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We describe a massively parallel implementation of the recently developed discontinuous Galerkin
density functional theory (DGDFT) method, for efficient large-scale Kohn-Sham DFT based elec-
tronic structure calculations. The DGDFT method uses adaptive local basis (ALB) functions gener-
ated on-the-fly during the self-consistent field iteration to represent the solution to the Kohn-Sham
equations. The use of the ALB set provides a systematic way to improve the accuracy of the
approximation. By using the pole expansion and selected inversion technique to compute electron
density, energy, and atomic forces, we can make the computational complexity of DGDFT scale at
most quadratically with respect to the number of electrons for both insulating and metallic systems.
We show that for the two-dimensional (2D) phosphorene systems studied here, using 37 basis
functions per atom allows us to reach an accuracy level of 1.3 × 10−4 Hartree/atom in terms of
the error of energy and 6.2 × 10−4 Hartree/bohr in terms of the error of atomic force, respectively.
DGDFT can achieve 80% parallel efficiency on 128,000 high performance computing cores when
it is used to study the electronic structure of 2D phosphorene systems with 3500-14 000 atoms.
This high parallel efficiency results from a two-level parallelization scheme that we will describe
in detail. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4931732]

I. INTRODUCTION

Kohn-Sham (KS) density functional theory (DFT)1,2 is
the most widely used methodology for performing ab initio
electronic structure calculations to study the structural and
electronic properties of molecules, solids, and nanomaterials.
However, until recently, routine DFT calculations are only
limited to small systems because they have a relatively high
complexity (O(N2−3)) with respect to the system size N .
As the system size increases, the cost of traditional DFT
calculations becomes prohibitively expensive. Therefore, it
is still challenging to routinely use DFT calculations to treat
large-scale systems that may contain thousands to tens of
thousands of atoms. Although various linear scaling O(N)
methods3–5 have been proposed for improving the efficiency of
DFT calculations, they rely on the nearsightedness principle,
which leads to exponentially localized density matrices in
real-space for systems with a finite energy gap or at finite
temperature. Furthermore, most of the existing linear scaling
DFT codes, such as SIESTA,6 OPENMX,7 HONPAS,8 CP2K,9

and CONQUEST,10 are based on the contracted and localized
basis sets in the real-space, such as Gaussian-type orbitals or
numerical atomic orbitals.4 The accuracy of methods based on
such contracted basis functions is relatively difficult to improve
systematically compared to conventional uniform basis sets,
for example, plane wave basis set,11 while the disadvantage of
using uniform basis sets is the relatively large number of basis
functions per atom.

a)whu@lbl.gov
b)linlin@math.berkeley.edu
c)cyang@lbl.gov

Another practical challenge of DFT calculations is related
to the implementation of various approaches to take full
advantage of the massive parallelism available on modern high
performance computing (HPC) architectures. Conventional
DFT codes, especially, plane wave codes, such as VASP,12

QUANTUM ESPRESSO,13 and ABINIT,14 have relatively
limited parallel scalability even for large-scale systems involv-
ing thousands of atoms. The strong scaling performance
(i.e., the change of computational speed with respect to the
number of processing units for a problem of fixed size) of
these planewave based codes is often poor when the number
of computational cores exceeds a few thousands. Nonetheless,
improvements have been made in the past decade. For instance,
Qbox15 demonstrated high scalability to over 1000 atoms using
131 072 cores on the IBM Blue Gene/L architecture (of which a
factor of 8 is due to k-point parallelization). On the other hand,
several DFT software packages based on contracted basis
functions have achieved high parallel performance using linear
scaling techniques for insulating systems. Examples include
CP2K16 and CONQUEST,17 in which linear scaling is achieved
based on parallel sparse matrix multiplication.18–20 CP2K has
demonstrated calculations on 96 000 water molecular scaling
to 46 656 cores.16 CONQUEST has demonstrated scaling to
over 2 000 000 atoms on 4096 cores.17

The recently developed discontinuous Galerkin density
functional theory (DGDFT)21 aims at reducing the number of
basis functions per atom while maintaining accuracy compa-
rable to that of the planewave basis set. This is achieved by
using an adaptive local basis (ALB) set. One unique feature of
the ALB set is that each ALB function is strictly localized in
a certain element in the real space, and is discontinuous from

0021-9606/2015/143(12)/124110/12/$30.00 143, 124110-1 © 2015 AIP Publishing LLC
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the point of view of the global domain. The continuous Kohn-
Sham orbitals and density are assembled from the discontin-
uous basis functions using the discontinuous Galerkin (DG)
method.22,23 The ALB set takes both atomic and chemical
environmental effects into account, and can be systematically
improved just by increasing one number (number of ALBs
per element). For the two-dimensional phosphorene systems
studied here, our numerical results show that using 37 basis
functions per atom allows us to reach an accuracy level of
1.3 × 10−4 Hartree/atom in terms of the error of energy and
6.2 × 10−4 Hartree/bohr in terms of the error of atomic force,
respectively. We remark that the idea of generating localized
basis functions on the fly has also been explored in other
electronic structure software packages such as ONETEP24 and
recently BigDFT,25 where localized basis functions are contin-
uous and are improved through an optimization procedure.
Filter diagonalization26 is another approach for contracting
basis functions and has been applied to contract Gaussian
type functions. The filter diagonalization requires choosing
trial functions, and the choice of trial functions may not be
straightforward for an initial set of fine basis functions such
as planewaves, finite elements, or wavelets.

The solution produced by DGDFT is also fully consistent
with the solution of standard Kohn-Sham equations in the limit
of a complete basis set, and the error can be measured by a
posteriori error estimators.27

The strict spatial locality guarantees that the ALBs can
form an orthonormal basis set and the overlap matrix is there-
fore an identity matrix, which requires only the solution of a
standard eigenvalue problem rather than a generalized eigen-
value problem. The discrete Kohn-Sham Hamiltonian matrix is
sparse. Furthermore, the sparsity pattern bears a resemblance
to a block version of finite difference stencils, and facilitates
parallel implementation. The sparse discrete Hamiltonian ma-
trix allows DGDFT to take advantage of the pole expansion and
selected inversion (PEXSI) technique.28–30 The PEXSI method
overcomes the O(N3) scaling limit for solving Kohn-Sham
DFT, and scales at most as O(N2) even for metallic systems at
room temperature. In particular, the computational complexity
of the PEXSI method is only O(N) for quasi 1D systems,
and is O(N1.5) for quasi two-dimensional(2D) systems. This
also makes the DGDFT methodology particularly suitable for
analyzing low-dimensional (quasi 1D and 2D) systems regard-
less whether the system is a metal, a semiconductor, or an
insulator,29 different from the near-sightedness assumption in
standard linear scaling DFT calculations.

In this paper, we describe a massively parallel DGDFT
method, based on a two-level parallelization strategy. This
strategy results directly from the domain decomposition nature
of the DGDFT method in which the global computational
domain is partitioned into a number of subdomains from which
the ALBs are generated. We demonstrate the accuracy and
high parallel efficiency of DGDFT by using 2D phosphorene
monolayers with 3500-14 000 atoms as examples to show that
DGDFT can take full advantage of up to 128 000 cores on a
high performance computer.

The rest of paper is organized as follows. After brief intro-
duction of the DGDFT method, we describe several impor-
tant implementation considerations of the massively parallel

DGDFT method in Section II. We demonstrate the numerical
performance of DGDFT for 2D phosphorene monolayers in
Section III, followed by the conclusion in Section IV.

II. DGDFT METHODOLOGY AND PARALLEL SCHEME

A. Adaptive local basis set in a discontinuous
Galerkin framework

Since the main focus of this paper is to describe a highly
efficient parallel implementation of the DGDFT methodology,
we will not provide detailed theoretical derivation of the
DGDFT method that can be found in Ref. 21. We will briefly
introduce the basic work flow of DGDFT, and the main steps
and major computational bottlenecks that require paralleliza-
tion. For detailed explanation of technical details, we refer
readers to Ref. 21 and a forthcoming publication31 concern-
ing the total energy and the force calculation in DGDFT.
Throughout the paper we consider Γ-point calculation only.
Therefore, the Kohn-Sham orbitals are real. We assume the
system is closed shell. Spin degeneracy is omitted to simplify
the notation in this section, but is correctly accounted for in the
DGDFT code and the numerical simulation.

The goal of the DGDFT method is to find the minimizer of
the Kohn-Sham energy functional, which is a nonlinear func-
tional in terms of N single particle wavefunctions (orbitals)ψi.
The minimizer of this functional is sought in a self-consistent
field (SCF) iteration which produces electron density ρ that
satisfies a fixed point (or self-consistent) nonlinear map. In a
standard SCF iteration, a linear eigenvalue problem needs to be
solved in each SCF cycle. As discussed in Ref. 21, the solution
of this linear eigenvalue problem is usually the computational
bottleneck for solving Kohn-Sham DFT.

In the DGDFT method, we partition the global compu-
tational domain Ω into a number of subdomains (called ele-
ments), denoted by E1, . . . ,EM. An example of partitioning
the global domain of a model problem into a number of 2D
elements is given in Fig. 1. We useT to denote the collection of
all elements. In the current version of DGDFT, we use periodic
boundary conditions to treat both molecule and solids. How-
ever, the method can be relatively easily generalized to other
boundary conditions such as Dirichlet boundary condition.
Therefore, each surface of the element must be shared between
two neighboring elements, and S denotes the collection of all
the surfaces.

Each Kohn-Sham orbital is expanded into a linear combi-
nation of ALBs ϕK, j, i.e.,

ψi(x) =
M
K=1

JK
j=1

ci;K, jϕK, j(x), (1)

where ϕK, j(x) is the jth ALB in the element EK that has
nonzero support only in EK , and JK is the total number of
ALBs in EK . The basis function ϕK, j is not necessarily contin-
uous across the boundary of EK . Because each ϕK, j is assumed
to be square integrable within EK and is zero outside of EK ,
its inner product with other function can be defined in terms
of an L2 inner product defined on EK . As a result, a natural
global inner product between quantities such as ψi, which we
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FIG. 1. A model system in 2D partitioned into 16 (4 × 4) equal sized ele-
ments. (a) An extended element Q6 associated with the element E6, and Q6
includes elements E1, E2, E3, E5, E6, E7 E9, E10, and E11. The four surfaces
of E6 on which boundary integrals are computed are highlighted by arrows.
(b) Two possible cases of projection vectors of the nonlocal pseudopotential,
one contained in an element, and another contained in multiple (here 4)
elements. (c) The block structure of DG Hamiltonian matrix with blocks with
nonzero values highlighted.

denote by ⟨·, ·⟩T , can be taken as the sum of local L2 in-
ner products defined for all elements. Similarly, we can also
define a global surface inner product, denoted by ⟨·, ·⟩S, as the
sum of local L2 surface inner products defined on all surfaces
of all elements. The ALB set is orthonormal, i.e., for K,K ′

= 1, . . . ,M, j = 1, . . . , JK , j ′ = 1, . . . , JK ′,


ϕK, j, ϕK ′, j′

�
T = δK,K ′δ j, j′. (2)

Because the expansion of ψi contains at least two ALBs
localized in two adjacent elements with a shared surface on
which neither ALB is continuous, the values of ψi on two
sides of the surface can be different. This difference calls for
the notion of average of gradient

��
∇ψi

		
and the concept of

jump of function value
��
ψi

��
defined on the surface. The use of

average and jump operators distinguishes DGDFT from other
KS-DFT solvers.

Using these notations, the total energy functional to be
minimized with respect to the N Kohn-Sham orbitals {ψi}
subject to orthonormality condition can be written as

EDG({ψi}) = 1
2

N
i=1

⟨∇ψi,∇ψi⟩T + ⟨Veff, ρ⟩T

+

NA
I=1

L I
ℓ=1

γI,ℓ

N
i=1

�

bI,ℓ(· − RI),ψi

�
T
�2

−
N
i=1


��
∇ψi

		
,
��
ψi

���
S

+ α

N
i=1


��
ψi

��
,
��
ψi

���
S , (3)

where we use Veff to denote the effective one-body potential
(including local pseudopotential Vloc, Hartree potential VH ,
and the exchange-correlation potential Vxc[ρ]), the terms that
contain bI,ℓ and γI,ℓ correspond to the nonlocal pseudopoten-
tial in the Kleinman-Bylander form,32 and α is an adjustable
penalty parameter to ensure that Eq. (3) has a well defined
ground state energy. For each atom I, there are L I functions
{bI,ℓ}, called projection vectors of the nonlocal pseudopoten-
tial. The parameters {γI,ℓ} are real valued scalars. We refer the
readers to Ref. 21 for more detailed explanation of the notation
and theory.

The procedure for constructing the ALBs and a detailed
example of the ALBs will be given later in this subsection.
For now we just treat Eq. (1) as an ansatz for representing
the Kohn-Sham orbitals. Minimizing the coefficients {ci;K, j}
subject to orthonormality condition gives rise to the Euler-
Lagrange equation of Eq. (3) which is a linear eigenvalue
problem, 

K, j

HDG
K ′, j′;K, jci;K, j = λici;K ′, j′. (4)

Here, HDG is the discrete Kohn-Sham Hamiltonian matrix,
with matrix entries given by

HDG
K ′, j′;K, j =

(1
2


∇ϕK, j′,∇ϕK, j

�
T +



ϕK, j′,VeffϕK, j

�
T

)
δK,K ′

+
(
I,ℓ

γI,ℓ


ϕK ′, j′,bI,ℓ

�
T


bI,ℓ, ϕK, j

�
T

)
+

(
−1

2

��
ϕK ′, j′

��
,
��
∇ϕK, j

		�
S

− 1
2

��
∇ϕK ′, j′

		
,
��
ϕK, j

���
S

+ α

��
ϕK ′, j′

��
,
��
ϕK, j

���
S

)
. (5)

The HDG matrix can be naturally partitioned into matrix blocks
as sketched in Fig. 1. We call the submatrix HDG

K ′,:;K,: of size
JK ′ × JK the (K ′,K)th matrix block of HDG, or HDG

K ′;K for
short. The terms are grouped by three parentheses on the right
hand side of Eq. (5) to reflect different contributions to the
DG Hamiltonian matrix, and will be treated differently in our
parallel implementation of the method. The first group orig-
inates from the kinetic energy and the local pseudopotential,
and only contributes to the diagonal blocks HDG

K,K . The second
group comes from nonlocal pseudopotentials, and contributes
to both the diagonal and off-diagonal blocks of HDG. Since a
projection vector of the nonlocal pseudopotential is spatially
localized, we require the dimension of every element along
each direction (usually on the order of 6–8 bohrs) to be larger
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than the size of the nonzero support of each projection vector
(usually on the order of 2–4 bohrs). Thus, the nonzero support
of each projection vector can overlap with at most 2d elements
as shown in Fig. 1(b) (d = 1,2,3). As a result, each nonlocal
pseudopotential term may contribute both to the diagonal and
the off-diagonal blocks of HDG. The third group consists of
contributions from boundary integrals, and can also contribute
to both the diagonal and off-diagonal blocks of HDG. Each
boundary term involves only two neighboring elements by
definition as plotted in Fig. 1(a). In summary, HDG is a sparse
matrix and the nonzero matrix blocks correspond to interac-
tions between neighboring elements (Fig. 1).

After constructing the HDG matrix and solving eigenvalue
problem (4), the electron density required to evaluate the effec-
tive potential Veff in Eq. (3) can be obtained from

ρ(x) =
N
i=1

|ψi(x)|2. (6)

It is well known that (6) is not the only way to compute
the electron density. An alternative approach which does not
require computing eigenvalues and eigenvectors of HDG is the
PEXSI method.28–30 To make use of the PEXSI method, we
need to express ρ(x) in terms of selected blocks of the density
matrix represented in the ALB set (or density matrix for short
in the following discussion). To be more precise, this density
matrix has the form

PK, j ;K ′, j′ =

N
i=1

ci;K, jci;K ′, j′, (7)

and can be accurately approximated as a matrix function of
HDG without knowing ci;K, j explicitly.

Using the density matrix, we can express the electron
density as

ρ(x) =
M
K=1

JK
j=1

M
K ′=1

JK ′
j′=1

ϕK, j(x)ϕK ′, j′(x) *
,

N
i=1

ci;K, jci;K ′, j′+
-

=

M
K=1

JK
j=1

JK
j′=1

ϕK, j(x)ϕK, j′(x)PK, j ;K, j′. (8)

Here, we have used the fact that each function ϕK, j(x) is
strictly localized in the element EK to eliminate the cross terms
involving both K and K ′. As a result, the selected blocks, or
more specifically, the diagonal blocks of the density matrix
PK ;K ≡ PK,:;K,: are needed to evaluate the electron density.
This is a key feature of this expression that makes it possible
to use the PEXSI method as will be discussed in Section II C.
After self-consistency of the electron density is achieved in the
SCF iteration, the total energy and atomic forces can also be
evaluated using the PEXSI method.

Eq. (8) assumes that the system is at zero temperature.
For finite temperature treatment that is needed for metallic
systems, the electron density should be computed as

ρ(x) =
M
K=1

JK
j=1

M
K ′=1

JK ′
j′=1

ϕK, j(x)ϕK ′, j′(x) *
,

N
i=1

f ici;K, jci;K ′, j′+
-
.

(9)

Here f i = 1
1+eβ(λi−µ) is the Fermi-Dirac distribution, β is the

inverse of temperature, and µ is the chemical potential adjusted
so that the total number of electrons is N . The Fermi-Dirac
distribution can be derived by minimizing the Mermin free en-
ergy functional,33 and a detailed derivation in the discontinuous
Galerkin framework has been given in Ref. 34.

We have demonstrated that high accuracy in the total en-
ergy and atomic forces can be achieved with a very small num-
ber (4–40) of basis functions per atom in DGDFT, compared to
fully converged planewave calculations.21,31 Besides selected
blocks of the density matrix (DM), the Helmholtz free energy
and the atomic force can be evaluated by computing selected
blocks of the free energy density matrix (FDM) and the en-
ergy density matrix (EDM), respectively. The technique for
computing EDM and FDM is very similar to that for computing
the DM.29

One notable feature of the ALB set is that it is generated
on the fly, and is adaptive not only to the atomic but also the
environmental information. In order to construct ALBs, we
introduce, for each element EK , an extended element QK that
contains EK and a buffer region surrounding EK . We define
VQK

eff = Veff|QK
to be the restriction of the effective potential

at the current SCF step to QK , and VQK
nl = Vnl|QK

to be the
restriction of the nonlocal potential to QK . These restricted
potentials define a local Kohn-Sham linear eigenvalue problem
on each extended element QK ,

HQK
eff ϕK, j =

(
−1

2
∆ + VQK

eff + VQK
nl

)
ϕK, j = λK, jϕK, j,

QK

ϕK, j(x)ϕK, j′(x) dx = δ j j′.
(10)

This linear eigenvalue problem can be discretized by using
traditional basis sets such as plane waves and solved by an
iterative method such as the locally optimal block precondi-
tioned conjugate gradient (LOBPCG) method. We remark that
SCF iterations need not and should not be performed within
each element QK . The lowest JK eigenvalues {λK, j}JKj=1 and the
corresponding eigenfunctions {ϕK, j}JKj=1 are computed on QK .
We then restrict {ϕK, j}JKj=1 from QK to EK . The truncated vec-
tors are not necessarily orthonormal. Therefore, we orthonor-
malize the set of truncated eigenvectors to obtain {ϕK, j}JKj=1.
We then set each ϕK, j to zero outside of EK , so that it is
defined over the entire domain, but is in general discontinuous
across the boundary of EK . These functions constitute the
ALB set that we use to represent the Kohn-Sham Hamiltonian.
Because they satisfy orthonormality condition (2), the overlap
matrix corresponding to the ALB set is an identity matrix.
Hence, no generalized eigenvalue problem with a potentially
ill-conditioned overlap matrix needs to be solved. For more
details of the construction of ALBs, such as the restriction of
the potential and the choice of boundary conditions for the
local eigenvalue problem (10), we refer readers to Ref. 21.

As an example, Fig. 2 shows the ALBs of a 2D phospho-
rene monolayer with 140 phosphorus atoms (P140). This is a
two-dimensional system, and the global computational domain
is partitioned into 64 equal sized elements along the Y and
Z directions, respectively. For instance, the extended element
Q10 associated with the element E10 contains elements E1, E2,
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FIG. 2. The isosurfaces (0.04 Hartree/bohr3) of the first
three ALB functions belonging to the tenth element
(E10), (a) φ1, (b) φ2, (c) φ3, and (d) the electron density
ρ across in top and side views in the global domain in
the example of P140. The red and blue regions indicate
positive and negative isosurfaces, respectively. There are
64 elements and 80 ALB functions in each element in the
P140 system.

E3, E9, E11, E17, E18, and E19. We show the isosurfaces of the
first three ALB functions for this element in Figs. 2(a)–2(c).
Each ALB function shown is strictly localized inside E10 and
is therefore discontinuous across the boundary of elements.
On the other hand, each ALB function is delocalized across
a few atoms inside the element since they are obtained from
eigenfunctions of local Kohn-Sham Hamiltonian. Although
the basis functions are discontinuous, the electron density is
well-defined and is very close to be a continuous function in
the global domain (Fig. 2(d)).

To summarize, the flowchart of the DGDFT method for
solving Kohn-Sham DFT is shown in Fig. 3.

B. Two level parallelization strategy

The DGDFT framework naturally lends itself to a two
level parallelization strategy. At the coarse grained level, we
distribute work among different processors by elements. We
call this level of concurrency the inter-element parallelization.
Within each element, the eigenvalue solvers on each local
(extended) domain and the construction of the DG Hamiltonian
matrix can be further parallelized. This level of parallelization
is called the intra-element parallelization. We use the Message
Passing Interface (MPI) to handle data communication.

We assume that the total number of processors is Ptot
= M × Pe, where M is the number of elements, and Pe is the
number of processors assigned to each element. We partition
these processors into a 2D logical processor grid following a
column major order as shown in Fig. 4. We call this 2D proces-
sor grid the global processor grid to distinguish it from other
processor grids employed in various parts of the massively
parallel DGDFT method. Each row (column) communicator
of this grid is called a global row (column) communicator. The
processors with ranks (K − 1)Pe + 1 to K Pe (K = 1, . . . ,M)
are in the K th global column processor group, and are as-
signed to element EK for intra-element parallelization. Simi-
larly, the processors with ranks i,Pe + i, . . . , (M − 1)Pe + i
(i = 1, . . . ,Pe) are in the ith global row processor group. When

FIG. 3. Flowchart of the DGDFT method. There are three time consuming
steps: the generation of ALB functions, the construction of DG Hamiltonian
matrix, and the evaluation of the approximate charge density by either di-
agonalizing the DG Hamiltonian (DIAG) or by using the PEXSI method.
Heff and HQK

eff represent the global Kohn-Sham Hamiltonian operator for a
given electron density, and the local Kohn-Sham Hamiltonian on the extended
element QK , respectively.
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FIG. 4. Global processor grid for implementing the two level parallelization
in the DGDFT method. M is the number of elements in the systems. Pe is
the number of processors given for each element.

a very large number of processors are used, it is important to
avoid global all-to-all communication as much as possible in
order to reduce communication cost and achieve parallel scal-
ability. Therefore, by dividing processors into column and row
processor groups, we can restrict most of the communication
within a global column or row group.

Based on the intra-element parallelization strategy to be
detailed below, the maximum number of processors that can
be effectively used for a single element depends on the number
of basis functions to be generated on a single element, which
is usually on the order of 100. It can be as large as a few
hundreds. The level of concurrency that can be achieved in
the inter-element parallelization is determined by the number
of elements. The maximum number of processors that can be
employed by DGDFT is therefore determined by the number
of basis functions per element multiplied by the number of ele-
ments, which is equal to the dimension of the DG Hamiltonian
matrix. For example, the P140 system contains 140 phosphorus
atoms and is partitioned into 64 (8 × 8) elements. There are
about 2 atoms in each element and we use 50 basis per element.
The maximum number of processors that can be effectively
used for this system is 3600. For the 2D phosphorene test
problems (P3500 and P14000) used in this work, we partition the
phosphorene systems into 1600 (40 × 40) and 6400 (80 × 80)
elements, respectively. The maximum number of processors
that can be effectively used for these systems is 80 000 and
320 000, respectively. Currently, we are often limited by the
number of processors available on the existing high perfor-
mance computers such as the Edison system at NERSC. The
maximum number of processors we can use is 128 000.

1. Generation of the ALB functions

For each extended element, the computation of eigenfunc-
tions for the local Kohn-Sham Hamiltonian can be parallelized

in a way similar to the parallelization of a standard planewave
based Kohn-Sham DFT solver. The local Kohn-Sham orbitals
form a local dense matrix ΨK of dimension Ng × JK . Here, JK
is the number of ALBs to be computed, and Ng is the total
number of grid points required to represent each local Kohn-
Sham orbital in the real space, which is determined from the
kinetic energy cutoff Ewfc

cut by the following rule:

(Ng)i =


2Ewfc
cut Li

π
. (11)

Here, Li is the length of the extended element along the ith
coordinate direction. The total number of grid points is Ng

=
3

i=1(Ng)i. In a typical calculation, Ng ∼ 106 and JK ∼ 102

as shown in Fig. 5.
On each extended element, we use the LOBPCG method35

to solve the local Kohn-Sham orbitals. The main operations
involved in the LOBPCG solver are (1) The application of
the local Hamiltonian operator HQK

eff to ΨK . (2) Dense matrix-
matrix multiplication of the form ΦTΨ, where matrices Φ,Ψ
have the same dimension as the Kohn-Sham orbitals ΨK . (3)
Dense matrix-matrix multiplication of the form ΦC, where Φ
has the same dimension as ΨK , and C is a small matrix on the
order of JK × JK . (4) The diagonalization of matrices of size
O(JK) using the Rayleigh-Ritz procedure. (5) The application
of a preconditioner operator.

It should be noted that these different types of operations
require different data distribution and task parallelization strat-
egies. Operation (1) requires applying the Laplacian operator
via the Fast Fourier Transform (FFT), the local pseudopotential
operator, and the nonlocal pseudopotential operator to ΨK .
This can be done easily if the orbitals (i.e., columns ofΨK) are
partitioned along the column direction (see Fig. 5(a)). Since
each processor holds all entries of an orbital, the FFT can
be done in the same way as in a sequential implementation.
We further assume that each processor associated with the
extended element QK has a copy of the local pseudopotential
VQK

eff , and the nonlocal pseudopotential VQK
nl . Therefore, all

operations described in (1) can be performed in the same way
as those in a sequential implementation.

FIG. 5. Two different types of partition of ΨK . The partition shown in (a)
is used for computing HQK

eff ΨK . The partition shown in (b) is used when
matrix-matrix multiplications of the form ΦTΨK and ΨKC are performed.
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The most efficient way to parallelize operations (2) and (3)
is to partition ΨK by row blocks as shown in Fig. 5(b). This is
because for operation (2), one can compute the matrix inner
product of each block locally on each processor, and then use
MPI_Allreduce among the Pe processors to sum up local prod-
ucts of size JK × JK . For operation (3), there is no communica-
tion at all if all Pe processors have a local copy of the C matrix.
PartitioningΨK by columns would incur more communication
cost and make this part of the computation less scalable. Since
in each LOBPCG iteration we apply the Hamiltonian operator
to ΨK once, but perform 12 matrix-matrix multiplications of
operation type (2) and 7 matrix-matrix multiplications of oper-
ation type (3), it is worthwhile to switch back and forth between
a column partition and row partition of ΨK in between the
first and other types of operations performed in each LOBPCG
iteration. This can be achieved by using a MPI_Alltoallv call.

For operation (4), since JK is usually on the order of
hundreds in practice, we solve the Rayleigh-Ritz problem and
perform subspace diagonalization locally on each processor.
Numerical experiments indicate that this sequential part usu-
ally takes around or less than 1 s.

Finally, in our implementation we use the preconditioner
proposed in Ref. 36 to accelerate the convergence of LOBPCG.
The preconditioner can be easily applied to different orbitals
simultaneously without communication. Thus, a column parti-
tion of ΨK is suitable for applying the preconditioner in paral-
lel.

Once the Kohn-Sham orbitalsΨK are constructed through
LOBPCG, they are restricted from the extended element QK

to the element EK . After orthonormalizing columns of the
restricted ΨK , we obtain the ALBs denoted by ΦK = [ϕK,1,
. . . , ϕK,JK]. We remark that it is not necessary to compute the
local wavefunctions ΨK to full accuracy before the electron
density becomes self-consistent in the SCF iteration. As the
accuracy of the electron density improves during the SCF
cycle, a more accurate ΨK can be obtained from running a few
iterations of the LOBPCG procedure that uses theΨK returned
from the previous SCF iteration as a starting guess. In practice,
we find that using 3 preconditioned LOBPCG iterations per
SCF iteration is often sufficient to achieve rapid convergence
of the SCF procedure. Our numerical results indicate that the
overall procedure for generating the ALBs is highly efficient.
For instance, for the phosphorene P3500 system, the total time
for generating the ALBs is only 1.35 and 0.71 s by using 12 800
and 25 600 processors, respectively.

2. Construction of the DG Hamiltonian

Due to the spatial locality of the ALBs, the DG Hamil-
tonian matrix in Eq. (5) is a sparse matrix and has a block
structure that can be naturally distributed among different
column processor groups assigned to different elements as
shown in Fig. 1(c), i.e., the processors assigned to the element
EK assemble the K th block row of HDG. The construction
of the DG Hamiltonian matrix consists of the evaluation of
volume integrals within each element and surface integral at
the boundary of different elements. To achieve high accuracy,
all integrals in (5) are evaluated by a Gaussian quadrature
defined on a Legendre-Gauss-Lobatto (LGL) grid in each

element. The gradients of ALBs sampled on the LGL grid
points and denoted by ∇ΦK can be evaluated by applying
differentiation matrices to ΦK along the x, y, z directions,
respectively. To compute ∇ΦK efficiently, both ΦK and ∇ΦK

should be partitioned and distributed by columns among
processors assigned to EK . We refer readers to, e.g., Ref. 37
for details of constructing differentiation matrices associated
with Gaussian quadratures.

The construction of the K th block row of HDG consists
of the following three steps that correspond to the three terms
grouped by parentheses on the right hand side of Eq. (5). (1)
Compute contributions to the diagonal matrix blocks from the
kinetic energy and Veff terms. (2) Compute contributions to
the diagonal and off-diagonal matrix blocks from the nonlocal
pseudopotential term. (3) Compute contributions to the diag-
onal and off-diagonal matrix blocks from the boundary integral
terms.

In step (1), it is generally more efficient to partition col-
umns of ΦK among different processors as shown in Fig. 5(a)
because applying a differentiation matrix, or local pseudopo-
tential Veff to different columns of ΦK requires no communi-
cation. The inner products ⟨·, ·⟩T , however, are evaluated as
vector inner products (or a matrix-matrix multiplication when
several integrals are evaluated simultaneously). A block row
partition is more efficient for these types of operations. Col-
lective communication is required to sum up local products. To
accommodate both data distribution schemes in this step, we
use the MPI_Alltoallv call within a global column processor
group to convert ΦK and ∇ΦK from column partition to row
partition.

More sophisticated data communication is needed for
step 2. This is because the projection vector of a nonlocal
pseudopotential may be distributed among several elements
(up to 8, see Fig. 1(b)). If the nonzero support of the
projection operator is completely within one element EK ,
this projection operator only contributes to one diagonal
block HDG

K ;K . Otherwise, it contributes also to some off-
diagonal matrix blocks HDG

K ′;K for all EK ′’s that contain a
distributed portion of the projection vector. Unlike the local
pseudopotential Veff, the nonlocal pseudopotential does not
need to be updated during the SCF iteration. Therefore, it is
efficient for processors associated with the element EK to own
a distributed portion of the projection vector bI,ℓ(x) on the
LGL grid constructed on EK , if bI,ℓ(x) does not vanish on
EK . This allows the inner product



bI,ℓ, ϕK, j

�
T to be entirely

evaluated on processors associated with EK without further
inter-element communication. The computation of the ma-
trix element

�
I,ℓ γI,ℓ



ϕK ′, j′,bI,ℓ

�
T


bI,ℓ, ϕK, j

�
T
�
, however,

requires data communication between processors associated
with EK and EK ′, on which bI,ℓ does not vanish. This
is done by communicating the inner products of the form

bI,ℓ, ϕK, j

�
T among such neighboring elements. Since the

size of such inner products is independent of the LGL grid
size, the communication volume of this step is relatively low.
For inter-element parallelization, we use asynchronous data
communication routines with MPI_Isend and MPI_Irecv for
efficient data communication.

The boundary integrals that appear in step 3 also require
inter-element communication. However, the inter-element data
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communication only occurs among two neighboring elements
EK ,EK ′ if the two elements share a common surface S. It
should be noted that the computation of average and jump
operators only requires values of functions on the surface S,
and therefore only the function values of ΦK and ΦK ′ together
with their gradients ∇ΦK and ∇ΦK ′ restricted to S need to be
computed. These calculations require much lower communica-
tion volume compared to those required in volume integrals.
We also remark that the communication performed in this
step can be overlapped with computation to further reduce
the cost of communication. In particular, we first launch the
communication needed to carry out step 3 before starting to
perform the computational tasks in step 1, which does not
require inter-element data communication.

Numerical results indicate that the overall procedure for
constructing the DG Hamiltonian matrix is highly efficient. For
instance, for the phosphorene P3500 system, the total wall clock
time used to construct the DG Hamiltonian matrix is only 1.11
and 0.84 s when the construction is carried out on 12 800 and
25 600 processors, respectively.

3. Computation of the electron density

As discussed in Section II A, the electron density can be
assembled from the eigenvector coefficients {ci;K, j}, or from
the diagonal matrix blocks of the density matrix PK ;K directly.
Both options are supported in DGDFT. When the eigenvector
option is used, we diagonalize the DG Hamiltonian matrix
(referred to as the “DIAG” method) by using the ScaLAPACK
software package.38 In order to use ScaLAPACK, we need
to convert the block row partition of the DG Hamiltonian
matrix (see Fig. 1) to the 2D block cyclic data distribution
scheme required by ScaLAPACK. The eigenvectors returned
from ScaLAPACK, which are stored in the 2D block cyclic
format, are redistributed according to the block row partition
used to distribute HDG. We developed a routine to perform
these conversions. Such conversion is the only operation in
DGDFT that involves MPI communication among, in prin-
ciple, all the available processors. All other MPI communi-
cations are performed either within the global row processor
group or the global column processor group. We note that
a similar conversion procedure also can be found in other
electronic structure software packages such as SIESTA6 and
CP2K16 when ScaLAPACK is used.

Once the eigenvectors are redistributed by elements, the
electron density can be evaluated locally on each element. The
global electron density implies the collection of the density
defined on each local element. Such global electron density
is never collected to be stored on a single processor, but is
distributed across processors in a global row processor group.

It should be noted that for large systems, all ScaLAPACK
diagonalization routines (such as the divided and conquer
routine PDSYEVD currently used in DGDFT) have limited
parallel scalability. They often cannot make efficient use
of the maximum number of processors (which can be
10 000–100 000 or more) that can be used by other parts of
the DGDFT calculation. Therefore, we often need to restrict
the ScaLAPACK calculation to a subset of processors to avoid
getting sub-optimal performance.

C. Pole expansion and selected inversion method

When the electron density is computed from the expres-
sion given in (8), we use the recently developed PEXSI
method28–30 to compute the diagonal blocks of the density
matrix. This technique avoids the diagonalization procedure
which has an O(N3) complexity. It is accurate for both insu-
lating and metallic systems. Furthermore, the computational
complexity of the PEXSI method is onlyO(N) for 1D systems,
O(N1.5) for 2D systems, andO(N2) for 3D systems. Therefore,
the PEXSI method is particularly well suited for studying
electronic structures of large scale low-dimensional (1D and
2D) systems.39,40

The PEXSI method is based on approximating the density
matrix by a linear combination of Green’s functions, i.e.,

P ≈
Q
l=1

Im
�
ωl(HDG − zl I)−1� , (12)

where the integration weightsωl and shifts zl are chosen care-
fully so that the number of expansion terms Q is proportional
to log(β∆E), where β is the inverse temperature and ∆E is the
spectrum width of HDG. In practical calculations, we observe
that it is often sufficient to choose ∆E to be much smaller
than the true spectrum width of HDG, thanks to the exponential
decay of the Fermi-Dirac function above the Fermi energy.
In most cases, it is sufficient to choose Q = 40 ∼ 80. If we
only need the diagonal blocks of the density matrix P, we do
not need to compute the entire inverse of HDG − zl I. Only the
diagonal blocks of (HDG − zl I)−1 need to be computed, and
these diagonal blocks can be computed efficiently by using
the selected inversion method.28 The use of selected inversion
leads to favorable complexity of the PEXSI method.

The PEXSI method can scale to 10 000–100 000 proces-
sors. This has recently been demonstrated in the massively
parallel SIESTA-PEXSI method.30,39 SIESTA-PEXSI uses
local atomic orbitals to discretize the Kohn-Sham Hamil-
tonian. Because DGDFT is designed to take advantage of
massively parallel computers, the high scalability of PEXSI,
in addition to its lower asymptotic complexity, makes it a
more attractive option compared to the diagonalization option.
When the PEXSI option is used, DGDFT can often scale to
10 000–100 000 processors, and be used to solve the electronic
structure problems with more than 10 000 atoms efficiently.40

In order to use PEXSI in DGDFT, the DG Hamiltonian
matrix needs to be redistributed from a block row distribution
format to a distributed compressed sparse column format
(DCSC). When the DCSC format is used to distribute a sparse
Hamiltonian matrix among M processors, each processor
holds roughly ⌊n/M⌋ columns stored in a compressed sparse
column (CSC) format, where n is the dimension of the ma-
trix. The diagonal blocks of the density matrix returned from
PEXSI, which are stored in DCSC format, are converted back
to the block row partition format used to represent the electron
density.

Because the selected inversions of the shifted DG Hamil-
tonians (HDG − zl I) are independent of each other for different
poles zl, we can carry out these selected inversions among
different global row processor groups. Therefore, unlike the
data redistribution scheme used for ScaLAPACK. As a result,
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FIG. 6. The processor grid used in the PEXSI method. The processors used
in PEXSI are usually a subset of all available processors. #Pole represents the
number of poles used in the PEXSI method. The inset shows that each 1D
global row processor group is further partitioned into a 2D processor group
used for each selected inversion.

the procedure for redistributing HDG required by PEXSI uses
asynchronous communication only within a global row proces-
sor group.

Because each parallel selected inversion requires pro-
cessors to be arranged logically into a 2D grid of size
(#PEXSIProcRow)× (#PEXSIProcCol), the processors within
each global row processor group are reconfigured in PEXSI as
shown in Fig. 6. Note that restricting the selected inversion at
each pole to processors belonging to a global processor row
group limits the maximum number of processors that can be
used for each selected inversion to the number of elements
M . However, for systems of large size, M can be easily 1000
or more. Therefore, such a configuration does not severely
limit the number of processors that can be effectively used for
selected inversion. If the number of processors (Pe) within each
global column processors group is larger than the number of
poles Q, all selected inversions required in pole expansion (12)
can be carried out simultaneously. The number of processors
that can effectively be used in PEXSI is MQ. If Q > Pe,
we have to process at most Pe poles at a time, and repeat
the process until selected blocks of (H − zl I)−1 have been
computed for all zl’s. In this case and when all M processors in
a global processor row group are used for selected inversion,
all MPe processors can be effectively used by PEXSI.

III. COMPUTATIONAL RESULTS

In this section, we report the performance and accuracy
of DGDFT when it is applied to 2D phosphorene systems of
different sizes.

Phosphorene, a new 2D elemental monolayer,41–45 has
received considerable amount of interest recently after it has
been experimentally isolated through mechanical exfoliation
from bulk black phosphorus. Phosphorene exhibits some
remarkable electronic properties superior to graphene, a
well known elemental sp2-hybridized carbon monolayer.46–48

For example, phosphorene is a direct semiconductor with
a high hole mobility.41 It has the drain current modulation
up to 105 in nanoelectronics.42 These remarkable properties
have already been used for wide applications in field effect
transistors43 and thin-film solar cells.44 Furthermore, up to
now, phosphorene is the only stable elemental 2D material
which can be mechanically exfoliated in experiments41 besides
graphene. Therefore, it can potentially be used as an alternative
to graphene in the future and lead to faster semiconductor
electronics.

Fig. 2 shows the atomic configuration of 2D phospho-
rene monolayer in a 5 × 7 supercell (P140). Other phosphorene
models in very large supercells involving thousands or tens
of thousands of atoms, such as the 25 × 35 (P3500) and 50
× 70 (P14000) supercells, which we use as test problems in this
work, are not shown here. The vacuum space in the X and Y
directions is about 10 Å to separate the interactions between
neighboring slabs in phosphorene.

All calculations are performed on the Edison platform
available at the National Energy Research Scientific Comput-
ing (NERSC) center. Edison has 5462 Cray XC30 nodes. Each
node has 24 cores partitioned among two Intel Ivy Bridge
processors. Each 12-core processor runs at 2.4 GHz, and has
64 GB (Gigabyte) of memory per node. The maximum number
of available cores is 131 088 on Edison. In all calculations, we
utilize all 24 cores on a computational node.

A. Computational accuracy

We use the conventional plane wave software package
ABINIT14 as a reference to check the accuracy of results
from DGDFT. The same exchange-correlation functional of
the local density approximation of Goedecker, Teter, Hut-
ter (LDA-Teter93)49 and the Hartwigsen-Goedecker-Hutter
(HGH) norm-conserving pseudopotential50 are adopted in both
ABINIT and DGDFT software packages. We remark that we
also implemented generalized gradient functionals such as
the Perdew-Burke-Ernzerhof (PBE)51 functional in DGDFT.
DGDFT has been used to demonstrate a 2 × 1 edge reconstruc-
tion in armchair phosphorene nanoribbons by using ab initio
molecular dynamics calculations with the PBE functional.40

We first check the accuracy of the total energy and the
atomic force of the DGDFT method by using P140 shown in
Fig. 2 as an example. To simplify our discussion, we define the
total energy error per atom ∆E (Hartree/atom) and maximum
atomic force error ∆F (Hartree/bohr) as

∆E = (EDGDFT − EABINIT)/NA

and

∆F = max
I

|FDGDFT
I − FABINIT

I |,
respectively, where NA is the total number of atoms. EDGDFT

and EABINIT represent the total energy computed by DGDFT
and ABINIT, respectively, and FDGDFT

I and FABINIT
I represent

the Hellmann-Feynman force on the Ith phosphorus atom in
P140 computed by DGDFT and ABINIT, respectively. The
ABINIT results are obtained by setting the energy cutoff to 200
Hartree for the wavefunction to ensure full convergence. The
kinetic energy cutoff (denoted by Ecut) in the DGDFT method
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is used to define the grid size for computing the ALBs as
is in standard Kohn-Sham DFT calculations using planewave
basis sets. Ecut is also directly related to the LGL integration
grid defined on each element and used to perform numerical
integration as needed to construct the DG Hamiltonian matrix.
The number of LGL grids per direction is set to be twice the
number of grid points calculated using Eq. (11) with the same
Ecut.

Table I shows that the total energy and atomic forces
produced by the DGDFT method are highly accurate compared
to the ABINIT results. In particular, the total energy error
∆E can be as small as 3.39 × 10−6 Hartree/atom if the DIAG
method is used and 8.12 × 10−5 Hartree/atom if the PEXSI
method is used, respectively. Here, 50 poles are used and the
accuracy of PEXSI can be further improved by increasing
the number of poles. The maximum error of the atomic force
can be as small as 1.06 × 10−4 Hartree/bohr when DIAG is
used and 1.06 × 10−4 Hartree/bohr when PEXSI is used. These
results are obtained when only a relatively small number of
ALB functions per atom are used to construct the global DG
Hamiltonian. The energy cutoff for constructing the ALBs is
set to 200 Hartree in this case. Note that the accuracy of total
energy and atomic force in DGDFT depends on both the energy
cutoff for local wavefunctions defined on an extended element
and the number of ALB functions. We can see from Table I
that the accuracy of the total energy and atomic forces both
improves as the energy cutoff and the number of ALB functions
increases. We also find that the use of the Hellmann-Feynman
force can result in accurate force calculation, despite that the
contribution from the Pulay force52 is not included.

The penalty parameter α in Eq. (3) penalizes large jumps
of the Kohn-Sham orbitals across element surfaces, so that the
resulting electron density is close to being continuous and the
numerical scheme is stable. The α-dependence of the errors
of the total energy and the atomic force is shown in Fig. 7.
We set the energy cutoff to 100 Hartree for generating ALBs,
and use 91.43 ALB functions per atom (200 ALB functions
per element) to obtain highly accurate result compared to that
obtained from ABINIT. We find that the choice of α values
has minor effect on the accuracy of the energy and the force.

TABLE I. The accuracy of DGDFT in terms of the total energy error
per atom ∆E (Hartree/atom) and the maximum atomic force error ∆F
(Hartree/bohr) in the DIAG and PEXSI methods with different kinetic energy
cutoff Ecut (Hartree), and number of ALB functions per atom, compared with
converged ABINIT calculations. #ALB means the number of ALB functions
per atom.

DGDFT P140 DIAG PEXSI

Ecut #ALB ∆E ∆F ∆E ∆F

20 91.43 5.22 × 10−4 4.03 ×10−3 3.22 ×10−4 4.03 ×10−3

40 18.28 4.51 × 10−2 5.97 ×10−2 4.57 ×10−2 5.97 ×10−2

40 27.42 6.67 × 10−4 2.51 ×10−3 6.85 ×10−4 2.52 ×10−3

40 36.57 1.34 × 10−4 6.16 ×10−4 1.59 ×10−4 6.18 ×10−4

40 45.71 7.00 × 10−5 4.00 ×10−4 6.44 ×10−5 5.23 ×10−4

40 91.43 −4.32 × 10−7 5.93 ×10−4 1.34 ×10−4 5.93 ×10−4

100 91.43 1.59 × 10−5 1.97 ×10−4 8.04 ×10−5 1.97 ×10−4

200 91.43 3.39 × 10−6 1.06 ×10−4 8.12 ×10−5 1.06 ×10−4

FIG. 7. (a) The total energy error per atom ∆E (Hartree/atom) and (b) the
maximum atomic force error ∆F (Hartree/bohr) in the example of P140 as a
function of penalty parameter α by using DGDFT with the DIAG method.
We set the energy cutoff to 100 Hartree for ALBs and 91.43 ALB functions
per atom (200 ALB functions per element) to obtain highly accurate results
compared to that obtained by ABINIT.

When α is adjusted from 2.0 to 200.0, the change of the error in
total energy is less than 1.50 × 10−5 Hartree/atom and the error
in atomic forces changes from 1.97 × 10−4 (α = 20.0) to 2.08
× 10−4 (α = 200.0) Hartree/bohr. In the numerical simulation,
we use α = 20.0 for 2D phosphorene systems.

In the following parallel efficiency tests, we set the energy
cutoff to 40 Hartree for ALBs and 36.57 ALB functions per
atom (80 ALB functions per element), which achieves good
compromise between accuracy and computational efficiency.
For this particular choice of the energy cutoff and the number of
ALB functions, we are able to keep the total energy error under
1 × 10−4 Hartree/atom and atomic force error under 1 × 10−3

Hartree/bohr for 2D phosphorene systems.

B. Parallel efficiency

To illustrate the parallel scalability of the DGDFT method,
we demonstrate the performance of three main steps in each
SCF iteration as shown in Fig. 3: (a) the generation of ALB
functions, (b) the construction of DG Hamiltonian matrix, and
(c) the evaluation of the approximate charge density, energy,
and atomic forces by either diagonalizing the DG Hamilto-
nian (DIAG) or by using the PEXSI technique. Note that
there are some additional steps such as the computation of
energy, charge mixing or potential mixing, and intermediate
data communication. The cost of these extra steps is included
in the total wall clock time.

Fig. 8 shows the strong parallel scaling of these three
individual steps, as well as the overall DGDFT method, for two
large-scale 2D phosphorene monolayers (P3500 and P14000) in
terms of the wall clock time per SCF step. For P3500, we tested
the performance using both the DIAG and PEXSI methods for
the evaluation of charge density during SCF. But for P14000,
we only use the PEXSI method, since the DIAG method is too
expensive for systems of such size (the dimension of the matrix
is 512 000).

The wall clock time of the first two steps is independent of
whether PEXSI or DIAG is used. Figs. 8(a) and 8(b) show that
they both scale well with respect to the number of cores used in

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

169.229.58.198 On: Tue, 29 Sep 2015 17:50:29



124110-11 Hu, Lin, and Yang J. Chem. Phys. 143, 124110 (2015)

FIG. 8. The wall clock time with respect to the number of computational
cores used for 2D phosphorene monolayer systems of different sizes (P3500
and P14000). Strong scaling of (a) the generation of ALB functions step,
(b) the DG Hamiltonian matrix construction step, (c) the evaluation of the
approximate charge density, and (d) the overall computational time, including
the time for all previous steps and the remaining overhead. The reported wall
clock time is for one SCF iteration. The timing and scaling shown in (c) and
(d) depend on whether DIAG (hollow markers) or PEXSI (solid markers) is
used to evaluate physical quantities such as charge density, energy, and forces.

the computation for all test problems we used. The exception is
the construction of the DG Hamiltonian which does not scale
beyond 104 processors for P14000. We find that the only routine
does not scale well is the inter-element communication of the
boundary values of ΦK and ∇ΦK , which is currently imple-
mented via asynchronous communication. Since the volume of
the asynchronous communication is proportional to the system
size, for a large system the communication volume may exceed
the size of the MPI buffer which leads to sub-optimal perfor-
mance of the asynchronous data communication. Nonetheless,
the cost of the generation of ALBs and the construction of the
DG matrix is much less compared to that for computing the
electron density from the DG Hamiltonian.

Figs. 8(c) and 8(d) show that the evaluation of the approx-
imate charge density using the DG Hamiltonian matrix domi-
nates the total wall clock time per SCF iteration in the DGDFT
methodology for systems of large sizes. For large-scale 2D
phosphorene systems P3500 and P14800, the PEXSI method can
effectively reduce the wall clock time compared to the DIAG
method in the DGDFT methodology. Furthermore, using the

FIG. 9. The (a) speedup and (b) parallel efficiency with respect to the number
of cores used for the computation for 2D phosphorene monolayer systems of
different sizes (P3500 and P14000).

DIAG method with ScaLAPACK38 appears to limit the strong
parallel scalability to at most 10 000 cores on the Edison.
Increasing the cores beyond that can lead to an increase in wall
clock time. In contrast, the PEXSI method exhibits highly scal-
able performance. It can make efficient use of about 100 000
cores on Edison for P3500 and P14000. For the phosphorene P3500
system, the total computational time is only 46.45 s for one
SCF iteration when DG-PEXSI is carried out on 80 000 cores,
which is about 10 times faster than the DIAG method. The
most expensive part is 44.60 s to evaluate the approximate
charge density with the PEXSI method. For the phosphorene
P14000 system, DG-PEXSI needs 627.71 s for one SCF iteration
(616.30 s for the PEXSI part) when DG-PEXSI is carried
out on 128 000 cores, which is more expensive than linear
scaling DFT methods due to the O(N1.5) scaling feature of the
PEXSI method. In the future, we will implement the hybrid
MPI/OpenMP parallelization for DG-PEXSI to further reduce
the wall time.

Fig. 9 shows the speedup and parallel efficiency with
respect to the number of cores used for the computation for
2D phosphorene P3500 and P14000. For the P3500 system, both the
DIAG and PEXSI methods in DGDFT can keep highly parallel
efficiency (90% for DIAG and 80% for PEXSI) with less than
10 000 cores. But for the DIAG method, further increase of the
number of cores will lead to rapid loss of parallel efficiency.
On the contrary, the PEXSI method is highly scalable, and its
parallel efficiency is about 80% even when the number of cores
increases beyond 80 000 for the P3500 system. For the large-
scale P14000 system, we only use the PEXSI method in DGDFT,
and we find that the parallel efficiency of the DGDFT-PEXSI
method is around 80% when 128 000 cores are used on Edison
(Edison has 131 088 cores in total).

IV. CONCLUSIONS

We described a massively parallel implementation of the
DGDFT methodology that can be used to perform large-scale
Kohn-Sham DFT calculations efficiently. We demonstrated the
accuracy and efficiency of our parallel implementation. We
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show that for the 2D phosphorene systems studied here, using
37 basis functions per atom allows us to reach an accuracy
level of 1.3 × 10−4 Hartree/atom in terms of the error of energy
and 6.2 × 10−4 Hartree/bohr in terms of the error of atomic
force, respectively. DGDFT can achieve 80% parallel effi-
ciency on 128 000 high performance computing cores when
it is used to study the electronic structure of 2D phosphorene
systems with 3500-14 000 atoms. The high parallel efficiency
results from two-level parallelization schemes that make use
of several different types of data distribution, task scheduling,
and data communication schemes. It also benefits from the
use of the PEXSI method to compute electron density, en-
ergy, and atomic forces. The PEXSI method has a favorable
computational complexity and is also amenable to a two-level
parallelization scheme that enables it to achieve high parallel
efficiency.
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