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Fermi operator expansion (FOE) methods are powerful alternatives to diagonalization type methods
for solving Kohn-Sham density functional theory (KSDFT). One example is the pole expansion
and selected inversion (PEXSI) method, which approximates the Fermi operator by rational matrix
functions and reduces the computational complexity to at most quadratic scaling for solving KSDFT.
Unlike diagonalization type methods, the chemical potential often cannot be directly read off from
the result of a single step of evaluation of the Fermi operator. Hence multiple evaluations are needed
to be sequentially performed to compute the chemical potential to ensure the correct number of
electrons within a given tolerance. This hinders the performance of FOE methods in practice. In
this paper, we develop an efficient and robust strategy to determine the chemical potential in the
context of the PEXSI method. The main idea of the new method is not to find the exact chemical
potential at each self-consistent-field (SCF) iteration but to dynamically and rigorously update the
upper and lower bounds for the true chemical potential, so that the chemical potential reaches its
convergence along the SCF iteration. Instead of evaluating the Fermi operator for multiple times
sequentially, our method uses a two-level strategy that evaluates the Fermi operators in parallel. In
the regime of full parallelization, the wall clock time of each SCF iteration is always close to the
time for one single evaluation of the Fermi operator, even when the initial guess is far away from
the converged solution. We demonstrate the effectiveness of the new method using examples with
metallic and insulating characters, as well as results from ab initio molecular dynamics. Published by
AIP Publishing. https://doi.org/10.1063/1.5000255

I. INTRODUCTION

Kohn-Sham density functional theory (KSDFT) is the
most widely used theory for electronic-structure calculations.
In the framework of the self-consistent field (SCF) iteration,
the computational cost for solving KSDFT is mainly deter-
mined by the cost associated with the evaluation of the electron
density for a given Kohn-Sham potential during each iteration.
The most widely used method to perform such an evaluation is
to partially or fully diagonalize the Kohn-Sham Hamiltonian,
by means of computing a set of eigenvectors corresponding to
the algebraically smallest eigenvalues of the Hamiltonian. The
complexity of this approach is O(N3

e ), where Ne is the number
of electrons in the atomistic system of interest. As the number
of atoms or electrons in the system increases, the cost of this
diagonalization step becomes prohibitively expensive.

In the past two decades, various numerical algorithms
have been developed for solving KSDFT without invoking
the diagonalization procedure. One particular class of algo-
rithms are the linear scaling algorithms,1–8 which relies on
the near-sightedness principle for insulating systems with
large gaps9,10 to truncate elements of the density matrix away
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from the diagonal. Among such methods, the Fermi operator
expansion (FOE) method11 was also originally proposed as
a linear scaling method for insulating systems. Recently, the
pole expansion and selected inversion (PEXSI) method, which
can be viewed as a FOE method by approximating the Fermi
operator using rational matrix functions, first achieved com-
putational complexity that is at mostO(N2

e ) for both insulating
and metallic systems.12–14 More specifically, the computa-
tional complexity of PEXSI depends on the dimensionality of
the system: the cost for quasi-1D systems such as nanotubes
is O(Ne), i.e., linear scaling; for quasi-2D systems such as
graphene and surfaces (slabs) it is O(N1.5

e ); and for general 3D
bulk systems, it is O(N2

e ). PEXSI can be accurately applied to
general material systems including small gapped systems and
metallic systems and remains accurate at low temperatures.
The PEXSI method has a two-level parallelism structure and is
by design highly scalable using 10 000 ∼ 100 000 processors
on high performance machines. The PEXSI software pack-
age15 has been integrated into a number of electronic structure
software packages such as BigDFT,16 CP2K,17 SIESTA,18,19

DGDFT,20,21 FHI-aims,22 and QuantumWise ATK23 and has
been used for accelerating materials simulation with more than
10 000 atoms.24,25

One challenge for the PEXSI method, and for FOE meth-
ods using rational approximations in general, is to determine
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the chemical potential µ so that the computed number of elec-
trons at each SCF iteration is Ne within some given tolerance.
This amounts to solving a scalar equation

Nβ(µ) = Ne. (1)

Here Nβ(µ) is the number of electrons evaluated using PEXSI
at a given chemical potential and β = 1/(kBT ) is the inverse
temperature.

Note that Nβ(µ) is a monotonically non-decreasing func-
tion with respect to µ, and the simplest strategy to solve
Eq. (1) is the bisection method. However, starting from a rea-
sonably large search interval, the bisection method can require
tens of iterations to converge. This makes it more difficult to
reach the crossover point compared to diagonalization type
methods and hinders the effectiveness of the method. It also
introduces potentially large fluctuation in terms of the running
time among different SCF iterations. One option to accelerate
the convergence of the bisection method is to use Newton’s
method, which takes the derivative information into account
and is expected to converge within a few iterations. However,
the effectiveness of Newton’s method relies on the assumption
that the derivative of Nβ(µ) with respect to µ does not vanish.
This assumption fails whenever µ is inside a bandgap. A pos-
sible remedy is to use a regularized derivative, but this may
instead reduce the convergence rate and increase the number
of PEXSI evaluations per SCF iteration. Furthermore, when
the initial guess is far away from the true chemical poten-
tial, the derivative information is not very useful in general.
A robust algorithm needs to handle all cases efficiently and
find the solution within at most a handful of evaluations start-
ing from a possible wild initial guess. Hence the seemingly
innocent scalar equation (1) turns out to be not so easy in
practice.

In Ref. 18, we have proposed a hybrid Newton type
method for determining the chemical potential in the context
of the PEXSI method. This method uses an inertia counting
strategy to rapidly reduce the size of the search interval for the
chemical potential, starting from a large search interval. When
the search interval becomes sufficiently small, a Newton type
method is then used. With the help of the inertia counting strat-
egy, the number of Newton steps is in general small (usually
no more than 5), and each Newton step amounts to one step
of evaluation of the Fermi operator. As discussed above, the
Newton step may still occasionally over-correct the chemical
potential due to the small but not vanishing derivative informa-
tion, and the correction needs to be discarded when it exceeds
a certain threshold value. In such a case, the inertia count-
ing procedure needs to be invoked again with some updated
searching criterion. In this unfavorable regime, the effective-
ness of the PEXSI method is hindered. This procedure also
inevitably introduces extra tunable parameters, of which the
values may be difficult to predict a priori.

In this work, we develop a new method for determining the
chemical potential that simultaneously improves the robust-
ness and the efficiency of the PEXSI method. Our main idea
is to relax the requirement of satisfying Eq. (1) for each SCF
iteration, so that the error of the chemical potential is compa-
rable to the residual error in the SCF iteration, and the number
of evaluations of the Fermi operator can therefore be reduced.

In particular, when the SCF converges, the chemical potential
converges as well and there is no loss of accuracy. The key
to achieve this goal is to maintain rigorous lower and upper
bounds for the true chemical potential at each SCF step and to
dynamically update the interval along the progress of the SCF
iteration. Due to the availability of these rigorous bounds, the
new method does not suffer from the over-correction problem
as in Newton type methods. In the regime of full paralleliza-
tion, the wall clock time of the new method during each SCF
iteration is always approximately the same as that for one
single evaluation of the Fermi operator, even when the ini-
tial guess of the chemical potential is far away from the true
solution.

The simplicity provided by the rigorous bounds of the
chemical potential also reduces the number of tunable param-
eters in the practical implementation of the PEXSI method.
We find that the remaining parameters are much less sys-
tem dependent, and the default values are already robust for
both insulating and metallic systems. This facilitates the usage
of the PEXSI package as a black box software package for
general systems and is therefore more user-friendly. We also
compare the pole expansion obtained by an contour integral
approach12 and that obtained from an optimization proce-
dure by Moussa recently.26 We find that Moussa’s method
can reduce the number of poles by a factor of 2 ∼ 3 com-
pared to the contour integral approach, and hence we adopt
this method as the default option for pole expansion. Our
new method is implemented in the PEXSI software package.15

For electronic structure calculations, the PEXSI method can
be accessed more easily from the recently developed “Elec-
tronic Structure Infrastructure” (ELSI) software package.27

We demonstrate the performance of the new method using
the discontinuous Galerkin DFT (DGDFT) software pack-
age,20,21 using graphene and phospherene as examples for
metallic and insulating systems, respectively. Even though the
chemical potential is not fully accurate in each step of the
SCF iteration in the new method, we find that the number
of SCF iterations required to converge is almost the same as
that needed by full diagonalization methods, as well as the
method in Ref. 18 which requires multiple PEXSI evaluations
per SCF iteration. The accuracy of the new method is further
confirmed by ab initio molecular dynamics, where we observe
negligible energy drift in an NVE simulation for a graphene
system.

The rest of the paper is organized as follows. After review-
ing the PEXSI method in Sec. II, we describe the new method
for robust determination of the chemical potential in Sec. III.
The numerical results are given in Sec. IV, followed by con-
clusion and discussion in Sec. V. Some estimates related to the
update of the bounds among consecutive SCF steps is given in
the Appendix.

II. POLE EXPANSION AND SELECTED
INVERSION METHOD

Assume that the Kohn-Sham orbitals are expanded with
a set of basis functions Φ = [ϕ1, . . . , ϕN ] and denote by H,
S the discretized Kohn-Sham Hamiltonian matrix and overlap
matrices, respectively. Without loss of generality, we consider
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isolated systems or solids with Γ point sampling strategy of
the Brillouin zone, and H, S are real symmetric matrices. The
standard method for solving the discretized system is to solve
the generalized eigenvalue problem

HC = SCΛ (2)

via direct or iterative methods. HereΛ = diag[λ1, . . . , λN ] is a
diagonal matrix containing the Kohn-Sham eigenvalues. The
single particle density matrix is then defined as

Γ = C fβ(Λ − µI)CT . (3)

Here β = 1/kBT is the inverse temperature, and

fβ(x) =
1

1 + eβx
(4)

is the Fermi-Dirac distribution (spin degeneracy is omitted).
The chemical potential µ is chosen to ensure that

Nβ(µ) = Tr[ fβ(Λ − µI)] = Tr[SΓ] = Ne, (5)

where Ne is the number of electrons. The computational com-
plexity for the solution of the generalized eigenvalue problem
is typically O(N3

e ).
Since fβ(·) is a smooth function when β is finite, the Fermi

operator expansion (FOE) method expands fβ(·) using a lin-
ear combination of simple functions such as polynomials or
rational functions, so that the density matrix can be evaluated
by matrix-matrix multiplication or matrix inversion, with-
out computing any eigenvalue or eigenfunction. The recently
developed pole expansion and selected inversion (PEXSI)
method12,13 is one type of FOE method, which expands Γ
using a rational approximation as

Γ ≈

P∑
l=1

Im
(
ω
ρ
l (H − (zl + µ)S)−1

)
. (6)

Here Gl B (H − (zl + µ)S)−1 defines an inverse matrix (or
Green’s function) corresponding to the complex shift zl. The
pole expansion is not unique. The expansion in Ref. 12 uses a
discretized Cauchy contour integral technique and can accu-
rately approximate the density matrix with only O(log β∆E)
terms. Here ∆E B max1≤i≤N |µ − λi | is the spectral radius
of the matrix pencil (H, S). The number of poles needed in
practice is typically 40 ∼ 80.

Recently, a new expansion for the Fermi-Dirac function
has been developed by Moussa,26 which has the same form as
in Eq. (6) but with a different choice of complex shifts {zl}
and weights {ωl}. This approach is based on modifying the
Zolotarev expansion for the sign function through numerical
optimization. We find that this new approach further reduces
the number of poles to 10 ∼ 30 for approximating the Fermi-
Dirac function for a wide range of β∆E. Furthermore, the
number of poles only approximately depends on β∆Eo. Here
∆Eo B max1≤i≤N (µ− λi) is the spectral radius corresponding
to the occupied eigenvalues, which can be significantly smaller
than the spectral radius of the matrix pencil (H, S). Due to these
advantages, we adopt Moussa’s method as the default option
for the pole expansion for the density matrix.

However, the optimization based pole expansion approach
has two minor drawbacks compared to the contour integral
approach. First, the validity of the contour integral approach

only depends on the analytical structure of the function to be
approximated in the complex plane, rather than the detailed
form of the function. This fact allows us to use exactly the
same set of poles to approximate multiple matrix functions
simultaneously, such as the energy density matrix and the free
energy density matrix used for computing the Pulay force and
the electronic entropy, respectively.13,18 This property does
not hold for optimization-based pole expansion method. Sec-
ond, the contour integral approach is a semi-analytic approach
and can achieve very high accuracy (e.g., the error of the
force can be as small as 10�9 hartree/bohr when compared
to results from the diagonalization method) without suffer-
ing from numerical problems. On the other hand, the opti-
mization problem for finding the pole expansion can become
increasingly ill-conditioned as the requirement of accuracy
increases.

In order to obtain the electron density in the real space,
it is not necessary to evaluate the entire density matrix Γ.
When the local or semilocal exchange-correlation function-
als are used, only the selected elements {Γij |Hij , 0} are in
general needed, even if the off-diagonal elements of Γ decay
slowly as in the case of metallic systems. We remark that when
a matrix element H ij is accidentally zero (often due to symme-
try conditions), such zero elements should also be treated as
nonzero elements. According to Eq. (6), we only need to eval-
uate these selected elements of each Green’s function. This
can be achieved via the selected inversion method.12,14,28 For
a (complex) symmetric matrix of the form A = H � zS, the
selected inversion algorithm first constructs an LDLT or LU
factorization of A. The computational scaling of the selected
inversion algorithm is only related to the number of nonzero
elements in the L, U factors. The computational complexity is
O(N) for quasi-1D systems, O(N1.5) for quasi-2D systems,
and O(N2) for 3D bulk systems, thus achieving universal
asymptotic improvement over the diagonalization method for
systems of all dimensions. It should be noted that the selected
inversion algorithm is an exact method for computing selected
elements of A�1 if exact arithmetic is employed, and in prac-
tice the only source of error originates from the roundoff error.
In particular, the selected inversion algorithm does not rely on
any localization property of A�1.

In addition to its favorable asymptotic complexity, the
PEXSI method is also inherently more scalable than the
standard approach based on matrix diagonalization when it
is implemented on a parallel computer. The parallelism in
PEXSI exists at two levels. First, the LU factorization and
the selected inversion processes associated with different
poles are completely independent. Second, each LU factor-
ization and selected inversion can be parallelized. We use
the SuperLU DIST29 package for parallel LU factorization
and PSelInv14,30 for parallel selected inversion, respectively.
In practice, the PEXSI method can harness over 100 000
processors on high performance computers.

III. ROBUST DETERMINATION OF THE CHEMICAL
POTENTIAL

Unlike diagonalization type methods, in general the chem-
ical potential µ cannot be read off directly from one evaluation
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of the Fermi operator. Typically several iterations are needed
to identify the chemical potential in order to satisfy Eq. (5).
As discussed in the Introduction, the behavior of the function
Nβ can depend on whether the system is insulating or metal-
lic and whether the temperature is low or high compared to
the magnitude of the gap. Furthermore, when the initial guess
is far away from the true chemical potential, the derivative
information N ′β(µ) is in general not very useful. Figure 1 illus-
trates the behavior of Nβ(µ) for an insulating and a metallic
system. The details of the setup of the systems are given in
Sec. IV.

Instead of converging the chemical potential in each SCF
iteration, the main idea of this paper is to compute rigor-
ous upper and lower bounds for the chemical potential. The
chemical potential is obtained using such bounds through an
interpolation procedure and may not necessarily be fully accu-
rate in each SCF iteration. However, as the SCF iteration
converges, the size of the search interval characterized by the
bounds decreases to zero, and hence the chemical potential
also converges to the true solution.

We obtain such bounds through a coarse level and a fine
level procedure as follows. At the coarse level, we use an iner-
tia counting procedure previously developed in Ref. 18, which
is an inexpensive procedure to compute the zero temperature
limit Nβ=∞(µ) for a set of values of µ. Since the temperature
effect is usually on the order of 100 K, which is orders of
magnitude smaller than the size of the search interval which
is on the order of Hartree (1 Hartree ≈ 315 774 K), such zero
temperature information can provide estimates of the upper
and lower bounds until the finite temperature effects become
non-negligible. Then at the fine level, we use PEXSI to evalu-
ate Nβ(µ) for a smaller set of values of µ (the size of this set
is denoted by Npoint), which properly takes the finite tempera-
ture effect into account and refines the bounds. The evaluation
of the Fermi operator at multiple values of µ also allows us to
interpolate the chemical potential as well as the density matrix,
so that Eq. (1) is satisfied up to the error of the interpolation
procedure. The procedure above is all that is involved in a sin-
gle SCF iteration, and no further iteration is necessary within
the SCF iteration.

At the coarse level and the fine level, the multiple evalu-
ations of N∞(µ) and Nβ(µ) can be evaluated in an embarrass-
ingly parallel fashion. Compared to Ref. 18, this adds a third
layer of parallelism. This is the key to achieve high efficiency
using the PEXSI method. We assume that the total number of
processors is denoted by

Nproc = NsparseNpoleNpoint, (7)

where Nsparse is the number of processors for operations on
each matrix, such as LU factorization or selected inversion.
Npole = P is the number of poles in the pole expansion. When
the number of processors is a multiple of NpoleNpoint, all poles
can be evaluated fully in parallel, and we refer to this case
as the full parallelization regime. In this case, the wall clock
time of the new method during each SCF iteration is approxi-
mately the same as that for one single evaluation of the Fermi
operator.

In order to guarantee that µ can converge to the true
value of the chemical potential when SCF converges, the upper
and lower bounds of the chemical potential must also reduce
proportionally with respect to the residual error in the SCF iter-
ation. Our method dynamically updates the interval between
consecutive SCF steps, which is rigorously controlled by the
magnitude of the change of the Kohn-Sham potential. In par-
ticular, when the SCF iteration is close to its convergence, the
size of the search interval characterized by the upper and lower
bounds is smaller than the finite temperature effect. In such a
case, the coarse level inertia counting procedure can be safely
skipped, and the wall clock time is precisely the same as that
for one single PEXSI evaluation.

A. Coarse level: Inertia counting

While the computation of Nβ(µ) requires the evalua-
tion of the Fermi operator, it turns out to be much easier
to compute N∞(µ) without diagonalizing the matrix pencil
(H, S). Here the subscript β =∞ refers to the zero temper-
ature limit. The method of Ref. 18 uses Sylvester’s law of
inertia,31 which states that the inertia (the number of negative,
zero, and positive eigenvalues, respectively) of a real symmet-
ric matrix does not change under a congruent transform. Our
strategy is to perform a matrix decomposition of the shifted
matrix

H − µS = LDLT ,

where L is unit lower triangular and D is diagonal. Since D
is congruent to H � µS, D has the same inertia as that of H
� µS. Hence, we can obtain N∞(µ) by simply counting the
number of negative entries in D. The matrix decomposition
can be computed efficiently by using a sparse LDLT or LU
factorization with a symmetric permutation strategy. The same
conclusion holds when H is Hermitian, and in this case, one
then replaces the LDLT factorization by the LDL∗ factoriza-
tion, where L∗ is the Hermitian conjugate of L. Compared to
the evaluation of the Fermi operator using PEXSI, the iner-
tia counting step is fast for a number of reasons: (1) PEXSI
requires both the sparse factorization and selected inversion,

FIG. 1. Fermi-Dirac distribution for
phospherene nanoribbon (PNR) 180
atoms (left) and graphene nanoribbon
(GRN) 180 atoms (right). The blue
dashed line shows the exact number of
electrons (900 for PNR and 720 for
GRN).
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and inertia counting only requires a sparse factorization.
(2) PEXSI requires evaluations of P Green’s functions to
obtain one value of Nβ(µ) and inertia counting obtains N∞(µ)
with one factorization. (3) PEXSI requires complex arithmetic,
and for real matrices, the inertia counting procedure only
requires real arithmetic and thus fewer floating point opera-
tions. Hence the inertia counting step takes only a fraction of
the time by each PEXSI evaluation.

The inertia counting strategy is naturally suited for paral-
lelization. The Nproc processors in Eq. (7) can be partitioned
into NpoleNpoint groups. Starting from an initial guess interval
(µmin, µmax), a set of values {N∞(µg)} can be simultaneously
evaluated on a uniform grid

µg = µmin +
g − 1

NpoleNpoint − 1
(µmax − µmin),

g= 1, . . . , NpoleNpoint.

(8)

The inertia counting procedure can determine that only one
of the intervals should contain the chemical potential, and the
same procedure can be applied to this refined interval. It is
easy to see that the size of the search interval shrinks rapidly
as (NpoleNpoint − 1)−k with respect to the number of iterations
k. For example when NpoleNpoint = 40, 3 iterations reduces the
search interval size from 10 hartree to 4 meV.

The effectiveness of the inertia searching procedure relies
on that Nβ(µ) can be well approximated by N∞(µ). This
approximation is clearly valid when the search interval is much
larger than 1/β = kBT. When the search interval is comparable
to kBT, the difference of the two quantities becomes notice-
able, and care must be taken so that the search interval does not
become too small to leave the true chemical potential outside.
In Ref. 18, we employ an interpolation procedure to estimate
Nβ(µ) from N∞(µ). The potential drawback of this procedure
is that the true chemical potential may not be always included
in the search interval. In this case, the subsequent PEXSI step

can fail, and one must go back to the previous inertia counting
stage with an expanded search interval.

In this work, we use the information N∞(µg) only to calcu-
late the upper and lower bounds for Nβ(µg), which guarantees
that the true chemical potential is always contained in the
search interval, up to the error controlled by a single parameter
τβ . More specifically, since the Fermi-Dirac function f β(x) is a
non-increasing function and rapidly approaches 1 when x < 0
and 0 when x > 0, we can select a number τβ so that we can
approximate

fβ(x) ≈



1, x ≤ −τβ ,

0, x ≥ τβ .
(9)

τβ is a tunable parameter but is not system dependent. In prac-
tice we find that setting τβ = 3/β = 3kBT is a sufficiently
conservative value for the robustness of our method. With this
controlled approximation, we have

Nβ(µ − τβ) ≤ N∞(µ) ≤ Nβ(µ + τβ). (10)

Hence each evaluation of N∞ provides an upper and a lower
bound for Nβ at two other energy points according to (10).
This provides an estimate of the chemical potential on each
grid point of the uniform grid in the inertia counting. If µ � τβ
exceeds the lower bound or µ + τβ exceeds the upper bound,
we can just take the lower bound to be 0 or the upper bound to
be the matrix size, respectively. We set µmin to be the largest µ
so that the upper bound is below Ne, and µmax is the smallest
µ so that the lower bound is above Ne. Figure 2 illustrates the
refinement procedure of the bounds for the chemical potential
for the PNR 180 system.

The inertia counting stops when µmax − µmin is below
certain tolerance denoted by τ

µ
inertia or when the lower and

upper bounds cannot be further refined, whichever is satisfied
first. In particular, if the size of the initial search interval is
smaller than the given tolerance, the inertia counting proce-
dure should be skipped directly. As will be discussed later,

FIG. 2. Refinement of the bounds for
the chemical potential in 4 inertia count-
ing steps for the PNR 180 system. For
illustration purpose, we evaluate the
inertia counting on 10 points. In step
4, the inertia counting procedure stops
because the upper and lower bounds
cannot be further refined. (a) Inertia
counting step 1. (b) Inertia counting step
2. (c) Inertia counting step 3. (d) Inertia
counting step 4.
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the capability of skipping the inertia counting procedure is
important for the self-correction of the search interval for the
chemical potential. The output of the inertia counting proce-
dure is an updated search interval, still denoted by (µmin, µmax)
ready for the evaluation of the Fermi operator.

B. Fine level: Multiple point evaluation
of the Fermi operator

After the inertia counting step converges, we refine the
upper and lower bounds of the chemical potential by evaluat-
ing the Fermi operator on multiple points using PEXSI. This
step also gives the density matrix Γ. Our target is to minimize
the wall clock time with the help of parallelization. Hence
motivated from the inertia counting procedure that performs
multiple matrix factorizations simultaneously, we can also per-
form Npoint PEXSI evaluations simultaneously. In the current
context, the method in Ref. 18 can be regarded as choosing
Npoint = 1.

Starting from the search interval (µmin, µmax) from the out-
put of the inertia counting procedure, this interval is uniformly
divided into Npoint − 1 intervals as

µg = µmin +
g − 1

Npoint − 1
(µmax − µmin), g = 1, . . . , Npoint,

(11)
and the density matrix Γ(µg) and hence number of electrons
Nβ(µg) can be evaluated simultaneously for all points. Unlike
inertia counting, Nβ(µg) is evaluated accurately with the finite
temperature effect correctly taken into account, and the only
error is from the pole expansion. This naturally updates the
upper and lower bounds of the chemical potential µmax, µmin,
respectively. If ��Nβ(µg)−Ne

�� is already smaller than the given

tolerance τNe for some g, then the PEXSI step converges.
We set µ = µg, Γ = Γ(µg), and we may proceed to the next
SCF iteration. If the condition is satisfied for multiple g, we
simply choose the first µg that satisfies the convergence cri-
terion. If the convergence criterion is not met for any µg, we
construct a piecewise interpolation polynomial Ñβ(µ) that is
monotonically non-decreasing and satisfies

Ñβ(µg) = Nβ(µg), g = 1, . . . , Npoint. (12)

Then the chemical potential is identified by solving Ñβ(µ)
= Ne. Such an interpolation can be constructed using, e.g.,
the monotone cubic spline interpolation.32 In practice, we find
that the following linear interpolation procedure is simpler
and works almost equally efficiently: We identify an inter-
val (µg∗ , µg∗+1) so that Nβ(µg∗ ) < Ne < Nβ(µg∗+1). Then the
chemical potential is found by solving the linear equation

Ne = Nβ(µ∗g) +
µ − µg∗

µg∗+1 − µg∗

(
Nβ(µg∗+1) − Nβ(µ∗g)

)
. (13)

Once µ is obtained, the density matrix is linearly mixed
similarly as

Γ = Γ(µ∗g) +
µ − µg∗

µg∗+1 − µg∗

(
Γ(µg∗+1) − Γ(µ∗g)

)
. (14)

Note that the interpolation procedure does not guarantee
that µ satisfies the condition (5). However, it will ensure that
the search interval is reduced at least by a factor (Npoint −1)−1,
and hence with k steps of iteration, the convergence rate of
the chemical potential is at least (Npoint − 1)−k . At each step of
the iteration, the true chemical potential is always contained
in the search interval. Hence the refinement is more robust
than Newton type methods, and it does not need to fold back

Algorithm 1. Robust determination of the chemical potential.

Input:

τ
µ
inertia ,τNe , Nproc = NsparseNpointNpole (assuming full parallelization),

(µmin,µmax) as the initial search interval.

Output:

Converged density matrix Γ and chemical potential µ.

1: while SCF has not converged do

2: Construct the projected Hamiltonian matrix H and overlap matrix S

3: while Inertia counting has not converged do

4: for g = 1 to NpoleNpoint do

5: Evaluate N∞(µg) for the processor group associated with µg from Eq. (8).

6: Construct the upper and lower bounds for Nβ (µg) for each point µg.

7: Update the search interval (µmin,µmax).

8: for g = 1 to Npoint do

9: for l = 1 to Npole do

10: Evaluate the pole (H � (zl + µ)S)�1 for the processor group associated with l

11: Evaluate µ and Γ for processor group associated with µg from Eq. (11) if needed.

12: Perform linear interpolation for µ and Γ according to Eqs. (13) and (14).

13: Evaluate the density and the new potential. Compute the difference of the potential ∆V.

14: Update the search interval (µmin,µmax)← (µmin + ∆Vmin,µmax + ∆Vmax).
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to the inertia counting stage. The extra flexibility in choosing
Npoint means that faster convergence can be achieved when
a larger amount of computational resource is available. We
also remark that the two end points of the search interval in
Eq. (11) are always the lower and upper bounds for µ and hence
can often be discarded in practical calculations. This increases
the efficiency especially when Npoint is small. In practice, we
find that even the extreme case with Npoint = 2 with dropped
end points is already very robust, and this is the default choice
in our implementation.

C. Dynamical update of the search interval

After the inertia counting and the multiple point evalu-
ation step, the search interval (µmin, µmax) already provides
very accurate information of the upper and lower bounds for
the chemical potential. Here we demonstrate how to reuse this
information in the following SCF iteration, while maintain-
ing rigorous bounds for the chemical potential of the updated
Hamiltonian matrix.

For KSDFT calculations with local and semi-local
exchange-correlation functionals, the change of the Kohn-
Sham Hamiltonian during the SCF iterations is always given
by a local potential denoted by ∆VSCF(r). Define

∆Vmin = inf
r
∆VSCF(r), ∆Vmax = sup

r
∆Veff(r). (15)

Then following the derivation in the Appendix, the chemical
potential must be contained in the interval (µmin +∆Vmin, µmax

+ ∆Vmax). This interval provides an upper and a lower bound
for the chemical potential for the new matrix pencil (H, S)
and can be used as the initial search interval in the next SCF
iteration.

Note that when (µmax− µmin)+(∆Vmax−∆Vmin) is smaller
than the stopping criterion of the inertia counting τβ , the iner-
tia counting step will be skipped automatically and only the
PEXSI step will be executed. When the SCF iteration is close
to its convergence, ∆Vmax − ∆Vmin becomes small, and the
search interval will be systematically reduced. A pseudocode
for our method is summarized in Algorithm 1.

IV. NUMERICAL RESULTS

We have implemented the new method in the PEXSI
package,15 which is a standalone software package for evalu-
ating the density matrix for a given matrix pencil (H, S). For
electronic structure calculations, the PEXSI package is also
integrated into the recently developed “Electronic Structure

Infrastructure” (ELSI) software package.27 In order to demon-
strate that the performance of the new method in the context of
SCF iterations for real materials, we test its performance in the
DGDFT (Discontinuous Galerkin Density Functional Theory)
software package,20,21 which is a massively parallel electronic
structure software package for large scale DFT calculations
using adaptive local basis (ALB) functions.

Our test systems include a semiconducting phospherene
nanoribbon (PNR) with 180 atoms and two metallic graphene
nanoribbon (GRN) systems with 180 and 6480 atoms, respec-
tively. As shown in Fig. 3, the GRN system is a metallic system
and PNR is a semi-conductor system with a bandgap of 0.48
eV. We set the kinetic energy cutoff to be 40 hartree and use 15
adaptive local basis functions per atom. The size of the Hamil-
tonian matrix represented in the adaptive local basis set for
PNR 180 and GRN 180 is 2700 and is 92 700 for GRN 6480,
respectively. All calculations are carried out on the Edison
systems at the National Energy Research Scientific Comput-
ing Center (NERSC). Each node consists of two Intel “Ivy
Bridge” processors with 24 cores in total and 64 gigabyte (GB)
of memory. Our implementation only uses MPI. The num-
ber of cores is equal to the number of MPI ranks used in the
simulation.

We first demonstrate the accuracy of the pole expansion
using two approaches: the contour integral approach12 and
the optimization approach by Moussa.26 The test is performed
using a fully converged Hamiltonian matrix from the GRN
180 system, benchmarked against results from diagonaliza-
tion methods using the pdsyevd routine in ScaLAPACK. The
accuracy of the pole expansion is measured by the error of
the energy denoted by ∆E and the maximum error of the force
denoted by∆F, respectively. As shown in Fig. 4, in the contour
integral approach, both errors decay exponentially with respect
to the number of poles. When 80 poles are used, the pole expan-
sion is highly accurate, as ∆E ≈ 10−7 hartree and ∆F ≈ 10−9

hartree/bohr, respectively. However, in practical KSDFT cal-
culations, the accuracy reached by expansion with 60 poles is
already sufficiently accurate. Such accuracy can be achieved
by using 20 poles with the optimization method, which reduces
the number of poles by a factor of 3. Nonetheless, when a
larger number of poles are requested, the optimization method
solves an increasing, more ill-conditioned problem, and the
error stops decreasing after 30 poles are used.

As discussed in Sec. III, the method in Ref. 18 uses a
hybrid Newton type method that requires multiple evaluations
of the Fermi operator performed sequentially to guarantee

FIG. 3. The total densities of states
(DOS) of (a) PNR and (b) GRN 180
atoms, respectively. The fermi levels are
marked by the green dashed line.
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FIG. 4. Error of the (a) energy and (b)
force of the PEXSI method with respect
to the number of poles for the graphene
180 system.

convergence of the chemical potential at each step of the
SCF iteration. This is referred to as the “PEXSI-old” method,
as opposed to the “PEXSI-new” method in this paper. We
then examine the convergence of the SCF iterations using the
PEXSI-new, PEXSI-old, and ScaLAPACK methods, respec-
tively. The residual error of the potential is defined as
‖Vout − V in‖/‖V in‖, where V in and Vout correspond to the
input and output Kohn-Sham potential in each SCF itera-
tion, respectively. According to Fig. 5, the decay rate of
the residual error is nearly the same for all three meth-
ods. In our tests, the convergence criterion for the residual
error is set to 10�7 for GRN 180 and 10�6 for PNR 180.
When the SCF iteration reaches convergence, we find that
the error of the total energy per atom between PEXSI-new
and ScaLAPACK is 2.8 × 10−6 hartree/atom for PNR and
is 5.5 × 10−8 hartree/atom for GRN, respectively. Similarly,
the maximum error of the force between PEXSI-new and
ScaLAPACK is 1.48 × 10−5hartree/bohrs for PNR and is
2.31 × 10−6hartree/bohrs for GRN, respectively.

In order to demonstrate the impact of the choice of the
parameter Npoint , we study the performance for the GRN180
system using Npoint = 1,2,4, respectively. The convergence cri-
teria are set to 10�7, and the same number of cores (576) is used
in all cases. It takes 91, 33, 33 SCF steps to reach convergence
and each PEXSI iteration takes 0.96, 1.71, 3.21 seconds for
Npoint = 1,2,4, respectively. Setting Npoint to 1 is not efficient
in terms of the number of SCF steps nor the total wall clock
time. The choices Npoint = 2 and Npoint = 4 have the same con-
vergence rate in terms of SCF steps. Hence in this test, setting
Npoint = 2 is about 2× faster than Npoint = 1 and 4. We find that
this is a typical behavior and recommend Npoint = 2 to be used
as the default choice.

In order to demonstrate the performance of PEXSI for a
relatively large metallic system, we further consider the GRN

6480 atom system. Figure 6(a) shows the number of iterations
at the coarse level (inertia counting) and at the fine level (evalu-
ation of the Fermi operator) in the PEXSI-new and PEXSI-old
methods, respectively. The PEXSI-new method uses only one
iteration at the fine level by construction, while the PEXSI-old
method uses 2 � 3 fine level steps during the SCF iteration. We
also find that PEXSI-new involves on average less number of
coarse level inertia counting steps as well. Figure 6(b) reports
the average wall clock time per SCF iteration for PEXSI-new,
PEXSI-old, and diagonalization using ScaLAPACK, all using
5184 cores. We also report the timing for LU factorization and
selected inversion separately for the evaluation of the Fermi
operator at the fine level. We can clearly observe that despite
the inertia counting steps at the coarse level may require mul-
tiple iterations, it is much less costly compared to the fine level
evaluation step. Compared to PEXSI-old, PEXSI-new reduces
the wall clock time by around a factor of 2 due to the reduced
number of fine level evaluations. We also remark that while
the wall clock time using ScaLAPACK cannot be improved
with further increase of the number of cores, PEXSI can scale
up to 51 840 cores, where the average wall clock time per
SCF from PEXSI-new and PEXSI-old becomes 31 s and 57 s,
respectively.

In order to further demonstrate the effectiveness of the
strategy of on-the-fly convergence of the chemical potential,
we apply the PEXSI-new method to perform ab initio molec-
ular dynamics simulation for the PNR 180 system in the NVE
ensemble. We use the Verlet method to produce a trajectory
of length 250 fs. We set the initial temperature to be 300 K.
Figure 7 shows the potential energy Epot and the total energy
Etot , as well as the drift of the total energy along the simula-
tion, which is defined as Edrift(t) =

Etot (t)−Etot (0)
Etot (0) . We find that

the use of the PEXSI-new method leads to a very small drift
less than 1.7 × 10−6.

FIG. 5. SCF convergence with ScaLA-
PACK and PEXSI-old and PEXSI-new
along the SCF steps for (a) PNR 180 and
(b) GRN 180 systems.



144107-9 W. Jia and L. Lin J. Chem. Phys. 147, 144107 (2017)

FIG. 6. Comparison of the perfor-
mance of PEXSI-new and PEXSI-old,
and diagonalization for the GRN 6480
system. (a) Number of inertia counting
step and evaluation of the Fermi oper-
ator steps. (b) The timing for PEXSI-
new, PEXSI-old, and diagonalization
per SCF step.

FIG. 7. (a) The potential energy, total
energy, and (b) drift of the total energy
using the PEXSI-new method.

V. CONCLUSION

In this paper, we developed a robust and efficient approach
for finding the chemical potential in the pole expansion and
selected inversion (PEXSI) approach for solving KSDFT. The
main idea of the new method is not to find the exact chemical
potential at each SCF iteration but to dynamically update the
upper and lower bounds for the true chemical potential, so that
the accuracy of the chemical potential is comparable to that
of the residual error in the SCF iteration. In particular, when
the SCF converges, the chemical potential converges as well.
The new method reduces the number of tunable parameters
and is more robust. In the regime of full parallelization, the
wall clock time in each SCF iteration is always approximately
the same as only one evaluation of the Fermi operator. This
reduces the absolute value as well as the uncertainty of the
wall clock time when the PEXSI method is used for solving
KSDFT. We demonstrated the efficiency of the new method
using insulating and metallic systems as examples, and the new
method is available in the PEXSI software package. Finally,
our approach is not restricted to the PEXSI method and can
be applied to other Fermi operator expansion (FOE) type of
methods as well.
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APPENDIX: EIGENVALUE ESTIMATES

Let ∆VSCF(r) be the difference of the Kohn-Sham poten-
tial in the real space between two consecutive SCF iterations,
and we assume that the basis set denoted by Φ does not
change during the SCF iterations. The corresponding matrix
pencils are (H, S) and (H̃, S), respectively. The difference of
the Hamiltonian matrices is

∆H = H̃ − H = ΦT
∆VSCFΦ, (A1)

and the overlap matrix S = ΦTΦ remains the same. Denote by
λk (respectively, λ̃k) the kth smallest eigenvalue of H (respec-
tively, H̃). Then the Courant-Fisher minimax theorem33 indi-
cates that

λ̃k = min
dimS=k

max
0,u∈S

*
,

uT H̃u

uT Su
+
-

, (A2)

where the minimization is over all subspacesSwith dimension
k. Hence

λ̃k ≤ min
dimS=k

[
max

0,u∈S

(
uT Hu

uT Su

)
+ max

0,u∈S

(
uT∆Hu

uT Su

)]

≤ min
dimS=k

max
0,u∈S

(
uT Hu

uT Su

)
+ max

0,u

(
uT∆Hu

uT Su

)
≤ λk + ∆Vmax. (A3)

Here we have used the Courant-Fisher minimax theorem for
λk as well as the estimate of the largest eigenvalue of the
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matrix pencil (∆H, S) in terms of ∆VSCF. Similarly calculation
shows

λ̃k ≥ min
dimS=k

max
0,u∈S

(
uT Hu

uT Su

)
+ min

0,u

(
uT∆Hu

uT Su

)
≥ λk + ∆Vmin. (A4)

Again use the fact that the Fermi-Dirac function f β(ε) is a
non-increasing function, we have

Ñβ(µmin + ∆Vmin) BTr[ f (Λ̃ − (µmin + ∆Vmin)I)]

≤ Tr[ f (Λ − µminI)] = Nβ(µmin) ≤ Ne,
(A5)

where the last inequality comes from that µmin is a lower bound
for the chemical potential associated with the matrix pencil (H,
S). Similarly

Ñβ(µmax + ∆Vmax) ≥ Nβ(µmax) ≥ Ne. (A6)

The inequalities (A5) and (A6) establish that the chemical
potential associated with the matrix pencil (H̃, S) is contained
in the updated interval (µmin + ∆Vmin, µmax + ∆Vmax).
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