
Parallel Computing 40 (2014) 195–212
Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier .com/ locate/parco
Parallel eigenvalue calculation based on multiple shift–invert
Lanczos and contour integral based spectral projection method
http://dx.doi.org/10.1016/j.parco.2014.03.002
0167-8191/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +1 510 486 4228.
E-mail address: HMAktulga@lbl.gov (H.M. Aktulga).
Hasan Metin Aktulga a,⇑, Lin Lin a, Christopher Haine b, Esmond G. Ng a, Chao Yang a

a Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
b Versailles Saint-Quentin-en-Yvelines University, 55 Avenue de Paris, 78000 Versailles, France

a r t i c l e i n f o
Article history:
Available online 21 March 2014

Keywords:
Parallel eigenvalue computations
Spectral transformation
Multiple shift–invert Lanczos
Contour integral based spectral projection
method
Strong scaling
Weak scaling
a b s t r a c t

We discuss the possibility of using multiple shift–invert Lanczos and contour integral
based spectral projection method to compute a relatively large number of eigenvalues of
a large sparse and symmetric matrix on distributed memory parallel computers. The key
to achieving high parallel efficiency in this type of computation is to divide the spectrum
into several intervals in a way that leads to optimal use of computational resources. We
discuss strategies for dividing the spectrum. Our strategies make use of an eigenvalue
distribution profile that can be estimated through inertial counts and cubic spline fitting.
Parallel sparse direct methods are used in both approaches. We use a simple cost model
that describes the cost of computing k eigenvalues within a single interval in terms of
the asymptotic cost of sparse matrix factorization and triangular substitutions. Several
computational experiments are performed to demonstrate the effect of different spectrum
division strategies on the overall performance of both multiple shift–invert Lanczos and
the contour integral based method. We also show the parallel scalability of both
approaches in the strong and weak scaling sense. In addition, we compare the performance
of multiple shift–invert Lanczos and the contour integral based spectral projection method
on a set of problems from density functional theory (DFT).

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

In a number of applications, we are interested in computing a small percentage of the eigenvalues of a large sparse matrix
A or matrix pencil ðA; BÞ [2,25]. Often these are eigenvalues at the low end of the spectrum.

When the dimension of the matrix n is above 106, for example, even one percent of n amounts to more than 10,000 eigen-
values. When that many eigenpairs are needed, many of the existing linear algebra libraries such as PARPACK [20], Anasazi
[3], BLOPEX [12], PRIMME [31], for solving large-scale eigenvalue problems, which are mostly based on extracting approx-
imate eigenpairs from a single subspace (e.g, a k-dimensional Krylov subspace KðA;v0Þ ¼ fv0;Av0; . . . ;Ak�1v0g associated
with some starting vector v0) often do not provide an efficient way to solve the problem. This is true even when a vast
amount of computational resource is available. Three major sources of the problems with these solvers are:

1. The amount of parallelism that can be exploited in a standard Krylov subspace method such as the Lanczos algorithm is
limited. The main computational tasks involved in such an algorithm include matrix vector multiplications, basis

http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2014.03.002&domain=pdf
http://dx.doi.org/10.1016/j.parco.2014.03.002
mailto:HMAktulga@lbl.gov
http://dx.doi.org/10.1016/j.parco.2014.03.002
http://www.sciencedirect.com/science/journal/01678191
http://www.elsevier.com/locate/parco


196 H.M. Aktulga et al. / Parallel Computing 40 (2014) 195–212
orthogonalization, and the Rayleigh–Ritz procedure for extracting desired eigenvalues from a subspace. For a general
sparse matrix, it may be difficult to speed up the sparse matrix operations (such as sparse matrix vector multiplication
or sparse matrix factorization) on more than hundreds of processors, although this may be possible for some applications
[5,6].

2. As the number of required eigenpairs increases, the dimension of the subspace required to extract approximate spectral
information can become quite large. Hence the cost for constructing an orthonormal basis for such a subspace may grow
even faster than that associated with performing sparse matrix vector multiplications.

3. The projected eigenvalue problem is often replicated on each processor and solved sequentially in existing solvers.
Solving the projected problem can become a bottleneck when the number of desired eigenvalues is over a few thousands.
Although this part of the computational can be parallelized through the use of ScaLAPACK[4], it often requires a nontrivial
change to the data structure that becomes incompatible with user defined sparse matrix operations. When the
computation is carried out on a large number of processors, a large amount of communication overhead is expected. This
overhead may degrade the parallel scalability of the computation.

New strategies and software tools must be developed to handle this type of calculations on the emerging distributed
multi/many-core computing platforms. These strategies may depend on a number of factors such as the sparsity of the
matrix, the distribution of the eigenvalues, and also the type of computational resources available to the user.

One way to reduce the cost of the Rayleigh–Ritz calculation based on the trace-penalty minimization method is described
in [34]. In this paper, we examine a different strategy and provide some computational examples that illustrate the type of
issues that we must consider and how they may be resolved. The general idea we pursue is to divide the desired part of the
spectrum into several subintervals and to compute eigenvalues within each interval in parallel. By adding a coarse grained
level of parallelism at the top, this approach obviously increases the total amount of concurrency in computation. By limiting
the size of each interval, it also mitigates the second and the third issues that currently prevent some existing eigensolvers
from achieving high efficiency. We would like to point out that this is an important aspect of the approach we discuss in this
paper. Without putting a constraint on the size of each interval, the cost of solving the projected problem and performing
orthogonalization may not be ignored, and the optimization of resource allocation and spectrum division then becomes more
difficult.

We will consider two methods for computing eigenvalues within a prescribed interval:

1. Shift–invert Lanczos (SIL) with implicit restarts [15]
2. Subspace iteration applied to a projection operator constructed from an approximation to the following contour integral
Fig. 1.
this fig
P ¼ 1
2pi

I
C
ðA� zIÞ�1dz; ð1Þ
where C is a contour on the complex plane that encloses only the eigenvalues of interest [7]. We will refer to this approach as
a contour integral based spectral projection method. Fig. 1(a) shows a typical contour C that encloses a number of eigen-
values marked by solid circles. The contour is numerically discretized into several quadrature points. Fig. 1(b) shows the
Sketch of the contour and the associated projection operator used by the spectral projection method. (For interpretation of the references to color in
ure legend, the reader is referred to the web version of this article.)



H.M. Aktulga et al. / Parallel Computing 40 (2014) 195–212 197
value of the discretized projection operator associated with such a contour, which maps eigenvalues within the contour to 1
and eigenvalues outside of the contour to 0, with certain amount of smearing near the boundary of the circle due to finite
discretization. This approach has been discussed in [26,27,22,35,17]. In particular, both the FEAST method [22] and the Sak-
urai–Sugiura (SS) projection [26] method fall under this category.

We will refer to the combination of using spectrum division and SIL as multiple shift–invert Lanczos (MSIL) in subsequent dis-
cussions. The use of spectrum division and subspace iterations on spectral projectors constructed from the contour integral
formulation will be referred to as multiple contour integral based spectral projection method (MCISPM). Both algorithms
require solving a number of linear systems of equations of the form ðA� zIÞx ¼ b, where z is either a complex or a real shift.
Although these equations can also be solved by preconditioned iterative methods such as MINRES[21], GMRES[24],
BiCGSTAB [33] and QMR [9], the operator A� zI is in general not positive definite, even when z is chosen to be on the real
axis as in MSIL. As a result it can be difficult to keep the number of iterations under control using iterative methods. In this
paper, we will focus on direct methods that perform sparse LDLT factorizations of A� zI and sparse back substitutions using L
and D factors. Alternative ways to implement spectrum slicing include using a polynomial filtered subspace iteration [28]
and the Jacobi–Davidson algorithm [31] to compute eigenvalues within each slice.

Although spectrum division is conceptually simple, implementing this strategy efficiently on a large-scale parallel com-
puter is not straightforward. The key to achieving high efficiency is to develop a way to divide the spectrum so that compu-
tational resources can be utilized in an optimal way (i.e., to maximize the overall throughput of the computation.) An
optimal spectrum division scheme should place an appropriate number of eigenvalues in each interval to keep the cost
per interval relatively low, while making sure the overall computation is load balanced and can be completed quickly. Devel-
oping such a scheme requires a careful analysis of the computational cost associated with each interval, which depends on
the cost for performing an LDLT factorization and a number of triangular substitutions as well as the number of eigenvalues
and the convergence rate of these eigenvalues by using either SIL or subspace iteration.

When a large amount of computational resource is available, the optimal strategy may be different from one that is
designed for a computational environment with a small limited amount of computing power. In both cases, one has to decide
how much computational resource one should allocate to compute eigenvalues within one interval. Using all computational
resources on one interval at a time is often not the most efficient strategy because neither a sparse LDLT factorization nor a
triangular substitution can scale beyond a few hundred processors. It is usually much more efficient to allocate fewer pro-
cessors to one interval and compute eigenvalues in several intervals in parallel.

Although both MISL and the MCISPM require solving linear systems, there are a number of notable differences between
these two approaches for computing eigenvalues within each interval. The most important difference is perhaps the fact that
linear equations must be solved in sequence in SIL, whereas more parallelism may be exploited in a subspace iteration when
multiple equations are solved simultaneously. Thus, it may appear that better scalability can be expected from a subspace
iteration method. However, when the lower triangular factor of A must be distributed among different processors, it is
actually not easy to take advantage of multiple right hand sides to achieve full concurrency in triangular substitutions.
Because only one substitution can be performed at a time, and the amount of parallelism is limited in each triangular
substitution. Therefore, the actual parallel efficiency may be far more limited, as we will show in our experiments.

One drawback of MCISPM is that the construction of a projection operator requires multiple factorizations to be
performed in complex arithmetic. Although these factorizations can be performed in an embarrassingly parallel way, each
factorization is more expensive than the real arithmetic factorizations required in the SIL approach, and as a whole these
factorizations, can consume more computational resource than what is required in MSIL for computing a comparable num-
ber of eigenvalues.

In terms of memory usage, MCISPM is also more costly than MSIL. This is partly because the factor L is a complex matrix in
the contour integral based approach. Even though the matrix A is sparse, the space required for storing the factor L can be
significant due to fill-ins during factorization. In addition, several (8 to 16) factorizations are required to compute eigen-
values within each interval. To perform them in parallel, additional (distributed) memory is required. The increased memory
requirements of MCISPM can be a limiting factor in terms of performance as well.

The use of MSIL was considered in the work of [36]. The focus of their work is to use shift–invert with implicitly restarted
Lanczos (IRL) to probe the spectrum dynamically as eigenvalues are being computed. The idea of using parallel contour
integral based spectral projectors has been studied in [22,26,27,35]. However, the authors focused mostly on how to use
the contour integral approach to compute eigenvalues within a single interval, and left the task of spectrum division to users.
They did not discuss how to organize the entire computation in an efficient manner. In [35], the authors’ comparison of the
performance a parallel contour integral based spectral projection method with that of a single shift–invert Lanczos for
computing 40 eigenvalues in a single interval may not be completely fair. In a single shift–invert Lanczos run, eigenvalues
away from the shift may converge slowly. As a result, the cost of triangular substitutions was much higher than that
associated with a factorization. We believe that a proper comparision should be made with respect to the use of MSIL
[13], since multiple factorizations in complex arithmetic was used in the contour integral based approach.

In this paper, we focus on the issue of spectrum partitioning, which we believe is critical for achieving high efficiency
regardless of whether a shift–invert IRL or a contour integral based spectral projection method is used to compute
eigenvalues within each interval. We list a few objectives of spectrum division in Section 2, and discuss how the distribution
of eigenvalues can be estimated through an inertia count and cubic spline fitting. The eigenvalue distribution profile enables



198 H.M. Aktulga et al. / Parallel Computing 40 (2014) 195–212
us to obtain an optimal strategy for spectrum division. We present a simple cost model that can be used to develop some
general strategies for partitioning the spectrum and allocating computational resources in an efficient way. Implementation
details of MSIL and MCISPM are discussed in Section 3. In Section 4, we present a number of examples that illustrate the
effect of different spectrum division schemes on the overall performance of eigenvalue computations for a set of test prob-
lems from density functional theory (DFT). We also compare the performance of MSIL with that of MCISPM on test problems
with different sizes and sparsity patterns, and discuss the how spectrum division affects the strong and weak scaling prop-
erties of both approaches.
2. Spectrum division

Although it is clear that dividing the spectrum into a number of smaller intervals will increase concurrency and reduce
the cost of both the orthogonalization and the Rayleigh–Ritz calculation, it is less obvious how the division should be done to
achieve optimal overall computational efficiency.

We first discuss the objectives we would like to achieve by dividing the spectrum in Section 2.1. Achieving some of these
objectives requires us to have some knowledge about the distribution of eigenvalues. Such a distribution can be described in
terms of a histogram of eigenvalues or, borrowing a terminology from physics, the density of states (DOS). We discuss how to
obtain an approximate DOS in Section 2.2. If the distribution of eigenvalues within the desired part of the spectrum (with
spectral gaps excluded) is nearly uniform, a good strategy for dividing the spectrum may be developed by examining a sim-
ple cost model that depends on the size of the problem, the total number of processors available and the relative cost of a
factorization versus a triangular substitution. We discuss this model and general strategies for dividing the spectrum in
Section 2.3. Certainly, for problems whose eigenvalues are not uniformly distributed, a more sophisticated model that takes
into account the potential presence of clustered or multiple (degenerate) eigenvalues is needed. Nonetheless, the simple
model we introduce here can be used as a starting point for developing a more sophisticated model to understand more
general cases.

2.1. Objectives

In general, a spectrum division scheme should try to achieve the following objectives:

1. The eigenvalues within each interval should be computed in an efficient manner by a group of processors. This objective
suggests that we should exclude spectral gaps from each interval because the presence of such a gap often slows down
the convergence of both the shift–invert Lanczos algorithm and the subspace iteration applied to the contour integral rep-
resentation of the projector. It also suggests that we should limit the number of eigenvalues in each interval to keep the
cost of the orthogonalization and the Rayleigh–Ritz calculation under control.

2. The division should make it easy to group the processors in such a way that allows desired eigenvalues to be computed in
a load balanced way.

3. Since factorization is expensive, the spectrum should be divided in a way that minimizes the total number of
factorizations.

Some of these objectives may conflict with each other. There may be trade-offs among different objectives to optimize
resource usage. The most important objective we should try to achieve may depend also on the type of available computa-
tional resource. For example, dividing the spectrum into fewer intervals and allocating more processors to each interval will
reduce the cost of factorizations (objective 3). However, because each interval contains more eigenvalues, the cost of basis
orthogonalization and the Rayleigh–Ritz calculation may become excessively high. Furthermore, the convergence of some of
the eigenvalues within each interval may become slow, for example, in a SIL calculation. As a result, more triangular substi-
tutions may be required in each interval to reach convergence, making it difficult to achieve the first objective.

2.2. Density of states estimation

It follows from the Sylvester’s inertia theorem [32] that the number of eigenvalues of A that are within an interval ½a; b�
can be determined by performing two factorizations on the shifted matrices: A� aI ¼ LaDaLT

a and A� bI ¼ LbDbLT
b . The differ-

ence between the number of negatives entries in Db and Da yields the eigenvalue count within ½a; b�. Consequently, an esti-
mation of the density of states (DOS) can be obtained by partitioning the spectrum into a number of intervals and performing
a number of LDLT factorizations. The partitioning can be done by either estimating the upper and lower bounds of the desired
part of the spectrum kub and klb respectively first and dividing ½klb; kub� evenly into s intervals or running an s-step Lanczos
iteration first and using s Ritz values h1; h2, . . ., hs returned from the Lanczos procedure to partition the spectrum and con-
struct a DOS profile. In both cases, s can be chosen to be a relatively small constant, say 100 first. When a large amount of
computational resource is available, one can perform multiple parallel factorizations simultaneously.

Furthermore, we may use cubic spline fitting to construct a cumulative density of state profile with high resolution from
which a refined DOS can be constructed [8]. A cumulative density of states function cðkÞ gives the total number of



H.M. Aktulga et al. / Parallel Computing 40 (2014) 195–212 199
eigenvalues less than or equal to k. By counting the number of eigenvalues to the left of hi, for i ¼ 1;2; . . . ; s, we can construct
a crude approximation to the true cumulative density of the spectrum. The crude approximation can be improved by con-
necting ðhi; cðhiÞÞ with ðhiþ1; cðhiþ1ÞÞ using cubic splines. Fig. 2 shows that the approximate cumulative density of states func-
tion constructed from 100 inertia counts and cubic spline fitting is nearly indistinguishable from the exact cumulative
density of states. We observe from the cubic spline fitting that the matrix used in this example has a spectral gap between
�2.0 and �1.7, and the distribution of eigenvalues is nearly uniform below and above the spectral gap.

The cubic spline fitting of the cumulative density provides a reliable way to evaluate cðkÞ and its derivative for any k in the
region where the DOS is relatively smooth. Consequently, we can find the approximate location of the jth eigenvalue by solv-
ing cðkjÞ ¼ j using either Newton’s method or the bisection method. This capability allows us to define the upper and lower
bounds of each interval regardless how the spectrum is partitioned. When kj is nearly degenerate, which can be detected by
the large slope of the CDOS near kj, we should avoid using kj as a break point to divide the spectrum, i.e., it is important not to
divide a cluster of eigenvalues during spectrum slicing.

We should point out that a DOS estimation based on inertial counts introduces some overhead to the overall cost of eigen-
value calculation. However, we believe that such cost is justified because the lack of a good DOS estimation makes it difficult
to organize the parallel spectrum slicing computation in an efficient manner. When computational resources are not utilized
efficiently, the overall cost of solving the problem would increase further. For very large problems where performing the
LDLT factorization is not feasible, it is possible to use iterative methods to estimate the DOS [19].

2.3. Strategy

We now discuss how to achieve some of the objectives listed in Section 2.1. To facilitate our discussion, we list some of
the notation used throughout this paper to describe various quantities related to the size of the problem as well as the size
and configuration of the computing platform in Table 1.

We assume that we have access to a relatively large number of processors. There are a number of ways to achieve the
objective of load balance. One way is to keep the granularity of the computation sufficiently fine by partitioning the
spectrum into many small intervals and using a relatively large number of processors to compute eigenvalues within each
interval. In this case, we may have more intervals than the number of processor groups. Each processor group may be
Fig. 2. The approximate cumulative density function of the first 2048 eigenvalues of a sparse matrix (red) constructed from 100 inertial counts and cubic
spline fitting is nearly indistinguishable from the exact one (blue). (For interpretation of the references to colour in this figure caption, the reader is referred
to the web version of this article.)

Table 1
Notation used to describe the problems as well as the configuration of the
computing platform.

Symbol Description

n Matrix size
nev The total number of desired eigenvalues
p The total number of processors (cores) available
l The number of intervals into which the spectrum is divided
k The average number of eigenvalues per interval (=nev=l)
q The number of processors (cores) used per interval (=p=l)



200 H.M. Aktulga et al. / Parallel Computing 40 (2014) 195–212
responsible for computing eigenvalues in multiple intervals. If eigenvalues within each interval can be computed quickly,
then good load balance can be expected from fine grained parallelism.

However, there are a couple of issues associated with this approach. First of all, because there is a limit on how far a
sparse LDLT factorization and a triangular substitution can scale with respect to the number of processors, the granularity
of each parallel task cannot be made arbitrarily small.

Secondly, it is generally more costly to partition a task into m subtasks and assign all processors to work in parallel on
each subtask, one after another, than to divide the processors into m groups, with each group being responsible for a single
subtask, unless the parallel efficiency of having all processors work on each subtask is perfect. To see why this is the case, let
us assume that the total amount of work required to compute eigenvalues within an interval is C, and the wall clock time
required to compute these eigenvalues using p processors is proportional to C=pg, where the parameter 0 < g < 1 is used
to account for parallel efficiency. If we now divide the interval into m subintervals and use all p processors to compute
1=m of the eigenvalues at a time, and repeat the process m times, the wall clock time is still proportional to C=pg if the
parallel efficiency does not change with respect to the number of eigenvalues to be computed. However, if we use p=m
processors to compute eigenvalues within each one of the m subintervals with the same parallel efficiency, the wall clock
time is proportional to
C=m
ðp=mÞg

¼ C
pg mg�1 <

C
pg :
Therefore, it is generally more effective to partition a group of processors in the same way the interval is partitioned so that
eigenvalues within each subinterval are computed by a subgroup of processors.

This observation suggests that a better way to achieve load balance is to partition the spectrum in such a way that the
amount of work associated with each interval is roughly the same. In this case, the processors can be divided into the same
number of groups as the number of interval, with each group being responsible for computing the eigenvalues within a sin-
gle subinterval. This approach may not be feasible if the number of available processors is relatively small compared to the
number of eigenvalues to be computed. However, this is not the regime that we are primarily concerned with in this paper.
Some difficulties may also arise when the eigenvalues of interest are not evenly distributed. In this case, the spectrum may
be divided in such a way that the amount of work associated with different intervals is not exactly the same. As a result, the
grouping of the processors need to be adjusted accordingly so that it is consistent with the amount of work associated with
each interval. Making this adjustment is possible when the DOS profile is available.

Although it is generally not easy to answer the question of how to partition the desired part of the spectrum, and how
many processors to allocate to each interval in order to optimize the use of computational resources, a reasonable strategy
may be developed if we can characterize the computational cost using a simple model. Using such a model, we can then ana-
lyze how other objectives listed in Section 2.1 may be achieved and how the effectiveness of a partition may be affected by a
number of factors such as the size of the problem, the relative cost and efficiency of factorization versus triangular substi-
tution, and the number of processors available.

To simplify our analysis, let us assume that eigenvalues are uniformly distributed in the desired part of the spectrum.
Using the notation in Table 1, we assume that p and nev are relatively large. To be more precise, let us assume that
p ¼ cpn and nev ¼ cnn, where cp and cn are constants. We assume that the number of eigenvalues within each interval k
is sufficiently small so that the cost of computing eigenvalues by either the shift–invert Lanczos method or the contour inte-
gral based projection method is dominated by sparse matrix factorizations and triangular substitutions. We will show
through extensive numerical experiments that in the vicinity of the optimal k value, the cost of the orthogonalization and
the Rayleigh–Ritz computations are indeed much lower compared to the cost of sparse factorizations and triangular substi-
tutions. So the simple analysis presented in this section allows us to better understand the trade-offs in the range of k that is
of interest to us. For completeness, we also discuss in more detail about the model for the wall clock time in the Appendix, in
which we add the cost for the matrix–matrix multiplication (MM) to form the projected problem and to obtain the orthog-
onal eigenvectors (orthogonalization), and the cost for the Rayleigh–Ritz procedure (RR) for solving the projected problem.
We will see that when k and n are not very large, the cost of the MM and RR procedure is indeed smaller than that of sparse
factorizations and triangular substitutions.

The wall-clock time for performing a factorization on a single processor can be estimated by cf naf for some constant cf and
af . The wall clock time for a single triangular substitution performed on a single processor can be modeled as csnas for some
constant cs and as. The constants cf ; cs;af ;as are problem and/or machine dependent. The matrices used in the numerical
experiments in Section 4 mainly originate from density functional theory based electronic structure calculations that are dis-
cretized by finite difference, finite elements or real space local basis expansion techniques. The sparsity of these matrices are
similar to that of the discretized Laplacian operator. The discretized operators that share a sparsity pattern similar to the
discretized Laplacian operator also appear frequently in other scientific computing problems such as the Poisson equation
and the Helmholtz equation. For d-dimensional Laplacian type of operators discretized by finite difference and ordered by
the nested dissection technique [10], the values of af ;as are given in the second and the third columns of Table 2. For other
general sparse matrices, the values of af and as will depend on the number of nonzeros in the factor L, which is in turn
determined by matrix ordering scheme (e.g. [11]) used to permute the rows and columns of A to minimize the amount of
nonzero fills in L.



Table 2
Asymptotic wall clock time using one processor for the factorization cost af , the triangular solve cost as , and the optimal number of
eigenvalues kopt for a Laplacian operator discretized by second order finite difference method in dimension d.

d af as kopt (gf ¼ gs)

1 1 1 Oð1Þ
2 3

2
1 Oðn1

2Þ
3 2 4

3 Oðn2
3Þ

H.M. Aktulga et al. / Parallel Computing 40 (2014) 195–212 201
We model the parallel efficiency for the factorization and the triangular substitution by two parameters gf ;gs respec-
tively. These parameters satisfy gf ;gs 2 ð0;1Þ, and usually gf P gs. When p processors are used to perform a factorization
and a triangular substitution, the wall clock time required is proportional to cf naf =pgf and csnas=pgs , respectively. To simplify
our discussion, we assume that the range of k we consider corresponds to cases in which the cost associated with the orthog-
onalization and the Rayleigh–Ritz calculation is relatively low compared to that associated with factorization and triangular
substitutions. In addition, we assume that the number of triangular substitutions used per eigenvalue is constant across the
range of k under consideration.

Given the assumptions above, the wall clock time WðkÞ of the calculation can be expressed by
WðkÞ ¼ cf naf

p
nev=k

� �gf
þ csnas k

p
nev=k

� �gs
: ð2Þ
Minimizing WðkÞ with respect to k gives rise to
kopt ¼
gf cf

ð1� gsÞcs

� � 1
gf �gsþ1 cn

cp

� � gf �gs
gf �gsþ1

n
af �as

gf �gsþ1: ð3Þ
Although it is possible to include extra terms in (2) to account for the cost of the orthogonalization and the Rayleigh–Ritz
calculation, introducing these terms makes it difficult to obtain an analytic and transparent expression for kopt. Also as we
show through numerical experiments in Section 4, the costs of the orthogonalization and the Rayleigh–Ritz calculations
are relatively low in the range of k that we consider. Therefore the true minimizer for the more sophisticated model is likely
to be quite close to the solution given by (3).

The expression given by (3) indicates that choice of an optimal k depends on the problem size n as well as the relative cost
and parallel efficiency of factorization and triangular substitutions, when cn=cp is a constant. When the parallel efficiencies of
both the factorization and the triangular substitution are high, i.e., when both gf and gs are close to 1, we should place more
eigenvalues in each interval without increasing the cost of the orthogonalization and the Rayleigh–Ritz calculation too much.
When gf and gs are relatively small, kopt will be smaller as well. A smaller kopt would suggest dividing the spectrum into more
intervals and breaking the processors into smaller groups. However, there is often a lower bound on the number of proces-
sors in each group due to the memory requirement for holding the lower triangular factor of A� rI or A� ziI. We should also
point out that the parallel efficiency parameters gf and gs depend in a nontrivial way on the actual number processors used
in the factorization and triangular substitutions, which is ultimately related to cp. When the number of processors used in
each factorization or triangular substitution increases, both gf and gs may decrease. Such loss of parallel efficiency implies
that we need to divide the spectrum into more intervals with fewer eigenvalues in each interval as the total number of pro-
cessors increases.

While in general factorization is expected to scale better than a triangular substitution (e.g., gf > gs), our numerical
experiments show that when cp is not too large (e.g., cp ¼ 0:1), gf � gs, and they do not depend strongly on cp. This can
be explained by the additional overheads incurred during the sparse matrix factorization phase, such as the analysis step
necessary to determine a good pivoting strategy and the distribution of the sparse matrix over the processor group. By taking
gf � gs, Eq. (3) can be simplified, and the minimizer of (3) has the form
kopt ¼ gcf

ð1� gÞcs

� �
naf�as ; ð4Þ
where g ¼ gf ¼ gs. It is interesting to see that in this case, kopt is independent of cp which determines the total number of
processors used in the computation, and we should put more eigenvalues in each interval as the problem size n increases.
Furthermore, for Laplacian type operators defined in d-dimensional space, the optimal number of eigenvalues to place in
each interval also depends on d because both af and as are functions of d in this case. The fourth column of Table 2 gives
the dependency of kopt on n for the Laplacian type of operators in different spatial dimensions.

It is easy to show that when the factorization and triangular substitutions have roughly the same parallel efficiency, the
wall clock time associated with kopt is
WðkoptÞ ¼ cf naf

u
þ g

1� g
cf naf

u
; ð5Þ



202 H.M. Aktulga et al. / Parallel Computing 40 (2014) 195–212
where u ¼ ðpkopt
=nevÞg. The expression given by (5) indicates that the first and second terms of W are roughly the same at

kopt unless g is either close to 1 or 0. If g ¼ 0:5, the second term in (5) is identical to the first term. When k is large, the second
term in WðkÞ can be much larger than the first term, which is usually an indication that such a choice of k is not optimal.

The cost model given by (2) allows us to make some prediction on the weak scaling property of MSIL and MCISPM. We
now give an example in which both the problem size n and the number of eigenvalues nev, as well as the total number of
processors p increase by a factor of 4.

If we increase the number of processors per interval q by a factor of 4 without changing the number of intervals l, the
number of eigenvalues per interval k is also increased by a factor of 4 (due to the increase of the problem size). It follows
from (2) that the total wall clock time for factorization will increase by a factor of 4af�gf and the wall clock time for triangular
substitution will increase by a factor of 4as�gsþ1. If we assume gf ¼ gs ¼ 1=2 and the costs associated with factorization and
triangular substitutions are roughly the same before q and k are increased, then for 2D problems, we expect the total wall
clock time to increase by a factor
4af�g þ 4as�gþ1

2
¼ 41 þ 43=2

2
¼ 6:
If we keep the number of cores per interval q and the number of eigenvalues per interval k fixed, and simply increase the
number of intervals l by a factor of 4, then based on the model (2), we expect the total wall clock time to be increased by a
factor of
ð4af þ 4as Þ=2 ¼ 43=2 þ 41

2
¼ 6;
if the same assumptions about the relative cost of factorization and triangular substitutions before n and p are increased are
made.

The same type of calculation shows that, under the same assumption about factorization and triangular substitutions, if
we increase both k and q by a factor of 2, the total wall clock time is expected to increase by factor of 5.6.

This simple analysis shows that when using a larger number of processors to solve larger problems, it may be beneficial to
split the spectrum into more intervals and putting more processors into each interval at the same time. This analysis is con-
firmed by our computational experiments which we show in Section 4.

3. Implementation issues

In this section, we discuss a number of implementation issues pertaining to both the MSIL and the MCISPM algorithms. As
reported in [13], an important issue that may arise in spectral partitioning approaches is that eigenvectors returned from
adjacent intervals may not be fully orthogonal. This issue is more likely to arise when eigenvalues that belong to two adja-
cent intervals are close to each other. As discussed in Section 2.2, this issue may be avoided by carefully partitioning the
spectrum based on the DOS estimation such that a cluster of eigenvalues is not divided into different slices.

3.1. Multiple shift–invert Lanczos

Shift–invert is a widely used technique for computing interior eigenvalues when using the Lanczos algorithm. Because
eigenvalues near a target shift r are mapped to the extremal eigenvalues of the shifted and inverted matrix ðA� rIÞ�1,
through the equation
ðA� rIÞ�1x ¼ 1
k� r

x;
where ðk; xÞ is an eigenpair of A, the eigenvectors associated with these eigenvalues tend to converge rapidly when we apply
the Lanczos procedure to ðA� rIÞ�1.

When the desired part of the spectrum is divided into several intervals, we can apply the shift–invert Lanczos procedure
in each interval simultaneously with an appropriately chosen shift so that eigenvalues within the interval can be computed
quickly. Multi-shift was also suggested by Ruhe in his rational Krylov subspace method[23].

As discussed earlier, the partitioning of the spectrum can be obtained by first estimating the density of state profile using
the technique described above, and using the simple model presented in Section 2.3 to decide how many intervals we should
create with an appropriate number of eigenvalues in each interval. Such a decision may require us to perform some
computational experiments (often referred to as automatic tuning in the high performance computing community), to
estimate various parameters in the model. We should also avoid defining an interval that contains a sizable spectral gap even
if that means we may end up with some intervals that contain fewer eigenvalues. This approach is very different from the
one taken in [36], where each processor determines how many eigenvalues to compute in a dynamic way.

If the total number of processors available p is sufficiently large, which is the case that we are primarily concerned with,
and if the eigenvalues are uniformly distributed, we can allocate p=l processors to each interval once the total number of
intervals l is chosen.



H.M. Aktulga et al. / Parallel Computing 40 (2014) 195–212 203
In most cases, the target shift for each shift–invert Lanczos (SIL) run can be set as the mid-point of each interval. We per-
form at least one parallel LDLT factorization in each interval.

One of the difficulties with using the Lanczos algorithm is that it is difficult to predict a priori how many Lanczos itera-
tions it takes to obtain all eigenvalues within each interval. Even if the number of eigenvalues k within each interval is small,
the dimension of the Krylov subspace generated by the standard Lanczos algorithm may be much larger. This problem can
partially be solved by using the implicit restarting technique [29] to limit the dimension of the Krylov subspace from which
approximate eigenvalues of ðA� rIÞ�1 or A are extracted. Limiting the dimension of the Krylov subspace reduces the memory
footprint of the calculation. It also prevents the cost of Rayleigh–Ritz procedure from becoming too high.

In an implicitly restarted Lanczos (IRL) procedure, we typically construct and update a Krylov subspace whose dimension
is slightly larger than the number of desired eigenvalues k. In our experiments, we typically use 2k as the maximum sub-
space dimension. We perform 2k triangular substitutions in the first shift–invert IRL cycle. In each subsequent IRL cycle,
we perform k additional triangular substitutions. We perform full orthogonalization of each basis vector against previous
basis vectors in each restart. The cost of this orthogonalization is modest since we keep k small. Furthermore, in most cases,
no further reorthogonalization is needed in addition to the first full orthogonalization.

We set a limit on the number of restart cycles in each shift–invert IRL run, so that the total number and cost of triangular
substitutions do not become too high. We also set k to be slightly larger than the actual number of eigenvalues contained in
an interval to reduce the likelihood of missing any eigenvalues within the interval. However, it is possible that some of the
desired eigenvalues fail to converge before the limit on the restart cycles is reached. In that case, we may need to perform a
post-processing procedure to capture the missing eigenpairs. Such a procedure would require an additional factorization and
a few more triangular substitutions. Hence, in that case, the entire computation may not be well load balanced.

3.2. Contour integral based projection method

If P is an orthogonal projection operator that projects onto the invariant subspace Z associated with a subset of k eigen-
values of A, we may compute this invariant subspace by applying a subspace iteration to P [30].

Let V be a random k-dimensional subspace that contains contributions from all eigenvectors of A. In exact arithmetic, we
need to apply P to V only once in order to obtain the desired the invariant subspace Z, if the exact P is available. In practice,
because the projection operator P given by (1) is approximated by a numerical quadrature
P �
Xq

i¼1

xiðA� ziIÞ�1 ð6Þ
for some appropriately chosen quadrature points zi and weights xi (i ¼ 1;2; . . . ; q), more than one iteration may be needed to
obtain Z with sufficient accuracy.

In the numerical experiments that we show in Section 4, we use the quadrature rule proposed in [22] to evaluate the con-
tour integral (1). For each pole zi, we must perform an LDLT factorization of A� ziI in complex arithmetic. This is roughly four
times more costly than an LDLT factorization performed in SIL. The higher factorization cost would suggest that a larger num-
ber of processors should be allocated to each interval (or contour) to ensure that each factorization can be computed effi-
ciently in parallel. These processors are further partitioned among nq quadrature points. As a result, the number of
processor groups and, consequently, the number of intervals l will decrease, and we need to place more eigenvalues in each
interval. However, placing too many eigenvalues within a single interval will lead to a higher cost due to triangular substi-
tutions. Since ðA� ziIÞ�1 must be applied to all columns of V at each pole zi, we must perform k triangular substitutions at
each pole. Such increase must be taken into account when we decide what the optimal k should be.

Although it may appear that performing multiple triangular substitutions is an inherently parallel task, the fact that the
triangular factors of A� ziI are distributed makes it difficult to achieve a high level of parallelism during triangular substi-
tutions, even when a large number of right hand sides are available. Some gain in efficiency can be achieved by making use of
level-3 BLAS with an appropriate block size when multiple substitutions are performed simultaneously. However, there is a
limit on how large this type of gain can be. It typically does not exceed a factor of 3, and is quickly offset by a large increase in
the number of right hand sides.

4. Computational experiments

In this section, we present a number of computational experiments that demonstrate the efficiency that can be achieved
by both MSIL and MCISPM. These examples also illustrate the importance of the issues we discussed in the previous section
and how one may achieve nearly optimal performance by making a proper choice of interval size and processor groups.

A number of medium sized sparse matrices are used in our experiments. The matrices are listed in Table 3. The
GrapheneX matrices are obtained from a discretization of the Kohn–Sham equation using an adaptive local basis expansion
scheme [18]. The number X indicates the number of carbon atoms in the Graphene. The dimension of these matrices is pro-
portional to the number of atoms in these quasi-2D materials. These matrices have roughly 1–4% nonzeros per column and
10–15% nonzero fill-in’s in their L factors. They are denser than a discretized Laplacian with 5-point stencil, but should still
be considered as sparse matrices. All other matrices are obtained from a finite difference discretization of the Kohn–Sham



Table 3
Problem characteristics.

Name n nnz Lnnz Factor ops

Graphene128 5120 1,026,560 3,100,160 2:56� 109 (�97n2)
Graphene512 20,480 4,106,240 43,261,440 1:12� 1011 (�267n2)
Graphene2048 81,920 16,424,960 135,445,760 5:35� 1011 (�79n2)
Graphene8192 327,680 65,699,840 727,511,040 6:42� 1012 (�60n2)
C60 17,576 212,390 19,573,813 3:74� 1010 (�121n2)
GaAsH6 61,349 3,016,148 247,861,525 1:73� 1012 (�460n2)
SiO 33,401 675,528 89,796,509 4:03� 1011 (�361n2)

204 H.M. Aktulga et al. / Parallel Computing 40 (2014) 195–212
equation for 3D materials. They are produced by the PARSEC software package [14], and tend to be sparser than the Graph-
ene matrices. However, as we can see from Table 3, their L-factors tend to be slightly denser than those associated with the
Graphene problems.

We performed our numerical experiments on Hopper, a Cray XE6 supercomputer maintained at the National Energy
Research Scientific Computer Center (NERSC) at Lawrence Berkeley National Laboratory. Each node on Hopper has 2
twelve-core AMD Magny Cours 2.1-GHz processors with a total of 32 gigabyte (GB) shared memory. However, memory
access bandwidth and latency are nonuniform across all cores. Each core has its own 64 kilobytes (KB) L1 and 512 KB L2
caches. One 6MB L3 cache is shared among 6 cores on the Magny Cours processor. There are four DDR3 1333-MHz memory
channels per twelve-core Magny Cours processor.

The PARPACK software package [16,20] is used for MSIL experiments. We use a modified version of the FEAST program
[22], which we call FEAST-Mod, to test the performance of MCISPM. Our modification allows multiple factorizations to be
performed in parallel within a subgroup of processors. We set the convergence tolerance tol to 10�10 in both experiments,
i.e., we terminate SIL or a subspace iteration when the relative residual norm of an approximate eigenpair ðhi; ziÞ, defined
by kAzi � hizik=jhij falls below tol for all i ¼ 1;2; . . . ; nev . We did not experience any robustness issues, in terms of missing
eigenvalues or large residual norms, in our numerical experiments.

We use the MUMPS (Multifrontal Massively Parallel sparse Direct Solver) [1] to solve the linear system of equations in
both MSIL and MCISPM. We should note that the performance of the sparse solver has a direct effect on the absolute
performance of the eigenvalue calculation. However, some of the issues we will discuss below is independent of the sparse
solver used in the computation.

4.1. MSIL

In this section, we study the parallel performance of MSIL, when it is used to compute roughly 10% of the lowest eigen-
values of matrices given in Table 3. We first show that the way the spectrum is partitioned and processors are grouped (i.e.
the choice of an appropriate number of eigenvalues k for each interval) has a significant impact on the performance of MSIL.
We then present the results of a strong scaling study, where we examine the performance of MSIL as we increase the number
of processors p for a given problem. Finally, in the weak scaling study, which is performed using the Graphene matrices only,
we investigate the performance characteristics of MSIL when the number of processors is increased at the same rate as the
increase in matrix dimensions.

4.1.1. Spectrum division and processor groups
As we discussed earlier, for a given problem and a fixed number of processors p, the performance of MSIL depends on how

the spectrum is divided and how many eigenvalues are placed in each interval. In Fig. 3, we show how the performance of
MSIL changes as we change the way the desired part of the spectrum of the Graphene512 problem is partitioned. In this test,
we used a total of p ¼ 512 cores to compute nev ¼ 2048 eigenvalues. As the spectrum is partitioned into l intervals with
roughly k ¼ nev=l eigenvalues within each interval, the computational cores are divided into l groups with roughly
q ¼ 512=l cores in each group.

The height of each color coded bar in Fig. 3 gives the total wall clock time used to compute all desired eigenvalues for a
particular combination of l and q that satisfy l� q � 512. The l� q combination associated with each bar is labeled on the
horizontal axis. The blue portion of each bar shows the portion of the wall-clock time spent in factorization. The red portion
represents the average wall clock time spent in triangular substitutions. Because the number of IRL restart cycles used in
different intervals may be slightly different, there is some difference in the actual number of triangular substitutions
performed in different intervals. The difference between the maximum and average amount of wall clock time spent in
triangular substitutions over all intervals is shown by the green portion of each bar. This portion measures how well the
computation is load balanced.

As the cost model and analysis given in Section 2.3 suggests the actual value of kopt depends on a number of architecture
and sparse solver dependent parameters such as cf ; cs;gf and gs. We observe in Fig. 3 that by creating l ¼ 128 intervals with
k � 16 eigenvalues within each interval, the factorization, which is performed by q ¼ 4 cores in parallel, is much more costly



Fig. 3. The effect of interval size.

H.M. Aktulga et al. / Parallel Computing 40 (2014) 195–212 205
than triangular substitutions. As a result, the total wall clock time is far from optimal. On the other hand, when only l ¼ 8
intervals are created with k ¼ 256 eigenvalues per interval, an excessive amount of time is spent in triangular substitutions.
This combination leads to a sharp increase in the total wall clock time also.

The minimum wall-clock time is achieved when l ¼ 25 and q ¼ 20 – about 80 eigenpairs per interval. In this case, the
difference between the maximum and average times spent on triangular substitutions is relatively small indicating that
the computation is reasonably well load balanced, and the wall-clock times used in factorization and triangular substitutions
are roughly the same, too. This observation agrees well with our prediction made in Section 2.3. For other l� q combinations,
the difference between the maximum and average times spent on triangular substitutions can be large. This indicates one of
the challenges of MSIL, which is to ensure that eigenvalues in different intervals converge at approximately the same rate.

In Table 4, we give the percentage of the total time that MSIL spends on the orthogonalization procedure using matrix–
matrix multiplication and the Rayleigh–Ritz computations (pdsaupd) for Graphene512. As this numerical experiment sug-
gests, the cost of the orthogonalization and the Rayleigh–Ritz computations are much lower (ranging from 0.4% to only up to
2.1% for all combinations tested) compared to the cost of sparse factorization and triangular substitutions in the range of k
that is of interest to us. These findings provide the justification for neglecting the cost of orthogonalization and Rayleigh–Ritz
computations to obtain a simple cost model in Section 2.3.

4.1.2. Strong scaling
In this section, we examine how efficiently MSIL can utilize an increasing number of processors for a given problem. Since

our model indicates that the wall clock time of MSIL depends on how the spectrum is partitioned as well as the relative cost
and parallel efficiency of factorization and triangular substitutions, which are themselves a function of the number of pro-
cessors used, performing a strong scaling study is not straightforward.

Fig. 4 shows the strong scaling of MSIL for Graphene matrices, which originates from quasi-2D problems. For each prob-
lem, we plot the best total wall clock time against the total number of processors used in the computation, where the best
wallclock time is chosen from various l� q � p combinations for all p’s. We label each data point by the optimal l� q com-
bination associated with the best measured wall clock time. While the points on the dashed lines indicate the maximum
wall-clock time taken by any processor group in the best combination, the points on the solid line indicate the average
wall-clock time taken by all processor groups.

The general trend we observe is that as the number of processors increases for a given problem, there is an increase both
in the number of intervals l used and in the number of processors q assigned to each interval. Intuitively, this can be
interpreted as follows. Increasing the number of processors in an interval decreases factorization time. However, since
the parallel efficiency of triangular substitution typically degrades faster than that associated with factorization, the decrease
Table 4
Time spent by MSIL in matrix–matrix multiplication for orthogonalization and Rayleigh–Ritz (MM+RR) computations in terms of the percentage of total
wallclock time.

Combination 85 � 6 64 � 8 51 � 10 42 � 12 32 � 16 25 � 20 21 � 24 16 � 32 12 � 42 10 � 48 8 � 64

Nev/interval 24 32 40 48 64 82 98 128 171 205 256
% MM+RR 0.4 0.5 0.7 0.7 1 1.2 1.3 1.5 1.7 1.8 2.1



Fig. 4. The parallel (strong) scalability of MSIL for quasi-2D problems. The height of each data-point give the total wall clock time used in the computation.
Data-points on the solid lines indicate average values, whereas data-points on the dashed lines indicate maximum values. Each data-point is labeled by the
optimal l� q combination, where l is the number of processor groups and q is the number of processors within each group.

206 H.M. Aktulga et al. / Parallel Computing 40 (2014) 195–212
in the time for triangular substitutions is limited. By partitioning the spectrum into slightly more intervals, additional reduc-
tion in the time for triangular substitutions can be achieved, since each interval will have fewer linear equations to solve.

The observation above is also consistent with the cost model presented in Section 2.3. Our model indicates that kopt will
decrease as cp increases, resulting in more intervals, when all other parameters are held fixed and gf > gs. However, we
notice that the increase of the number of intervals l is slower than the increase of total number of cores. That means more
cores are assigned to each interval also, as p increases. This strategy has the combined effect of reducing both the factoriza-
tion and total triangular substitution times, as p increases.
4.1.3. Weak scaling
For the same reasons discussed in the previous section, the weak-scaling of MSIL is not easy to measure either. We are

interested in learning how the wall clock time changes when both the problem size (n) and the number of cores (p) used
in the computation are increased at the same rate. The analysis we presented in Section 2.3 indicates that the change in wall
clock time depends on how the spectrum is partitioned as n and p increase at the same rate. As we move from Graphene512
(n ¼ 20;480) to Graphene2048 (n ¼ 81;920) in Table 5, the number of intervals associated with the best wall clock time
increases from l ¼ 25 to l ¼ 102. As a result, the number of eigenvalues within each interval and the number of processors
used for each interval stays the same. In this case, our model predicts that the wall clock time used for factorization will
increase by a factor of 4af , and the triangular substitution time will increase by a factor of 4as , if cf and cs do not change as
n changes. These changes are independent of gf or gs. Since Graphene is a 2D problem, af ¼ 3=2 and as ¼ 1. Using the factor-
ization and substitution timing measurements recorded for n ¼ 20;480 and p ¼ 512, which are tf ¼ 4:8 and ts ¼ 11:6 respec-
tively, we can estimate the expected factor of increase in wall clock time is roughly ð43=2 � 4:8þ 4� 11:6Þ=ð4:8þ 11:6Þ � 3:2.
Table 5 shows that measured increase factor in wallclock time from n ¼ 20;480; p ¼ 512 to n ¼ 81;920; p ¼ 2048 is about
50:6=16:4 � 3:1. Therefore the weak scaling from Graphene512 to Graphene2048 is nearly perfect.

A similar estimate of the increase in wall clock time can be made when n and p increase from 81;920 and 2048 to 327;680
and 8192 respectively. In this case, k increases from 80 to approximately 96 (a factor of as 1.2) l increases from 102 to 341.
These changes yield an increase in factorization time by a factor of 43=2=1:2gf , and in the time for triangular substitutions by a
factor of 4=1:2gs�1. Using the simplified assumption that gf ¼ gs ¼ 1=2 and the measured tf and ts, we predict the total wall
clock time to increase by a factor of ð43=2 � 14:8=

ffiffiffiffiffiffiffi
1:2
p

þ 4�
ffiffiffiffiffiffiffi
1:2
p

� 35:8Þ=ð14:8þ 35:8Þ � 5:2. Our measured increase is
Table 5
Weak scaling of MSIL for the 2D problems.

Problem p q� l k tf Mean ts Max ts twall

Graphene512 512 20� 25 82 4.8 9.2 11.6 16.4
Graphene2048 2048 20� 102 80 14.8 25.6 35.8 50.6
Graphene8192 8192 24� 341 96 108 190 245 353



H.M. Aktulga et al. / Parallel Computing 40 (2014) 195–212 207
353=50:6 � 7, which is slightly worse than our prediction. As can be seen in Table 5, the extra computational time mainly
results from the degradation of the parallel performance of the factorization and triangular substitution routines, for which
the increase of the computational time is 108=14:8 � 7:3, and 245=35:8 � 6:8 respectively. This is worse than the theoretical
predictions.

4.2. MCISPM

In this section, we examine the performance of MCISPM by reporting the wall clock time used by the FEAST-Mod program
to compute roughly 10% of the lowest eigenvalues of each matrix. We first show that the best way to divide the spectrum to
achieve maximum efficiency for a fixed amount of computational resource is a nontrivial problem. We then study how the
computation scales with an increasing amount of computational resource in both the strong and weak sense.

An additional parameter that can significantly affect the performance of MCISPM is the number of quadrature points used
in an interval. Using fewer number of quadrature points would require fewer factorizations within an interval. Such reduc-
tion would lead to significant savings in computational costs. However, fewer quadrature points may not yield a good
approximation to the contour integral, and therefore may require more subspace iterations to attain the desired accuracy.
So first we investigate how the overall performance of FEAST-Mod depends on the number of quadrature points used. We
have chosen Graphene512 as a representative problem for the 2D cases and C60 for the 3D cases. In Table 6, we present
how using 16 quadrature points per interval performs against the best overall option which includes using 8, 10, 12, 16,
20 and 24 quadrature points.

Our results indicate that using 16 quadrature points gives the best overall performance for the problems that we study.
Therefore we use 16 quadrature points in approximating the contour integral in (6) in all our experiments. If the total num-
ber of cores used to compute eigenvalues within a single contour is q, then q=16 cores are assigned to each pole to perform
the factorization of A� ziI and solve triangular systems required in the subspace iteration. In all experiments below, we
apply two subspace iterations to the approximate projection operator constructed from the approximate contour integral
of the resolvent. They yield eigenpairs whose relative residual norms are all below the tolerance of 10�10 (actually below
10�12 in most cases).

4.2.1. Spectrum division and processor groups
In Table 7, we report the total wall clock time twall for different q� l ¼ p combinations. Although it is possible to compute

all desired eigenvalues by enclosing them in a single contour, Table 7 shows that this may not be the optimal way of using
the contour integral projection method for a fixed amount of computational resource. In this experiment, we use p ¼ 512
cores to compute 2048 (10%) lowest eigenvalues of the Graphene512 matrix. Table 7 shows that the most efficient way
to obtain all desired eigenvalues is to break the interval into l ¼ 8 subintervals, with each subinterval containing k ¼ 256
eigenvalues. We also divide 512 cores into 8 groups with q ¼ 64 cores in each group. Each group of 64 cores is responsible
for computing 256 eigenvalues within one interval.

In Table 7, we also report the time used for factorization (tf ), triangular substitutions (ts) and matrix–matrix multiplica-
tion procedure (for orthogonalization) together with the Rayleigh–Ritz procedure (tmmþrr), respectively. As seen in Table 7,
when the number of eigenvalues in an interval is nearly optimal, e.g. k ¼ 256 or k ¼ 512, the time spent in MM and RR is
relatively small, 1.4% and 5.9%, respectively. However, as the number of eigenvalues within an interval becomes too large,
e.g. k ¼ 2048; trrþmm can be quite significant (32%).

We chose to include the cost of sparse matrix vector multiplications (SpMVs), which are necessary for the subspace pro-
jection, in the column labeled by tother . The cost of SpMVs is usually much lower than that of triangular substitutions. Also
Table 6
Relative performance of using 16 quadrature points (QP) per interval with respect to using 8, 10, 12, 16, 20 or 24 QP. If 16 is not the best option, the number in
parentheses indicate the QP that attain the best performance in each case. The intervals chosen do not contain spectral gaps. The total number of processor
cores used is 128.

Nev/interval 50 100 200 400

Graphene512 1.03 (10) 1.0 1.0 1.0
C60 1.05 (8) 1.0 1.0 1.0

Table 7
The performance profile of MCISPM for 512 processors, using different combinations of q� l ¼ 512, to compute the lowest 2048 eigenvalues of Graphene512.

q� l k twall tf ts tmmþrr tother

512 � 1 2048 466 11 246 150 60
256 � 2 1024 260 16 152 58 32
128 � 4 512 146 26 94 8.6 17
64 � 8 256 121 45 67 1.7 8



208 H.M. Aktulga et al. / Parallel Computing 40 (2014) 195–212
note that depending on the value of the shift and the physical layout of the processors assigned to different quadrature
points, tf and ts will show variations. This potential load-imbalance is also reported in tother . The relatively large value of
tother mainly stems from the non-optimal implementation of the parallel SpMVs. Currently in MCISPM, multiple SpMV tasks
in an interval are distributed among the processors in a group, where each processor performs its share of SpMV tasks seri-
ally one after the other. Sparse matrix dense vector block multiplication (SpMM) or other methods reported in the literature
can certainly be used to speed-up this part of the computation.

The reason that choosing l ¼ 1 and q ¼ 512 leads to the most time consuming combination can be explained by the sig-
nificant amount of time spent in triangular substitutions, matrix–matrix multiplications and the Rayleigh–Ritz procedure as
a result of putting too many eigenvalues into an interval. In general, we observe that the overall computation becomes less
efficient, if the cost of triangular substitutions far exceeds that associated with factorization. As we pointed out in Section 2.3,
the optimal k often makes the time spent in factorization and triangular substitutions roughly equal. For this test problem, as
we increase l and reduce k and q for each interval accordingly, the cost of triangular substitutions decreases by a much larger
margin than the increase in the factorization cost. This results in a reduction in total wall clock time. It is interesting to
observe that when p ¼ 64 and l ¼ 8, which yields the best performance, the amount of time spent in factorization and tri-
angular substitutions is comparable.

In Table 8, we report the best combinations of q and l for a given total core count for all test problems. The column labeled
by minq gives the minimal number of cores required to solve the problem due to memory constraints, and the column
labeled by twall gives the total wall clock time used to compute 10% lowest eigenvalues of these test problems. Note that
for C60, the best q is larger than the minq. When 16 cores are used to solve the problem, each core is assigned to a different
pole, as a result, the factorization time dominates the calculation even though each interval has fewer eigenvalues, hence
requires fewer triangular substitutions. The decrease in the time for triangular substitutions is not enough to offset the
increase in factorization time. One observation that can be made based on Table 8 is that the minimum q for 3D problems
is larger than that associated with 2D problems with a similar matrix size. In both cases, the optimal combination is obtained
when the time spent in factorization and triangular substitutions are about the same.

4.2.2. Strong scaling
We observe from above that there is a tradeoff between using more cores to factor A� ziI (which results in having fewer

intervals with more eigenvalues to compute in each interval) and splitting the spectrum into more intervals, each with fewer
eigenvalues to compute, when the total number of cores is fixed. The optimal choice of q and l combination will depend on
the total number of cores (p) available. Therefore, the strong scaling of MCISPM depends on how q and l are chosen.

Table 9 shows that if we simply increase l and reduce the number of eigenvalues k within each interval as the total num-
ber of cores increases, the wall clock time may not decrease at the same rate because the factorization time may start to
dominate the computation. Likewise, simply increasing q without changing l may not be the right solution either because
the performance of a triangular substitution benefits less from adding more cores. Hence, the cost of triangular substitutions
may begin to dominate the computation as q increases.

It follows from the model established in Section 2.3 that a reasonable strategy for selecting q and k is to increase q without
decreasing k when the cost of factorization is relatively high. As tf is reduced significantly or when factorization cannot ben-
efit much from an increase in q per interval, it then becomes more effective to increase the number of intervals l and reduce k
per interval accordingly.

Table 10 shows that by increasing q from 256 to 512 as the total number of cores p is doubled from 8192 to 16,384, we
can reduce tf by a half and ts by 40%. This leads to a significant reduction of the total wall clock time for computing 10% of the
lowest eigenvalues of Graphene2048. At that point, the time spent in factorization becomes significantly lower than that
spent in triangular substitutions. Thus, when the total number of cores is doubled further to p ¼ 131;072, it is more effective
to increase the number of intervals and reduce the number of eigenvalues within each interval. As a result, the time for tri-
angular substitutions (ts = 9 s) is significantly less than the factorization time (tf ¼ 33 seconds). If p is to be doubled again, we
should then increase p per interval to reduce the factorization time and, consequently, the total wall clock time significantly.

4.2.3. Weak scaling
We observe from (3) that the optimal number of eigenvalues within each interval depends on the size of the problem as

well as the relative cost and efficiency of the factorization and triangular substitution when cn=cp is held constant. When
Table 8
The optimal choice of ðq; lÞ for a fixed number of cores (p) when MCISPM is used to solve test problems listed in Table 3.

Problem p q� l minq k tf ts tmmþrr tother twall

Graphene128 128 16� 8 16 64 3.4 1.7 0.2 0.7 6
Graphene512 512 64� 8 64 256 45 67 1.7 8 121
Graphene2048 8192 256� 32 256 256 73 100 8 27 208
C60 512 32� 16 16 110 27 20 0.2 0.8 48
SiO 2048 256� 16 256 208 47 54 1.5 5 108
GaAsH6 16,384 512� 32 512 192 110 117 3 8 238



Table 9
The scaling of wall clock time for computing nk ¼ 8192 lowest eigenvalues of Graphene2048 with respect to the total number of cores p used in the
computation. We divide the desired part of the spectrum into l intervals, and use q ¼ 256 cores to compute k ¼ 8192=l eigenvalues within each interval.

p q� l k tf ts tmmþrr tother twall

8192 256� 32 256 73 100 8 27 208
16,384 256� 64 128 73 50 1.6 18 143
32,768 256� 128 64 73 25 0.6 5 104
65,536 256� 256 32 73 12 0.2 3 89
131,072 256� 512 16 73 6 0.1 5 85
262,144 256� 1024 8 73 3 0.02 6 82

Table 10
The scaling of wall clock time for computing 8192 lowest eigenvalues of Graphene2048 with an optimal choice of q and l.

p q� l k tf ts tmmþrr tother twall

8192 256� 32 256 73 100 8 27 208
16,384 512� 32 256 37 69 5.7 23 136
32,768 512� 64 128 37 36 1.6 14 89
131,072 512� 256 32 37 9 0.2 2 48
262,144 1024� 256 16 26 9 0.1 2 38

H.M. Aktulga et al. / Parallel Computing 40 (2014) 195–212 209
gf ;gs; cf and cs do not vary much as n and p are increased, the optimal k should increase with respect to n, which is consistent
with what we observe in our experiment.

In Table 11, we report the best wall clock time we observed when Graphene problems of increasing sizes are solved by an
increasing number of cores. In particular, when the matrix size is increased by a factor of 4, we increase the total number of
cores by a factor of 4 also. The best wall clock time measurements are obtained by increasing both k and q by a factor of two
when both n and p are quadrupled.

The increase of wall clock time by a factor of 3.8 reported in Table 11 when the matrix size is increased from n ¼ 20;480
to n ¼ 81;920 is well within the range predicted by our simple model. Our prediction is based on the analysis presented in
Section 2.3, which estimates the increase to be by a factor of
Table 1
Weak s

Prob

Grap
Grap
Grap
43=2

2g
f

tf þ 4as

2gs�1 ts

tf þ ts
; ð7Þ
where tf ¼ 27 and ts ¼ 24 represent the cost of factorization and triangular substitutions before n and p are increased. If we
use gf ¼ gs ¼ 1=2, (7) is approximately 5.6.

However, when the matrix size is increased from n ¼ 5;120 to n ¼ 20;480, the increase of wall clock time by a factor of 16
is large than we expected. We believe this kind of deviation from our predicted increase of a factor of 5.6 is due to the relative
small size of the problem. When the problem size is too small, the prefactors of the estimated cost of factorization and tri-
angular substitutions play a more prominent role, but they were neglected in our previous analysis. This can be see from the
factorization time alone, which increases by a factor of more than 15, whereas the standard complexity analysis predicts an
increase by a factor of 4 only. Such increase is directly related to the rapid increase in the number of nonzeros in the lower
triangular factor, which exceeds a factor of 10 when the number of atoms in the Graphene is increased from 128 to 512.

Our main interest in this paper is on larger problems that are solved with a large number of cores. In this regime, it
appears that the MCISPM has a good weak scaling property.
4.3. MSIL vs. MCISPM

Table 12 gives the best total wall-clock times achieved using MCISPM and MSIL to solve our test problems. The
comparison between the best wall-clock times for the two methods reveals that MSIL is much faster than MCISPM for these
problems.
1
caling on Graphene problems.

lem n p twall tf ts k q l

hene128 5,120 512 3.6 1.7 1.2 64 64 8
hene512 20,480 2048 55 27 24 128 128 16
hene2048 89,120 8192 208 65 104 256 256 32



Table 12
Comparison of the best wall-clock times achieved using MCISPM and MSIL to solve the problems listed in Table 3.

Problem p MCISPM MSIL

q� l k twall q� l k twall

Graphene512 512 64� 8 256 125 25� 20 82 16.4
Graphene2048 8192 256� 32 256 208 256� 32 32 28.2
C60 512 32� 16 110 46 51� 10 32 9.5
SiO 2048 256� 16 208 98 64� 32 52 43.1
GaAsH6 16,384 512� 32 192 198 64� 256 100 54

210 H.M. Aktulga et al. / Parallel Computing 40 (2014) 195–212
5. Concluding remarks

We investigated two parallel methods for computing a relatively large number of eigenpairs of a large sparse matrix. Both
of these two methods are based on the general technique of dividing the spectrum of interest into several intervals and com-
puting eigenvalues within each interval simultaneously. One method uses the shift–invert Lanczos procedure with implicitly
restarts to compute eigenvalues within each interval. The other method constructs an approximate spectral projection oper-
ator P through a contour integral formulation and applies a few subspace iterations to obtain the desired eigenvalues. Both
methods require solving a number of linear systems of equations. We assume in this paper that these equations can be
solved by sparse direct methods such as the one implemented in the MUMPS software package [1].

We also assume that a large number of processors or computational cores are available to solve the eigenvalue problem.
A practical question we examined is how we should partition the spectrum in a way to make optimal use of a vast amount
of computational resource. We established a simple model to study the trade-off between sparse factorization and trian-
gular substitutions and how this trade-off may affect the wall-clock time of the overall computation. Spectrum partitioning
strategies based on the analysis of this model appears to yield good performance in our computational experiments. Our
computational experiments indicate that MSIL gives much better performance results for the problems studied in this
paper.

We remark that the optimal spectrum partition strategy and the actual performance of the eigensolver depends on the
performance and the scalability of the sparse direct method. Although we only experimented with the use of MUMPS, many
of the observations and trends we discussed are applicable to other solvers.

Acknowledgments

Support for this work was provided through Scientific Discovery through Advanced Computing (SciDAC) program funded
by U.S. Department of Energy Office of Advanced Scientific Computing Research under the contract DE-AC02-05CH11231.
This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office
of Science of the U.S. Department of Energy under contract DE-AC02-05CH11231.

Appendix

In the model presented in Section 2.3, we only take into account the cost for sparse factorization and triangular substi-
tutions, and neglect the cost for the diagonalization procedure inside each interval. In this section we justify this simplifica-
tion. The cost of the diagonalization procedure consists of two parts: the matrix–matrix multiplication procedure (MM) to
form the projected problem and to obtain the orthogonal eigenvectors (orthogonalization), and the Rayleigh–Ritz procedure
(RR) to solve the projected problem. The cost for MM scales as cmmnk2 and the cost for RR scales as crrk

3. Using notation sim-
ilar to that used in Section 2.3, we denote by gmm the parallel efficiency for the MM procedure. We also note that in many
existing implementations of the spectrum slicing algorithm including our own, the RR procedure is not yet parallelized.
Therefore a complete description of the model for the wall clock time can be written as
W totðkÞ ¼ cf naf

p
nev=k

� �gf
þ csnas k

p
nev=k

� �gs
þ cmmnk2

p
nev=k

� �gmm
þ crrk

3
: ð8Þ
Since the goal of the spectrum slicing method is to limit the diagonalization cost when k is large, we require the wall clock
time of the MM and RR procedure to be much less than the wall clock time of either the factorization and the triangular solve
process. This gives rise to the following set of conditions
cmmnk2

p
nev=k

� �gmm
� cf naf

p
nev=k

� �gf
; ð9Þ



H.M. Aktulga et al. / Parallel Computing 40 (2014) 195–212 211
cmmnk2

p
nev=k

� �gmm
� csnas k

p
nev=k

� �gs
; ð10Þ

crrk
3 � cf naf

p
nev=k

� �gf
; ð11Þ

crrk
3 � csnas k

p
nev=k

� �gs
; ð12Þ
which can be further simplified to yield
k� cp

cn

� � gmm�gf
2�gmmþgf cf

cmm

� � 1
2�gmmþgf

n
af �1

2�gmmþgf ; ð13Þ

k� cp

cn

� � gmm�gs
1�gmmþgs cs

cmm

� � 1
1�gmmþgs

n
as�1

1�gmmþgs ; ð14Þ

k� cp

cn

� �� gf
3þgf cf

crr

� � 1
3þgf

n
af

3þgf ; ð15Þ

k� cp

cn

� �� gs
2þgs cs

crr

� � 1
2þgs

n
as

2þgs : ð16Þ
Let us focus on the scaling with respect to n.We use the values of af ;as in Table 2, and assume that gmm ¼ gf ¼ gs.In order to
satisfy all conditions set in Eq.(13) to Eq.(16), we find that k � Oð1Þ for d ¼ 1; k � Oð1Þ for d ¼ 2, and k � Oðn1=3Þ for
d ¼ 3.Such scaling is more strict than those provided in Table 2, which agrees with our intuitive understanding that if k is
too large, the cost for the orthogonalization and the Rayleigh–Ritz calculations will dominate.However, it is worth noting
that usually the MM process has much smaller preconstant than that associated with a factorization or a triangular solve
(cmm � cf ; cs), and the BLAS3 routine in the MM process is easier to parallelize than the factorization or triangular solve
(gmm > gf ;gs).Therefore the bounds in Eqs.(13) and (14) can be excessively large for practical choice of n as in the numerical
results section.If we neglect the condition in Eqs.(13) and (14) and only require Eqs.(15) and (16) to be satisfied, and assume

gf ¼ gs ¼ g, we obtain k � O n
1

3þg

� �
for d ¼ 1, k � O n

1
2þg

� �
for d ¼ 2, and k � O n

4
6þ3g

� �
for d ¼ 3.Such scaling is only slightly

more stringent than that shown in Table 2, and it agrees with the scaling in Table 2 when g ¼ 0.This is because we assume
the RR process is solved with a sequential routine.Furthermore, taking into account that the RR process has much smaller
preconstant than factorization or triangular solve(crr � cf ; cs), we conclude that it is reasonable to simplify the discussion
and focus on the cost for factorization and triangular solve as in Section 2.3 for practical choice of k and n.

References

[1] P. Amestoy, I. Duff, J.-Y. L’Excellent, J. Koster, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl.
23 (2001) 15–41.

[2] Andrzej Bajer, Mode-based frequency response analysis with frequency-dependent material properties, ASME Conf. Proc. 2008 (48396) (2008) 331–
334.

[3] C.G. Baker, U.L. Hetmaniuk, R.B. Lehoucq, H.K. Thornquist, Anasazi software for the numerical solution of large-scale eigenvalue problems, ACM Trans.
Math. Softw. 36 (3) (2009) 13:1–13:23.

[4] L.S. Blackford, J. Choi, A. Cleary, E. D’Azeuedo, J. Demmel, I. Dhillon, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, R.C. Whaley, ScaLAPACK
User’s Guide, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1997.

[5] Nicolas Bock, Matt Challacombe, An optimized sparse approximate matrix multiply, CoRR, abs/1203.1692, 2012.
[6] D.R. Bowler, T. Miyazaki, M.J. Gillan, Parallel sparse matrix multiplication for linear scaling electronic structure calculations, Comput. Phys. Commun.

137 (2) (2001) 255–273.
[7] F. Chatelin, Spectral Approximation of Linear Operators, Academic Press, New York, 1983.
[8] B. Fischer, Polynomial Based Iteration Methods for Symmetric Linear Systems, Wiley Teubner, Chichester, New York, 1996.
[9] R. Freund, N. Nachtigal, QMR: A quasi-minimal residual method for non-hermitian linear systems, Numer. Math. 60 (1991) 315–339.

[10] A. George, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal. 10 (1973) 345–363.
[11] G. Karypis, V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J. Sci. Comput. 20 (1998) 359–392.
[12] A. Knyazev, M. Argentati, I. Lashuk, E. Ovtchinnikov, Block locally optimal preconditioned eigenvalue xolvers (BLOPEX) in Hypre and PETSc, SIAM J. Sci.

Comput. 29 (5) (2007) 2224–2239.
[13] L. Krämer, E.D. Napoli, M. Galgon, B. Lang, P. Bientinesi, Dissecting the FEAST algorithm for generalized eigenproblems, J. Comput. Appl. Math. 244

(2013).
[14] L. Kronik, A. Makmal, M.L. Tiago, M.M.G. Alemany, M. Jain, X. Huang, Y. Saad, J.R. Chelikowsky, PARSEC–the pseudopotential algorithm for real-space

electronic structure calculations: recent advances and novel applications to nano-structures, Phys. Status Solidi B 243 (2006) 1063–1079.
[15] R. Lehoucq, D. Sorensen, Implicitly restarted Lanczos method (Section 4.5), in: Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, H. van der Vorst (Eds.),

Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, SIAM, Philadelphia, 2000, pp. 67–81.

http://refhub.elsevier.com/S0167-8191(14)00032-5/h0020
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0020
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0025
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0025
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0030
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0030
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0035
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0035
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0035
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0040
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0040
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0045
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0045
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0050
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0050
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0055
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0060
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0065
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0070
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0070
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0075
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0075
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0080
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0080
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0085
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0085
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0085
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0085
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0085
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0085
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0085
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0085


212 H.M. Aktulga et al. / Parallel Computing 40 (2014) 195–212
[16] R.B. Lehoucq, D.C. Sorensen, C. Yang, ARPACK Users’ Guide – Solution of Large-scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods,
SIAM, Philadelphia, PA, 1999.

[17] A.R. Levin, D. Zhang, E. Polizzi, FEAST fundamental framework for electronic structure calculations: reformulation and solution of the muffin-tin
problem, Comput. Phys. Commun. 183 (11) (2012).

[18] L. Lin, J. Lu, L. Ying, W. E., Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework I: total energy
calculation, J. Comput. Phys. 231 (2012) 2140–2154.

[19] L. Lin, C. Yang, Y. Saad, Approximating spectral densities of large matrices, http://arxiv.org/abs/1308.5467.
[20] K.J. Maschhoff, D.C. Sorensen, PARPACK: an efficient portable large scale eigenvalue package for distributed memory parallel architectures, in: J.

Wasniewski, J. Dongarra, K. Madsen, D. Olesen (Eds.), Applied Parallel Computing in Industrial Problems and Optimization, Lecture Notes in Computer
Science, vol. 1184, Springer-Verlag, Berlin, 1996.

[21] C.C. Paige, M.A. Saunders, Solutions of sparse indefinite systems of linear equations, SIAM J. Numer. Anal. 12 (1975) 617–629.
[22] E. Polizzi, Density-matrix-based algorithms for solving eigenvalue problems, Phys. Rev. B 79 (2009) 115112.
[23] A. Ruhe, Rational Krylov sequence methods for eigenvalue computation, Linear Algebra Appl. 58 (1984).
[24] Y. Saad, M.H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Comput. 7 (1986) 856–

869.
[25] Y. Saad, A. Stathopoulos, J. Chelikowsky, K. Wu, Solution of large eigenvalue problems in electronic structure calculations, BIT 36 (1996) 563–578.
[26] T. Sakurai, H. Sugiura, A projection method for generalized eigenvalue problems, J. Comput. Appl. Math. 159 (2003) 119–128.
[27] Tetsuya Sakurai, Yoshihisa Kodaki, Hiroto Tadano, Daisuke Takahashi, Mitsuhisa Sato, Umpei Nagashima, A parallel method for large sparse

generalized eigenvalue problems usin g a gridrpc system, Future Gen. Comput. Syst. 24 (6) (2008) 613–619.
[28] G. Schofield, J.R. Chelikowsky, Y. Saad, A spectrum slicing method for the Kohn–Sham problem, Comput. Phys. Commun. 183 (2012).
[29] D.C. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi method, SIAM J. Matrix Anal. Appl. 13 (1) (1992) 357–385.
[30] G.W. Stewart, Afternotes goes to graduate school: Lecture on advanced numerical analysis, SIAM, Philadelphia, 1998.
[31] Andreas Stathopoulos, James R. McCombs, PRIMME: preconditioned iterative multimethod eigensolver – methods and software description, ACM

Trans. Math. Softw. 37 (2) (2010) 21:1–21:30.
[32] J.J. Sylvester, A demonstration of the theorem that every homogeneous quadratic polynomial is reducible by real orthogonal substitutions to the form

of a sum of positive and negative squares, Philos. Mag. 23 (1852) 138–142.
[33] H.A. Van der Vorst, Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat.

Comput. 13 (2) (1992) 631–644.
[34] Zaiwen Wen, Chao Yang, Xin Liu, Yin Zhang, Trace-penalty minimization for large-scale eigenspace computation, Optimization, 2013 (Online).
[35] I. Yamazaki, H. Tadano, T. Sakurai, T. Ikegami, Performance comparison of parallel eigensolvers based on a contour integral method and a lanczos

method, Parallel Comput. 39 (6–7) (2013) 280–290.
[36] H. Zhang, B. Smith, M. Sternberg, P. Zapol, SIPs: shift-and-invert parallel spectral transformations, ACM Trans. Math. Softw. 33 (2) (2007).

http://refhub.elsevier.com/S0167-8191(14)00032-5/h0090
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0090
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0090
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0095
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0095
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0100
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0100
http://arxiv.org/abs/1308.5467
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0105
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0105
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0105
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0105
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0105
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0105
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0105
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0105
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0110
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0115
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0120
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0125
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0125
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0130
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0135
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0140
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0140
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0145
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0150
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0155
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0155
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0160
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0160
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0165
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0165
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0170
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0170
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0175
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0175
http://refhub.elsevier.com/S0167-8191(14)00032-5/h0180

	Parallel eigenvalue calculation based on multiple shift–invert Lanczos and contour integral based spectral projection method
	1 Introduction
	2 Spectrum division
	2.1 Objectives
	2.2 Density of states estimation
	2.3 Strategy

	3 Implementation issues
	3.1 Multiple shift–invert Lanczos
	3.2 Contour integral based projection method

	4 Computational experiments
	4.1 MSIL
	4.1.1 Spectrum division and processor groups
	4.1.2 Strong scaling
	4.1.3 Weak scaling

	4.2 MCISPM
	4.2.1 Spectrum division and processor groups
	4.2.2 Strong scaling
	4.2.3 Weak scaling

	4.3 MSIL vs. MCISPM

	5 Concluding remarks
	Acknowledgments
	Appendix 
	References


