
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Fast construction of hierarchical matrix representation from matrix–vector
multiplication

Lin Lin a,⇑, Jianfeng Lu b, Lexing Ying c

a Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544, United States
b Department of Mathematics, Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012, United States
c Department of Mathematics and ICES, University of Texas at Austin, 1 University Station, C1200, Austin, TX 78712, United States

a r t i c l e i n f o

Article history:
Received 31 December 2009
Received in revised form 28 January 2011
Accepted 22 February 2011

Keywords:
Fast algorithm
Hierarchical matrix construction
Randomized singular value decomposition
Matrix–vector multiplication
Elliptic operator
Green’s function

a b s t r a c t

We develop a hierarchical matrix construction algorithm using matrix–vector multiplica-
tions, based on the randomized singular value decomposition of low-rank matrices. The
algorithm uses Oðlog nÞ applications of the matrix on structured random test vectors and
Oðn log nÞ extra computational cost, where n is the dimension of the unknown matrix.
Numerical examples on constructing Green’s functions for elliptic operators in two dimen-
sions show efficiency and accuracy of the proposed algorithm.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

In this work, we consider the following problem: Assume that an unknown symmetric matrix G has the structure of a
hierarchical matrix (H-matrix) [1–3], that is, certain off-diagonal blocks of G are low-rank or approximately low-rank (see
the definitions in Sections 1.3 and 2.2). The task is to construct G efficiently only from a ‘‘black box’’ matrix–vector multi-
plication subroutine (which shall be referred to as matvec in the following). In a slightly more general setting when G is
not symmetric, the task is to construct G from ‘‘black box’’ matrix–vector multiplication subroutines of both G and GT. In this
paper, we focus on the case of a symmetric matrix G. The proposed algorithm can be extended to the non-symmetric case in
a straightforward way.

1.1. Motivation and applications

Our motivation is mainly the situation that G is given as the Green’s function of an elliptic equation. In this case, it is
proved that G is an H-matrix under mild regularity assumptions [4]. For elliptic equations, methods like preconditioned
conjugate gradient, geometric and algebraic multigrid methods, sparse direct methods provide application of the matrix G
on vectors. The algorithm proposed in this work then provides an efficient way to construct the matrix G explicitly in the
H-matrix form.

Once we obtain the matrix G as an H-matrix, it is possible to apply G on vectors efficiently, since the application of an H-
matrix on a vector is linear scaling. Of course, for elliptic equations, it might be more efficient to use available fast solvers

0021-9991/$ - see front matter � 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcp.2011.02.033

⇑ Corresponding author.
E-mail addresses: linlin@math.princeton.edu (L. Lin), jianfeng@cims.nyu.edu (J. Lu), lexing@math.utexas.edu (L. Ying).

Journal of Computational Physics 230 (2011) 4071–4087

Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp

Author's personal copy

directly to solve the equation, especially if only a few right hand sides are to be solved. However, sometimes, it would be
advantageous to obtain G since it is then possible to further compress G according to the structure of the data (the vectors
that G will be acting on), for example as in numerical homogenization [5]. Another scenario is that the data has special struc-
ture like sparsity in the choice of basis, the application of the resulting compressed matrix will be more efficient than the
‘‘black box’’ elliptic solver.

Let us remark that, in the case of elliptic equations, it is also possible to use the H-matrix algebra to invert the direct ma-
trix (which is an H-matrix in e.g. finite element discretization). Our method, on the other hand, provides an efficient alter-
native algorithm when a fast matrix–vector multiplication is readily available, and is able to compute the inverse of an H-
matrix of dimension n � n with Oðlog nÞmatrix–vector multiplications. We also remark that the pre-constant in front of the
Oðlog nÞ scaling can be large, and this may hinder the application of the current version of the algorithm in many scenarios.
However, from a computational point of view, what is probably more attractive is that our algorithm facilitates a parallelized
construction of the H-matrix, while the direct inversion has a sequential nature [2].

As another motivation, the purpose of the algorithm is to recover the matrix via a ‘‘black box’’ matrix–vector multiplica-
tion subroutine. A general question of this kind will be that under which assumptions of the matrix, one can recover the ma-
trix efficiently by matrix–vector multiplications. If the unknown matrix is low-rank, the recently developed randomized
singular value decomposition algorithms [6–8] provide an efficient way to obtain the low-rank approximation through
application of the matrix on random vectors. Low-rank matrices play an important role in many applications. However,
the assumption is too strong in many cases that the whole matrix is low-rank. Since the class of H-matrices is a natural gen-
eralization of the one of low-rank matrices, the proposed algorithm can be viewed as a further step in this direction.

1.2. Randomized singular value decomposition algorithm

A repeatedly leveraged tool in the proposed algorithm is the randomized singular value decomposition algorithm for
computing a low rank approximation of a given numerically low-rank matrix. This has been an active research topic in
the past several years with vast literature. For the purpose of this work, we have adopted the algorithm developed in [7],
although other variants of this algorithm with similar ideas can also be used here. For a given matrix A that is numerically
low-rank, this algorithm goes as following to compute a rank-r factorization.

Algorithm 1. Construct a low-rank approximation A � U1MUT
2 for rank r

1: Choose a Gaussian random matrix R1 2 Rn�ðrþcÞ where c is a small constant;
2: Form A R1 and apply SVD to A R1. The first r left singular vectors give U1;
3: Choose a Gaussian random matrix R2 2 Rn�ðrþcÞ;
4: Form RT

2A and apply SVD to ATR2. The first r left singular vectors give U2;

5: M ¼ ðRT
2U1Þy½RT

2ðAR1Þ�ðUT
2R1Þy, where B� denotes the Moore–Penrose pseudoinverse of matrix B [9, pp. 257–258].

The accuracy of this algorithm and its variants has been studied thoroughly by several groups. If the matrix 2-norm is
used to measure the error, it is well-known that the best rank-r approximation is provided by the singular value decompo-
sition (SVD). When the singular values of A decay rapidly, it has been shown that Algorithm 1 results in almost optimal fac-
torizations with an overwhelming probability [6]. As Algorithm 1 is to be used frequently in our algorithm, we analyze
briefly its complexity step by step. The generation of random numbers is quite efficient, therefore in practice one may ignore
the cost of steps 1 and 3. Step 2 takes (r + c) matvec of matrix A and Oðnðr þ cÞ2Þ steps for applying the SVD algorithms on an
n � (r + c) matrix. The cost of step 4 is the same as the one of step 2. Step 5 involves the computation of RT

2ðAR1Þ, which takes
Oðnðr þ cÞ2Þ steps as we have already computed AR1 in step 2. Once RT

2ðAR1Þ is ready, the computation of M takes additional
Oððr þ cÞ3Þ steps. Therefore, the total complexity of Algorithm 1 is Oðr þ cÞ matvecs plus Oðnðr þ cÞ2Þ extra steps.

1.3. Top-down construction of H-matrix

We illustrate the core idea of our algorithm using a simple one-dimensional example. The algorithm of constructing a
hierarchical matrix G is a top-down pass. We assume throughout the article that G is symmetric.

For clarity, we will first consider a one dimension example. The details of the algorithm in two dimensions will be given in
Section 2. We assume that a symmetric matrix G has a hierarchical low-rank structure corresponding to a hierarchical dyadic
decomposition of the domain. The matrix G is of dimension n � n with n ¼ 2LM for an integer LM. Denote the set for all indices
as I0;1, where the former subscript indicates the level and the latter is the index for blocks in each level. At the first level, the
set is partitioned into I1;1 and I1;2, with the assumption that GðI1;1; I1;2Þ and GðI1;2; I1;1Þ are numerically low-rank, say of
rank r for a prescribed error tolerance e. At level l, each block I l�1;i on the above level is dyadically decomposed into two
blocks I l;2i�1 and I l;2i with the assumption that GðI l;2i�1; I l;2iÞ and GðI l;2i; I l;2i�1Þ are also numerically low-rank (with the same
rank r for the tolerance e). Clearly, at level l, we have in total 2l off-diagonal low-rank blocks. We stop at level LM, for which
the block I LM ;i only has one index {i}. For simplicity of notation, we will abbreviate GðI l;i; I l;jÞ by Gl;ij. We remark that the

4072 L. Lin et al. / Journal of Computational Physics 230 (2011) 4071–4087

Author's personal copy

assumption that off-diagonal blocks are low-rank matrices may not hold for general elliptic operators in higher dimensions.
However, this assumption simplifies the introduction of the concept of our algorithm. More realistic case will be discussed in
detail in Sections 2.3 and 2.4.

The overarching strategy of our approach is to peel off the off-diagonal blocks level by level and simultaneously construct
their low-rank approximations. On the first level, G1;12 is numerically low-rank. In order to use the randomized SVD algo-
rithm for G1;12, we need to know the product of G1;12 and also GT

1;12 ¼ G1;21 with a collection of random vectors. This can
be done by observing that

G1;11 G1;12

G1;21 G1;22

� �
R1;1

0

� �
¼

G1;11R1;1

G1;21R1;1

� �
; ð1Þ

G1;11 G1;12

G1;21 G1;22

� �
0

R1;2

� �
¼

G1;12R1;2

G1;22R1;2

� �
; ð2Þ

where R1;1 and R1;2 are random matrices of dimension n/2 � (r + c). We obtain ðG1;21R1;1ÞT ¼ RT
1;1G1;12 by restricting the right

hand side of Eq. (1) to I1;2 and obtain G1;12R1;2 by restricting the right hand side of Eq. (2) to I1;1, respectively. The low-rank
approximation using Algorithm 1 results in

G1;12 � bG1;12 ¼ U1;12M1;12UT
1;21: ð3Þ

U1;12 and U1;21 are n/2 � r matrices and M1;12 is an r � r matrix. Due to the fact that G is symmetric, a low-rank approxima-
tion of G1;21 is obtained as the transpose of G1;12.

Now on the second level, the matrix G has the form

G2;11 G2;12

G2;21 G2;22
G1;12

G1;21
G2;33 G2;34

G2;43 G2;44

0BBB@
1CCCA:

The submatrices G2;12, G2;21, G2;34, and G2;43 are numerically low-rank, to obtain their low-rank approximations by the ran-
domized SVD algorithm. Similar to the first level, we could apply G on random matrices of the form like (R2;1,0,0,0)T. This
will require 4(r + c) number of matrix–vector multiplications. However, this is not optimal: Since we already know the inter-
action between I1;1 and I1;2, we could combine the calculations together to reduce the number of matrix–vector multipli-
cations needed. Observe that

G2;11 G2;12

G2;21 G2;22
G1;12

G1;21
G2;33 G2;34

G2;43 G2;44

0BBB@
1CCCA

R2;1

0
R2;3

0

0BBB@
1CCCA ¼

G2;11R2;1

G2;21R2;1

� �
þ G1;12

R2;3

0

� �
G2;33R2;3

G2;43R2;3

� �
þ G1;21

R2;1

0

� �
0BBB@

1CCCA: ð4Þ

Denote

bGð1Þ ¼ 0 bG1;12bG1;21 0

 !
ð5Þ

with bG1;12 and bG1;21 the low-rank approximations we constructed on the first level, then

bGð1Þ
R2;1

0
R2;3

0

0BBB@
1CCCA ¼

bG1;12
R2;3

0

� �
bG1;21

R2;1

0

� �
0BBB@

1CCCA: ð6Þ

Therefore,

G� bGð1Þ� � R2;1

0
R2;3

0

0BBB@
1CCCA �

G2;11R2;1

G2;21R2;1

G2;33R2;3

G2;43R2;3

0BBB@
1CCCA; ð7Þ

so that we simultaneously obtain ðG2;21R2;1ÞT ¼ RT
2;1G2;12 and ðG2;43R2;3ÞT ¼ RT

2;3G2;34. Similarly, applying G on (0,R2;2,0,R2;4)T

provides G2;12R2;2 and G2;34R2;4. We can then obtain the following low-rank approximations by invoking Algorithm 1.

G2;12 � bG2;12 ¼ U2;12M2;12UT
2;21;

G2;34 � bG2;34 ¼ U2;34M2;34UT
2;43:

ð8Þ

L. Lin et al. / Journal of Computational Physics 230 (2011) 4071–4087 4073

Author's personal copy

The low-rank approximations of G2;21 and G2;43 are again given by the transposes of the above formulas.
Similarly, on the third level, the matrix G has the form

G3;11 G3;12

G3;21 G3;22
G2;12

G2;21
G3;33 G3;34

G3;43 G3;44

G1;12

G1;21

G3;55 G3;56

G3;65 G3;66
G2;34

G2;43
G3;77 G3;78

G3;87 G3;88

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
ð9Þ

and define

bGð2Þ ¼
0 bG2;12bG2;21 0

0

0
0 bG2;34bG2;43 0

0BBBBB@

1CCCCCA: ð10Þ

We could simultaneously obtain the product of G3;12, G3;34, G3;56 and G3;78 with random vectors by applying the matrix G
with random vectors of the form

RT
3;1;0;R

T
3;3;0;R

T
3;5;0;R

T
3;7;0

� �T
;

then subtract the product of bGð1Þ þ bGð2Þ with the same vectors. Again invoking Algorithm 1 provides us the low-rank approx-
imations of these off-diagonal blocks.

The algorithm continues in the same fashion for higher levels. The combined random tests lead to a constant number of
matvec at each level. As there are log(n) levels in total, the total number of matrix–vector multiplications scales
logarithmically.

When the block size on a level becomes smaller than the given criteria (for example, the numerical rank r used in the
construction), one could switch to a deterministic way to get the off-diagonal blocks. In particular, we stop at a level L
(L < LM) such that each I L;i contains about r entries. Now only the elements in the diagonal blocks GL,ii need to be determined.
This can be completed by applying G to the matrix

ðI; I; . . . ; IÞT;

where I is the identity matrix whose dimension is equal to the number of indices in I L;i.
Let us summarize the structure of our algorithm. From the top level to the bottom level, we peel off the numerically low-

rank off-diagonal blocks using the randomized SVD algorithm. The matrix–vector multiplications required by the random-
ized SVD algorithms are computed effectively by combining several random tests into one using the zero pattern of the
remaining matrix. In this way, we get an efficient algorithm for constructing the hierarchical representation for the matrix G.

1.4. Related works

Our algorithm is built on top of the framework of the H-matrices proposed by Hackbusch and his collaborators [1,2,4].
The definitions of the H-matrices will be summarized in Section 2. In a nutshell, the H-matrix framework is an operational
matrix algebra for efficiently representing, applying, and manipulating discretizations of operators from elliptic partial dif-
ferential equations. Though we have known how to represent and apply these matrices for quite some time [10], it is the
contribution of the H-matrix framework that enables one to manipulate them in a general and coherent way. A closely re-
lated matrix algebra is also developed in a more numerical-linear-algebraic viewpoint under the name hierarchical semisep-
arable matrices by Chandrasekaran et al. [11,12]. Here, we will follow the notations of the H-matrices as our main
motivations are from numerical solutions of elliptic PDEs.

A basic assumption of our algorithm is the existence of a fast matrix–vector multiplication subroutine. The most common
case is when G is the inverse of the stiffness matrix H of a general elliptic operator. Since H is often sparse, much effort has
been devoted to computing u = Gf by solving the linear system Hu = f. Many ingenious algorithms have been developed for
this purpose in the past forty years. Commonly-seen examples include multifrontal algorithms [13,14], geometric multigrids
[15,16,2], algebraic multigrids (AMG) [17], domain decompositions methods [18,19], wavelet-based fast algorithms [20] and
preconditioned conjugate gradient algorithms (PCG) [21], to name a few. Very recently, both Chandrasekaran et al. [22] and
Martinsson [23] have combined the idea of the multifrontal algorithms with the H-matrices to obtain highly efficiently di-
rect solvers for Hu = f. Another common case for which a fast matrix–vector multiplication subroutine is available comes
from the boundary integral equations where G is often a discretization of a Green’s function restricted to a domain boundary.

4074 L. Lin et al. / Journal of Computational Physics 230 (2011) 4071–4087

Author's personal copy

Fast algorithms developed for this case include the famous fast multipole method [10], the panel clustering method [24], and
others. All these fast algorithms mentioned above can be used as the ‘‘black box’’ algorithm for our method.

As shown in the previous section, our algorithm relies heavily on the randomized singular value decomposition algorithm
for constructing the factorizations of the off-diagonal blocks. This topic has been a highly active research area in the past
several years and many different algorithms have been proposed in the literature. Here, for our purpose, we have adopted
the algorithm described in [7,8]. In a related but slightly different problem, the goal is to find low-rank approximations
A = CUR where C contains a subset of columns of A and R contains a subset of rows. Papers devoted to this task include
[25–28]. In our setting, since we assume no direct access of entries of the matrix A but only its impact through matrix–vector
multiplications, the algorithm proposed by Liberty et al. [7] is the most relevant choice. An excellent recent review of this fast
growing field can be found in [6].

In a recent paper [29], Martinsson considered also the problem of constructing the H-matrix representation of a matrix,
but he assumed that one can access arbitrary entries of the matrix besides the fast matrix–vector multiplication subroutine.
Under this extra assumption, he showed that one can construct theH2 representation of the matrix with Oð1Þmatrix–vector
multiplications and accesses of OðnÞmatrix entries. However, in many situations including the case of G being the inverse of
the stiffness matrix of an elliptic differential operator, accessing entries of G is by no means a trivial task. Comparing with
Martinsson’s work, our algorithm only assumes the existence of a fast matrix–vector multiplication subroutine, and hence is
more general.

As we mentioned earlier, one motivation for computing G explicitly is to further compress the matrix G. The most
common example in the literature of numerical analysis is the process of numerical homogenization or upscaling [5].
Here the matrix G is often again the inverse of the stiffness matrix H of an elliptic partial differential operator. When
H contains information from all scales, the standard homogenization techniques fail. Recently, Owhadi and Zhang [30]
proposed an elegant method that, under the assumption that the Cordes condition is satisfied, upscales a general H in
divergence form using metric transformation. Computationally, their approach involves d solves of form Hu = f with d
being the dimension of the problem. On the other hand, if G is computed using our algorithm, one can obtain the up-
scaled operator by inverting a low-passed and down-sampled version of G. Complexity-wise, our algorithm is more costly
since it requires Oðlog nÞ solves of Hu = f. However, since our approach makes no analytic assumptions about H, it is ex-
pected to be more general.

2. Algorithm

We now present the details of our algorithm in two dimensions. In addition to a top-down construction using the peeling
idea presented in the introduction, the complexity will be further reduced using the H2 property of the matrix [1,3]. The
extension to three dimensions is straightforward.

In two dimensions, a more conservative partition of the domain is required to guarantee the low-rankness of the matrix
blocks. We will start with discussion of this new geometric setup. Then we will recall the notion of hierarchical matrices and
related algorithms in Section 2.2. The algorithm to construct an H2 representation for a matrix using matrix–vector multi-
plications will be presented in Sections 2.3 and 2.4. Finally, variants of the algorithm for constructing theH1 and uniformH1

representations will be described in Section 2.5.

2.1. Geometric setup and notations

Let us consider an operator G defined on a 2D domain [0,1)2 with periodic boundary condition. We discretize the problem
using an n = N � N uniform grid with N being a power of 2: N ¼ 2LM . Denote the set of all grid points as

I0 ¼ ðk1=N; k2=NÞjk1; k2 2 N;0 6 k1; k2 < Nf g ð11Þ

and partition the domain hierarchically into L + 1 levels (L < LM). On each level l (0 6 l 6 L), we have 2l � 2l boxes denoted by
I l;ij ¼ ½ði� 1Þ=2l; i=2lÞ � ½ðj� 1Þ=2l; j=2lÞ for 1 6 i, j 6 2l. The symbol I l;ij will also be used to denote the grid points that lies in
the box I l;ij. The meaning should be clear from the context. We will also use I l (or J l) to denote a general box on certain level
l. The subscript l will be omitted, when the level is clear from the context. For a given box I l for l P 1, we call a box J l�1 on
level l � 1 its parent if I l � J l�1. Naturally, I l is called a child of J l�1. It is clear that each box except those on level L will have
four children boxes.

For any box I on level l, it covers N/2l � N/2l grid points. The last level L can be chosen so that the leaf box has a constant
number of points in it (i.e. the difference LM � L is kept to be a constant when N increases).

For simplicity of presentation, we will start the method from level 3. It is also possible to start from level 2. Level 2 needs
to be treated specially, as for level 3. We define the following notations for a box I on level l (l P 3):

NLðIÞ Neighbor list of box I . This list contains the boxes on level l that are adjacent to I and also I itself. There are 9 boxes
in the list for each I .

L. Lin et al. / Journal of Computational Physics 230 (2011) 4071–4087 4075

Author's personal copy

ILðIÞ Interaction list of box I . When l = 3, this list contains all the boxes on level 3 minus the set of boxes in NLðIÞ. There
are 55 boxes in total. When l > 3, this list contains all the boxes on level l that are children of boxes in NLðPÞwith P being
I ’s parent minus the set of boxes in NLðIÞ. There are 27 such boxes.

Notice that these two lists determine two symmetric relationship: J 2 NLðIÞ if and only if I 2 NLðJ Þ and J 2 ILðIÞ if and
only if I 2 ILðJ Þ. Figs. 1 and 2 illustrate the computational domain and the lists for l = 3 and l = 4, respectively.

For a vector f defined on the N � N grid I0, we define f ðIÞ to be the restriction of f to grid points I . For a matrix G 2 RN2�N2

that represents a linear map from I0 to itself, we define GðI ;J Þ to be the restriction of G on I � J .
A matrix G 2 RN2�N2

has the following decomposition

G ¼ Gð3Þ þ Gð4Þ þ � � � þ GðLÞ þ DðLÞ: ð12Þ

Here, for each l, G(l) incorporates the interaction on level l between a box with its interaction list. More precisely, G(l) has a
22l � 22l block structure:

GðlÞðI ;J Þ ¼
GðI ;J Þ; I 2 ILðJ Þ ðeq: J 2 ILðIÞÞ;
0; otherwise

�
with I and J both on level l. The matrix D(L) includes the interactions between adjacent boxes at level L:

DðLÞðI ;J Þ ¼
GðI ;J Þ; I 2 NLðJ Þ ðeq: J 2 NLðIÞÞ;
0; otherwise

�
with I and J both on level L. To show that (12) is true, it suffices to prove that for any two boxes I and J on level L, the right
hand side gives GðI ;J Þ. In the case that I 2 NLðJ Þ, this is obvious. Otherwise, it is clear that we can find a level l, and boxes
I0 and J 0 on level l, such that I0 2 ILðJ 0Þ; I � I0 and J � J 0, and hence GðI ;J Þ is given through GðI 0;J 0Þ. Throughout the
text, we will use kAk2 to denote the matrix 2-norm of matrix A.

Fig. 1. Illustration of the computational domain at level 3. I3;3;3 is the black box. The neighbor list NLðI3;3;3Þ consists of 8 adjacent light gray boxes and the
black box itself, and the interaction list ILðI3;3;3Þ consists of the 55 dark gray boxes.

Fig. 2. Illustration of the computational domain at level 4. I4;5;5 is the black box. The neighbor list NLðI4;5;5Þ consists of 8 adjacent light gray boxes and the
black box itself, and the interaction list ILðI4;5;5Þ consists of the 27 dark gray boxes.

4076 L. Lin et al. / Journal of Computational Physics 230 (2011) 4071–4087

Author's personal copy

2.2. Hierarchical matrix

Our algorithm works with the so-called hierarchical matrices. We recall in this subsection some basic properties of this
type of matrices and also some related algorithms. For simplicity of notations and representation, we will only work with
symmetric matrices. For a more detailed introduction of the hierarchical matrices and their applications in fast algorithms,
we refer the readers to [2,3].

2.2.1. H1 matrices

Definition 1. G is a (symmetric) H1-matrix if for any e > 0, there exists r(e) [log (e�1) such that for any pair ðI ;J Þ with
I 2 ILðJ Þ, there exist orthogonal matrices UIJ and UJI with r(e) columns and matrix MIJ 2 RrðeÞ�rðeÞ such that

kGðI ;J Þ � UIJMIJUT
JIk2 6 ekGðI ;J Þk2: ð13Þ

The main advantage of theH1 matrix is that the application of such matrix on a vector can be efficiently evaluated: With-
in error OðeÞ, one can use bGðI ;J Þ ¼ UIJMIJUT

JI , which is low-rank, instead of the original block GðI ;J Þ. The algorithm is
described in Algorithm 2. It is standard that the complexity of the matrix–vector multiplication for an H1 matrix is
OðN2 log NÞ [2].

Algorithm 2. Application of a H1-matrix G on a vector f

1: u = 0;
2: for l = 3 to L do
3: for I on level l do
4: for J 2 ILðIÞ do

5: uðIÞ ¼ uðIÞ þ UIJ MIJ ðUT
JI f ðJ ÞÞ

� �
;

6: end for
7: end for
8: end for
9: for I on level L do
10: for J 2 NLðIÞ do
11: uðIÞ ¼ uðIÞ þ GðI ;J Þf ðJ Þ;
12: end for
13: end for

2.2.2. Uniform H1 matrix

Definition 2. G is a (symmetric) uniform H1-matrix if for any e > 0, there exists rU(e) [log (e�1) such that for each box I ,
there exists an orthogonal matrix UI with rU(e) columns such that for any pair ðI ;J Þ with I 2 ILðJ Þ

GðI ;J Þ � UINIJUT
J

��� ���
2
6 ekGðI ;J Þk2 ð14Þ

with NIJ 2 RrU ðeÞ�rU ðeÞ.
The application of a uniform H1 matrix to a vector is described in Algorithm 3. The complexity of the algorithm is still

OðN2 log NÞ. However, the prefactor is much better as each UI is applied only once. The speedup over Algorithm 2 is roughly
27r(e)/rU(e) [2].

Algorithm 3. Application of a uniform H1-matrix G on a vector f

1: u = 0; 15: for l = 3 to L do
2: for l = 3 to L do 16: for I on level l do
3: for J on level l do 17: uðIÞ ¼ uðIÞ þ UI ~uI ;

4: ~f J ¼ UT
J f ðJ Þ; 18: end for

5: end for 19: end for
6: end for 20: for I on level L do
7: for l = 3 to L do 21: for J 2 NLðIÞ do

(continued on next page)

L. Lin et al. / Journal of Computational Physics 230 (2011) 4071–4087 4077

Author's personal copy

Algorithm 3 (continued)

Algorithm 3. Application of a uniform H1-matrix G on a vector f

8: for I on level l do 22: uðIÞ ¼ uðIÞ þ GðI ;J Þf ðJ Þ;
9: ~uI ¼ 0; 23: end for
10: for J 2 ILðIÞ do 24: end for

11: ~uI ¼ ~uI þ NIJ ~f J ;
12: end for
13: end for
14: end for

2.2.3. H2 matrices

Definition 3. G is an H2 matrix if

� it is a uniform H1 matrix;
� Suppose that C is any child of a box I , then

kUI ðC; :Þ � UCTCIk2 K e ð15Þ

for some matrix TCI 2 RrU ðeÞ�rU ðeÞ.

The application of anH2 matrix to a vector is described in Algorithm 4 and it has a complexity of OðN2Þ, Notice that, com-
pared with H1 matrix, the logarithmic factor is reduced [3].

Algorithm 4. Application of a H2-matrix G on a vector f

1: u = 0; 18: for l = 3 to L � 1 do
2: for J on level L do 19: for I on level l do

3: ~f J ¼ UT
J f ðJ Þ; 20: for each child C of I do

4: end for 21: ~uC ¼ ~uC þ TCI ~uI ;
5: for l = L � 1 down to 3 do 22: end for
6: for J on level l do 23: end for

7: ~f J ¼ 0; 24: end for

8: for each child C of J do 25: for I on level L do

9: ~f J ¼ ~f J þ TT
CJ

~f C; 26: uðIÞ ¼ UI ~uI ;

10: end for 27: end for
11: end for 28: for I on level L do
12: end for 29: for J 2 NLðIÞ do
13: for l = 3 to L do 30: uðIÞ ¼ uðIÞ þ GðI ;J Þf ðJ Þ;
14: for I on level l do 31: end for
15: ~uI ¼ 0; 32: end for
16: for J 2 ILðIÞ do

17: ~uI ¼ ~uI þ NIJ ~f J ;
18: end for
19: end for
20: end for

Remark. Applying an H2 matrix to a vector can indeed be viewed as the matrix form of the fast multipole method
(FMM) [10]. One recognizes in Algorithm 4 that the second top-level for loop corresponds to the M2M (multipole
expansion to multipole expansion) translations of the FMM; the third top-level for loop is the M2L (multipole expansion
to local expansion) translations; and the fourth top-level for loop is the L2L (local expansion to local expansion)
translations.

4078 L. Lin et al. / Journal of Computational Physics 230 (2011) 4071–4087

Author's personal copy

In the algorithm to be introduced, we will also need to apply a partial matrix Gð3Þ þ Gð4Þ þ � � � þ GðL
0 Þ for some L0 6 L to a

vector f. This amounts to a variant of Algorithm 4, described in Algorithm 5.

Algorithm 5. Application of a partial H2-matrix Gð3Þ þ � � � þ GðL
0 Þ on a vector f

1: u = 0; 18: for l = 3 to L0 � 1 do
2: for J on level L0 do 19: for I on level l do

3: ~f J ¼ UT
J f ðJ Þ; 20: for each child C of I do

4: end for 21: ~uC ¼ ~uC þ TCI ~uI ;
5: for l = L0 � 1 down to 3 do 22: end for
6: for J on level l do 23: end for

7: ~f J ¼ 0; 24: end for

8: for each child C of J do 25: for I on level L0 do

9: ~f J ¼ ~f J þ TT
CJ

~f C; 26: uðIÞ ¼ UI ~uI ;

10: end for 27: end for
11: end for
12: end for
13: for l = 3 to L0 do
14: for I on level l do
15: ~uI ¼ 0;
16: for J 2 ILðIÞ do

17: ~uI ¼ ~uI þ NIJ ~f J ;
18: end for
19: end for
20: end for

2.3. Peeling algorithm: outline and preparation

We assume that G is a symmetric H2 matrix and that there exists a fast matrix–vector subroutine for applying G to any
vector f as a ‘‘black box’’. The goal is to construct an H2 representation of the matrix G using only a small number of test
vectors.

The basic strategy is a top-down construction: For each level l = 3, . . . ,L, assume that an H2 representation for
G(3) + � � � + G(l�1) is given, we construct G(l) by the following three steps:

1. Peeling. Construct an H1 representation for G(l) using the peeling idea and the H2 representation for G(3) + � � � + G(l�1).
2. Uniformization. Construct a uniform H1 representation for G(l) from its H1 representation.
3. Projection. Construct an H2 representation for G(3) + � � � + G(l).

The names of these steps will be made clear in the following discussion. Variants of the algorithm that only construct an
H1 representation (a uniformH1 representation, respectively) of the matrix G can be obtained by only doing the peeling step
(the peeling and uniformization steps, respectively). These variants will be discussed in Section 2.5.

After we have the H2 representation for G(3) + � � � + G(L), we use the peeling idea again to extract the diagonal part D(L). We
call this whole process the peeling algorithm.

Before detailing the peeling algorithm, we mention two procedures that serve as essential components of our algorithm.
The first procedure concerns with the uniformization step, in which one needs to get a uniform H1 representation for G(l)

from its H1 representation, i.e. from bGðI ;J Þ ¼ UIJMIJUT
JI to bGðI ;J Þ ¼ UINIJUT

J , for all pairs of boxes ðI ;J Þ with
I 2 ILðJ Þ. To this end, what we need to do is to find the column space of

UIJ 1 MIJ 1 jUIJ 2 MIJ 2 j � � � jUIJ t MIJ t

� 	
; ð16Þ

where J j are the boxes in ILðIÞ and t ¼ jILðIÞj. Notice that we weight the singular vectors U by M, so that the
singular vectors corresponding to larger singular values will be more significant. This column space can be found
by the usual SVD algorithm or a more effective randomized version presented in Algorithm 6. The important left
singular vectors are denoted by UI , and the diagonal matrix formed by the singular values associated with UI is denoted
by SI .

L. Lin et al. / Journal of Computational Physics 230 (2011) 4071–4087 4079

Author's personal copy

Algorithm 6. Construct a uniform H1 representation of G from the H1 representation at a level l

1: for each box I on level l do
2: Generate a Gaussian random matrix R 2 RðrðeÞ�tÞ�ðrUðeÞþcÞ;
3: Form product ½UIJ 1 MIJ 1 j � � � jUIJ t MIJ t �R and apply SVD to it.

The first rU(e) left singular vectors give UI , and the corresponding
singular values give a diagonal matrix SI ;

4: for J j 2 ILðIÞ do

5: IIJ j ¼ UT
IUIJ j ;

6: end for
7: end for
8: for each pair ðI ;J Þ on level l with I 2 ILðJ Þ do
9: NIJ ¼ IIJMIJ IT

JI ;
10: end for

Complexity analysis: For a box I on level l, the number of grid points in I is (N/2l)2. Therefore, UIJ j
are all of size (N/2l)2 �

r(e) and MIJ are of size r(e) � r(e). Forming the product ½UIJ 1 MIJ 1 j � � � jUIJ t MIJ t �R takes OððN=2lÞ2rðeÞðrUðeÞ þ cÞÞ steps and
SVD takes OððN=2lÞ2ðrUðeÞ þ cÞ2Þ steps. As there are 22l boxes on level l, the overall cost of Algorithm 6 is
OðN2ðrUðeÞ þ cÞ2Þ ¼ OðN2Þ. One may also apply to ½UIJ 1 MIJ 1 j � � � jUIJ t MIJ t � the deterministic SVD algorithm, which has the
same order of complexity but with a prefactor about 27r(e)/(rU(e) + c) times larger.

The second procedure is concerned with the projection step of the above list, in which one constructs an H2 representa-
tion for G(3) + � � � + G(l). Here, we are given the H2 representation for G(3) + � � � + G(l�1) along with the uniform H1 representa-
tion for G(l) and the goal is to compute the transfer matrix TCI for a box I on level l � 1 and its child C on level l such that

kUI ðC; :Þ � UCTCIk2 K e:

In fact, the existing UC matrix of the uniform H1 representation may not be rich enough to contain the columns of UI ðC; :Þ in
its span. Therefore, one needs to update the content of UC as well. To do that, we perform a singular value decomposition for
the combined matrix

UI ðC; :ÞSI jUCSC½ �

and define a matrix VC to contain rU(e) left singular vectors. Again UI ;UC should be weighted by the corresponding singular
values. The transfer matrix TCI is then given by

TCI ¼ VT
CUI ðC; :Þ

and the new UC is set to be equal to VC. Since UC has been changed, the matrices NCD for D 2 ILðCÞ and also the corresponding
singular values SC need to be updated as well. The details are listed in Algorithm 7.

Algorithm 7. Construct an H2 representation of G from the uniform H1 representation at level l

1: for each box I on level l � 1 do
2: for each child C of I do
3: Form matrix ½UI ðC; :ÞSI jUCSC� and apply SVD to it. The

first rU(e) left singular vectors give VC , and the corresponding
singular values give a diagonal matrix WC;

4: KC ¼ VT
CUC;

5: TCI ¼ VT
CUI ðC; :Þ;

6: UC ¼ VC;
7: SC ¼WC;
8: end for
9: end for
10: for each pair ðC;DÞ on level l with C 2 ILðDÞ do
11: NCD ¼ KCNCDKT

D;
12: end for

Complexity analysis: The main computational task of Algorithm 7 is again the SVD part. For a box C on level l, the number
of grid points in I is (N/2l)2. Therefore, the combined matrix ½UI ðC; :ÞSI jUCSC� is of size (N/2l)2 � 2rU(e). The SVD computation
clearly takes OððN=2lÞ2rUðeÞ2Þ ¼ OððN=2lÞ2Þ steps. Taking into the consideration that there are 22l boxes on level l gives rise to
an OðN2Þ estimate for the cost of Algorithm 7.

4080 L. Lin et al. / Journal of Computational Physics 230 (2011) 4071–4087

Author's personal copy

2.4. Peeling algorithm: details

With the above preparation, we are now ready to describe the peeling algorithm in detail at different levels, starting from
level 3. At each level, we follow exactly the three steps listed at the beginning of Section 2.3.

2.4.1. Level 3
First in the peeling step, we construct theH1 representation for G(3). For each pair ðI ;J Þ on level 3 such that I 2 ILðJ Þ, we

will invoke randomized SVD Algorithm 1 to construct the low rank approximation of GI ;J . However, in order to apply the
algorithm we need to compute GðI ;J ÞRJ and RT

IGðI ;J Þ, where RI and RJ are random matrices with r(e) + c columns. For
each box J on level 3, we construct a matrix R of size N2 � (r(e) + c) such that

RðJ ; :Þ ¼ RJ and RðI0 n J ; :Þ ¼ 0:

Computing GR using r(e) + c matvecs and restricting the result to grid points I 2 ILðJ Þ gives GðI ;J ÞRJ for each I 2 ILðJ Þ.
After repeating these steps for all boxes on level 3, we hold for any pair ðI ;J Þ with I 2 ILðJ Þ the following data:

GðI ;J ÞRJ and RT
IGðI ;J Þ ¼ ðGðJ ; IÞRI ÞT:

Now, applying Algorithm 1 to them gives the low-rank approximationbGðI ;J Þ ¼ UIJMIJUT
JI : ð17Þ

In the uniformization step, in order to get the uniform H1 representation for G(3), we simply apply Algorithm 6 to the
boxes on level 3 to get the approximationsbGðI ;J Þ ¼ UINIJUT

J : ð18Þ

Finally in the projection step, since we only have 1 level now (level 3), we have already the H2 representation for G(3).
Complexity analysis: The dominant computation is the construction of theH1 representation for G(3). This requires r(e) + c

matvecs for each box I on level 3. Since there are in total 64 boxes at this level, the total cost is 64(r(e) + c) matvecs. From the
complexity analysis in Section 2.3, the computation for the second and third steps cost an extra OðN2Þ steps.

2.4.2. Level 4
First in the peeling step, in order to construct the H1 representation for G(4), we need to compute the matrices GðI ;J ÞRJ

and RT
IGðI ;J Þ for each pair ðI ;J Þ on level 4 with I 2 ILðJ Þ. Here RI and RJ are again random matrices with r(e) + c columns.

One approach is to follow exactly what we did for level 3: Fix a box J at this level, construct R of size N2 � (r(e) + c) such
that

RðJ ; :Þ ¼ RJ and RðI0 n J ; :Þ ¼ 0:

Next apply G � G(3) to R, by subtracting GR and G(3)R. The former is computed using r(e) + c matvecs and the latter is done by
Algorithm 5. Finally, restrict the result to grid points I 2 ILðJ Þ gives GðI ;J ÞRJ for each I 2 ILðJ Þ.

However, we have observed in the simple one-dimensional example in Section 1.3 that random tests can be combined
together as in Eqs. (6) and (7). We shall detail this observation in the more general situation here as following. Observe that
G � G(3) = G(4) + D(4), and Gð4ÞðJ ; IÞ and Dð4ÞðJ ; IÞ for boxes I and J on level 4 is only nonzero if I 2 NLðJ Þ [ILðJ Þ. Therefore,
(G � G(3))R for R coming from J can only be nonzero in NLðPÞ with P being J ’s parent. The rest is automatically zero (up to
error e as G(3) is approximated by itsH2 representation). Therefore, we can combine the calculation of different boxes as long
as their non-zero regions do not overlap.

More precisely, we introduce the following sets Spq for 1 6 p, q 6 8 with

Spq ¼ fJ 4;ijji 	 pðmod8Þ; j 	 q ðmod8Þg: ð19Þ

There are 64 sets in total, each consisting of four boxes. Fig. 3 illustrates one such set at level 4. For each set Spq, first con-
struct R with

RðJ ; :Þ ¼
RJ ; J 2 Spq;

0; otherwise:

�
Then, we apply G � G(3) to R, by subtracting GR and G(3)R. The former is computed using r(e) + c matvecs and the latter is done
by Algorithm 5. For each J 2 Spq, restricting the result to I 2 ILðJ Þ gives GðI ;J ÞRJ . Repeating this computation for all sets
Spq then provides us with the following data:

GðI ;J ÞRJ and RT
IGðI ;J Þ ¼ ðGðJ ; IÞRI ÞT;

for each pair ðI ;J Þ with I 2 ILðJ Þ. Applying Algorithm 1 to them gives the required low-rank approximationsbGðI ;J Þ ¼ UIJMIJUT
JI ð20Þ

L. Lin et al. / Journal of Computational Physics 230 (2011) 4071–4087 4081

Author's personal copy

with UIJ orthogonal.
Next in the uniformization step, the task is to construct the uniformH1 representation of G(4). Similar to the computation

at level 3, we simply apply Algorithm 6 to the boxes on level 4 to get

bGðI ;J Þ ¼ UINIJUT
J : ð21Þ

Finally in the projection step, to get H2 representation for G(3) + G(4), we invoke Algorithm 7 at level 4. Once it is done, we
hold the transfer matrices TCI between any I on level 3 and each of its children C, along with the updated uniformH1-matrix
representation of G(4).

Complexity analysis: The dominant computation is again the construction of H1 representation for G(4). For each group
Spq, we apply G to r(e) + c vectors and apply G(3) to r(e) + c vectors. The latter takes OðN2Þ steps for each application. Since
there are 64 sets in total, this computation takes 64(r(e) + c) matvecs and OðN2Þ extra steps.

2.4.3. Level l
First in the peeling step, to construct the H1 representation for G(l), we follow the discussion of level 4. Define 64 sets Spq

for 1 6 p, q 6 8 with

Spq ¼ J l;ijji 	 p ðmod8Þ; j 	 q ðmod8Þ

 �

: ð22Þ

Each set contains exactly 2l/8 � 2l/8 boxes. For each set Spq, construct R with

RðJ ; :Þ ¼
RJ ; J 2 Spq;

0; otherwise:

�
Next, apply G � [G(3) + � � � + G(l�1)] to R, by subtracting GR and [G(3) + � � � + G(l�1)]R. The former is again computed using r(e) + c
matvecs and the latter is done by Algorithm 5 using theH2 representation of G(3) + � � � + G(l�1). For each J 2 Spq, restricting the
result to I 2 ILðJ Þ gives GðI ;J ÞRJ . Repeating this computation for all sets Spq gives the following data for any pair ðI ;J Þ
with I 2 ILðJ Þ

GðI ;J ÞRJ and RT
IGðI ;J Þ ¼ ðGðJ ; IÞRI ÞT:

Now applying Algorithm 1 to them gives the low-rank approximation

bGðI ;J Þ ¼ UIJMIJUT
JI ð23Þ

with UIJ orthogonal.
Similar to the computation at level 4, the uniformization step that constructs the uniformH1 representation of G(l) simply

by Algorithm 6 to the boxes on level l. The result gives the approximation

bGðI ;J Þ ¼ UINIJUT
J : ð24Þ

Finally in the projection step, one needs to compute an H2 representation for G(3) + � � � + G(l). To this end, we apply Algo-
rithm 7 to level l.

The complexity analysis at level l follows exactly the one of level 4. Since we still have exactly 64 sets Spq, the computa-
tion again takes 64(r(e) + c) matvecs along with OðN2Þ extra steps.

These three steps (peeling, uniformization, and projection) are repeated for each level until we reach level L. At this point,
we hold the H2 representation for G(3) + � � � + G(L).

Fig. 3. Illustration of the set S55 at level 4. This set consists of four black boxes fI4;5;5; I4;13;5; I4;5;13; I4;13;13g. The light gray boxes around each black box are in
the neighbor list and the dark gray boxes in the interaction list.

4082 L. Lin et al. / Journal of Computational Physics 230 (2011) 4071–4087

Author's personal copy

2.4.4. Computation of D(L)

Finally we construct of the diagonal part

DðLÞ ¼ G� ðGð3Þ þ � � � þ GðLÞÞ: ð25Þ

More specifically, for each box J on level L, we need to compute GðI ;J Þ for I 2 NLðJ Þ.
Define a matrix E of size N2 � (N/2L)2 (recall that the box J on level L covers (N/2L)2 grid points) by

EðJ ; :Þ ¼ I and EðI0 n J ; :Þ ¼ 0;

where I is the (N/2L)2 � (N/2L)2 identity matrix. Applying G � (G(3) + � � � + G(L)) to E and restricting the results to I 2 NLðJ Þ
gives GðI ;J Þ for I 2 NLðJ Þ. However, we can do better as (G � (G(3) + � � � + G(L)))Eis only non-zero in NLðJ Þ. Hence, one
can combine computation of different boxes J as long as NLðJ Þ do not overlap.

To do this, define the following 4 � 4 = 16 sets Spq; 1 6 p; q 6 4

Spq ¼ fJ L;ijji 	 p ðmod4Þ; j 	 q ðmod4Þg:

For each set Spq, construct matrix E by

EðJ ; :Þ ¼
I; J 2 Spq;

0; otherwise:

�
Next, apply G � (G(3) + � � � + G(L)) to E. For each J 2 Spq, restricting the result to I 2 NLðJ Þ gives GðI ;J ÞI ¼ GðI ;J Þ. Repeating
this computation for all 16 sets Spq gives the diagonal part D(L).

Complexity analysis: The dominant computation is for each group Spq apply G and G(3) + � � � + G(L) to E, the former takes (N/
2L)2 matvecs and the latter takesOððN=2LÞ2N2Þ extra steps. Recall by the choice of L, N/2L is a constant. Therefore, the total cost
for 16 sets is 16ðN=2LÞ2 ¼ Oð1Þ matvecs and OðN2Þ extra steps.

Let us now summarize the complexity of the whole peeling algorithm. From the above discussion, it is clear that at each
level the algorithm spends 64ðrðeÞ þ cÞ ¼ Oð1Þ matvecs and OðN2Þ extra steps. As there are Oðlog NÞ levels, the overall cost of
the peeling algorithm is equal to Oðlog NÞ matvecs plus OðN2 log NÞ steps.

It is a natural concern that whether the error from low-rank decompositions on top levels accumulates in the peeling
steps. As observed from numerical examples in Section 3, it does not seem to be a problem at least for the examples consid-
ered. We do not have a proof for this though.

2.5. Peeling algorithm: variants

In this section, we discuss two variants of the peeling algorithm. Let us recall that the above algorithm performs the fol-
lowing three steps at each level l.

1. Peeling. Construct an H1 representation for G(l) using the peeling idea and the H2 representation for G(3) + � � � + G(l�1).
2. Uniformization. Construct a uniform H1 representation for G(l) from its H1 representation.
3. Projection. Construct an H2 representation for G(3) + � � � + G(l).

As this algorithm constructs theH2 representation of the matrix G, we also refer to it more specifically as theH2 version of
the peeling algorithm. In what follows, we list two simpler versions that are useful in practice.

� the H1 version, and
� the uniform H1 version.

In theH1 version, we only perform the peeling step at each level. Since this version constructs only theH1 representation,
it will use theH1 representation of G(3) + � � � + G(l) in the computation of (G(3) + � � � + G(l))R within the peeling step at level l + 1.

In the uniformH1 version, we perform the peeling step and the uniformization step at each level. This will give us instead
the uniform H1 version of the matrix. Accordingly, one needs to use the uniform H1 representation of G(3) + � � � + G(l) in the
computation of (G(3) + � � � + G(l))R within the peeling step at level l + 1.

These two simplified versions are of practical value since there are matrices that are in theH1 or the uniformH1 class but
not the H2 class. A simple calculation shows that these two simplified versions still take Oðlog NÞ matvecs but requires
OðN2log2NÞ extra steps. Clearly, the number of extra steps is logN times more expensive than the one of theH2 version. How-
ever, if the fast matrix–vector multiplication subroutine itself takes OðN2 log NÞ steps per application, using the H1 or the
uniform H1 version does not change the overall asymptotic complexity.

Between these two simplified versions, the uniform H1 version requires the uniformization step, while the H1 version
does not. This seems to suggest that the uniformH1 version is more expensive. However, because (1) our algorithm also uti-
lizes the partially constructed representations for the calculation at future levels and (2) the uniform H1 representation is
much faster to apply, the construction of the uniform H1 version turns out to be much faster. Moreover, since the uniform

L. Lin et al. / Journal of Computational Physics 230 (2011) 4071–4087 4083

Author's personal copy

H1 representation stores one UI matrix for each box I while theH1 version stores about 27 of them, the uniformH1 is much
more memory-efficient, which is very important for problems in higher dimensions.

3. Numerical results

We study the performance of the hierarchical matrix construction algorithm for the inverse of a discretized elliptic oper-
ator. The computational domain is a two dimensional square [0,1)2 with periodic boundary condition, discretized as an
N � N equispaced grid. We first consider the operator H = �D + V with D being the discretized Laplacian operator and the
potential being V(i, j) = 1 + W(i, j), i, j = 1, . . . ,N. For all (i, j), W(i, j) are independent random numbers uniformly distributed
in [0,1]. The potential function V is chosen to have this strong randomness in order to show that the existence of H-matrix
representation of the Green’s function depends weakly on the smoothness of the potential. The inverse matrix of H is de-
noted by G. The algorithms are implemented using MATLAB. All numerical tests are carried out on a single-CPU machine.

We analyze the performance statistics by examining both the cost and the accuracy of our algorithm. The cost factors
include the time cost and the memory cost. While the memory cost is mainly determined by how the matrix G is compressed
and does not depend much on the particular implementation, the time cost depends heavily on the performance of matvec

subroutine. Therefore, we report both the wall clock time consumption of the algorithm and the number of calls to the matvec

subroutine. The matvec subroutine used here is a nested dissection reordered block Gauss elimination method [14]. For an
N � N discretization of the computational domain, this matvec subroutine has a computational cost of OðN2 log NÞ steps.

Table 1 summarizes the matvec number, and the time cost per degree of freedom (DOF) for theH1, the uniformH1 and the
H2 representations of the peeling algorithm. The time cost per DOF is defined by the total time cost divided by the number of
grid points N2. For the H1 and the uniform H1 versions, the error criterion e in Eqs. (13)–(15) are all set to be 10�6.

The number of calls to the matvec subroutine is the same in all three cases (as the peeling step is the same for all cases)
and is reported in the third column of Table 1. It is confirmed that the number of calls to matvec increases logarithmically
with respect to N if the domain size at level L, i.e. 2LM�L, is fixed as a constant. For a fixed N, the time cost is not monotonic
with respect to L. When L is too small the computational cost of D(L) becomes dominant. When L is too large, the application
of the partial representation G(3) + � � � + G(L) to a vector becomes expensive. From the perspective of time cost, there is an opti-
mal Lopt for a fixed N. We find that this optimal level number is the same for H1, uniform H1 and H2 algorithms. Table 1
shows that Lopt = 4 for N = 32,64,128, Lopt = 5 for N = 256, and Lopt = 6 for N = 512. This suggests that for large N, the optimal
performance is achieved when the size of boxes on the final level L is 8 � 8. In other words, L = LM � 3.

The memory cost per DOF for the H1, the uniform H1 and the H2 algorithms is reported in Table 2. The memory cost is
estimated by summing the sizes of low-rank approximations as well as the size of D(L). For a fixed N, the memory cost gen-
erally decreases as L increases. This is because as L increases, an increasing part of the original dense matrix is represented
using low-rank approximations.

Both Tables 1 and 2 indicate that uniform H1 algorithm is significantly more advantageous than H1 algorithm, while the
H2 algorithm leads to a further improvement over the uniform H1 algorithm especially for large N. This fact can be better
seen from Fig. 4 where the time and memory cost per DOF for N = 32,64,128,256,512 with optimal level number Lopt are
shown. We remark that since the number of calls to the matvec subroutine are the same in all cases, the time cost difference
comes solely from the efficiency difference of the low rank matrix–vector multiplication subroutines.

We measure the accuracy for theH1, the uniformH1 and theH2 representations of G with its actual value using the oper-
ator norm (2-norm) of the error matrix. Here, the 2-norm of a matrix is numerically estimated by power method [9] using
several random initial guesses. We report both absolute and relative errors. According to Table 3, the errors are well con-
trolled with respect to both increasing N and L, in spite of the more aggressive matrix compression strategy in the uniform

Table 1
matvec numbers and time cost per degree of freedom (DOF) for theH1, the uniformH1 and theH2 representations with different grid point per dimension N and
low rank compression level L. The matvec numbers are by definition the same in the three algorithms.

N L matvec number H1 time per DOF (s) Uniform H1 time per DOF (s) H2 time per DOF (s)

32 4 3161 0.0106 0.0080 0.0084

64 4 3376 0.0051 0.0033 0.0033
64 5 4471 0.0150 0.0102 0.0106

128 4 4116 0.0050 0.0025 0.0024
128 5 4639 0.0080 0.0045 0.0045
128 6 5730 0.0189 0.0122 0.0125

256 4 7169 0.015 0.0054 0.0050
256 5 5407 0.010 0.0035 0.0033
256 6 5952 0.013 0.0058 0.0057
256 7 7021 0.025 0.0152 0.0154

512 5 8439 0.025 0.0070 0.0063
512 6 6708 0.018 0.0050 0.0044
512 7 7201 0.022 0.0079 0.0072

4084 L. Lin et al. / Journal of Computational Physics 230 (2011) 4071–4087

Author's personal copy

H1 and the H2 representations. Moreover, for each box I , the rank rU(e) of the uniform H1 representation is only slightly
larger than the rank r(e) of the H1 representation. This can be seen from Table 4. Here the average rank for a level l is esti-

32 64 128 256 512

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

N

T
im

e
pe

r
D

O
F

 (
se

c)

H1

Uniform H1

H2

32 64 128 256 512

3

4

5

6

7

8

9

x 10
−3

N

M
em

or
y

pe
r

D
O

F
 (

M
B

)

H1

Uniform H1

H2

Fig. 4. Comparison of the time and memory costs for theH1, the uniformH1 and theH2 versions with optimal level Lopt for N = 32, 64, 128, 256, 512. The x-
axis (N) is set to be in logarithmic scale.

Table 2
Memory cost per degree of freedom (DOF) for the H1, the uniform H1 and the H2 versions with different grid point per
dimension N and low rank compression level L.

N L H1 memory per DOF (MB) Uniform H1 memory per DOF (MB) H2 memory per DOF (MB)

32 4 0.0038 0.0024 0.0024

64 4 0.0043 0.0027 0.0026
64 5 0.0051 0.0027 0.0026

128 4 0.0075 0.0051 0.0049
128 5 0.0056 0.0029 0.0027
128 6 0.0063 0.0029 0.0027

256 4 0.0206 0.0180 0.0177
256 5 0.0087 0.0052 0.0049
256 6 0.0067 0.0030 0.0027
256 7 0.0074 0.0030 0.0027

512 5 0.0218 0.0181 0.0177
512 6 0.0099 0.0053 0.0049
512 7 0.0079 0.0031 0.0027

Table 3
Absolute and relative 2-norm errors for theH1, the uniformH1 and theH2 algorithms with different grid point per dimension N and low rank compression level
L. The 2-norm is estimated using power method.

N L H1 Uniform H1 H2

Absolute error Relative error Absolute error Relative error Absolute error Relative error

32 4 2.16e�07 3.22e�07 2.22e�07 3.31e�07 2.20e�07 3.28e�07
halfline
64 4 2.10e�07 3.15e�07 2.31e�07 3.47e�07 2.31e�07 3.46e�07
64 5 1.96e�07 2.95e�07 2.07e�07 3.12e�07 2.07e�07 3.11e�07

128 4 2.16e�07 3.25e�07 2.26e�07 3.39e�07 2.24e�07 3.37e�07
128 5 2.60e�07 3.90e�07 2.68e�07 4.03e�07 2.67e�07 4.02e�07
128 6 2.01e�07 3.01e�07 2.09e�07 3.13e�07 2.08e�07 3.11e�07

256 4 1.78e�07 2.66e�07 1.95e�07 2.92e�07 2.31e�07 3.46e�07
256 5 2.11e�07 3.16e�07 2.26e�07 3.39e�07 2.27e�07 3.40e�07
256 6 2.75e�07 4.12e�07 2.78e�07 4.18e�07 2.30e�07 3.45e�07
256 7 1.93e�07 2.89e�07 2.05e�07 3.08e�07 2.24e�07 3.36e�07

512 5 2.23e�07 3.35e�07 2.33e�07 3.50e�07 1.42e�07 2.13e�07
512 6 2.06e�07 3.09e�07 2.17e�07 3.26e�07 2.03e�07 3.05e�07
512 7 2.67e�07 4.01e�07 2.74e�07 4.11e�07 2.43e�07 3.65e�07

L. Lin et al. / Journal of Computational Physics 230 (2011) 4071–4087 4085

Author's personal copy

mated by averaging the values of rU(e) (or r(e)) for all low-rank approximations at level l. Note that the rank of the H2 rep-
resentation is comparable to or even lower than the rank in the uniform H1 representation. This is partially due to different
weighting choices in the uniformization step and H2 construction step.

The peeling algorithm for the construction of hierarchical matrix can be applied as well to general elliptic operators in
divergence form H = �r � (a(r)r) + V(r). The computational domain, the grids are the same as the example above, and
five-point discretization is used for the differential operator. The media is assumed to be high contrast: a(i, j) = 1 + U(i, j), with
U(i, j) being independent random numbers uniformly distributed in [0,1]. The potential functions under consideration are (1)
V(i, j) = 10�3W(i, j); (2) V(i, j) = 10�6W(i, j). W(i, j) are independent random numbers uniformly distributed in [0,1] and are
independent of U(i, j). We test the H2 version for N = 64, L = 4, with the compression criterion e = 10�6. The number of matvec

is comparable to that reported in Table 1. The resulting L2 absolute and relative error of the Green’s function are reported in
Table 5. The results indicate that the algorithms work well in these cases, despite the fact that the off-diagonal elements of
the Green’s function have a slower decay than the first example. We also remark that the small relative error for case (2) is
due to the large 2-norm of H�1 when V is small.

4. Conclusions and future work

In this work, we present a novel algorithm for constructing a hierarchical matrix from its matrix–vector multiplication.
One of the main motivations is the construction of the inverse matrix of the stiffness matrix of an elliptic differential oper-
ator. The proposed algorithm utilizes randomized singular value decomposition of low-rank matrices. The off-diagonal
blocks of the hierarchical matrix are computed through a top-down peeling process. This algorithm is efficient. For an
n � n matrix, it uses only Oðlog nÞ matrix–vector multiplications plus Oðn log nÞ additional steps. The algorithm is also
friendly to parallelization. The resulting hierarchical matrix representation can be used as a faster algorithm for matrix–vec-
tor multiplications, as well as for numerical homogenization or upscaling.

The performance of our algorithm is tested using two 2D elliptic operators. TheH1, the uniformH1 and theH2 versions of
the proposed algorithms are implemented. Numerical results show that our implementations are efficient and accurate and
that the uniformH1 representation is significantly more advantageous overH1 representation in terms of both the time cost
and the memory cost, and H2 representation leads to further improvement for large N.

Although the algorithms presented require only Oðlog nÞ matvecs, the actual number of matvecs can be quite large (for
example, several thousands for the example in Section 3). Therefore, the algorithms presented here might not be the right
choice for many applications. However, for computational problems in which one needs to invert the same system with a
huge of unknowns or for homogenization problems where analytic approaches do not apply, our algorithm does provide
an effective alternative.

The current implementation depends explicitly on the geometric partition of the rectangular domain. However, the idea
of our algorithm can be applied to general settings. For problems with unstructured grid, the only modification is to partition
the unstructured grid with a quadtree structure and the algorithms essentially require no change. For discretizations of the
boundary integral operators, the size of an interaction list is typically much smaller as many boxes contain no boundary
points. Therefore, it is possible to design a more effective combination strategy with small number of matvecs. These algo-
rithms can also be extended to the 3D cases in a straightforward way, however, we expect the constant to grow significantly.
All these cases will be considered in the future.

Table 4
Comparison of the average rank at different levels between the H1, the uniform H1,
and the H2 algorithms, for N = 256.

l H1 average rank Uniform H1

average rank
H2 average rank

4 6 13 13
5 6 13 11
6 6 12 9

Table 5
The number of matvec, and the absolute and relative 2-norm errors for the H2 representation of the
matrix (�r � (ar) + V)�1 with N = 64, L = 4 and two choice of potential function V. The 2-norm is
estimated using power method.

Potential matvec Absolute error Relative error

V(i, j) = 10�3W(i, j) 4420 5.91e�04 2.97e�07
V(i, j) = 10�6W(i, j) 4420 3.60e�03 1.81e�09

4086 L. Lin et al. / Journal of Computational Physics 230 (2011) 4071–4087

Author's personal copy

Acknowledgement

L.L. is partially supported by DOE under Contract No. DE-FG02-03ER25587 and by ONR under Contract No. N00014-01-1-
0674. L.Y. is partially supported by an Alfred P. Sloan Research Fellowship and an NSF CAREER award DMS-0846501. The
authors thank Laurent Demanet for providing computing facility and Ming Gu and Gunnar Martinsson for helpful discus-
sions. L.L. and J.L. also thank Weinan E for support and encouragement.

References

[1] S. Börm, L. Grasedyck, W. Hackbusch, Hierarchical matrices, max-Planck-Institute Lecture Notes, 2006.
[2] W. Hackbusch, A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-matrices, Computing 62 (1999) 89–108.
[3] W. Hackbusch, B. Khoromskij, S.A. Sauter, On H2-matrices, in: Lectures on Applied Mathematics (Munich, 1999), Springer, Berlin, 2000, pp. 9–29.
[4] M. Bebendorf, W. Hackbusch, Existence of H-matrix approximants to the inverse FE-matrix of elliptic operators with L1-coefficients, Numer. Math. 95

(2003) 1–28.
[5] B. Engquist, O. Runborg, Wavelet-based numerical homogenization with applications, in: Multiscale and Multiresolution Methods, Lect. Notes Comput.

Sci. Eng., vol. 20, Springer, Berlin, 2002, pp. 97–148.
[6] N. Halko, P. Martinsson, J. Tropp, Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions,

preprint, 2009. Available from: arXiv:0909.4061.
[7] E. Liberty, F. Woolfe, P. Martinsson, V. Rokhlin, M. Tygert, Randomized algorithms for the low-rank approximation of matrices, Proc. Natl. Acad. Sci. USA

104 (2007) 20167–20172.
[8] F. Woolfe, E. Liberty, V. Rokhlin, M. Tygert, A fast randomized algorithm for the approximation of matrices, Appl. Comput. Harmon. Anal. 25 (2008)

335–366.
[9] G. Golub, C. Van Loan, Matrix Computations, third ed., Johns Hopkins Univ. Press, Baltimore, 1996.

[10] L. Greengard, V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys. 73 (1987) 325–348.
[11] S. Chandrasekaran, M. Gu, W. Lyons, A fast adaptive solver for hierarchically semiseparable representations, Calcolo 42 (3–4) (2005) 171–185.
[12] S. Chandrasekaran, M. Gu, T. Pals, A fast ULV decomposition solver for hierarchically semiseparable representations, SIAM J. Matrix Anal. Appl. 28 (3)

(2006) 603–622.
[13] J. Duff, J. Reid, The multifrontal solution of indefinite sparse symmetric linear equations, ACM Trans. Math. Softw. 9 (1983) 302–325.
[14] J. George, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal. 10 (1973) 345–363.
[15] A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comput. 31 (1977) 333–390.
[16] W. Briggs, V.E. Henson, S.F. McCormick, A Multigrid Tutorial, second ed., Society for Industrial and Applied Mathematics, SIAM, Philadelphia, 2000.
[17] A. Brandt, S. McCormick, J. Ruge, Algebraic multigrid (AMG) for sparse matrix equations, in: Sparsity and Its Applications, Cambridge Univ. Press,

Cambridge, 1985, pp. 257–284.
[18] B.F. Smith, P.E. Bjørstad, W.D. Gropp, Domain Decomposition, Cambridge Univ. Press, Cambridge, 1996.
[19] A. Toselli, O. Widlund, Domain Decomposition Methods – Algorithms and Theory, Springer Series in Computational Mathematics, vol. 34, Springer

Verlag, Berlin, 2005.
[20] G. Beylkin, R. Coifman, V. Rokhlin, Fast wavelet transforms and numerical algorithms I, Commun. Pure Appl. Math 44 (2) (1991) 141–183.
[21] M. Benzi, C. Meyer, M. Tuma, A sparse approximate inverse preconditioner for the conjugate gradient method, SIAM J. Sci. Comput. 17 (1996) 1135–

1149.
[22] S. Chandrasekaran, M. Gu, X.S. Li, J. Xia, Superfast multifrontal method for structured linear systems of equations, Technical Report, LBNL-62897, 2006.
[23] P. Martinsson, A fast direct solver for a class of elliptic partial differential equations, J. Sci. Comput. 38 (2009) 316–330.
[24] W. Hackbusch, Z.P. Nowak, On the fast matrix multiplication in the boundary element method by panel clustering, Numer. Math. 54 (1989) 463–491.
[25] P. Drineas, R. Kannan, M.W. Mahoney, Fast Monte Carlo algorithms for matrices. II: Computing a low-rank approximation to a matrix, SIAM J. Comput.

36 (1) (2006) 158–183.
[26] P. Drineas, R. Kannan, M.W. Mahoney, Fast Monte Carlo algorithms for matrices. III: Computing a compressed approximate matrix decomposition,

SIAM J. Comput. 36 (1) (2006) 184–206.
[27] S. Goreinov, E. Tyrtyshnikov, N. Zamarashkin, A theory of pseudoskeleton approximations, Linear Algebra Appl. 261 (1997) 1–21.
[28] M. Mahoney, P. Drineas, CUR matrix decompositions for improved data analysis, Proc. Natl. Acad. Sci. USA 106 (2009) 697–702.
[29] P. Martinsson, Rapid factorization of structured matrices via randomized sampling, preprint, 2008. Available from: arXiv:0806.2339.
[30] H. Owhadi, L. Zhang, Metric-based upscaling, Commun. Pure Appl. Math. 60 (2007) 675–723.

L. Lin et al. / Journal of Computational Physics 230 (2011) 4071–4087 4087

