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Abstract—We develop a method for improving the parallel
scalability of computations that involve asynchronous task
execution. We apply this method to the recently developed
parallel selected inversion algorithm [Jacquelin, Lin and Yang
2014], named PSelInv, on massively parallel distributed
memory machines. In the PSelInv method, we compute
selected elements of the inverse of a sparse matrix A that
can be decomposed as A = LU , where L is lower trian-
gular and U is upper triangular. Computing these selected
elements of A−1 requires restricted collective communications
among a subset of processors within each column or row
communication group created by a block cyclic distribution
of L and U . We describe how this type of restricted collective
communication can be implemented using asynchronous point-
to-point MPI communications combined with a binary tree
based data propagation scheme. Because multiple restricted
collective communications may take place at the same time,
we need to use a heuristic to prevent processors participating
in multiple collective communications from receiving too many
messages. This heuristic allows us to reduce communication
load imbalance and improve the overall scalability of the se-
lected inversion algorithm. For instance, when 6, 400 processors
are used, we observe that the use of this heuristic leads to over
5x speedup for a number of test matrices. It also mitigates
the performance variability introduced by an inhomogeneous
network topology.

Keywords-selected inversion; distributed memory; parallel
algorithm; asynchronous data communication; collective com-
munication; high performance computation; load balancing

I. INTRODUCTION

Collective communication such as broadcast and reduc-

tion is an ubiquitous type of communication used in many

parallel programs. When such communication is required

among all processors that belong to a communication group

labeled by a communicator, one can use standard message

passing interface (MPI) functions such as MPI_Bcast and

MPI_Reduce. The MPI libraries available on most of

high performance computers often provide highly efficient

implementations of these functions. These implementations

typically make use of a tree-based algorithm that minimizes

the total communication volume and the number of mes-

sages.

However, in some applications, collective communication

is required only among a subset of processors within a pre-

defined communication group, and this subset of processors

may change over time. One such application is the pole

expansion and selected inversion method [2], [4], [5] that

can be used to accelerate Kohn-Sham density functional

theory [6] based electronic structure calculations. Other

examples include certain sparse matrix factorizations in

which a selected block of columns need to be communicated

to update a corresponding ancestor node in the elimination

tree. Because the current MPI standard does not support

collective communication among an arbitrary subset of pro-

cessors without creating new communication groups (or sub-

communicators), one must resort to other mechanisms to

accomplish such a communication task.

One possible solution is to determine all collective com-

munication calls that will be needed in advance and the pro-

cessors involved in each one of these calls, set up multiple

communication groups (or communicators), and use them

whenever they are needed. However, the total number of

communication groups needed (e.g., in the selected inversion

algorithm) may exceed the capacity of the MPI libraries,

which is typically around several thousands (currently 4,096

on Cray MPI for instance). Hence the approach of pre-

allocating all communicators is not feasible for all appli-

cations.

Another approach is to create communication groups

dynamically as they are needed, and release them when they

are no longer needed. However, this approach typically in-

curs a significant amount of overhead. It also interferes with

the asynchronous nature of the parallel selected inversion

algorithm, and thus limits its parallel scalability on large

scale distributed memory machines.

Yet another solution is to replace the collective com-

munication altogether with point-to-point communication

operations. Although this approach is plausible when each

collective communication involves only a few processors

distributed among a small network of processors, it quickly

becomes inefficient when the number of processors involved

in the communication becomes large. One main pitfall of this
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approach is that communication load is not well balanced

among different processors. Such imbalance can severely

impair the overall parallel performance. Furthermore, when

executed on massively parallel machines that have a hier-

archical and inhomogeneous network architecture, such an

approach also introduces performance variability.

However, improvement can be made to reduce the overall

communication cost if we orchestra the point-to-point com-

munication in such a way that mimics the collective commu-

nication implemented in standard MPI libraries. That is, if

we combine a tree-based algorithm with asynchronous point-

to-point sends and receives, we can effectively construct dy-

namic collective communications among an arbitrary subset

of processors.

In this paper, we demonstrate that the use of the third

option can be quite effective. However, it needs to be

implemented with care to accommodate fully asynchronous

tasks such as the ones generated in a parallel selected inver-

sion (PSelInv) algorithm. In PSelInv, several restricted

collective communications may take place at the same time.

We present a heuristic that prevents processors participating

in multiple collective communications from receiving too

many messages. We show that this heuristic is very effective

in reducing the amount of load imbalance. It also reduces

performance variability induced by an inhomogeneous net-

work architecture.

Our paper is organized as follows. In the next section,

we briefly describe the selected inversion algorithm and its

parallel implementation. We point out the nature of collec-

tive communications required in the parallel implementation

that calls for the implementation of customized broadcast

and reduction operations built on top of asynchronous point-

to-point communications. We discuss the construction of

binary trees to propagate data among different processors

and the heuristic for improving communication load balance.

In section IV, we report the performance improvement

achieved by this technique, which both yields significant

speedup as well as reduction of the overall variation in

runtime. This improvement enables us to use pole expansion

and selected inversion (PEXSI) based electronic structure

calculation [2], [5] on over 100,000 cores.

II. SELECTED INVERSION

Let A ∈ C
N×N be a non-singular sparse matrix. We

use Ai,j to denote the (i, j)-th entry of the matrix A, and

Ai,∗ and A∗,j to denote the i-th row and the j-th column

of A, respectively. We are interested in computing selected
elements of A−1, defined as

{(A−1)i,j | for 1 ≤ i, j ≤ N, such that Ai,j �= 0}. (1)

Sometimes, we only need to compute a subset of these

selected elements, for example, the diagonal elements of

A−1. The most straightforward way to obtain these selected

elements of A−1 is to compute the full inverse of A and then

extract the selected elements. But this is often prohibitively

expensive in practice. If a sparse LU factorization of A is

available (or LDLT factorization if A is symmetric) , a more

efficient way to achieve this goal is to use an algorithm that

makes efficient use of the sparse L and U factors of A. In

such an algorithm, which we call selected inversion (SelInv),

some additional elements of A−1 may need to be computed.

However, the overall set of nonzero elements that need to be

computed often remains a small percentage of all elements

of A−1 due to the sparsity structure of A.

The selected inversion algorithm and its variants have

been discussed in a number of publications [7], [8], [9],

[10], [11], [12], [13], [14], [15], [16], [1], [2], [4], [3]. We

review the basic ingredients of this algorithm in section II-A

and describe the recently developed parallel algorithm in

section II-B.

A. Sequential algorithm

The selected inversion algorithm can be derived as fol-

lows. Given a 2-by-2 block partitioning of the matrix A

A =

(
A1,1 A1,2

A2,1 A2,2

)
, (2)

and its block LU decomposition

A =

(
L1,1 0
L2,1 I

)(
U1,1 U1,2

0 S2,2

)
(3)

We can express A−1 as

A−1 =

(
(Û1,1)

−1(L̂1,1)
−1 + Û1,2S

−1
2,2L̂2,1 −Û1,2S

−1
2,2

−S−1
2,2L̂2,1 S−1

2,2

)
,

(4)

where

L̂1,1 = L1,1, Û1,1 = U1,1,

L̂2,1 = L2,1(L1,1)
−1, Û1,2 = (U1,1)

−1U1,2,
(5)

Let us denote by C the set of indices

{i| (L2,1)i �= 0} ∪ {j| (U1,2)j �= 0}, (6)

where i refers to row indices and j to column indices, and

assume S−1
2,2 has already been computed. From Eq. (4) it can

be readily observed that in order to compute the selected

elements of
(
A−1

2,1

)
i
≡ −

(
S−1
2,2L̂2,1

)
i

for i ∈ C, we only

need the entries {(
S−1
2,2

)
i,j
|i ∈ C, j ∈ C

}
. (7)

The same set of entries of S−1
2,2 are required to compute

selected entries of A−1
1,2 ≡ −Û1,2S

−1
2,2 . No additional entries

of S−1
2,2 are needed to complete the computation of A−1

1,1,

which involves the matrix product of selected entries of

Û1,2 and A−1
2,1. This procedure can be repeated recursively

to compute selected elements of S−1
2,2 until S2,2 is a scalar of

size 1. A pseudo-code for demonstrating this column-based
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Algorithm 1: Selected inversion algorithm based on LU
factorization.

Input:
(1) The supernode partition of columns of A:
{1, 2, ...,N}

(2) A supernodal LU factorization of A with (unnor-
malized) LU factors L and U .

Output: Selected elements of A−1, i.e. A−1
I,J such that

LI,J is not an empty block.
for K = N ,N − 1, ..., 1 do

1 Find the collection of indices
C = {I | I > K, LI,K is a nonzero block} ∪ {J | J >
K, UK,J is a nonzero block}

2 L̂C,K ← LC,K(LK,K)−1, ÛK,C ← (UK,K)−1UK,C
end
for K = N ,N − 1, ..., 1 do

Find the collection of indices
C = {I | I > K, LI,K is a nonzero block} ∪ {J | J >
K, UK,J is a nonzero block}

3 Calculate A−1
C,K ← −A−1

C,CL̂C,K
4 Calculate A−1

K,K ← U−1
K,KL

−1
K,K − ÛK,CA−1

C,K
5 Calculate A−1

K,C ← −ÛK,CA−1
C,C

end

selected inversion algorithm for symmetric matrix is given

in [4].

To achieve better performance, supernodes, which are a

set of contiguous columns J = {j, j + 1, . . . , j + s} of

the L factor that have the same nonzero structure below the

(j + s)-th row, are used to organize the computation. With

slight abuse of notation, both a supernode index and the set

of column indices associated with a supernode are denoted

by uppercase script letters such as I,J ,K etc.. AI,∗ and

A∗,J are used to denote the I-th block row and the J -th

block column of A, respectively. A−1
I,J denotes the (I,J )-

th block of the matrix A−1, i.e. A−1
I,J ≡ (A−1)I,J . When

the block AI,J itself is invertible, we denote its inverse by

(AI,J )−1 to distinguish it from A−1
I,J . Using the supernode

notation, a pseudo-code for the selected inversion algorithm

is given in Algorithm 1.

B. Parallel selected inversion algorithm

In this section we briefly discuss the parallel implemen-

tation of the selected inversion algorithm, called PSelInv,

on distributed memory parallel machines. More details of

the implementation for symmetric matrices can be found

in [17].

PSelInv uses the same 2D block cyclic distribution

scheme employed by SuperLU_DIST [18] to partition and

distribute both the L factor and the selected elements of A−1

to be computed. Before the factorization, columns of A, L
and U are partitioned into supernodes of various sizes. This

partition is applied to the rows of the input matrix to create

a 2D block partition. These blocks are cyclically mapped

onto processors that are arranged in a virtual Pr-by-Pc 2D

grid. The mapping itself does not take the sparsity of the

matrix into account, however only non-zero elements are

actually stored. As an example, a 4-by-3 grid of processors

is depicted in Figure 1(a). The mapping of the 2D supernode

partition of the matrix on the 2D processor grid is depicted

in Figure 1(b). Each supernodal block column of L is

distributed among processors that belong to a column of

the processor grid. Each processor may own multiple matrix

blocks. For instance, nonzero rows in the second supernode

are owned by processors P2 and P5.
The first loop of Algorithm 1 is performed in a separate

pass, its data communication pattern being relatively simple.

The processor that owns the block LK,K broadcasts it to

all processors within the same processor column that own

nonzero blocks LI,K in the supernode K. Each of those pro-

cessors performs the triangular solve L̂I,K ≡ LI,K(LK,K)−1

for each nonzero block contained in the set C defined in

step 1 of the algorithm. Because LI,K is not used in the

subsequent steps of selected inversion, it is overwritten by

L̂I,K. Since communication happens within a processor

column group, multiple supernodes can be processed at the

same time.
A more complicated communication pattern, is required to

complete step 3 in parallel, which is the most communication

intensive step. A−1
C,C and L̂C,K are generally owned by

different processor sets. In PSelInv, we choose to send

the L̂C,K matrix blocks to processors owning the matching
blocks of A−1

C,C to perform the matrix-matrix multiplication,

i.e. a particular matrix block L̂I,K needs to be communicated

to all processors within the same column group of processors

among which A−1
C,I is distributed.

However, since the processor owning L̂I,K is generally

not in the same processor row/column group that owns A−1
C,I ,

the communication cannot be performed by using a simple

broadcast procedure. We briefly describe the communication

pattern for this step here, since most of the communication

cost is incurred in this step. In PSelInv, we use point-to-

point MPI sends that originate from the processor owning

L̂I,K to the group of processors holding A−1
C,I .

For symmetric matrices, as soon as L̂I,K becomes avail-

able, as illustrated above, it is sent to the processor owning

ÛK,I , which is then overwritten by L̂T
I,K. Once L̂I,K has

been sent, the processor mapped to the upper triangular part

of the matrix, step 3 of Algorithm 1 can be performed.

ÛK,I = L̂T
I,K is first sent to all processors within the

same processor column that owns ÛK,I . The matrix-matrix

multiplication A−1
J ,IL̂I,K is then performed locally on each

processor owning A−1
J ,I via BLAS3 calls. Then, contribu-

tions A−1
J ,IL̂I,K are reduced within each processor rows

owning L̂J ,K. The A−1
J ,K block in step 3 of Algorithm 1

is now fully computed.
Figure 2 illustrates how this step is completed for su-

pernode K = 6 . We use circled letters a , b , c to label

communication events, and circled numbers 1 , 2 , 3 to
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Figure 1: Data layout of the internal sparse matrix data structure used by PSelInv and the corresponding elimination tree.

(a) A 4-by-3 example of a 2D processor grid. (b) 2D block cyclic distribution of PSelInv sparse matrix on this grid. (c)

Two concurrent supernodes 5 and 6 and their dependencies with respect to respective ancestors.
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Figure 2: Task parallelism and communication pattern for

the supernode 6 . There are 6 steps: a broadcast L̂, 1

compute A−1L̂, b reduce A−1L̂, 2 compute L̂TA−1L̂,

c reduce L̂TA−1L̂ and 3 update A−1.

label computational events. Û6,8 = L̂T
8,6 is sent by P5

to all processors within the processor column. This group

include both P5 and P11. Similarly L̂10,6 is broadcast from

P4 to all other processors within the processor column.

Local GEMMs are then performed on P11, P10, P4 and

P5 simultaneously, before the results are reduced onto P12

and P5 within their respective processor row. After this step,

A−1
8,6 and A−1

10,6 become available on P12 and P6 respectively.

In [17], we pointed out that an additional coarse-grained

level of parallelism exists in the second loop of Algorithm 1.

Different loop iterates can be executed simultaneously if

1) there is no data dependency among these iterates; 2)

there is no overlap among the processors that own data

blocks belonging to these loop iterates. The absence of data

dependency among different loop iterates results from the

sparsity structure of A and its L and U factors, and can

be exposed by the elimination tree [19] associated with a

sparse LU factorization. An example of such an elimination

tree is depicted in Figure 1(c). PSelInv corresponds to a

top-down traversal of the elimination tree. Two independent

supernodes may depend on disjoint sets of ancestors. If

that were the case, then the associated selected elements

of the inverse can in theory be computed concurrently. This

concurrency may however be limited if some ancestors of

two independent supernodes are mapped onto the same

processor, leading to a serialization of the computations.

This type of serialization being local to a processor, partial

concurrency can still be achieved between two such supern-

odes.

In PSelInv, we do not use the MPI Barrier function

for synchronization between steps. The synchronization is

only imposed through data dependencies. As a result, tasks

associated with different supernodes can be executed con-

currently if these supernodes are on different critical paths

of the elimination tree, and if there is no overlap among

processors mapped to these critical paths.

In this sense, the asynchronous task formulation tries to

achieve two goals: pipelining computations and overlap-
ping communication with computations.

III. COLLECTIVE COMMUNICATION IN

PARALLEL SELECTED INVERSION

We can clearly see that the parallelization strategy we

presented in section II-B involves a fair amount of data

communication. Most of this communication occurs in the

second loop of Algorithm 1, and in particular, steps 3 (and 5)

of the algorithm. Therefore, the performance of our parallel

implementation of the selected inversion algorithm depends

critically on how L̂I,K is sent to the matching blocks of

A−1
C,C and how local products A−1

J ,IL̂I,K are reduced to the

processor that owns the L̂J ,K block in supernode K. These

data communications are collective in nature. However, they

should be carefully treated in the sense that each broadcast
operation labeled by a (or reduction operation labeled

by b ) in Figure 2 involves only a subset of processors

within a column or row processor group defined within

a virtual 2D processor grid shown in Figure 1(b). We

will call this type of collective communication restricted
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collective communication. Furthermore, in PSelInv, sub-

set of processors involved in such communications varies

when different supernodes are processed due to the general

sparsity structure of L and U .

As we indicated in the introduction, one way to im-

plement these collective communication is to construct all

possible communication groups, each containing a subset

of processors involved in each broadcast and reduction
operation respectively, in advance, and use MPI_Bcast
and MPI_Reduce functions available in standard MPI

libraries to perform these collective communications. How-

ever, for large problems, the number of communication

groups required often exceeds what most MPI libraries can

provide. As an example, performing selected inversion of

the audikw 1 matrix from the University of Florida sparse

matrix collection [20] requires up to 20,061 distinct row

and column communicators on a 24-by-24 processor grid.

Besides the overhead for creating a large number of MPI

communicators is non-negligible, making this approach not

viable.

Although it is possible to create these communication

groups dynamically, frequent creation and release of com-

munication groups tends to result in an excessive amount

of overhead. Even if this overhead is negligible, using

MPI_Bcast and MPI_Reduce is still not optimal be-

cause the collective and blocking nature of these functions

reduces the opportunity to exploit the loop level concurrency

available among different supernodes. The subset of ranks

involved in one broadcast may be different from the subset

involved in another broadcast, but it is highly likely that

the at least some of the ranks in one broadcast will also

be in another broadcast. Consequently, the broadcast of one

block cannot proceed until the previous broadcast completes,

making pipelining the updates associated with different

supernodes in an asynchronous fashion more difficult to

achieve. Ideally, we would like to have a set of light-weight

asynchronous broadcast and reduction functions that can

be dynamically created with very little overhead.

We also note that the group of processors involved in

each collective communication is determined once the L,U
factors and the 2D processor mapping is given, and therefore

no further communication is needed to set up the tree once

the list of processors is known. With such a list, the tree

structure can be created dynamically with very small over-

head. The buffer arrays for performing the selected inversion

is also created dynamically. Such functions are currently not

available in standard MPI libraries. Therefore, we decided to

implement this type of restricted collective communication

through the use of point-to-point asynchronous communica-

tion functions such as MPI_Isend and MPI_Irecv.

In the implementation we presented in [17], we sim-

ply issue multiple MPI_Isend’s to send L̂I,K from one

processor to other processors that own different matching

blocks of A−1
C,C . Similarly, multiple MPI_Irecv’s are issued

to accumulate the products A−1
J ,IL̂J ,K on the processor

that owns A−1
J ,K. By using this simple strategy, we were

able to perform PSelInv efficiently on 256 ∼ 1, 024
processors depending on the sparsity pattern and the size

of a matrix. However, when a larger number of processors

are used, the performance of the previous implementation of

the PSelInv quickly deteriorates. The performance profile

we measured indicated that communication cost became

the dominant cost in those cases. For instance, for the

DG PNF14000 matrix used in section IV, the breakdown

of communication vs computation (mainly dense matrix-

matrix multiplication) cost is 27% vs 73%, when a relatively

small number of processors P = 256 is used. When

a large number of processors P = 4, 096 is used, the

communication and computation breakdown becomes 89%

vs. 11%.
A closer look at the communication profile reveals that

the increase of communication cost is partly caused by a

large imbalance in communication volumes.
The communication imbalance is exacerbated by the in-

homogeneity of the communication bandwidth and latency

among different nodes and processors. Figure 8(a) shows

that as the number of processors increases, the amount

of run time variation also increases when we ran the

same executable and input matrices multiple times. Since

PSelInv is a deterministic algorithm, the run time variation

is likely caused by variation in the communication band-

width and latency among different combination of nodes and

processors and the actual mapping between the 2D virtual

processor grid and the physical layout of the processors.
Any network will have different levels of locality, and

the realities of packaging dictate that the distance between

computational nodes will vary and that subsets of nodes will

share routers while other nodes will not. In most MPI imple-

mentations, ranks are assigned so that consecutive ranks first

fill up a node, and then fill the closest node physically, and

so on. It is thus very likely that jobs placed on machines

ranks that are logically close in MPI_COMM_WORLD are

also physically close to each other. Therefore the goal of

our broadcast implementation should be to minimize the

amount of data that needs to be transferred at long distance,

both logically and physically, while avoiding hot spots in

the network.
To reduce communication imbalance and consequently

the communication cost, we modify the way the collective

communication in step 3 of Algorithm 1 is implemented. In-

stead of using a “centralized” sender/receiver model for the

broadcast and reduction in which the communication path

can be described by a Flat-Tree shown in Figure 3(a),

we use a binary-tree based algorithm commonly employed

in the implementation of MPI_Bcast and MPI_Reduce.

Compared to the Flat-Tree model, which puts a heavy

load on the root, the Binary-Tree based scheme re-

duces the total volume sent/received from the root from
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p − 1 messages to two messages, and spreads the total

communication volume among more processors. Figure 3(a)

and 3(b)shows how messages are passed among different

processors in a Flat-Tree and Binary-Tree based

broadcast operation.

In order to implement a non-blocking Binary-Tree
based collective communication scheme, destination proces-

sor of each message has to be specified in a hierarchical

fashion. We will refer to processors that lie between the

root and the leaves of the tree as “internal nodes”. Such

processors serve as the forwarding processors. The tree is

built by repeatedly splitting the ordered list of ranks in two

partitions, and chose the first rank in each half to be the

internal nodes at the current level.

The Binary-Tree has two main benefits. First, the

large reduction in the number of messages sent from the root

greatly reduces the chances of an instantaneous hot spot in

the network around the root node. If p̄ processors participate

in the group communication, the number of messages sent

along the critical path is reduced from p̄ down to log p̄.

Second, the Binary-Tree scheme greatly increases the

chance that data is exchanged between two ranks that are

logically closer, and thus likely physically closer in the

network, by putting them in the same partition. Indeed, most

MPI libraries assign ranks such that consecutive ranks are

physically closer. As an example, Figure 3(b) shows that the

processors P1 − P6 are involved in a broadcast operation,

with P4 being the root. The Flat-Tree simply sends data

from P4 to all processors other than P4. The Binary-Tree
uses a pre-designed ordering, i.e. P4 first sends to P1 and

P5 which are of distance 1 from the root P4. The data is

further broadcast from P1 to P2, P3, and from P5 to P6.

The data communication can be performed recursively for

deeper trees.

The drawback of the Binary-Tree is that due to

the pipelining of different loop iterates in the outer-loop

of Algorithm 1, each processor may participate in several

non-blocking restricted collective communication simulta-

neously. If that processor is an internal node in several

binary communication trees, the total volume from those

many broadcasts passing through that processor can be much

larger than that sent by other processors. One can see that

with this scheme, the highest numbered rank in a column

will never be chosen as an internal node and thus will never

forward any data. On the other hand, the lowest numbered

rank in a column will always be chosen as an internal node

and thus will always forward data. While the exact ranks

chosen as internal nodes will vary depending on the root,

patterns of communication intensity will develop throughout

the range of ranks. Such a striped pattern is clearly visible

in the communication volume heat map seen in Figure 5(b).

To alleviate this problem, we use a heuristic method

that involves applying a random circular shift to the list of

receiving processor ranks. Such a procedure, referred to as

P4

P1

P2

P3

P5

P6

(a) Flat-Tree

P4

P1

P2

P3

P5

P6

(b) Binary-Tree

P4

P6

P1

P2

P3

P5

P4

P6

P1

P2

P3

P5

(c) Shifted Binary-Tree

Figure 3: Various possible tree-based communication pat-

terns for the broadcast operation.

Shifted Binary-Tree, is depicted in Figure 3(c). A

random position is selected in the sorted list of ranks and

a circular shift is then executed around this position. The

random shift makes it therefore less likely that the same

processor will be picked as the internal nodes when multiple

binary trees are built. The rationale of this circular shift is

therefore to smooth the total communication load across all

processors.

In our example in Figure 3(c), the Shifted
Binary-Tree breaks the pre-designed and monotonically

increasing ordering of ranks involved in the tree, and picks

a random processor other than the root (P4) to be the

first child. The rest of the processors follow circularly, so

that the sequence P4,P6,P1,P2,P3,P5 can be regarded as a

re-ordered list to generate the Binary-Tree. This results

in a different data communication pattern.

One can also consider using a fully random permutation

of processor ranks. However, such a permutation would

reduce network locality by putting ranks which are logically

“closer” far from each other. Moreover, our experiments

show that this approach leads to deteriorated load balancing

in terms of communication volume compared to Shifted
Binary-Tree.

In the context of PSelInv, as in many other compu-

tational kernels, the list of participating processors can be

determined in a preprocessing step. The random seed used

in the circular shift, which is at the heart of Shifted
Binary-Tree, can therefore be communicated at this

stage, eliminating an extra level of synchronization in the

algorithm.

Both these binary tree structures do an excellent job of

reducing “hot spots” in the network and reducing the com-

munication distance for data transfer. As already discussed,

the simple Binary-Tree structure reduces the number of

messages transferred to/from the root from p−1 to just two,

greatly reducing the chance of an instantaneous hot spot

developing at the time of that broadcast. It also increases

the chances that data will be transferred between ranks that

are logically close to each other, rather than all data being

transferred from the root to the leaf no matter the distance

between the leaf and the root.
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(c) Shifted Binary-Tree

Figure 4: Communication volume distribution of Col-Bcast

The Shifted Binary-Tree further reduces the

chances of hot spots in the network given that there are

many broadcasts happening simultaneously. The commu-

nication heat map in Figure 5(c) clearly shows that the

communication volume spreads much more evenly across

all ranks. The maximum amount of data sent by any rank is

also reduced. Note that the circular shift potentially reduces

network locality by putting the highest rank in the list before

the lowest rank. However, this does not negatively impact

the algorithm in any significant way, since the root and the

next level of internal nodes were not guaranteed to be close

to each other when the number of processors involved in a

communication is relatively large.

IV. NUMERICAL RESULTS

We now report the outcome of a number of computational

experiments conducted to analyze the communication vol-

ume and pattern of PSelInv, and to evaluate and compare

the efficiency of different ways to implement the restricted

collective communication pattern required in PSelInv.

In all of our experiments, we used the NERSC Edison

platform with Cray XC30 nodes. Each node has 24 cores

partitioned among two Intel Ivy Bridge processors. Each 12-

core processor runs at 2.4GHz. A single node has 64GB of

memory, providing more than 2.6 GB of memory per core.

To evaluate the performance of PSelInv, we use

two matrices of different sizes and sparsity patterns. The

DG PNF14000 matrix is generated from the electronic

structure calculation of a 2D phosphorene nanoflake with

14, 000 atoms. The matrix is a discretized Kohn-Sham

Hamiltonian obtained from an adaptive local basis expansion

scheme combined with a discontinuous Galerkin frame-

work [21]. This matrix is relatively dense. The matrix size

is 512,000, with 0.2% nonzeros in A and 1.3% nonzeros

in the L and U factors. The second matrix is named

audikw 1 matrix obtained from the University of Florida

matrix collection [20]. This matrix is relatively sparse. The

matrix size is 943,695, with 0.009% nonzeros in A and 0.3%

nonzeros in the L and U factors. These two matrices repre-

sent two different scenarios in terms of total communication

volume. For the DG PNF14000 matrix, the communication

volume of is expected to be very large. This can lead to

imbalanced data communication on different processors. For

the audikw 1 matrix, the scalability of PSelInv is more

limited by a larger communication over computation ratio.

A. Communication load analysis

The first set of experiments aims at analyzing the com-

munication load among different processors, and comparing

the efficiency of using different types of tree structures to

implement restricted collective communications by using

asynchronous MPI based functions. We report the total data

volume sent from each processor on a 46-by-46 = 2, 116
processor grid for the audikw 1 matrix.

Our main focus is the broadcast of blocks of L̂T
I,K within

each column group, and the reduction of A−1
J ,IL̂I,K within

each row group. These two operations are the most expensive

communication steps of PSelInv, and we refer to them as

Col-Bcast and Row-Reduce respectively. We report the

minimum and maximum outgoing volume of data among

all processors in Table I for different types of tree-based

collective communication schemes.

In Figure 5(a), we report the volume sent during

Col-Bcast using the Flat-Tree pattern, as used in

the PSelInv developed in [17] (currently released under

the PEXSI package v0.7.3, referred to as PSelInv v0.7.3

below). We observe that the data volume associated with

processors near the diagonal of the 2D processor grid is

significantly higher than those associated with off-diagonal

processors. Significant variation of communication volume

can also be seen among the diagonal processors themselves.

Furthermore, from the distribution of the processor load

shown in Figure 4(a), we observe that some processors send

more than twice the average volume of data sent by all

processors. This load imbalance creates contention on the

network and limits the strong scalability of PSelInv.

Communication tree Min Max Median Std. dev
Flat-Tree 28.9879 69.4943 40.7981 8.2479
Binary-Tree 1.45524 97.1436 36.8724 27.3616

Shifted Binary-Tree 33.6409 54.099 42.6272 3.32509

Table I: Volume sent during Col-Bcast (in MB) for the

audikw 1 matrix.

When a simple Binary-Tree is used to organize the

way messages are sent from the root to other processors
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(a) Flat-Tree
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(b) Binary-Tree
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(c) Shifted Binary-Tree

Figure 5: Communication volume heat map of Col-Bcast.

Communication tree Min. Max. Median Std. Dev.
DG Graphene 32768

n = 1, 310, 720, nnzA = 955, 929, 600, nnzLU = 10, 945, 891, 840
Flat-Tree 131.751 224.642 161.085 18.1015

Binary-Tree 6.89248 380.443 141.171 109.365
Shifted Binary-Tree 140.967 211.53 168.004 11.1105

DG PNF14000
n = 512, 000, nnzA = 550, 400, 000, nnzLU = 3, 720, 894, 400

Flat-Tree 37.0298 80.7091 54.3775 8.40941
Binary-Tree 2.07514 133.503 48.5096 37.0566

Shifted Binary-Tree 44.7402 75.0802 56.4503 5.74727
DG Water 12888

n = 94, 208, nnzA = 32, 706, 432, nnzLU = 1, 370, 857, 094
Flat-Tree 15.5424 34.2537 23.1715 2.72671

Binary-Tree 0.812736 52.8062 19.6699 15.3638
Shifted Binary-Tree 13.8544 33.0054 23.0989 3.0355

LU C BN C 4by2
n = 263, 328, nnzA = 190, 859, 344, nnzLU = 3, 619, 529, 750

Flat-Tree 46.7306 78.5524 60.5607 5.79246
Binary-Tree 2.48955 133.716 51.8147 39.9405

Shifted Binary-Tree 51.7282 71.1324 60.7594 3.17929
Audikw 1

n = 943, 695, nnzA = 77, 651, 847, nnzLU = 2, 577, 878, 569
Flat-Tree 24.401 60.107 35.513 7.066

Binary-Tree 1.440 95.348 31.340 25.263
Shifted Binary-Tree 28.612 51.809 38.509 3.785

Flan 1565
n = 1, 564, 794, nnzA = 117, 406, 044, nnzLU = 3, 460, 619, 508

Flat-Tree 26.176 71.9585 39.8282 8.63365
Binary-Tree 1.88161 116.068 37.2413 28.8032

Shifted Binary-Tree 35.5106 62.6158 44.3792 4.83491

Table II: Volume received during Row-Reduce (in MB)

for various matrices.

involved in the restricted collective communication, load

imbalance can still be observed from the heat map given

in Figure 5(b). Broadcasts are performed along the direction

perpendicular to the stripes that can be observed. Those reg-

ular stripes correspond to the hotspots created by repeatedly

picking same processors as internal nodes. It can also be seen

from Table I and Figure 4(b) that the maximum communica-

tion volume among all processors and the standard deviation

are actually higher than those in the Flat-Tree based

communication. Although most of the nodes see their load

decreased and the median communication volume reduced

from 40.8 MB to 36.9 MB, ranks in the last quartile of

the most loaded processors send more than 68.2 MB of data

instead of the 47.3 MB of data sent via a Flat-Tree based

scheme. This observation confirms that some processors are

selected as internal nodes in many of the Binary-Tree

based broadcasts.
In order to reduce the likelihood of the same processor

being chosen repeatedly as an internal node, we introduced

the Shifted Binary-Tree communication scheme in

Section III. The communication volume heat map associ-

ated with this scheme is shown in Figure 5(c). We use

the same colorbar that we used for Figure 5(a) so that

we can compare these two heat maps directly. We can

clearly see that the overall heat map is much “cooler”. The

communication “hot spots” appear to be eliminated by the

Shifted Binary-Tree. As we explained in section III,

the reduction in the overall communication load and the

removal of the “hot spots” result from shifting processor

ranks in such a way that different processors are picked as

internal nodes of different communication trees. The effect

of this is clearly observed in practice on the minimum

and maximum volumes, given in Table I. The span of

the communication volume among different processors is

significantly reduced (resp. MIN 33.6 MB and MAX 54.1

MB) than that using Flat-Tree (resp. MIN 29 MB and

MAX 69.5 MB). The standard deviation is significantly

reduced from 8.2 MB to 3.3 MB, confirming the efficiency

of the approach.

0 2 4 6 8 10 12 14

Processor column index

0

2

4

6

8

10

12

14

P
ro

ce
ss

or
ro

w
in

de
x

0

15

30

45

60

75

90

105

120

135

C
om

m
un

ic
at

io
n

vo
lu

m
e

(M
B

)

Figure 6: Communication volume heat map of Col-Bcast
using Flat-Tree on 256 processors

When fewer processors are used to perform PSelInv,

the communication load imbalance might not be so severe.

Figure 6 depicts the communication volume heat map of

Col-Bcast for the same audikw 1 matrix running on a
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16-by-16 processor grid using the Flat-Tree scheme.

In this case, the average volume is 120.06 MB, while the

standard deviation is 12.25 MB, corresponding to 10.2% of

the average. This is sharply lower than the 19.2% standard

deviation when PSelInv is carried out on 2,116 processors.
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(a) Flat-Tree
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(b) Shifted Binary-Tree

Figure 7: Communication volume heat map of

Row-Reduce

The Row-Reduce operation can be seen as the re-

verse operation of a broadcast. In this case, it is the

amount of data received by each processor that we are

concerned with. Heat maps corresponding to Flat-Tree
and Shifted Binary-Tree are shown in Figure 7(a),

and 7(b) respectively. We can clearly see that the Shifted
Binary-Tree scheme results in a more balanced com-

munication load distribution among all processors. Ta-

ble II presents statistics on the volume received during

the Row-Reduce communication step for a larger set of

matrices. Similar observations can be made than in the case

of Col-Bcast.

Altogether, our experimental results demonstrate that the

use of a binary tree to organize messages in a restricted col-

lective communication does mitigates the inherent load im-

balance of the Flat-Tree communication pattern. How-

ever, since multiple restricted collective communications

may take place at the same time with some of the processors

participating in all of them, the binary trees associated with

these collective calls have to be built in such a way that

these processors are not always picked as internal nodes of

the binary trees. This can be achieved using the proposed

Shifted Binary-Tree communication pattern.

B. Impact on performance

In this section, we assess the impact of using different

tree-based restricted collective communication schemes on

the overall performance of PSelInv, and compare the

strong scaling of PSelInv using either (1) Flat-Tree,

(2) Binary-Tree and (3) Shifted Binary-Tree
communication patterns.

The new implementation of PSelInv contains additional

code improvements that do not fall into the scope of this

paper. Therefore, to emphasize the impact of the differ-

ent implementations of restricted collective communication

only, we use the wallclock timing measurements of the

new PSelInv which contains the implementation of the

Flat-Tree based approach as the baseline for comparison.

We also provide timings from our previous v0.7.3 release of

PSelInv [17] for reference. This implementation also uses

a Flat-Tree communication pattern, but does not include

the additional improvements implemented in the latest ver-

sion of the code. The wallclock time of the LU factorization

based on SuperLU_DIST [18] is also provided. This is

a pre-processing step of PSelInv. The SuperLU_DIST
timing results are also used here as a reference for evaluating

the strong scaling PSelInv.

Every data point generated from the strong scaling exper-

iments presented in this section corresponds to the average

of 6 runs. We report standard deviations by using error bars.

We define the speedup factor and other ratios as the ratio

between average values.

Results for the DG PNF14000 matrix are depicted in Fig-

ure 8(a). We observe that switching from the Flat-Tree
to the Binary-Tree scheme leads to a reduction of the

wall clock time by a factor of 2.4 on average. The reduction

factor is larger when a larger number of processors are used

in PSelInv. In particular, when more than 1,024 processors

are used, the average speedup factor is 3.4. The speedup

factor reaches 6.15x when using 12,100 processors.

The Binary-Tree based approach increases the level

of concurrency and overlap in the algorithm by reducing

the number of steps required to complete a group commu-

nication. PSelInv is expressed in an asynchronous task

model, and as a result, the reduction of the cost along

the critical path is also associated with an increase of

the number of group communications that can potentially

happen concurrently.

Additional performance improvement can be seen when

Shifted Binary-Tree scheme is used. In particular,

the average speedup factor is increased to 3.0. When more

than 1,024 processors are used, the average speedup factor

increases to 4.5. The maximum speedup reaches 8x when

12,100 processors are used. Shifted Binary-Tree
also displays a logarithmic cost. The additional improve-

ment over Binary-Tree is stemming from the fact that

the communication load is smoothed out across the entire

platform. This results in a better use of the network.

Switching from Flat-Tree to Binary-Tree also

reduces the standard deviation of the wall clock time among

multiple runs of the same code on the same input by a

factor of 1.72 on average. Compared to v0.7.3 of PSelInv
presented in [17], the average reduction ratio in standard

deviation when using Shifted Binary-Tree is higher

than 4.4.

Similar observations holds for the audikw 1 matrix. The

strong scaling plot depicted in Figure 8(b) demonstrates

the use of Binary-Tree and Shifted Binary-Tree
allows us to scale the computation to more than 2,116
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Figure 8: Running times of PSelInv for two sample matrices

processors, whereas the scalability of Flat-Tree based

PSelInv calculations is limited to less than 1,024 proces-

sors. The standard deviation in running time is reduced by

more than a factor of 4 when a large number of processors

are used to run the same program with the same input

multiple times.
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Figure 9: Computation and communication times for

DG PNF14000

The improved scalability of PSelInv clearly results from

a better implementation of restricted collective communica-

tion which significantly reduces communication overhead.

This can also be seen from the ratio of computation and

communication time. In Figures 9(a) and 9(b), we plot

both the communication and computation time consumed by

PSelInv for the DG PNF14000 matrix when the computa-

tion is carried out on 256 and 4,096 processors respectively.

The communication to computation ratio is reduced from

11.8 to 1.9 when we switch from a Flat-Tree based

communication scheme a Shifted Binary-Tree based

scheme.

It is interesting to note that in both test cases, the benefit

of using Shifted Binary-Tree is not so pronounced

when the PSelInv is carried out among a small set of

processors (e.g. 256). This is due to the fact that in this

case, several restricted collective communications take place

within a single node of Edison, which has 24 cores. Because

message passing is implemented as memory copies within

shared memory on a single node, its cost is generally lower

compared to internode communication. Moreover, having a

single send buffer in a Flat-Tree based scheme could

enhance cache reuse and reduces the impact of issuing p
messages compared to the log2 p messages sent by a binary

tree based collective communication scheme. Therefore, in

practice, one can potentially use a “hybrid” scheme in which

a Flat-Tree based collective communication is used

when the communication is restricted to a relatively small

number of processors and a Shifted Binary-Tree
based scheme is used when a large number of processors

are involved.

V. CONCLUSION AND FUTURE WORK

We described several implementations of restricted col-

lective communication in a PSelInv algorithm. Each

implementation uses the point-to-point MPI_Isend and

MPI_Irecv functions available in a standard MPI library.

However, they differ in the way each message is moved

from one processor to another. We showed that a binary

tree based data propagation scheme is far superior than a flat

tree based scheme when a large number of processors are

involved in the collective communication. In particular, the

Binary-Tree based scheme minimizes communication

load imbalance and removes communication “hot spots”.
The use of MPI_Isend and MPI_Irecv allows mul-

tiple group communications to be initiated at the same

time. This is a desired feature that would allow us to

exploit a higher level of concurrency in the PSelInv
algorithm. In order to prevent a processor from becoming

an internal node of multiple binary trees, we developed

a heuristic that involves applying a random circular shift

to the list of receiving processor ranks. We demonstrated

that such a heuristic leads to a significant improvement

in the scalability of PSelInv. For instance, when 6, 400
processors are used, we observe over 5x speedup for test

matrices. In a broader context, any algorithm expressed in
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an asynchronous task model with large number of restricted

collective communication operations could benefit from a

similar approach. This approach also led to a reduction of the

variation in running time when the same program is executed

multiple times with the same input. Such variation is caused

by inhomogeneous network architecture and contention.

Reducing this type of variation is extremely important for

achieving scalable performance of the PEXSI algorithm [2],

[3], [5] in which multiple selected inversions are carried

out simultaneously on different subgroups of processors.

Although our implementation in this work is for symmetric

matrices, the same communication strategy can be naturally

extended to asymmetric matrices, which is our work in

progress.
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