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a b s t r a c t

We present for the first time an efficient iterative method to directly solve the four-
component Dirac–Kohn–Sham (DKS) density functional theory. Due to the existence of
the negative energy continuum in the DKS operator, the existing iterative techniques for
solving the Kohn–Sham systems cannot be efficiently applied to solve the DKS systems.
The key component of our method is a novel filtering step (F) which acts as a precondition-
er in the framework of the locally optimal block preconditioned conjugate gradient (LOB-
PCG) method. The resulting method, dubbed the LOBPCG-F method, is able to compute the
desired eigenvalues and eigenvectors in the positive energy band without computing any
state in the negative energy band. The LOBPCG-F method introduces mild extra cost com-
pared to the standard LOBPCG method and can be easily implemented. We demonstrate
our method in the pseudopotential framework with a planewave basis set which naturally
satisfies the kinetic balance prescription. Numerical results for Pt2, Au2, TlF, and Bi2Se3

indicate that the LOBPCG-F method is a robust and efficient method for investigating the
relativistic effect in systems containing heavy elements.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

The electron, as an elementary particle, has spin and charge, and further acquires an angular momentum quantum num-
ber corresponding to a quantized atomic orbital when binded to the atomic nucleus. The importance of the spin–orbit cou-
pling (SOC) effect in semiconductors and other materials have been extensively explored in quantum physics and quantum
chemistry. For example, SOC causes shifts in the atomic energy level of an electron [1], and leads to protected metallic sur-
face or edge states as a consequence of the topology of the bulk electronic wave functions [2]. As a typical relativistic effect,
SOC has magnitude of the order Z4a�2 for a hydrogen like atom [3], where Z is the nuclear charge, a ¼ c�1 in the atomic unit
is the fine structure constant and c is the speed of light. For systems containing heavy elements with large Z, the nonrela-
tivistic Schrödinger type equations such as the Kohn–Sham (KS) density functional theory [4,5] leads to large error [6,7].
The extension of the density functional theory is not straightforward as quantum electrodynamics has to been used for
charged particles in which complicated renormalization is necessary to get finite expressions for charge, energy, etc. [8].
The relativistic density functional theory, first laid out by Rajagopal and Callaway [9], can be rigorously derived from quan-
tum electrodynamics. However, the resulting equations are too complicated to solve in practice and proper renormalization
has to be performed to eliminate the divergent terms. The frequently-used working equations are the four-component
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Dirac–Kohn–Sham (DKS) equations derived by Rajagopal [10] and independently by MacDonald and Vosko [11] after making
several physically reasonable approximations. The extension to the time-dependent scenario can be found in e.g. [12,13].

Mathematically, the DKS operator is fundamentally different from the KS operator. The spectrum of the DKS operator,
sketched in Fig. 1, consists of the point spectrum (blue dots), the positive energy continuum (thick blue line from þmc2

to þ1) and the negative energy continuum (thin red line from �1 to �mc2), and is therefore unbounded from blow
[14]. Meanwhile the spectrum of the KS operator does not contain any negative energy and is bounded from below. Here
m is the electron mass and we have m ¼ 1 and c � 137 in atomic unit. When solving the DKS equations numerically, the
DKS operator will be discretized by a basis set of finite size, and both the positive energy continuum and the negative energy
continuum will be truncated before infinity is reached. Hereafter we refer to the set of eigenvalues of the discretized DKS
operator in the point spectrum and the positive energy continuum as the positive energy band, and the set of eigenvalues
of the discretized DKS operator in the negative energy continuum as the negative energy band. There are approximately equal
number of eigenvalues in the positive and the negative energy bands separated by a large gap, which is also called the
forbidden region with its width denoted by D. We denote by w the maximum of the widths of the positive and the negative
energy band. The desired eigenvalues and eigenvectors in the positive energy band are usually contained in the point spec-
trum or in very rare cases cover the entire point spectrum and a very few low lying states in the positive energy continuum.

Attempts to solve the DKS equations are plagued by the so-called ‘‘variational collapse’’ [15], which specifically means
two difficulties. The first difficulty is the so-called spectral pollution – the appearance of spurious eigenvalues which are
the limiting points of the eigenvalues of the discretized DKS operator as the basis set becomes complete, but are not the
eigenvalues of the true DKS operator. They often lie deeper than the desired solutions or may even be degenerate with them.
The second difficulty is the occurrence of the spurious eigenvalues in the forbidden region when solving the discretized DKS
operator using inappropriate numerical schemes. The reason for such collapse is that the spectrum of the DKS operator
cannot be defined variationally [14]. Several prescriptions to avoid variational collapse were summarized and analyzed by
Kutzelnigg [16] as well as Lewin and Séré [17]. Among all the prescriptions, the kinetic balance prescription [18–20]
addresses the first difficulty most successfully from practical point of view, and serves as the foundation for most successful
attempts to solve the DKS equations via finite dimensional matrix eigenvalue problems. Many effective numerical imple-
mentations for performing four-component DKS calculations with the localized basis sets (e.g. Gaussian type orbitals and
atomic orbitals) have been presented by quantum chemists in the last four decades, including the DVM scheme [21,22],
the BDF package [23], the program of Fricke and coworkers [24], the REL4D module in Utchem [25], the DKS module in DIRAC
[26] and the BERTHA code [27]. In all these methods, the finite dimensional DKS matrix is diagonalized directly as a dense
matrix, which computes all the eigenvalues and eigenvectors in both positive and the negative energy bands. The direct diag-
onalization methods avoid the second difficulty in the variational collapse originating from inappropriate numerical
schemes. However, these methods are prohibitively expensive when the dimension of the discretized DKS operator becomes
large.

While the localized basis sets are widely used in the community of quantum chemistry, the planewave basis set is more
popular in the community of condensed matter physics for the reason that systematic convergence can be achieved by only
increasing the kinetic energy cutoff. The planewave basis set can be used as the only basis set in the pseudopotential frame-
work [28], and as an augmented basis set such as in the linearized augmented planewave method (LAPW) [29]. In terms of
the DKS density functional theory, the planewave basis set automatically satisfies the kinetic balance prescription and is free
from the spectral pollution [17]. However, compared to the localized basis set, the planewave basis set leads to matrix eigen-
value problems of much larger size which is impractical to be diagonalized directly as dense matrices. Iterative methods
have to be designed to solve the matrix eigenvalue problems for the desired eigenvalues and eigenvectors contained in
the positive energy band. There are approximately the same number of eigenvalues in the positive and the negative energy
bands, and standard iterative techniques for solving the KS systems cannot be efficiently applied without necessary modi-
fication. For example, the conjugate gradient method [30,31], the locally optimal block preconditioned conjugate gradient
(LOBPCG) method [32,33], the RMM-DIIS method [34] and the Lanczos method [35] need to evaluate all the states in the
negative energy band and therefore is prohibitively expensive; It is difficult to design a set of efficient filtering polynomials
as in the Chebyshev filtering method [36], since the separation between the occupied and unoccupied eigenvalues in the
positive energy band (usually in the order of 0:1 au or smaller) is much smaller compared to the width of the forbidden re-
gion (D � 37000 au). The spectral radius of the matrix resulting from the spectrum folding technique [37] will be in the order
of D2 � 109 for the DKS equations, and the resulting positive definite eigenvalue problem cannot be solved efficiently with
iterative methods.

In this work, an efficient iterative method to directly solve the four-component DKS density functional theory will be
presented for the first time. The key component of our method is a filtering step (F) which can act as a preconditioner in
Fig. 1. A sketch of the spectrum of the DKS operator. For explanations see the text.
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preconditioned iterative diagonalization methods. In particular, our method is demonstrated based on the LOBPCG method,
and is therefore dubbed the LOBPCG-F method. Compared to other types of preconditioned conjugate gradient methods, the
LOBPCG method has been shown to be effective for evaluating a relatively large number of eigenvalues and eigenvectors, and
its efficiency has been illustrated in large scale electronic structure calculation such as in ABINIT [38,39]. However, for the
DKS systems, the standard LOBPCG method amplifies the error of the eigenfunctions projected to the negative energy band in
each iteration, and therefore needs to evaluate all the eigenfunctions in the negative energy band together with the desired
eigenfunctions in the positive energy band. We illustrate that such error can be efficiently controlled by the filtering step,
and the desired eigenvalues and eigenvectors in the positive energy band can be evaluated without computing any negative
energy state. The filtering step only introduces 2 extra matrix–vector multiplication per iteration, and can be implemented
simply as a preconditioner with little coding effort.

We implement the LOBPCG-F method to solve the DKS equations in the pseudopotential framework with a planewave
basis set (module DKS). To benchmark our numerical results, we also implement the standard LOBPCG method for solving
the KS density functional theory (module KS), and for solving the two-component KS density functional theory with SOC in
the pseudopotential framework (module KSSO). We directly compare the total energies obtained from the modules KS and
KSSO with those obtained from the corresponding modules in a popular electronic structure software ABINIT [39]. We apply
the modules KS, KSSO and DKS to solve systems including Pt2, Au2, TlF, and Bi2Se3. The differences in the total free energy are
less than 1 meV per atom compared to ABINIT for all systems under study. Despite that the relativistic correction is relatively
small for valence-valence interaction, our numerical results for solving the DKS equations indicate that the LOBPCG-F meth-
od is robust and efficient in studying the relativistic effect in systems containing heavy elements.

All the discussion in the rest of the manuscript will be presented in the pseudopotential framework in the context of
orthogonal basis set (the planewave basis set is orthogonal). We remark that the LOBPCG-F method can be used for all-elec-
tron calculation and for non-orthogonal basis functions as well. This is the case for the LAPW method such as implemented in
the WIEN2k software [40], and also for the localized basis set given that the overlap matrix is not very ill-conditioned.

The paper is organized as follows. We briefly review the four-component DKS density functional theory in Section 2 and
discuss in detail the variational collapse and the choice of basis set. We develop the LOBPCG-F algorithm in Section 3. The
numerical results are presented with discussion in Section 4. The paper is concluded in Section 5. Throughout the paper, the
atomic units (e ¼ �h ¼ 1) will be used unless otherwise noted.
2. DKS density functional theory

We will now describe the main working equations – the DKS equations derived by Rajagopal [10] and independently by
MacDonald and Vosko [11], and refer to Engel [8] and van Wüllen [41] for a elaborate and general discussion on relativistic
density functional theory which can be rigorously derived from quantum electrodynamics. Several related numerical issues
are then discussed, such as the variational collapse and the choice of basis in solving the DKS matrix eigenvalue problems.
2.1. DKS equations

Under the no-pair and electrostatic approximations [8,41], the total energy of an interacting n-electron system corre-
sponding to the Dirac-Coulomb Hamiltonian takes the form
E½q;m� ¼ T½q;m� þ
Z

VextðrÞqðrÞdrþ 1
2

Z
qðr1Þqðr2Þ
jr1 � r2j

dr1dr2 þ Exc½q;m�; ð1Þ
where qðrÞ is the electron density, mðrÞ is the spin density, and VextðrÞ is the nuclear attractive potential. The first term T is
the kinetic energy of the noninteracting reference system suggested by Kohn and Sham [5], the third term is the electrostatic
energy, and Exc is the exchange-correlation functional containing both the difference between the true many body electron–
electron repulsive energy and the electrostatic energy, and the difference between the true many body kinetic energy and
the kinetic energy of the noninteracting reference system. This factious system, which could be represented by a single Slater
determinant in terms of one-electron spinors fwig corresponding to the energy levels f�ig, has the same electron density as
the interacting many body system. In consequence, we could use fwig to evaluate the kinetic energy and the densities
T ¼
Xocc

i

wiðrÞ
yhDwðrÞ; hD ¼

mc2I2 cr � p
cr � p �mc2I2

 !
; ð2Þ
qðrÞ ¼
Xocc

i

wiðrÞ
ywiðrÞ; mðrÞ ¼

Xocc

i

wiðrÞ
y r 02

02 �r

� �
wiðrÞ; ð3Þ
where hD is the Dirac operator corresponding to free particles, p ¼ �ir is the momentum operator, In and 0n are the n� n
unit and null matrices, r ¼ ðrx;ry;rzÞ is the vector of the Pauli spin matrices, and the each spinor wi is a complex vector-
valued function: R3 ! C4, which are often rewritten as wi ¼ ð/i;viÞ

T with /i;vi being functions: R3 ! C2. In what follows
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we will often refer to the two-spinor /i (resp. vi) as the large (resp. small) component of the four-spinor wi. Here the sum-
mations are only restricted to the occupied states in the positive energy band.

The Euler–Lagrange equation with respect to E½q;m� gives rise to the DKS equation
r � Bxc þmc2I2 cr � p
cr � p �r � Bxc �mc2I2

 !
þ VhxcI4 þ VextI4

" #
/i

vi

� �
¼

/i

vi

� �
�i; ð4Þ
where
VhxcðrÞ ¼
Z

qðr1Þ
jr� r1j

dr1 þ
dExc

dq
ðrÞ; ð5Þ

BxcðrÞ ¼
dExc

dm
ðrÞ: ð6Þ
Here for simplicity the exchange–correlation functional under local density approximation (LDA) [42,43] is used. Our discus-
sion below is not restricted to the LDA approximation.

Ideally all-electron calculations should be performed to obtain accurate results, but with large computational cost in or-
der to resolve the sharp gradient of core orbitals and the oscillation of valance orbitals in the neighborhood of nuclei. A more
practical way striking the balance between accuracy and efficiency is to employ effective core potentials [44], in which the
core electrons are frozen and the valance-only problem is solved. The pseudopotential technique is one branch of effective
core potential approaches. One should be careful in choosing pseudopotential for a relativistic Hamiltonian such as DKS,
since most of the existing pseudopotentials are generated for the nonrelativistic Hamiltonian. The mismatch between the
pseudopotential and the relativistic Hamiltonian introduce possibly double counting of the relativistic effect [45]. We adopt
here the widely known HGH pseudopotential [46] which includes the scalar relativistic effect and the spin–orbit coupling
effect of the core electrons by construction, and can be specified by a very small number of parameters due to its dual-space
Gaussian form. Rigorously speaking, the HGH pseudopotential may still suffer from double counting of the relativistic effect,
since the parameters are optimized using the non-relativisitic equations. On the other hand, the numerical method devel-
oped in this paper does not depend on the specific choice of parameters of the HGH pseudopotential, and the numerical re-
sults can be readily improved when the HGH pseudopotential is reparametrized for the DKS calculation. The HGH
pseudopotential consists of three parts
VHGHðr; r0Þ ¼ V locðrÞdðr� r0ÞI4 þ
X

l

V lðr; r0ÞI4 þ DVSO
l ðr; r0ÞL

0 � S
� �

; ð7Þ
where the subscript l is the angular momentum number, V loc;Vl, and DVSO
l represent in the order the local contribution, the

nonlocal contribution and the SOC effect of the HGH pseudopotential, of which the formulas can be found in [46] and thus
are skipped here to save space. dðrÞ is the Dirac delta function, L0 is the angular momentum at position r0, and

S ¼ 1
2

r 02

02 r

� �
is the spin operator. The HGH pseudopotential VHGH is an integral operator on the spinors. After denoting

the first matrix operator of the LHS term of Eq. (4) by H0, we finally arrive the DKS equation for valence electrons
H0 þ VhxcI4½ �wiðrÞ þ
Z

VHGHðr; r0Þwiðr0Þdr0 ¼ wiðrÞ�i: ð8Þ
The nuclear attraction term Vext in Eq. (4) is replaced here by the VHGH term that describes the electrostatic interaction be-
tween the effective nuclei and valance electrons. The DKS Eqs. (4) or (8) are usually solved with the self-consistent field (SCF)
iteration as in the case of the nonrelativistic KS equations [47].

2.2. Variational collapse and kinetic balance

As we have mentioned in Section 1, the most salient feature of the DKS operator is that its spectrum contains the neg-
ative energy continuum and is therefore unbounded from below. The desired eigenvalues and eigenvectors corresponding to
the occupied bound states lie in the positive energy band (see Fig. 1), i.e. we are seeking for highly excited states above all
the negative energy states. When solving the resulting matrix eigenvalue problems by expanding wi in Eq. (8) with a finite
basis set, such feature of the DKS operator imposes a large obstacle, i.e. the variational collapse called by Schwarz and Wall-
meier [15], in the sense that the eigenvalues of the discretized DKS operator may not systematically converge to the eigen-
values of the true DKS operator as the basis size increases. This variational collapse, is imputed by Kutzelnigg [16] to the
wrong nonrelativistic limit of the matrix representation of the Dirac operator and several prescriptions have been proposed
to avoid it. The first strategy is to replace minimization procedures by min–max procedures [48–50]. The min–max methods
find the minimum over the large component of the spinors and the maximum over the small component of the spinors for
the DKS energy functional, and these methods are not used often practically in electronic structure calculation. The second
strategy is the two-component relativistic theory which seeks for operators which are bounded from below and agrees with
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the DKS operator in the nonrelaticistic limit [51]. A very good discussion of approaches made in this direction can be found
in [52]. The third strategy is to carefully choose the basis set with which the discretized DKS operator is free of the spectral
pollution. Among all the strategies, the kinetic balance method [18–20], falling into the third category, is widely used by
theoretical chemists [52], and serves as the basis of most successful attempts to solve matrix eigenvalue equations based
on finite-dimensional representations of the DKS operator. The feature of the kinetic balance is the one-to-one correspon-
dence of the basis sets that are used to expand the large and small components, achieved via a linear operator r � p. Specif-
ically, the basis ffk; ;k ¼ 1; . . . ;Ng for expanding the small components are obtained directly from the basis fgk; k ¼ 1; . . . ;Ng
for expanding the large components, according to the so-called kinetic balance prescription
fk ¼
1

2mc
r � pgk; k ¼ 1; . . . ;N: ð9Þ
The use of the kinetic balance avoids the worst aspects of variational collapse and could generate the desired eigenvalues and
eigenvectors in the positive energy band with good accuracy if a sufficiently flexible basis set is employed [19,20,17,53]. The
localized basis sets satisfying the kinetic balance prescription (9) are often used in quantum chemistry and all the eigen-
values and eigenvectors of the discretized DKS operator are obtained by the direct diagonalization method including the neg-
ative energy band that are not used in practice.
2.3. Choice of basis set: planewaves

Compared to the standard localized basis sets used in the relativistic quantum chemistry community, the planewave ba-
sis set has the advantage that systematic convergence can be achieved by tuning one parameter – the kinetic energy cutoff
[47]. Furthermore, the planewave basis set automatically satisfies the kinetic balance prescription (9), i.e. the space spanned
by planewaves within a certain cutoff is invariant when applied by the r � p operator, and therefore the planewave basis set
is a good basis set for both the large component and the small component. Namely, the planewave basis set can avoid the
spectral pollution in practice. However, the planewave basis set usually results in a much larger degrees of freedom per atom
(in the order of 500 � 5000 or more for standard norm conserving pseudopotential [28] with only valence electrons taken
into consideration), which is much larger than the degrees of freedom per atom used by localized basis set. We remark that
the degrees of freedom used by the finite difference method and the finite element method will also be much larger than the
degrees of freedom used by localized basis set, but it is less obvious how the kinetic balance prescription will be enforced in
these methods.

Due to the large matrix size after the planewave discretization, the direct diagonalization method will not be applicable.
The discretized Hamiltonian operator in (8) generated by the planewave basis set, hereafter also referred to as the Hamilto-
nian matrix, is dense in both the Fourier space and the real space, which discourages the usage of the shift–invert Lanczos
method [54], the contour integral based spectrum slicing methods [55], or the Fermi operator expansion based low order
scaling algorithms [56–58]. These methods involve matrix inversion and become less competitive when the matrix is dense.
Furthermore, techniques that directly eliminate the negative energy band, such as exact two-component theory [52] in-
volves direct manipulation of the Hamiltonian matrix, which is again not possible to handle in the case of the planewave
basis set as a result of the large matrix size. Iterative methods have to be used to diagonalize the discretized Hamiltonian
operator, which will be discussed in detail in Section 3.
3. An efficient iterative method for solving the DKS equations

As mentioned in Section 1, there are approximately the same number of eigenvalues and eigenvectors in the positive and
the negative energy bands, separated by a large spectral gap with width D as shown in Fig. 1. Existing iterative techniques for
solving the KS equations cannot be efficiently applied to solve the DKS equations without necessary modification. In this
section we demonstrate that the negative energy band of the DKS operator can be efficiently eliminated using only 2
additional matrix–vector multiplications per iteration, based on the locally optimal block preconditioned conjugate gradient
(LOBPCG) method [32]. The key component of the proposed new method is an additional filtering (F) step, and we therefore
refer to our new method as the LOBPCG-F method. We remark that a similar filtering procedure can also be applied to other
preconditioned iterative solvers to eliminate the negative energy band, such as the preconditioned Davidson type methods
[59].
3.1. LOBPCG-F algorithm

The LOBPCG-F algorithm is described in Algorithm 1. It can be easily found there that removing the new filtering steps
underlined in Algorithm 1 yields directly the standard LOBPCG algorithm as in [32]. The matrices H; T and f ðHÞ used in Algo-
rithm 1 can be defined in the ‘‘matrix-free’’ form, in the sense that they are defined according to subroutines which only
computes Hx; Tx; f ðHÞx for any vector x without forming the matrix elements explicitly. C is a constant used as a shift in
the filtering function, which is chosen from the negative energy continuum as shown in Fig. 1.
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Algorithm 1. The LOBPCG-F algorithm for solving the DKS density functional theory. The underlined steps describe the
new filtering step compared to the standard LOBPCG method. The filter is given in Eq. (16).

Input:
Subroutine Hx (Tx) to multiply the Hamiltonian (preconditioning) operator to a vector, the shift constant C, the normal-
ization constant X, the number of eigenvalues n, the initial guess of eigenvectors X0 2 RN�n, the number of initial filter-
ing steps Ninit, the maximum number of iterations Niter, the tolerance for convergence �.

Output:
K ¼ diagðk1; . . . ; knÞ where fkign

i¼1 are the lowest n eigenvalues in the positive energy band, and X 2 RN�n are the asso-
ciated eigenvectors.
1: for k ¼ 1; . . . ;Ninit do
2: Set X0  f ðHÞX0.
3: end for
4: Solve V ;K1 2 Rn�n from the generalized eigenvalue problem ðXT

0HX0ÞV ¼ ðXT
0X0ÞVK1, with the diagonal elements of

K1 sorted in a non-decreasing order.
5: Set X1  X0V .
6: Compute the residual R HX1 � X1K1.
7: Set P  ½� to be an empty matrix.
8: for k ¼ 1; . . . ;Niter do
9: Solve the preconditioned residual Y from TY ¼ R.
10: SetY  f ðHÞY .

11: Construct a subspace Z ¼ ½Xk;Y; P�; Z 2 RN�nZ and nZ > n.
12: Solve V ;Kkþ1 2 RnZ�nZ from the generalized eigenvalue problem ðZT HZÞV ¼ ðZT ZÞVKkþ1, with the diagonal

elements of Kkþ1 sorted in a non-decreasing order.
13: Set V  the first n columns of V.
14: Set Kkþ1  the upper-left n� n block of Kkþ1.
15: Set Xkþ1  ZV .
16: Compute the residual R HXkþ1 � Xkþ1Kkþ1.
17: if the norm of each column of R is less than � then
18: Exit the loop.
19: end if
20: Set R the columns of R with norm larger than �.
21: Set V  the columns of V corresponding to remaining columns of R.
22: Set P  ½0;Y; P�V .
23: end for
24: return X  Xkþ1;K Kkþ1.

We first demonstrate how the error of the eigenfunctions projected to the negative energy band is propagated in the stan-
dard LOBPCG method. To simplify the analysis, we assume here that the preconditioner T to be an identity operator. The
qualitative result remains to be valid if standard preconditioners in the electronic structure calculation are applied, such
as the preconditioner proposed by Teter et al. [31,60]. Furthermore, we need a key assumption that
D� w; ð10Þ
which is valid in the pseudopotential framework with the planewave basis set for D � 37000 and w � 100 hold there. The
foregoing assumption is also valid in the all-electron calculation using the LAPW basis set, or using the localized basis set
given that the basis set remains well conditioned. However, we remark that w can be artificially large when the basis set
is overcomplete and then the assumption (10) will not be valid anymore.

The LOBPCG method computes the residual R ¼ HX � XK once per iteration (line 16 in Algorithm 1). Denote by x a given
column of X, k the corresponding eigenvalue in K, and r and y the corresponding column in the residual R and the precon-
ditioned residual Y, respectively. We express r and x using the eigen-decomposition as
r ¼
X

i

wþi ~rþi þ
X

j

w�j ~r�j ;

x ¼
X

i

wþi ~xþi þ
X

j

w�j ~x�j ;
ð11Þ
Here wþi is the spinor corresponding to �þi in the positive energy band, and w�j the spinor corresponding to ��j in the negative
energy band. We further assume that the error of the eigenfunctions projected to the negative energy band, characerized by
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maxjj~x�j j, is initially very small but not yet vanishes. Since r ¼ Hx� xk, the coefficients f~rþi g; f~r�j g are related to the coeffi-
cients f~xþi g, f~x�j g according to
~rþi ¼ ð�þi � kÞ~xþi ; ~r�j ¼ ð��j � kÞ~x�j ; ð12Þ
implying that the error in the residual ~rþi (resp. ~r�j ) is amplified by �þi � k (resp. ��j � k) from ~xþi (resp. ~x�j ). In order to quantify
the relative amplification of the error projected to the negative energy band in the residual r compared to the amplification of
the error projected to the positve energy band, we define the amplification factor as follows
cLOBPCG ¼max
k

maxjj��j � kj
maxij�þi � kj : ð13Þ
Since k is a desired eigenvalue contained in the positive energy band, the assumption (10) implies further that
��j � k
��� ��� � D; �þi � k

�� �� � w: ð14Þ
In consequence, we have
cLOBPCG �
D
w

ð15Þ
and the relative error projected to the negative energy band in r is amplified by a factor D=w compared to that in x. The error
remains in the preconditioned residual y and propagates into the subspace used in the next LOBPCG iteration (line 11 in
Algorithm 1). In case of D

w ¼ 300, even if the initial error is small, say maxjj~x�j j � 10�15, only after 6 iterations, the error of
the eigenfunctions projected to the negative energy band will accumulate to Oð1Þ in the worst case scenario.

In order to compensate for the amplified error projected to the negative energy band, the LOBPCG-F method applies a
filtering step to the preconditioned residual Y before the error propagates to the next LOBPCG iteration (line 10 in Algorithm
1). The filtering function takes the form
f ðEÞ ¼ 1
X2 ðE� CÞ2; ð16Þ
where the shift constant C is chosen to be in the negative energy continuum (see Fig. 1), and X is a normalization constant so
that f ðEÞ ¼ 1 when E is the largest eigenvalue in the positive energy band. We remark that although filtering functions of
other forms can also be employed, the quadartic filtering function (16) requires only 2 extra matrix–vector multiplications,
and achieves nearly the minimum cost. Under the assumption (10), we have X � D. In the following we show how the filter
(16) works.

Again using the eigen-decomposition for y after the filtering step (line 10 in Algorithm 1) and assuming the identity pre-
conditioner T lead to
y ¼
X

i

wþi ~yþi þ
X

j

w�j ~y�j ; ð17Þ
where
~yþi ¼ f ð�þi Þð�þi � kÞ~xþi ; ~y�j ¼ f ð��j Þð��j � kÞ~x�j : ð18Þ
The amplification factor of the LOBPCG-F method becomes
cLOBPCG�F ¼max
k

maxjjf ð��j Þð��j � kÞj
maxijf ð�þi Þð�þi � kÞj : ð19Þ
Again under the assumption (10), we have
f ð��j Þð��j � kÞ
��� ��� � w2D

X2 ; f ð�þi Þð�þi � kÞ
�� �� � D2w

X2 ð20Þ
and then
cLOBPCG�F �
w
D
: ð21Þ
Therefore after each filtering step, the relative error projected to the negative energy band in y is reduced by a factor w=D
compared to the relative error in x. As mentioned in Section 1, the spectral radius of the matrix originated from the spectrum
folding type methods [37] deteriorates as D2 when D increases to infinity, and an efficient iterative method is difficult to be
designed for the resulting matrix eigenvalue problem. On the contrary, the efficiency of the LOBPCG-F method improves as D
increases, characterized by the factor w=D.

We plot the shape of the filtering function (16) for the case w ¼ 100 au with a very small gap D ¼ 300 au (correspondingly
c � 12 au) in Fig. 2 (a) and for w ¼ 100 au with a larger gap D ¼ 3000 au (correspondingly c � 39 au) in Fig. 2 (b). We observe
that even for such relatively small gaps, the filtering function already quickly reduces the error in the negative energy band.



−200 −100 0 100 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E

f(
E

)

Negative energy band
Positive energy band

−1000 0 1000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

E

f(
E

)

Negative energy band
Positive energy band

(a) (b)
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The filtering function (16) is increasingly more effective as the gap D increases. In the practical calculation, the gap
D � 37000 au (c � 137 au), and thus the filtering function can effectively control the error of the eigenfunctions projected
to the negative energy band in each LOBPCG-F iteration.

Finally we need to address the initial condition such that maxjj~x�j j is small. This can be achieved by the lines 1–3 in Algo-
rithm 1 using Ninit steps of the same filtering function. A high quality input of the initial vectors X0 can help reduce the num-
ber Ninit. In the DKS calculation, a good set of initial vectors can be obtained by using the wavefunctions obtained from the KS
or the KSSO calculations. The converged KS or KSSO wavefunctions can be used as the initial guess for the large component of
the DKS spinors, and the initial guess for the small component of the DKS spinors can be obtained by applying the kinetic
balance prescription (9) to them. The good input of the initial vectors is also readily available in consecutive SCF steps, in
which X0 simply takes the output X in the previous SCF step, and the error projected to the negative energy band in X is neg-
ligible as controlled by the LOBPCG-F method. Using such strategy, we find that the LOBPCG-F algorithm is robust by setting
Ninit ¼ 3 for the first SCF iteration (for safety), and then setting Ninit ¼ 1 in the following SCF steps.

3.2. Implementation

Compared to the standard LOBPCG algorithm which applies the Hamiltonian matrix once per iteration step, the LOBPCG-F
algorithm applies the Hamiltonian matrix for 2 extra times per iteration due to the filtering step (16). The computational cost
of the numerical linear algebra operations, such as for the orthogonalization step and for the projected Rayleigh–Ritz
eigenvalue problem, remains to be the same as that in the standard LOBPCG algorithm. Furthermore, the implementation
of LOBPCG-F algorithm is very simple. Since the implementation of the LOBPCG algorithm always provides an interface
for the preconditioner, one only needs to apply the filtering function after the standard preconditioner to eliminate the
negative energy states components as shown in Algorithm 1, and the overall framework for LOBPCG, such as that provided
by BLOPEX [33] does not need to be changed.

4. Numerical results

We implement the LOBPCG-F method for solving the DKS system (8) using the HGH pseudopotential [46], with the local
and nonlocal pseudopotential implemented fully in the real space [61]. The exchange–correlation functional under local
density approximation (LDA) is used. Together with the module DKS for solving the four-component DKS system, we also
implement the standard LOBPCG method for solving the KS density functional theory (module KS), and for solving the
two-component KS density functional theory with SOC in the pseudopotential framework (module KSSO). Although we
implement the modules from scratch, the LOBPCG-F method can also be implemented without too much efforts by devel-
opers of other packages such as ABINIT [39], Quantum ESPRESSO [62] etc. The major difference between the module KS
and KSSO is that KSSO includes the spin–orbit coupling term between the core electrons and the valence electrons in the
form of

P
lV

SO
l ðr; r0ÞL

0 � S as in Eq. (7). The real and complex arithmetics are equally handled in our implementation. The
description of the modules KS, KSSO and DKS is summarized in Table 1. Since our main focus is the relativistic effect such
as SOC, the module KS directly uses a two-component spinor rather than a one-component spinor. However, this does not
lead to changes in the computed physical quantities such as the total energy. The availability of modules KS and KSSO allows
us to directly benchmark our implementation with existing software such as ABINIT for electronic structure calculation. To



Table 1
The number of components for describing a spinor (Nspinor), the arithmetic, and the diagonalization solver for modules KS, KSSO and DKS in our implementation.

Module Nspinor Arithmetic Solver Description

KS 2 Real LOBPCG Kohn–Sham
KSSO 2 Complex LOBPCG Kohn–Sham with spin–orbit coupling
DKS 4 Complex LOBPCG-F Dirac–Kohn–Sham
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facilitate the presentation of the numerical results, we adopt the standard convention that all energies are shifted by �mc2,
so that the positive energy continuum starts from 0 rather than þmc2.

More computational details of our implementation and the numerical results are as follows. The preconditioner proposed
by Teter et al. [31,60] is employed by both LOBPCG and LOBPCG-F methods. Anderson mixing [63] with Kerker precondition-
er [64] is used for the SCF iteration. Gamma point Brillouin sampling is used for simplicity for all calculations, even for crystal
systems such as Bi2Se3. This is because the purpose of this manuscript is to demonstrate the capability of the LOBPCG-F
method for solving DKS systems. The support of k-point sampling will be added in the future work. The density and the
wavefunction are resolved using the same grid in both real space and Fourier space, and the grid size is measured by the
corresponding kinetic energy cutoff in the Fourier space in atomic unit, denoted by Ecut. All computational experiments
are performed on the Hopper system at the National Energy Research Scientific Computing (NERSC) center. Each Hopper
node consists of two twelve-core AMD ‘‘MagnyCours’’ 2.1 GHz processors and has 32 gigabytes (GB) DDR3 1333 MHz mem-
ory. Each core processor has 64 kilobytes (KB) L1 cache and 512 KB L2 cache. All modules KS, KSSO and DKS are implemented
sequentially, and one core processor is used in each computation.

4.1. Setup

We present numerical results for computing the total free energy of three dimers systems Pt2, Au2, and TlF, as well as a
condensed matter system Bi2Se3. For simplicity of demonstration, the electronic structure calculation of the dimers are not
computed with their optimal bond lengths. Instead, all the dimers are placed in a supercell of dimension 15:000 au, 10:000
au, 10:000 au along the x; y; z directions respectively. The positions of the dimers are placed at ð5:000;0:000;0:000Þ au and
ð10:000;0:000;0:000Þ au, respectively. In the HGH pseudopotential, the elements Pt, Au and Tl have the option of including
semicore electrons [46] or not, and our implementation can handle both cases. Here we treat Pt atoms without semicore
electrons, and treat Au atoms and Tl atoms with semicore electrons. Our implementation assumes an orthorhombic super-
cell. Non-orthorhombic cells can be converted into orthorhombic cells for the total energy computation. For example, the
topological insulator phase of Bi2Se3 has rhombohedral crystal structure [65]. The rhombohedral structure can be converted
into an orthorhombic cell as shown in Fig. 3 with 12 Bi atoms and 18 Se atoms in the supercell. The lengths of the converted
orthorhombic supercell is 7:820 au, 13:544 au, and 54:123 au along the x; y; z directions, respectively. The kinetic energy cut-
off Ecut is set to be the same in ABINIT and in our implementation, and Ecut is high enough so that the difference in the total
free energy per atom is less than 1 meV. Neither Bi nor Se allows semicore treatment in HGH pseudopotential. More details
of the setup of the computational systems are illustrated in Table 2. Note that TlF requires particularly large kinetic energy
cutoff. This is mainly due to localized pseudopotential of the F atom, which requires a very fine numerical grid to resolve.

4.2. Calibration with ABINIT

We compare our result with ABINIT [39] which also supports the usage of the HGH pseudopotential and the LDA approx-
imation. ABINIT has the capability of performing KS calculation (by setting nspinor = 1,nspden = 1) and KSSO calculation with
vector magnetization of the spin density (by setting nspinor = 2,nspden = 4). At present, ABINIT does not provide the DKS
module. As shown by other researchers, the SCF iteration can become oscillatory for spin-unrestricted calculations, which
is known as the ‘‘spin-sloshing’’ and exists even for a simple spin-unrestricted O2 dimer system [66]. In order to accelerate
the SCF iteration, the temperature is set to be 5000 K in all simulations reported below. Although the increase of the tem-
perature in the outer SCF loop directly affects the convergence of density, magnetization and potential, it does not directly
affect the convergence behavior of individual eigenfunctions, which is controlled by eigensolvers in the inner loop such as
Fig. 3. The converted orthorhombic supercell for describing a topological insulating system Bi2Se3 with 12 Bi atoms (large yellow balls) and 18 Se atoms
(small red balls). (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this article.)



Table 2
The kinetic energy cutoff Ecut, the number of valance electrons and the treatment of semicore electrons for the systems
under consideration. The same kinetic energy cutoff is used in both ABINIT and our implementation.

System Ecut # Electron Semicore

Pt2 50 20 No
Au2 50 22 Yes
TlF 400 20 Yes
Bi2Se3 45 168 No
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LOBPCG or LOBPCG-F. Finite temperature formulation of the KS density functional theory [67] is used, and the total free en-
ergy is the quantity to be measured [68]. In particular, the total free energy computed from modules KS, KSSO and DKS in our
implementation are denoted by EKS; EKSSO; EDKS, respectively, while those computed from the corresponding modules KS and
KSSO in ABINIT are denoted by EABINIT

KS ; EABINIT
KSSO , respectively. To facilitate the illustration, all the energies will be measured in

the unit of au, and all the differences of energies will be measured in the unit of meV (1 au � 27211 meV).
In Table 3, we compare the total free energies for the KS calculation. The differences of energies per atom are less than

1 meV in all cases. In Table 4, we compare the total free energies for the KSSO calculation. Similarly, the differences of ener-
gies per atom are also less than 1 meV in all cases. Tables 3 and 4 indicate that the KS and KSSO modules in our implemen-
tation are accurate. Comparing the data shown in Tables 3 and 4, we find that the total free energies are consistently lower
when SOC effect is considered.
4.3. DKS results

Table 5 demonstrates the total free energies computed using the module DKS in our implementation, for which ABINIT
does not provide the same functionality, and shows the differences of the energies per atom between calculations using
modules KS, KSSO and DKS. The energies obtained from DKS is systematically lower than those in KS and KSSO. The full rel-
ativistic correction described by DKS is large (in the order of hundreds of meV per atom) compared to the result obtained by
KS which only takes into account the scalar relativistic effect in the level of pseudopotential. Most of the correction originates
from SOC effect. The remaining correction due to the difference between the Dirac description (DKS) and the Pauli descrip-
tion (KSSO, with the relativistic effect taken account only in the HGH pseudopotential) is generally two orders of magnitude
smaller than the SOC effect. Furthermore, since the relativistic effect of the core electrons is more significant than that of the
valence electrons, the difference between DKS and KSSO is particularly small when the semicore treatment is not present,
such as in the case of Pt2and Bi2Se3. With the same HGH pseudopotential (7), the correction from the Dirac description com-
pared to the Pauli description is found to be smaller than the transferability error of the pseudopotentials. Our study also
agrees with the recent study using the planewave implementation of the ZORA equations – one kind of approximate
two-component relativistic theory by NWChem [69]. We also note that in TlF, the difference between DKS and KSSO is
around 10% of the effect due to SOC. To the extent of our knowledge, our result for the first time reveals the quantitative
difference between the Pauli description and the full Dirac description of relativistic effects for the valence electrons in
the pseudopotential framework for the systems under study.
Table 3
The total free energies EABINIT

KS calculated from ABINIT, and EKS from module KS in our
implementation for systems under consideration.

System EABINIT
KS

EKS ðEKS � EABINIT
KS Þ=Natom

au au meV

Pt2 �52.364236 �52.364274 �0.51
Au2 �66.438610 �66.438601 0.12
TlF �74.156822 �74.156828 �0.08
Bi2Se3 �237.357221 �237.357063 0.14

Table 4
The total free energies EABINIT

KSSO calculated from ABINIT, and EKSSO from module KSSO in our
implementation for systems under consideration.

System EABINIT
KSSO

EKSSO ðEKSSO � EABINIT
KSSO Þ=Natom

au au meV

Pt2 �52.411523 �52.411564 �0.56
Au2 �66.473300 �66.473302 �0.03
TlF �74.178538 �74.178602 �0.87
Bi2Se3 �237.728372 �237.728987 �0.56



Table 5
The total free energies EKSSO from module DKS in our implementation for systems under
consideration.

System EDKS ðEDKS � EKSÞ=Natom ðEDKS � EKSSOÞ=Natom

au meV meV

Pt2 �52.411595 �643.82 �0.41
Au2 �66.473702 �477.56 �5.44
TlF �74.181219 �331.85 �35.60
Bi2Se3 �237.730530 �338.75 �1.40

Table 6
The wall clock time (in the unit of sec) for performing one step of SCF iteration for systems under consideration.

System KS KSSO DKS

Pt2 4 26 113
Au2 6 37 155
TlF 148 709 2787

L. Lin et al. / Journal of Computational Physics 245 (2013) 205–217 215
4.4. Computational efficiency

We demonstrate the computational efficiency of the LOBPCG-F method in terms of the wall clock time per SCF iteration
for Pt2, Au2 and TlF in Table 6. Each SCF iteration consists of 3 LOBPCG iterations for the KS and the KSSO calculation, and 3
LOBPCG-F iterations for the DKS calculation. The computation of Bi2Se3 uses significant amount of virtual memory due to the
large number of valance electrons in the system, and the corresponding computational time is therefore not meaningful and
not reported here. This will not be a problem when our parallel implementation of our method is introduced in the future.
We also remark that compared to the standard LOBPCG method, the LOBPCG-F method does not introduce any additional
memory cost.

From KS to KSSO the computational time increased by a factor of 5 � 6. As discussed before, the module KS uses a two-
component formulation, and the increase of the computational time is mostly due to the change from real to complex arith-
metic. For computing the same quantity, the complex arithmetic is 4 times more expensive than the real arithmetic. The
remaining difference comes from that KSSO uses complex to complex (c2c) Fourier transform, and KS uses real to complex
(r2c) and complex to real (c2r) Fourier transform.

From KSSO to DKS the computational time increases by a factor around 4. In this process, the change of the number of
components from 2 to 4 inevitably increases the computational time by a factor of 2. The remaining factor of 2 in the in-
creased computational time originates from the difference between the LOBPCG and the LOBPCG-F method. Each LOBPCG
iteration applies the Hamiltonian to all spinors once, and each LOBPCG-F iteration applies the Hamiltonian operator to all
spinors for 3 times to filter the components in the negative energy band. However, since the linear algebra operations (such
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as the orthogonalization procedure of the spinors) are the same in the LOBPCG and the LOBPCG-F method, the usage of
LOBPCG-F only increases the computational time by a factor around 2 in practice.

Fig. 4 compares the convergence of the SCF iteration for KS, KSSO and DKS using Au2 as an example. The convergence of
the SCF iteration is measured by the quantity Vout � V ink k= V ink k, where V in is the local part of the effective potential before
each SCF iteration, and Vout is the effective potential after each SCF iteration. Fig. 4 indicates that the usage of the LOBPCG-F
method does not deteriorate the convergence rate of the SCF iteration. Combining Table 6 and Fig. 4, we conclude that the
LOBPCG-F is a robust and efficient method for solving the DKS system in practice.

5. Conclusion and outlook

In this manuscript we develop for the first time a simple and efficient iterative algorithm, named the LOBPCG-F method,
for directly solving the Dirac–Kohn–Sham (DKS) equations in the relativistic density functional theory. By adding an addi-
tional filtering step in the preconditioning stage of the LOBPCG method, the LOBPCG-F method is able to compute the desired
eigenvalues and eigenvectors in the positive energy band without computing any state in the negative energy band. The
LOBPCG-F method requires only 2 extra computational costs and little extra coding effort, and thus remarkably facilitates
the transition from nonrelativistic Kohn–Sham (KS) calculations using LOBPCG methods to relativistic DKS calculations in
studying the relativistic effect such as spin–orbit coupling, without the need of approximating the DKS equation by two-
component relativistic theory. We also remark that even though the LOBPCG-F method is efficient for solving the DKS sys-
tems, it is still significantly more expensive to solve the more complicated four-component DKS systems compared to the KS
systems or the KSSO systems. In practice one should decide whether two-component theory or the four-component theory
should be pursued by balancing the desired efficiency and accuracy.

The efficiency of the filtering step is determined by the factor w=D, where D is the spectral gap between the positive and
the negative energy band, and w is the maximum of the widths of the positive and the negative energy band (see Fig. 1). The
smaller the factor is, the more efficiently the filter performs. It is worth highlighting that the proposed filtering technique is
more general and can be embedded into other preconditioned iterative solvers, while the LOBPCG method is employed in
this work for its high efficiency in the electronic structure calculation. We demonstrate the applicability of the LOBPCG-F
method in the pseudopotential framework in the planewave basis set, in which the condition D� w is satisfied. The plane-
wave basis set automatically satisfies the kinetic balance prescription and is free from the variational collapse. Our results
compared with ABINIT indicate that our implementation is accurate, and the LOBPCG-F method does not lead to deteriora-
tion in the convergence rate of the SCF iteration. We directly observe that the difference between the total energies between
the two-component KS density functional theory with SOC description (module KSSO) and the DKS description (module
DKS) is no more than a few tens of meV per atom for systems under study, and thus it is not cost-effective to solve the
four-component DKS problem in the pseudopotential framework for most systems in practice. The LOBPCG-F method will
be more effective for studying the relativistic effects in solving the all-electron DKS system directly when the condition
D� w is satisfied, such as using the linearized augmented plane-wave basis set (LAPW) as in the WIEN2k software, or
the localized basis set given that the basis set remains well conditioned. This will be our future work.
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