.
In simulations this task is facilitated by access to the full
3D distribution, in contrast to experiments on polycrystalline
samples, where only the spherically averaged distribution
could be measured.1,6 In addition, crystalline symmetry allows
the use of harmonic analysis to quantify the relation between
the momentum distribution and vibrational dynamics, thereby
elucidating the role of anharmonicity and disorder on the
proton ground state.

We find that anisotropy stemming from the molecular orien-
tations in the crystal has a larger effect on the momentum distri-
bution than anharmonicity. The latter is effectively described
within a quasiharmonic model and is particularly important
in the stretching motions, corroborating pump-probe laser
experiments on the excited-state dynamics of ice and water.7,8

This finding impacts the interpretation of infrared and x-ray
spectroscopies, and regarding DINS experiments, the large
effect of molecular anisotropy implies that it is not possible
to unambiguously attribute to anharmonicity features of the
spherically averaged distribution. Substantially more informa-
tion, capable of disentangling anisotropy from anharmonicity,
can be extracted from the directional distribution, for which we
now present the theoretical prediction for a realistic system.

The simulations of Ref. 5 sampled the end-to-end dis-
tribution of the open Feynman paths of the protons,9 i.e.,
ν̃(x) = 1

Np

∑
i ν̃i(x), where the sum runs over the Np pro-

tons in the cell and the vector x points from one end of
the path to the other. The momentum distribution ν(p) is
the Fourier transform of ν̃(x). For each distribution ν̃i(x) we
compute the correlation matrix Ci,αβ = 〈xαxβ〉. Within the
statistical errors of the simulation the eigenvalues {σ 2

k }3
k=1

of Ci are the same for all the protons, while the associated
eigenvectors {vi,k}3

k=1 are proton specific directions related by
crystalline symmetry to the directions of the other protons.
This suggests an anisotropic Gaussian form for the end-to-end
distribution: ν̃i(x) ∝ exp(− 1

2 xT C−1
i x). A quantile analysis

reported in the supplement10–15 fully supports this hypothesis.
Thus the momentum distribution is νi(p) ∝ exp(− 1

2h̄2 pT Cip),
implying that the corresponding potential of mean force has
the effective harmonic form V (r) = M

2 rT Air, where M and r
denote the proton mass and position. Ai has eigenvalues ω2

k

and shares with Ci the eigenvectors vi,k . The ωk are related to
the σ 2

k by

1

σ 2
k

= Mωk

2h̄
coth

h̄ωk

2kBT
(1)

and ωk and vi,k are denoted the principal frequencies and
directions of proton i. Since the principal frequencies do not

220302-11098-0121/2011/83(22)/220302(4) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.83.220302


RAPID COMMUNICATIONS

LIN, MORRONE, CAR, AND PARRINELLO PHYSICAL REVIEW B 83, 220302(R) (2011)

FIG. 1. (Color online) (a) The spherical end-to-end distribution
directly collected from PICPMD data (red dashed line) compared
with that reconstructed by the anisotropic fit (solid blue line).
(b) Comparison of the spherical momentum distribution of the
harmonic crystal (black dot-dashed line) with anisotropic (solid blue
line) and isotropic (red dashed line) fits.

depend on i all the protons have equivalent local environments
within the simulation error bars.

By averaging over the protons we obtain the frequencies ω̄k

with error bars in the first row of Table I. In terms of the σ̄ 2
k the

spherically averaged end-to-end distribution takes the form

n(x)= 1√
8π3σ̄1σ̄2σ̄3

∫
|x|=x

d �exp

(
− x2

1

2σ̄ 2
1

− x2
2

2σ̄ 2
2

− x2
3

2σ̄ 2
3

)
.

(2)

Fig. 1(a) shows that this curve differs negligibly from the
corresponding raw distribution extracted from the simula-
tion, indicating that an effective harmonic model faithfully
represents the spherically averaged data. Consistent with
chemical intuition, the associated principal directions reflect
the orientation of each water molecule in the crystal. The
principal axes corresponding to the highest frequency are close
to the oxygen-oxygen nearest-neighbor directions, whereas the
eigenvectors associated with the middle and lowest frequency
correspond respectively to directions in and perpendicular to
the HOH molecular plane.

The PICPMD principal frequencies differ from their har-
monic counterparts (see Table I). The latter were obtained with
the phonon calculation discussed below. Thus the model that
better represents the data is anisotropic and quasiharmonic.
We can now resolve, in the case of ice, a major issue that
troubled the interpretation of experiments4 by quantifying
the relative importance of anisotropy and anharmonicity. We
depict in Fig. 1(b) the spherical distributions corresponding to,
respectively, the quasiharmonic model (first row of Table I),
the harmonic model (second row of Table I), and the isotropic

TABLE I. Average proton principal frequencies and kinetic
energies obtained from PICPMD and phonon calculations. The error
bars reflect statistical errors and physical effect of disorder in the
PICMD and phonon data, respectively.

ω̄1 (cm−1) ω̄2 (cm−1) ω̄3 (cm−1) EK (meV)

PICPMD 2639 ± 60 1164 ± 25 775 ± 20 143 ± 2
Harmonic 3017.6 ± 8.2 1172.5 ± 8.9 870.3 ± 14.6 157.5 ± 0.3

model with frequency ω̄ = 1186 cm−1 that best fits the
data. Anisotropy and anharmonicity are both significant, but
anisotropy clearly has the larger effect. The isotropic model
corresponds to a classical Maxwell-Boltzmann distribution
with an effective temperature T̃ = 869 K. In spite of T̃

being significantly higher than the equilibrium tempera-
ture of the simulation (T = 269 K), the isotropic model
severely underestimates quantum effects, a finding that is
also illustrated by a kinetic energy (EK = 111 meV) ap-
proximately 30 percent smaller than the simulation value
(EK = 143 meV).

All the principal frequencies in Table I are well in excess
of the equilibrium temperature, indicating that the dynamics
of the proton is dominated by quantum zero-point motion.
Dependence of the molecular orientations upon the crystalline
framework originates anisotropies that reflect the symme-
try of the environment in the momentum and end-to-end
distributions. To study these effects we focus on the latter
distribution, which factorizes into the product of a spherical
free-particle contribution and an anisotropic environmental
component ñV , i.e., ñ(x) ∝ exp(−MkBT x2

2h̄2 )̃nV (x).16 Rather than
extracting ñV (x) directly from the PICPMD data, which would
be affected by substantial noise, we reconstruct ñV (x) from
the superposition of the individual proton contributions within
the quasiharmonic model. Here we use the fact that there are
24 unique orientations of the molecules in the hexagonal ice
crystal,17 and we also include the effects of proton disorder
estimated below in the phonon calculation. Fig. 2(a) depicts
the logarithm scale plot of one individual environmental
end-to-end distribution projected on the basal plane of ice
Ih. The elliptic shape of the contour comes directly from
the quasiharmonic model. Fig. 2(b) illustrates the logarithm
scale plot of the superposition of all the environmental end-
to-end distributions. The hexagonal shape of superpositioned
distribution is a striking manifestation of quantum mechanics
as in classical physics ñV (x) is equal to 1. While the distribution
is spherical at the center, hexagonal character emerges at
intermediate displacements and becomes pronounced in the
tail of the distribution where blurring of the contour lines due
to disorder can be detected. Experiments on ice Ih have only
measured the spherical distribution6 but it is likely that the
full three-dimensional distribution should become accessible
in the future with improved instrumentation and preparation
techniques. Directional momentum distributions have already
been reported for materials such as KDP18 and Rb3H(SO4)2.

19

It should be noted, however, that the greatest sensitivity to
anisotropy is in the exponential tail of the distribution, a
finding indicating that substantial resolution may be necessary
to experimentally disentangle anisotropy, anharmonicity, and
other environmental effects.

Lastly, we discuss the relationship between the principal
frequencies and the vibrational spectrum. The latter includes
four main features experimentally: a stretching band centered
at ≈3250 cm−1,20 a bending band centered at ≈1650 cm−1,21

a wide librational band between20,22 ≈400 cm−1 and
1050 cm−1 and a band of network modes below ≈400 cm−1.23

These features are reproduced in the phonon spectrum of
ice that we calculate by diagonalizing the dynamical matrix.
This calculation is performed with QBOX24 by adopting the
same supercell, electronic structure parameters, and disordered
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FIG. 2. (Color online) (a) Environmental part of the end-to-end
distribution corresponding to one individual proton projected in the
basal plane of ice Ih plotted in logarithmic scale. (b) Environmental
part of the end-to-end distribution corresponding to the superposition
of all protons projected in the basal plane of ice Ih plotted in
logarithmic scale. The super positioned end-to-end distribution
reflects the symmetry of the oxygen sublattice. The blurring of
the contour lines reflects the disorder effect detected in the phonon
calculation.

proton configuration of the PICPMD simulation.5 The dynam-
ical matrix is calculated with a finite difference method (grid
size of 0.0053 Å). The resulting phonon density of states
shown in Fig. 3(a) agrees with experiment, and is consistent
with previous calculations,25 which did not include proton
disorder, indicating that such effects have a small influence
on the spectrum. We indicate phonon frequencies and eigen-
vectors by ω

ph
k and eiα,k , respectively, where α are Cartesian

components, i,k = 1, . . . ,3N − 3, and N is the number of
supercell atoms. In the quantum harmonic approximation the
momentum distribution of particle i of mass Mi has the

anisotropic Gaussian form νi(pi) ∝ exp(− 1
2 pT

i C
ph
i

−1
pi) with

correlation matrix26

C
ph
i,αβ = 〈

pi,αpi,β

〉 =
∑

k

eiα,keiβ,k

Mih̄ω
ph
k

2
coth

(
h̄ω

ph
k

2kBT

)
.

(3)

As a consequence of disorder the eigenvalues of C
ph
i,αβ ,

depend on the proton index i. The harmonic average fre-
quencies are reported in the second row of Table I. The
corresponding standard deviations originate almost entirely
from ice disorder, being at least an order of magnitude larger
than the numerical errors estimated from the small asymmetry
of the calculated dynamical matrix. The statistical errors in
the PICPMD simulation (Table I) are on average a few times
larger than the harmonic estimate of disorder, confirming that,
within error bars, all proton environments are equivalent. We
expect that longer runs combined with better estimators of
the end-to-end distribution16 should improve the statistical
accuracy to the point that disorder effects could become
measurable in future simulations.

The population function

h(ωph
k ; l) = 1

Np

Np∑
i=1

(
3∑

α=1

viα,leiα,k

)2

(4)

gives the weight of the phonon k in the principal direction
l and is depicted in Fig. 3(b). It is found that ω̄1 is 94%
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FIG. 3. (Color online) (a) Density of states of the phonon spec-
trum. (b) The population function for the principal axes corresponding
to ω̄1 (blue dot-dashed line), ω̄2 (red solid line), and ω̄3 (black dashed
line). Network modes below 500 cm−1 contribute non-negligibly to
all principal frequencies.

stretching, ω̄2 is 47% bending and 48% libration, and ω̄3 is
97% libration. Taking only stretching, bending, and libration
into account, and using weights proportional to h we infer
that ω̄1 ∼ 3160 cm−1, ω̄2 ∼ 1210 cm−1, and ω̄3 ∼ 895 cm−1.
In comparison, the values in the second line of Table I are
redshifted by contributions from network modes (6%,4%,
and 3% to ω̄1,ω̄2, and ω̄3, respectively), an intriguing result
suggesting that fine details of the momentum distribution
should reflect intermediate range order properties of the
H-bond network.

The potential energy surface is generated with the same
protocol in path integral and phonon calculations. We thus
attribute the difference between the average principal fre-
quencies in the two rows of Table I to anharmonicity.
This originates from quantum delocalization, present in the
PICPMD simulation, which causes the proton to sample the
potential over an extended range. Along the bond direction
the proton spans from ≈ − 0.2 Å to ≈ + 0.3 Å relative to the
centroid of the path. This is much larger than the corresponding
classical thermal spread (≈ ± 0.05 Å) indicating that quantum
anharmonicity is essentially unaffected by temperature. The
asymmetry of the quantal spread suggests that the first
correction to the harmonic potential depends cubically on
displacement. A visualization of the approximate effective
potential along the bond based on further calculations is given
in the supplement10 and shows that while cubic terms dominate
in the ground state, higher-order corrections become important
at displacements larger than ≈0.3 Å. In the supplement we
also report harmonic estimates of the quantum effects on
oxygen, which are non-negligible albeit smaller than for the
protons.
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In conclusion, we find that to a large extent the momentum
distribution in ice is a simple anisotropic Gaussian distribution.
This does not mean, however, that ice behaves like a harmonic
crystal as the principal frequencies of the distribution differ
from those of a harmonic crystal. Anharmonicity, enhanced
by H bonding, is appreciable in the libration dominated ω̄3

and is particularly significant in the stretching dominated
ω̄1, in agreement with optical pump-probe experiments.7,8

The quantal character of the anharmonicity is consistent
with the observed T-independence of the lifetime of excited
stretching modes in ice.7 Our findings have implications
for the calculation of observables in ice, such as infrared
spectra, which typically ignore quantum anharmonicity,27 and
x-ray absorption spectra, which typically ignore quantum
configurational disorder.28 The approach presented here could
be applied directly to the study of other crystalline H-bonded
systems, and is also an important step toward a better under-
standing of the proton momentum distribution in disordered
H-bonded systems such as water under different conditions.
In such cases only the spherically averaged momentum

distribution is accessible in experiment and simulation can
provide essential microscopic information to supplement and
interpret the experimental data. Finally, we remark that while
the qualitative picture emerging from our calculations is robust,
the path integral data have relatively large error bars and the
quantitative details depend on the accuracy of the underlying
Born-Oppenheimer potential energy surface. The latter should
reflect the known limitations of the generalized gradient
approximation (GGA) functional used in this study29,30 and
comparisons with future high-resolution experiments should
help to clarify this issue.
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